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Devices capable of deterministically manipulating the photonic entan-

glement are of paramount importance, since photons are the ideal mes-

sengers for quantum information. Here, we report a Rydberg-atom-based

entanglement filter that preserves the desired photonic entangled state and

deterministically blocks the transmission of the unwanted ones. Photonic

entanglement with near-unity fidelity can be extracted from an input state

with an arbitrarily low initial fidelity. The protocol is inherently robust,

and succeeds both in the Rydberg blockade regime and in the interaction-

induced dissipation regime. Such an entanglement filter opens new routes

toward scalable photonic quantum information processing with multiple

ensembles of Rydberg atoms.

Advancing the efficient quantum control of photonic entanglement is at the heart

of quantum science (1–4 ). As one of the key elements in quantum photonics, an

entanglement filter (EF) transmits the entanglement of the desired quantum states,

while blocking the transmission of unwanted photonic components (5 ). It has a

plethora of potential applications, including photonic entanglement generation (6 ), all-

optical quantum information processing (7,8 ) and entanglement distillations (9,10 ).

However, its scalability and applicability have been limited by the fact that all photonic

entanglement filter protocols to date are based on linear-optical approaches (5,11–13 ),

which remove unwanted photonic states only in a probabilistic way. The probabilistic

nature and the requirement of ancillary quantum resources lead to poor scalability and

overwhelming resource consumption. Moreover, the output entanglement fidelity in the
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linear-optical approach is ultimately limited by the finite interference visibility between

photons.

Therefore, scalable quantum photonic applications (1–3,14 ) will largely benefit

from an ideal entanglement filter that deterministically removes undesired states,

unconditionally achieves a high entanglement fidelity, and demands no extra photonic

resources. Unfortunately, the realization of such a superior entanglement-filter protocol

remains elusive hitherto, due to the lack of a strong and controllable photon-photon

interaction in linear-optical approaches. In recent years, cold Rydberg atoms have

been employed to facilitate the interactions between photons and to achieve intrinsically

deterministic quantum photonic operations, such as single-photon generation (15–17 )

and manipulation (18–22 ), atom-photon entanglement preparation (23,24 ), and

photon-photon gate (25 ).

Here, we propose and demonstrate an above-envisioned superior entanglement

filter by exploiting cold Rydberg atomic ensembles to mediate the interaction between

photons. The qubits are encoded in the horizontal (H) and vertical (V) polarizations of

photons a and b. With a product state of (|H〉a + |V 〉a)(|H〉b + |V 〉b) as input, the filter

removes the |H〉a |H〉b and |V 〉a |V 〉b components, resulting in a maximally entangled

Bell state |Ψ+〉 = 1/
√

2 (|H〉a |V 〉b + |V 〉a |H〉b). In contrast to previous probabilistic

linear-optical approaches, our protocol eliminates the unwanted states in a deterministic

way, outputs high-fidelity entangled states, and requires no extra quantum resources.

As illustrated in Fig. 1, our experiment employs two Rydberg ensembles to achieve

polarization-selective interaction between photonic qubits. The working principle is to

convert the unwanted photonic components into double Rydberg excitations in the same

atomic ensemble and to achieve the deterministic removal of these states with either the

Rydberg blockade (26 ) or the interaction induced two-body dissipation (27 ). Using the

photon storage based on the Rydberg electromagnetically induced transparency (EIT),

the 480 nm control laser field ΩU
a (ΩD

a ) coherently transfers the 780 nm photon in the

state |H〉a (|V 〉a) into a collective atomic excitation in the down (upper) ensemble:

|D〉a =

N∑

j=1

|gD〉1 . . . |raD〉j . . . |gD〉N/
√
N

|U〉a =

N∑

j=1

|gU〉1 . . . |raU〉j . . . |gU〉N/
√
N,

(1)

where |g〉 is the atomic ground state, |ra〉 is a Rydberg state, and U/D denotes the

upper/down ensemble. To induce the interaction between photons a and b, an adjacent

Rydberg level |rb〉 is employed to transfer the qubit state |H〉b (|V 〉b) to the excitation

|D〉b (|U〉b) in the down (upper) ensemble.

To implement the entanglement filter in the blockade regime, high-lying Rydberg

states with principal quantum numbers na = 76 and nb = 77 are employed. As a

result, the storage of unwanted components |H〉a |H〉b and |V 〉a |V 〉b into double Rydberg

excitations in the same ensemble, i.e., |D〉a |D〉b or |U〉a |U〉b, is strongly suppressed by
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Figure 1: Illustration of experimental protocol. (A) The horizontally (H) and

vertically (V) polarized components of the 780 nm photonic qubits a and b are separated

into the down (D) and upper (U) paths by a polarization beam splitter (PBS), and stored

as Rydberg excitations by the 480 nm laser fields ΩU,D
a and ΩU,D

b . The 780 nm and 480 nm

fields are counter-propagating and focused on the cold 87Rb atomic ensembles with

waists of 6 µm and 15 µm, respectively. In the read-out stage, the 480 nm laser fields ΩU,D
a

and ΩU,D
b are sequentially applied to convert the Rydberg excitations |D〉a / |U〉a and

|D〉b / |U〉b to photonic qubits |H〉a / |V 〉a and |H〉b / |V 〉b. The photons then go through

a polarization-projective measurement setup before being collected by single-mode fibers

and detected by SPCMs. The inserts show the timing sequence (B) and the relevant
87Rb atomic levels (C): ground state |g〉 = |5S1/2, F = 2,mF = 2〉, intermediate state

|e〉 = |5P3/2, F = 3,mF = 3〉, and Rydberg states |ra〉 = |naD5/2, J = 5/2,mj = 5/2〉
and |rb〉 = |nbD5/2, J = 5/2,mj = 5/2〉.

the blockade effect. On the other hand, two ensembles are separated by 150 µm, well

beyond the Rydberg blockade radius, such that the desired entangled state |Ψ+〉 can

be stored as 1/
√

2 (|D〉a |U〉b + |U〉a |D〉b) of the atoms. After the storage process, the

Rydberg excitations are converted back to the photonic qubits in the state |Ψ+〉 through

collective emission by sequentially applying 480 nm read-out light fields.

The polarization-selective photon blockade effect is shown in Fig. 2, A and B.

Two weak coherent laser pulses with average photon number 〈n〉 ∼ 0.1 are used to

approximate single photons a and b. After passing through the entanglement filter,
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Figure 2: Blockade-based entanglement filter. (A and B) Normalized two-photon

populations of the input (A) and output (B) state, obtained from photon correlation

measurements. (C and D) The real part of the reconstructed density matrix of the

input (C) and the output (D) state. (E) The measured input- (green diamonds) and

output- (red circles) state fidelities as functions of the input-state amplitude ratio α/β.

Solid line: expected input fidelity at different α/β. Error bars: 1σ standard deviation

from photoelectric counting events.

photons are detected in the |H〉 / |V 〉 basis by single-photon counting modules (SPCMs)

. Figure 2A displays the measured two-photon populations of the input state, which

are distributed equally (∼ 0.25) over all bases. The populations of the output state

are shown in Fig. 2B, where the |H〉a |H〉b and |V 〉a |V 〉b components are strongly

suppressed. The measured suppression ratio χ = PHH+PV V

PHV +PV H
∼ 4(1)×10−3 demonstrates

the strong blockade effect in the entanglement filter.

To characterize the entanglement filter in the non-classical regime, quantum state

tomography for the input and output states are performed. The density matrix ρin of the

input state is reconstructed and shown in Fig. 2C, which has a fidelity of Fin = 49.3(7)%

overlapping with the target state |Ψ+〉. The entanglement filter removes the undesired

components and improves the fidelity up to Fout = 98.8(5)% (Fig. 2D). The reduction of

Fout from unity is mainly caused by the 0.61(6)% infidelity from background detection

events of SPCMs, and the background-corrected fidelity is improved to Fcor = 99.4(5)%.

The multi-photon components from the weak coherent light and the crosstalk between

different polarization bases also cause infidelities of≤ 0.58% and 0.25(23)%, respectively.

The above-mentioned sources of infidelities are not intrinsic to our protocol and can be

further suppressed with technical efforts. The fundamental limitation on the fidelity
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Figure 3: Interaction induced two-body decoherence. (A and B) Illustration

of two-body decoherence induced by distance-dependent interaction. (C and D) The

suppression ratio χ = PHH+PV V

PHV +PV H
as a function of evolution time t for na = 47, nb = 48 (C)

and na = 55, nb = 56 (D). Error bars: 1σ standard deviation from photoelectric counting

events. Solid curves: simulations based on the two-body decoherence mechanism.

comes from the imperfect suppression of double Rydberg excitations, which gives an

upper bound of Fout ∼ 99.98(6)% (see supplementary materials).

An ideal entanglement filter should post no prerequisite on the fidelity of the

input state and extract the desired entangled state from an arbitrarily noisy input.

To demonstrate this essential capability, (α |H〉a + β |V 〉a)(α |H〉b + β |V 〉b) is employed

as the input state. By varying the amplitude ratio α/β, the input fidelity Fin can be

tuned in the classical regime between 0 and 0.5 (green diamonds in Fig. 2E). When

the entanglement filter is applied, the fidelities of the corresponding output states are
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improved to a near-unity level (red circles in Fig. 2E). In the case of α/β = 0.185,

our entanglement filter improves the input state fidelity Fin = 0.070(12) by more than

one order of magnitude. The measured state fidelity Fout = 0.955(22) is limited by

the decreased signal-to-background ratio for small α/β, and the background-corrected

fidelity Fcor = 0.992(25) is not affected by the low input state fidelity.

Developing novel Rydberg quantum photonic protocols with low principal quantum

number n holds the promise to alleviate some of the decoherence and loss mechanisms

associated with high n states, such as long-lived Rydberg contaminants, energy level

drifts induced by background electric fields, and density-dependent dephasing. To this

end, we demonstrate an entanglement filter in the absence of blockade effect using lower-

lying Rydberg states na = 47 and nb = 48, whose van der Waals interaction coefficient

C6 is nearly two orders of magnitudes weaker than that of the states na = 76 and

nb = 77. Therefore, the |H〉a |H〉b and |V 〉a |V 〉b components can be stored as double

Rydberg excitations in the same ensemble.

The distance-dependent van der Waals interaction strength Vjj′ = C6

R6
jj′

varies

strongly for Rydberg atom pairs with different separations Rjj′ , and leads to the

accumulation of random phases and a fast two-body decoherence during the quantum

evolution (27 ):

|U〉a |U〉b ∝
N∑

j,j′ 6=j

ei
Vjj′
h̄

t |gU〉1 . . . |raU〉j . . . |rbU〉j′ . . . |gU〉N . (2)

If the read-out is performed immediately after storage, i.e., without two-body

decoherence, the spatial mode of the retrieved photons will be highly directional, as

a result of the mode-matched collective emission (Fig. 3A). However, the accumulation

of interaction-induced random phases deteriorates the collective coherence of the

excitations and leads to the spontaneous photon emission into random directions

during the read-out (Fig. 3B). In the experiment, only photons in the mode-matched

direction are collected and therefore the retrieved |H〉a |H〉b and |V 〉a |V 〉b components

are suppressed due to the dissipation. The entangled state |Ψ+〉 is stored in the

decoherence-free-subspace 1/
√

2 (|D〉a |U〉b + |U〉a |D〉b), hence immune to the above

dissipation. Figure 3C displays the measured suppression ratio χ as a function of

the dissipative evolution time t. The ratio χ decreases to 0.440(45) with just a short

evolution time of 0.2µs and is further suppressed to 0.037(17) after 4µs.

Similar to χ, the measured output-state fidelity depends on the quantum evolution

time t in the dissipative regime. The observed temporal dynamics of output-state

fidelity is shown in Fig. 4A, which agrees well with the result simulated by the two-

body decoherence model (27 ). The undesired components in the density matrix ρ are

gradually suppressed with a longer dissipative evolution time (Fig. 4B). After 4 µs of

evolution, the entanglement filter improves the state fidelity from Fin = 0.495(7) to

F = 0.951(17).

The dissipative entanglement filter protocol is very robust to the principal quantum
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Figure 4: Entanglement filter via dissipative quantum evolution. (A) The

measured state fidelity as a function of dissipative evolution time t with na = 47, nb = 48.

(B) The reconstructed density matrices for input state and output states with different

evolution times. (C) Same as (A), but for na = 55, nb = 56. Error bars: 1σ standard

deviation from photoelectric counting events. Solid curves: simulations based on the

two-body decoherence model.

number n. For higher Rydberg states n ∼ 55, the larger interaction variation leads to

a quicker dissipation of the unwanted photonic components (Fig. 3D) and consequently

a faster improvement of the state fidelity with the evolution time t. In Fig. 4C, an

entanglement fidelity of F = 0.978(15) is achieved with t = 2.8µs. In principle, the

dissipative scheme can also be realized with very low n, by harnessing the resonant

dipole-dipole interactions. Our simulation shows that, efficient entanglement filtering

can be achieved even with |ra〉 = |19D5/2,mj = 3/2〉 and |rb〉 = |20P3/2,mj = 3/2〉 (see

supplementary materials). Combined with the blockade-based scheme at high n, the

working range of our entanglement filter spans over a large spectrum of Rydberg states.

Although the transmission of the entanglement filter is determined by the efficiency

of photon storage-and-retrieval processes, our protocol is intrinsically deterministic.

Currently, the measured storage efficiency ηs = 0.24 and read-out efficiency ηr = 0.36

are mainly limited by the finite optical depth (∼ 3.5) and can be further improved. By

incorporating the atomic ensemble into an optical resonator, ηs and ηr can be increased

to near unity and the high entanglement transmission could be achieved. Moreover,

the target state of our entanglement filter is not limited to |Ψ+〉. In principle, our

entanglement filter can extract any of the four Bell states from an arbitrary input

states. For example, we also demonstrate the entanglement filtering for |Ψ−〉 from an
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input state |H〉a |V 〉b = 1/
√

2(|Ψ+〉 + |Ψ−〉), with an output state fidelity of 0.989(10)

(see supplementary materials).

In summary, we report the realization of a novel entanglement filter enabled by

Rydberg atoms. In contrast to previous demonstrations, our scheme features superior

scalability, since it works without extra photonic resources, removes undesired states

deterministically, and features the high entanglement fidelity.

Our entanglement filter opens new avenues for a number of novel quantum photonic

applications and studies. First of all, by scaling up to an array of Rydberg ensembles,

the efficient generation and manipulation of multi-photon entanglements, such as Dicke

states and GHZ states, can be realized. Moreover, our protocol is not based on the

photon-photon interference, therefore, the qubits do not need to be indistinguishable.

This unique feature allows an effective quantum control between photons with different

temporal-spatial profiles and even with different colors, as long as they can be coupled to

appropriate atomic transitions. Last but not least, our entanglement filter also succeeds

in the dissipative regime by exploiting the interaction-induced two-body decoherence.

The extension of such a scheme to an array of interacting Rydberg excitations could

enable the dissipative preparation of long-range correlated states, such as Wigner

crystal (28 ), and the exploration of novel many-body quantum dynamics (29,30 ) with

interaction disorders that can be tuned by orders of magnitude.
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I. EXPERIMENTAL DETAILS

In this section, we present the experimental details about the setup, EIT photon storage and the matter-light
quantum state transfer.

87Rb atoms are loaded into a magnetic-optical-trap (MOT) from the background vapor for 330ms and a 50ms long
polarization-gradient-cooling (PGC) is performed to further lower the atomic temperature to T = 10µK. Then the
atoms are loaded into a one-dimension optical dipole trap, formed by a linearly polarized 1012 nm laser beam along
the y-axis, where the x-axis represents the vertical direction. The 1012 nm dipole trap beam has ∼ 0.9W power and
waists of 10µm and 50µm, resulting in a trap depth of U/h ∼ 4MHz and trapping frequencies of wx/(2π) = 840Hz,
wy/(2π) = 25Hz and wz/(2π) = 4 kHz. The root-mean-squared (RMS) distributions of the atomic ensemble are
xRMS ∼ 15µm, yRMS ∼ 520µm and zRMS ∼ 3.5µm. The 780 nm field propagates along the z-direction and is
tightly focused onto the atoms with a waist of 6µm, which defines the excitation region in the x-y plane. The
excitation region in the z-direction is defined by length of the atomic sample zRMS ∼ 3.5µm. Before performing the
entanglement filter protocol, a 8G external magnetic field along z-axis is switch on and atoms are optically pumped to
the |g⟩ = |5S1/2, F = 2,mF = 2⟩ state. The atomic sample has an optical depth (OD) of ∼ 3.5 for |g⟩− |e⟩ transition.

The 480 nm laser is from a second harmonic generator seeded by power-amplified 960 nm laser light. The 780 nm
and 960 nm fields are generated from external cavity diode lasers, which are frequency-stabilized to an ultra-low-
expansion cavity with a finesse of ∼ 20, 000. The linewidths of 780 nm and 960 nm lasers are ∼ 10 kHz. An additional
locking laser is employed to stabilize the relative phase between photons going through the upper and down paths.
The wavelength of the locking laser is chosen to be 792 nm such that its AC-Stark shift and off-resonant scattering
are negligible. The interference signal from the two 792 nm laser beams is detected to generate the feedback to a
piezoelectric transducer (PZT) for stabilizing the optical path difference.

After every sample preparation, the 5µs long entanglement filter protocol is executed 1, 5000 times. Photons a
and b are approximated by two 50 ns long weak coherent laser pulses separated by 100 ns. The horizontally (H)
and vertically (V) polarized components are split into the down (D) and upper (U) paths by a polarization-beam-

splitter (PBS). By applying 480 nm control laser fields ΩU,D
a and ΩU,D

b , photons a and b are stored into the atomic
ensemble. The photon storage is implemented via a ladder-type Rydberg electromagnetically induced transparency
(EIT) scheme involving ground state |g⟩, intermediate state |e⟩ = |5P3/2, F = 3,mF = 3⟩ and Rydberg state |ra⟩ =
|naD5/2, J = 5/2,mj = 5/2⟩ or |rb⟩ = |nbD5/2, J = 5/2,mj = 5/2⟩. The Rydberg EIT has a bandwidth of ∆EIT =
2π × 4.4MHz. The 480 nm laser fields are right-hand circularly polarized and counter-propagate with the 780 nm
photons. To match polarization of photonic qubits with |g⟩ ↔ |e⟩ transition, quarter-wave plates (QWPs) are used
to rotate the polarization of photons in the D (U) path from |H⟩ (|V ⟩) to right-hand circular |R⟩ before entering the
atomic ensemble. After a storage time t (200 ns for the blockade protocol and variable for the dissipative scheme),

480 nm read-out fields ΩU,D
a and ΩU,D

b are sequentially applied to convert the Rydberg excitations back into photons.
The polarization of photons retrieved from D (U) are rotated back to |H⟩ (|V ⟩) by QWPs. At the end of every

experimental trial, the resonant 480 nm fields ΩU,D
a and ΩU,D

b are turned on again for 2.5µs to clean any residue
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Rydberg contaminants which might affect the Rydberg EIT storage in the next experimental trial. The optical dipole
trap is switched off during the 5µs storage-and-retrieval experiment to avoid affecting the Rydberg EIT storage and
turned back on for 60µs after every 5 experimental trials to keep the atoms confined.

FIG. S1. Schematic illustration of entanglement filter. Two mesoscopic 87Rb atomic ensembles with optical depth of
∼ 3.5 are confined by a one-dimensional optical dipole trap at 1012 nm. The 780 nm photonic qubits a and b successively enter
the system and their horizontally (H) and vertically (V) polarized components are separated into the down (D) and upper (U)
paths by a polarization beam splitter (PBS). The qubits are stored as Rydberg excitations via the counter-propagating 480 nm

laser fields with the Rabi frequencies ΩU,D
a and ΩU,D

b under the electromagnetically induced transparency (EIT) condition. The
780 nm and 480 nm fields, with waists of 6µm and 15µm, respectively, are tightly focused on the ensemble. Due to the strong
Rydberg interactions, the storage of photons a and b into the same atomic ensemble, i.e., the transfer of |H⟩a |H⟩b (|V ⟩a |V ⟩b)
into |D⟩a |D⟩b (|U⟩a |U⟩b), is suppressed. In the read-out stage, the 480 nm laser fields ΩU,D

a and ΩU,D
b are sequentially applied

to convert the Rydberg excitations back into photonic qubits. In order to store the 780 nm photons using |g⟩ − |e⟩ transition,
the polarization of photons in the D (U) path is rotated from |H⟩ (|V ⟩) to |R⟩ before the EIT storage and converted back
into |H⟩ (|V ⟩) after the read-out. The output state of the entanglement filter is reconstructed via a polarization-projective
measurement setup, which contains a non-polarization beam splitter (NPBS), half- and quarter-waveplates (HWPs and QWPs),
PBSs, and single-photon counting modules (SPCMs). An additional 792 nm locking laser beam is employed to stabilize the
relative phase between photons going through the upper and down paths. The 792 nm interference signal, which is measured at
one of the ports in PBS 1, is used as the feedback to a piezoelectric transducer (PZT) to stabilize the phase difference between
the optical paths. DM: dichroic mirror.

Here, we introduce how the storage efficiency ηs = 24% and retrieval efficiency ηr = 36% are measured. The
780 nm field is detuned from the |g⟩ − |e⟩ transition by ∆780 = −36MHz such that the absorption of 780 nm photons
without Rydberg EIT is negligible. The detuned storage efficiency, defined as the ratio of stored to input photons:
η∆s = Nstor

Ninput
, is measured to be ∼ 2%. With η∆s , the retrieval efficiency ηr = 36% can be obtained from storage-and-

retrieval efficiency η∆s × ηr = 0.73% in the detuned storage (∆780 = −36MHz). The measured retrieval efficiency
ηr = 36% should not be affected by the detuning in the storage process. Then the 780 nm photon is tuned to resonant
to optimize storage efficiency and we measure a resonant storage-and-retrieval efficiency of ηs×ηr = 8.5%, from which
the resonant storage efficiency ηs = 24% in the entanglement filter (EF) experiment is obtained. The storage and
retrieval efficiencies are mainly limited by the finite optical depth in the current experiment, and can be improved by
incorporating the atomic ensemble with an optical resonator.

The polarization correlations of the output qubits can be obtained through the projective measurement shown in
Fig S1. Two polarization-encoded qubits a and b are sequentially retrieved from the Rydberg ensembles, separated
into paths A and B, and detected by two pairs of SPCMs. A non-polarization beam splitter (NPBS) is employed to
simplify the experiment setup but it brings an additional optical loss of 50%. For example, we detect the photonic qubit
a at time tA in one of the outputs of the NPBS (path A), while the qubit b at time tB is detected in another output
port of the NPBS (path B). Alternatively, the two temporally-separated qubits can be routed into different paths
with an electro-optic modulator (EOM), which has high optical transmission. The bases for polarization projective
measurements in path A and B are determined by the waveplates (WPs) in front of the PBSs. Due to the collective
photon emission in the EIT read-out, the retrieved photons have the same spatial profile as the 780 nm input field and
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can be conveniently coupled to the single-mode fiber, followed by the SPCMs ai and bj for i, j = {0, 1}. The collection
angle of the phase-match emission is of ∼ 0.038 rad. The correlation measurement is implemented by detecting the
coincidences between SPCMs ai and bj . To protect the SPCMs from the background lights, acousto-optic modulators
(AOMs) are used before SPCMs as extra gates.

FIG. S2. Time-resolved two-photon coincidences with different input states. (A and C) Photons a and b are stored
as Rydberg excitations in two individual ensembles |D⟩a |U⟩b (A) and |U⟩a |D⟩b (C), where the Rydberg interaction is negligible
due to the 150µm separation between the two atomic ensembles. Then the read-out light fields are sequentially applied to
convert the Rydberg excitations to two retrieved photons centered at different time. The time-resolved two-photon coincidences
between SPCM ai and bj are recorded. The temporal profiles of the retrieved photons are shown, with a full width at half
maximum (FWHM) of about 45 ns. (B and D) Two photons entering the same ensemble |D⟩a |D⟩b (B) and |U⟩a |U⟩b (D)
can not be simultaneously stored due to the strong Rydberg blockade effect. Therefore, the probability of retrieving photons
|H⟩a |H⟩b (|V ⟩a |V ⟩b) is highly suppressed, leading to almost vanishing correlated detection events in the readout.

II. ENTANGLEMENT FILTER BASED ON RYDBERG BLOCKADE

1. Polarization-selective photon blockade

In this section, we present the supplementary information about the polarization-selective photon blockade il-
lustrated in Fig. 2B of the main text and estimate the upper limit of output state fidelity for the blockade-based
entanglement filter.

As illustrated in the main text, we use interactions between Rydberg states |ra⟩ = |76D5/2,mJ = 5/2⟩ and |rb⟩ =
|77D5/2,mJ = 5/2⟩ to realize the polarization-selective photon blockade. Because of the strong Rydberg interaction,
the storage of two photons in the same ensemble is suppressed, resulting in the normalized two-photon populations
shown in Fig. 2, A and B. Figure S2 shows the time-resolved two-photon correlation measurements with different
input qubits combinations. When photons a and b are routed into different ensembles, the Rydberg interactions are
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negligible due to the large distance between two ensembles, so two photons can be stored and then retrieved at a later
time (Fig. S2, A and C). However, the storage of two photons into double Rydberg excitations in the same ensemble is
forbidden by the Rydberg interaction induced energy shifts. Note that only two-photon coincidences are recorded in
Fig. S2, and therefore the correlated detection events for retrieving two photons from the same ensemble are strongly
suppressed (Fig. S2, B and D).

Then we proceed to estimate the intrinsic limitation on the output state fidelity using the blockade-based EF
protocol. The following results are acquired in the Rydberg-blockade regime but can easily be generalized to other
cases. Considering a pure input state |φin⟩ = 1

2 (|H⟩a |H⟩b + |H⟩a |V ⟩b + |V ⟩a |H⟩b + |V ⟩a |V ⟩b) for the EF operation,
we can write the output state |φout⟩ as:

|φout⟩ =
1√

2 + PHH + PV V

(
√
PHH |H⟩a |H⟩b + |H⟩a |V ⟩b + |V ⟩a |H⟩b +

√
PV V |V ⟩a |V ⟩b). (1)

Here PHH(PV V ) represents the residual probability of having output photons in the state |H⟩a |H⟩b(|V ⟩a |V ⟩b) after
the EF operation. Assuming the storage-and retrieval efficiencies and optical losses of ensemble D and U are identical,
the suppression ratio can be expressed as χ = PHH+PV V

PHV +PV H
= PHH

PHV
, where we have used PV V = PHH and PHV = PV H .

Consequently, Eq. 1 is simplified as

|φout⟩ =
1√

2 + 2χ
(
√
χ |H⟩a |H⟩b + |H⟩a |V ⟩b + |V ⟩a |H⟩b +

√
χ |V ⟩a |V ⟩b). (2)

and the theoretical upper limit of the output state fidelity is given by

Fupp = |⟨Ψ+|φout⟩|2 =
1

2
+

1− χ

2 + 2χ
. (3)

Therefore, in the ideal situation, the output state fidelity is only limited by the imperfection of the Rydberg blockade,
characterized by the suppression ratio χ. As a result of the strong interactions between Rydberg states na = 76 and
nb = 77, χ should be negligibly small. However, the background detection events, the multi-photon components from
weak coherent light and the crosstalk due to the imperfection of polarization increase χ and lower the measured fidelity
(thoroughly investigated in Supplementary Material Section II.2). To estimate the value of χ caused by the imperfect
blockade effect, we measure the cross-correlation function gab between photon a and b using only one ensemble,
where the polarization crosstalk and multi-photon component in the weak coherent light do not play any role. The
measured cross-correlation function gab = 1.9(5)×10−3 is mainly contributed by the background detection events and
the imperfect blockade. By analyzing the SPCMs background, we obtain the background-corrected cross-correlation
function gcorab = 2(6) × 10−4. Assuming the transmissions of photons through the path D and U are identical, the χ
in Eq. 3 can be estimated by the cross-correlation function:

χ =
ρHH + ρV V

ρHV + ρV H
=

⟨NHH⟩
⟨NH⟩⟨NH⟩ +

⟨NV V ⟩
⟨NV ⟩⟨NV ⟩

⟨NHV ⟩
⟨NH⟩⟨NV ⟩ +

⟨NV H⟩
⟨NV ⟩⟨NH⟩

= gab, (4)

where ⟨NH⟩ = ⟨NV ⟩ is used. Therefore, we estimate that the upper limit for the output state fidelity is Fupp =

1
2 +

1−g
(cor)
ab

2+2g
(cor)
ab

= 0.9998(6).

Moreover, with the measured value χ = 0.0044(15) and its background-subtracted value χBG = 0.0025(15) shown
in Fig. 2 of the main text, we attribute the remaining deviation of χ to the crosstalk due to the imperfection of
polarization, which is estimated to be ∆χcross = 0.0023(15).

2. Entangled state fidelity and error analysis

In this section, we characterize the quantum nature of our entanglement filter by performing photonic state tomog-
raphy to reconstruct the density matrix of the output state and to measure its fidelity. Major error mechanisms and
their contributions to the infidelity are thoroughly investigated.

The output state fidelity can be obtained with two-photon projective measurement on different Pauli bases: An
arbitrary two-qubits state can be expanded by the identity and Pauli matrices as

ρ =
1

4

∑

i

∑

j

Sijσi ⊗ σj , (5)
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where i, j = {0, x, y, z} correspond to the subscripts of different Pauli matrices:

σ0 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (6)

Using Bell state |Ψ+⟩ = 1/
√
2(|H⟩a |V ⟩b + |V ⟩a |H⟩b) as the target state, the output state fidelity is

FΨ+ = ⟨Ψ+|ρ|Ψ+⟩ = 1

4
(1 + Sxx + Syy − Szz) =

1

4
(1 + ⟨σxx⟩+ ⟨σyy⟩ − ⟨σzz⟩), (7)

Where ⟨σij⟩ = tr(ρσij) is the expected value under the density matrix ρ. Therefore, the state fidelity can be obtained
through projective measurements in three Pauli bases {σxx, σyy, σzz}. To reconstruct the output state density matrix
ρ, we execute the state tomography via projective measurements on 9 different Pauli bases σij for i, j = {x, y, z}
with “2n detectors configuration (1, 2 )”. The maximum likelihood estimation technique is employed for the density
matrix reconstruction. The reconstructed density matrix and its near-unity fidelity shown in Fig. 2 demonstrates the
generation of near-perfect entangled photons and confirms the quantum nature of our Rydberg entanglement filter.

Next, we thoroughly analyze the major sources of error that reduce the state fidelity from the ideal value. We
note that the following analysis is based on the entanglement filter experiment in the Rydberg blockade regime with
|ra⟩ = |76D5/2,mj = 5/2⟩ , |rb⟩ = |77D5/2,mj = 5/2⟩ (shown in Fig. 2 of the main text). However, the approaches
used in the following analysis are universal and can be applied to general cases.

Background detection events. The background detection events mainly consist of the dark counts from the
SPCMs, resulting in undesired coincidences in the correlation measurements. The expected value of ⟨σii⟩ for i =
{x, y, z} is determined by

⟨σii⟩ = P|i1⟩ − P|i2⟩ − P|i3⟩ + P|i4⟩, (8)

where i = {x, y, z}, k = {1, 2, 3, 4}, and P|ik⟩ represents the probability of detecting the k-th eigenstate of the σii basis.
Taking σzz basis as an example, we have |z1⟩ = |H⟩a |H⟩b, |z2⟩ = |H⟩a |V ⟩b, |z3⟩ = |V ⟩a |H⟩b, and |z4⟩ = |V ⟩a |V ⟩b.
Then the expected value ⟨σzz⟩ is expressed as

⟨σzz⟩ = P|H⟩a|H⟩b − P|H⟩a|V ⟩b − P|V ⟩a|H⟩b + P|V ⟩a|V ⟩b =
C00(H,H)− C01(H,V )− C10(V,H) + C11(V, V )

C00(H,H) + C01(H,V ) + C10(V,H) + C11(V, V )
. (9)

Here Cij(αa, αb), with i, j = 0, 1 and αa, αb = H,V , is the coincidences between the SPCM ai and SPCM bj . When
a dark count occurs in one SPCM concurrently with a real photon detection event in another SPCM, a background-
induced false coincidence is recorded (taking CBG

01 (H,V ) as an example):

CBG
01 (H,V ) = pBG

a0
pb1 + pa0

pBG
b1 , (10)

where pBG
a0

is the probability of background detection events in the SPCM a0 and pb1 represents the probability of
detecting a photon in the SPCM b1. The coincidence between two background detection events can be neglected since
pBG
m ≪ pn, wherem,n = {a0, a1, b0, b1}. The background-induced false coincidences CBG

00 (H,H), CBG
10 (V,H), CBG

11 (V, V )
have the same form, so the background-corrected value ⟨σzz⟩cor is given by

⟨σzz⟩cor =
C00(H,H)− C01(H,V )− C10(V,H) + C11(V, V )− CBG

00 (H,H) + CBG
01 (H,V ) + CBG

10 (V,H)− CBG
11 (V, V )

C00(H,H) + C01(H,V ) + C10(V,H) + C11(V, V )− CBG
00 (H,H)− CBG

01 (H,V )− CBG
10 (V,H)− CBG

11 (V, V )
.

(11)
Similarly, one can obtain the expression for ⟨σxx⟩cor and ⟨σyy⟩cor. Therefore, the infidelity due to the background is

∆FBG =
1

4
(⟨σxx⟩cor − ⟨σxx⟩+ ⟨σyy⟩cor − ⟨σyy⟩ − ⟨σzz⟩cor + ⟨σzz⟩) = 0.61(6)%. (12)

Multi-photon components from weak coherent light. As mentioned in the main text, we employ weak
coherent laser pulses to approximate the single photons a and b. The use of coherent fields as input only lowers the
input and output state rates, but does not change the deterministic nature of our entanglement filter. The multi-
photon components in the coherent field can contribute infidelity to the output photonic state. Here, we calculate an
upper bound of the multi-photon-induced output state infidelity. An input coherent state after traveling through the
PBS is written as

∑

n

cn√
n!

(
â†H + â†V√

2

)n

|0⟩ , (13)
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where |0⟩ is the vacuum state and a†H(a†V ) is the creation operator for H (V)-polarized photons from the input 780 nm
laser field. The coefficients of Poisson distribution with an average photon number ⟨n⟩store are depicted by c2i . For
two incident pulses a and b, the photon state after the PBS is

∑

n

cn√
n!

(
a†Ha

+ a†Va√
2

)n

⊗
∑

n′

cn′√
n′!

(
a†Hb

+ a†Vb√
2

)n′

|0⟩ , (14)

where the subscripts a and b denote photons from pulses a and b, respectively. In the experiment, only two-photon
coincidences are recorded, so the states with less than 2 photons have no contributions. Moreover, the higher-order
terms with more than 3 photons are neglected since the average stored photon number ⟨n⟩store ≪ 1.

The H (V) polarized qubit state is sent to path D (U) by a PBS and stored in the corresponding atomic ensemble.
For simplicity, we assume the storage-and-retrieval efficiencies for the unwanted multi-photon component are the
same as that for single photon. In the strong Rydberg-blockade regime where multi-excitations in the same ensemble
|DaDb⟩ (|UaUb⟩) are forbidden, the combined atom-photon state after the storage is given by

|Ψstor⟩ =
[
c21
2
|DaUb⟩+

c21
2
|UaDb⟩+

c1c2√
2
â′

†
Hb

|DaUb⟩+
c1c2√

2
â′

†
Vb

|UaDb⟩

+
c1c2

2
√
2
(â′

†
Ha

+ â′
†
Vb
) |DaUb⟩+

c1c2

2
√
2
(â′

†
Va

+ â′
†
Hb

) |UaDb⟩
]
|0⟩ .

(15)

The leading terms
c21
2 (|DaUb⟩+ |UaDb⟩) |0⟩ represent the ideal case when the incident pulses contain only real single-

photon components, while the remaining higher-order terms arise from the multi-photons components of the weak

coherent states. Here, we use â′
†
Ha/b

and â′
†
Va/b

as the creation operators for the unstored photons, to distinguish

them from the incident and retrieved photons. In the experiment, only coincidences between the retrieved photons
from Rydberg excitations are detected. Thus, we should consider the reduced density matrix ρAtom by performing
the partial trace in |Ψstor⟩ ⟨Ψstor| with respect to the subspace of the unstored photons:

ρAtom = (
c41
4

+
3c21c

2
2

4
) |DaUb⟩ ⟨DaUb|+ (

c41
4

+
3c21c

2
2

4
) |UaDb⟩ ⟨UaDb|+

(
c41
4

+
c21c

2
2

2
) |DaUb⟩ ⟨UaDb|+ (

c41
4

+
c21c

2
2

2
) |UaDb⟩ ⟨DaUb| .

(16)

After the EIT storage, the 480 nm read-out fields are applied to convert the Rydberg excitations to retrieved photons
described by

ρReadout = (
c41
4

+
3c21c

2
2

4
) |HaVa⟩ ⟨HaVa|+ (

c41
4

+
3c21c

2
2

4
) |VaHb⟩ ⟨VaHb|+

(
c41
4

+
c21c

2
2

2
) |HaVb⟩ ⟨VaHb|+ (

c41
4

+
c21c

2
2

2
) |VaVb⟩ ⟨VaVb| .

(17)

Therefore, the output state fidelity is

F =
⟨Ψ+|ρReadout|Ψ+⟩
tr(ρReadout)

= 1− 1

2

c22
c21 + 3c22

(18)

With the average photon number of incident coherent light ⟨n⟩ = 0.10 and the efficiency of storage ηs = 0.24, the
average stored photon number is ⟨n⟩store = ⟨n⟩×ηs = 0.024. As a result, the infidelity resulting from the multi-photon

components is given by ∆Fmul = 1− F = 1
2

c22
c21+3c22

= 0.58%.

We emphasize that the analysis above is based on the assumption that the storage-and-retrieval efficiencies for
the unwanted multi-photon components in Eq. 15 are the same as that for single photon. However, there are some
mechanisms that reduce the efficiency in storing and retrieving these double excitations. For example, due to Rydberg
interactions, the efficiency for coherently storing two photons to a single Rydberg excitation is lower than that of
storing a single photon, leading to a reduced higher-order “error terms” population in Eq. 15 and smaller infidelity.

Moreover, we ignored the dephasing of the collective Rydberg states induced by the transmitted photons (â′
†
Ha/b

(â′
†
Va/b

)) (3, 4 ), which induces dissipative emissions for higher-order “error terms” during read-out and alleviates
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the contributed error. Therefore, the calculated ∆Fmul = 0.58% only gives an upper bound of the multi-photon-
induced infidelity. The detailed theoretical and experimental investigations of the multi-photon storage efficiency and
atom-photon dephasing are interesting but beyond the scope of the current work.

When the stored photon number ⟨n⟩store increases, the expected output state fidelity will deviate from the Eq. 18 due
to the contribution from three and more photons. However, similar analysis can still be performed by including higher-
order multi-photon components. We emphasize that although weak coherent laser pulses are used to approximate
single photons in our experiments, our entanglement filter protocol is intrinsically deterministic. The weak coherent
laser pulses lead to low input state rate, but do not change the deterministic nature of our protocol and do not lower
the transmission through the entanglement filter.

Crosstalk due to polarization imperfections. Due to imperfect optical polarization elements such as the
wave-plates or PBSs, the projective measurements may not be performed exactly in the σii bases. Thus, polarization
crosstalk occurs and induces undesired coincidences. Table S1 (left) shows the ideal projective measurements for
state |Ψ+⟩, where the projections are done in the σii bases. With a small error arising from crosstalk ξ ≪ 1, the
corresponding results of the projective measurement are given in Table S1 (right). Table S1 clearly shows that a
small fraction of the signal, which should have been projected to a particular basis, is incorrectly transferred to the
orthogonal basis because of the polarization imperfection.

To estimate the infidelity caused by the polarization imperfection, we use the typical value of suppression ratio
contributed by the crosstalk ∆χcross = 0.0023(15) obtained in Section II.1, to extract the deviation of expected value
⟨∆σzz⟩cross = 0.34(30)%. Thus, the infidelity due to the imperfection of polarization is given by

∆Fcross =
⟨∆σxx⟩cross + ⟨∆σyy⟩cross + ⟨∆σzz⟩cross

4
=

3 ⟨∆σzz⟩cross
4

= 0.25(23)% (19)

where ⟨∆σxx⟩cross = ⟨∆σyy⟩cross = ⟨∆σzz⟩cross is used because they have the same expression when ξ ≪ 1.

Ideally P|i1⟩ P|i2⟩ P|i3⟩ P|i4⟩ Corsstalk P|i1⟩ P|i2⟩ P|i3⟩ P|i4⟩

XX 0.5 0 0 0.5 XX 0.5− 0.5ξ 0.5ξ 0.5ξ 0.5− 0.5ξ

YY 0.5 0 0 0.5 YY 0.5− 0.5ξ 0.5ξ 0.5ξ 0.5− 0.5ξ

ZZ 0 0.5 0.5 0 ZZ 0.5ξ 0.5− 0.5ξ 0.5− 0.5ξ 0.5ξ

TABLE S1. The result of projective measurements for Bell state |Ψ+⟩ with perfect polarization projection
(left) and with a small polarization crosstalk (right).

In summary, we have investigated major mechanisms responsible for reducing the state fidelity and estimated
their individual contributions. Considering the infidelity of 0.61(6)% from the background detection events, ≤ 0.58%
from the multi-photon component of weak coherent light, 0.25(23)% from the crosstalk due to the imperfection of
polarization, and the upper bound of 99.98(6)% from imperfect double excitation suppression, we expect the state
fidelity to be 98.5(2)% ≤ Fexp ≤ 99.1(2)%, which is in good agreement with the measured value of 98.8(5)%. We
emphasize that these error mechanisms are not fundamental to our entanglement filter protocol and can be alleviated
with future technical efforts, such as using SPCMs with lower dark counts rate, employing real and high-quality
single-photon source, improving polarization extinction ratio, and achieving stronger interaction with Rydberg states
under Förster resonance.

III. ENTANGLEMENT FILTER VIA DISSIPATIVE QUANTUM EVOLUTION

The van der Waals interactions between Rydberg states increase as n11, leading to the strong blockade and effi-
cient quantum control over photons using highly excited states. As shown in the previous section, we can use the
polarization-selective photon blockade effect with high n states to achieve an effective photonic entanglement filter.
However, compared to low-lying states, high n states suffer from various extra decoherence and losses, such as long-
lived Rydberg contaminants, energy level shifts induced by residual electric fields and density-dependent dephasing.
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Therefore, novel quantum photonic protocols with low n states benefit from longer coherence times and hold the
promise to tackle the above problems. For example, the Rydberg state with n = 77 has a short coherence time
of ∼ 1.4µs, while n = 48 state features a much longer ∼ 6µs coherence time in our experiment. In this section,
we demonstrate a Rydberg-based quantum photonic operation with low principal quantum numbers n ∼ 48, where
the blockade effect is absent and the Rydberg-interaction induced two-body dissipation plays an essential role, as
illustrated in the main text.

1. Detailed study of dissipative quantum evolution with Rydberg atoms

We first show theoretically how our entanglement filter extracts the Bell state |H⟩a |V ⟩b+ |V ⟩a |H⟩b from a classical
input state by exploiting the dissipative quantum evolution. The suppression ratio χ and output state fidelity F are
simulated with the distribution of atomic ensemble given in section I.

Photon storage. We start from the photon storage process in the atomic ensembles. Under the resonant condition,
the dynamics in the EIT storage process is governed by the Hamiltonian:

Hstor = g
√
NaA† +ΩCT+ +H.c., (20)

where g is each atom’s coupling strength between the 780 nm excitation field depicted by the annihilation operator a
(wavevector k1) and the atom’s transition |g⟩ ↔ |e⟩, ΩC is the Rabi frequency of the 480 nm control light (wavevector

k2), N is the atom number, and the collective atomic transition operators A and T− = T †
+ are defined as

A =
1√
N

N∑

j=1

e−ik1·rjσj
ge, (21)

T− =
N∑

j=1

e−ik2·rjσj
er. (22)

Here, σj
αβ = |α⟩jj ⟨β| is a quasi-spin operator for the j-th atom localizing at rj . We define an operator

D = a cos θ − C sin θ, (23)

where

C =
1√
N

N∑

j=1

e−i(k1+k2)·rjσj
gr (24)

and the angle θ satisfies tan θ = g
√
N/ΩC . It can be proven (5 ) in the large N limit with low excitations, i.e., most

atoms are in the ground state |g⟩, [D,Hstor] = 0 and D is a bosonic annihilation operator satisfying
[
D,D†] = 1. As

a result, the system has degenerate eigenstates with the eigenenergy 0 as

∣∣ψ{cn}
〉
=
∑

n

cn√
n!
D†n |G⟩ , (25)

where {cn} is any given set of parameters and |G⟩ is a state with all atoms in the ground state |g⟩ and photons in the
vacuum state.

Starting from the state |G⟩, photon states can be stored in the atomic ensemble by adiabatically tuning θ from 0
to +π/2. In our experiment, the 780 nm excitation field is a weak coherent light with the average photon number
n̄≪ 1. Thus, after the first storage pulse, the two atomic ensembles (U and D) arrive at the following state

|ψa⟩ =
∑

n

n̄n/2

n!en̄/2

(
1√
2

(
CU†

a + CD†
a

))n

|G⟩

≈ 1

en̄/2
|G⟩+ 1√

2

√
n̄

en̄
(
CU†

a + CD†
a

)
|G⟩ (26)
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where the collective operator

Cl
α =

1√
N

∑

j∈l

e−i(k1+kα
2 )·rjσj

grα (27)

flips the quasi-spins in the l ensemble from the Rydberg state |rα⟩ to the ground state |g⟩, with α = a, b and l = U,D.
Here, we have expanded |ψa⟩ up to one-excitation subspace because of the small n̄. Applying the same procedure
but with a 480 nm control field at different frequency, the second laser pulse is stored in the ensembles and the state
becomes

|ψab⟩ =
[

1

en̄/2
+

1√
2

√
n̄

en̄

(
CU†

b + CD†
b

)]
|ψa⟩ . (28)

Here, the Rydberg interaction during the storage has been ignored since it is much smaller than the EIT storage
bandwidth.

In the experiment, only two-photon coincidences are recorded. So in the following calculation, we will only consider
the two-excitation state as the initial state and renormalize it as

|ψ (0)⟩ = 1

2

(
CU†

b + CD†
b

) (
CU†

a + CD†
a

)
|G⟩ . (29)

Then the atomic system evolves under the free atomic Hamiltonian and the Rydberg interaction. Therefore, apart
from a general phase, the state at evolution time t becomes

|ψ (t)⟩ = 1

2

(
CU†

b CD†
a + CD†

b CU†
a

)
|G⟩+ 1

2N

∑

l=U,D

∑

jj′∈l

eiϕjj′ (t)σj′
rbg
σj
rag |G⟩ , (30)

where

ϕjj′ (t) =
(
k1 + kb

2

)
· rj′ + (k1 + ka

2) · rj −
Vjj′

ℏ
t. (31)

In the next subsection, we will show how the photon emission from the second term in Eq. (30) decays with time t
because of the disordered phase ϕjj′ (t).

Read-out. After the evolution time t, two 480 nm read-out fields with Rabi frequencies ΩU,D
a and ΩU,D

b and the

corresponding momenta ka
2 and kb

2 are successively applied with a time delay τ , inducing transitions between the

states |r⟩a / |r⟩b and |e⟩. The decay rate γe of the |e⟩ state is comparable with ΩU,D
a and ΩU,D

b , so the Rydberg atoms
effectively decay to the ground states with a timescale ∼ 1/γe smaller than the read-out pulse duration, emitting
photons a and b. Using the input-output formalism where the input field has zero mean value, we can acquire the
final state |Ψ⟩ with two photons emitted and the atoms in the ground states as (6, 7, 8 )

|Ψ⟩ = 1

N

∫
dkbdkae

−ikbτ [
(
a†kbH

SD
b a

†
kaV

SU
a C

D†
b CU†

a + a†kbV
SU
b a

†
kaH

SD
a C

U†
b CD†

a

)
|G⟩

+
1

N
a†kbH

SD
b a

†
kaH

SD
a

∑

jj′∈D

eiϕjj′ (t)σj′
rbg
σj
rag |G⟩+

1

N
a†kbV

SU
b a

†
kaV

SU
a

∑

jj′∈U

eiϕjj′ (t)σj′
rbg
σj
rag |G⟩]

=
1

N

∫
dkbdkae

−ikbτ
∑

Pa,Pb=H,V

CkbPb,kaPa
a†kbPb

a†kaPa
|G⟩ , (32)

where a†kλ is the photon’s annihilation operator with momentum k and polarization λ = H,V , N is a normalization

factor, Sl
α with α = a, b is defined similarly to Cl

α

Sl
α =

1√
N

∑

j∈l

e−ikα
2 ·rjσj

grα , (33)
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and the coefficients

CkbH,kaV =
1

N2

∑

j∈U,j′∈D

ei(k1−kb)·rj′ ei(k1−ka)·rj , (34)

CkbV,kaH =
1

N2

∑

j∈D,j′∈U

ei(k1−ka)·rj′ ei(k1−kb)·rj , (35)

CkbH,kaH (t) =
1

N2

∑

jj′∈D

e−i
V
jj′
ℏ tei(k1−kb)·rj′ e−i(k1−ka)·rj , (36)

CkbV,kaV (t) =
1

N2

∑

jj′∈U

e−i
V
jj′
ℏ tei(k1−kb)·rj′ e−i(k1−ka)·rj . (37)

Here, the factor e−ikbτ adds a read-out time delay τ to the b-photon, with kb the momentum magnitude along a given
emission direction.

Because of the randomness of the atoms’ positions, the coefficients CkbH,kaV and CkbV,kaH ≈ 1 for kα ≈ k1

(α = a, b), while CkbH,kaH (t) and CkbV,kaV (t) → 0 for any ka and kb when t is long enough so that the phases ei
Vjj′
ℏ t

get disordered. As a result, at the long evolution time limit, for two photons with momenta kα around k1, the final
state is approximately

1√
2
(|H⟩a |V ⟩b + |V ⟩a |H⟩b) =

1

N ′
∏

α=a,b

∫

k1

dkα

(
a†kbV

a†kaH
+ a†kbH

a†kaV

)
e−ikbτ |G⟩ , (38)

where N ′ is a normalization factor and the integral is around the momentum k1. To see how this entangled state
is generated, we define the suppression ratio χ (t) ≡ (PHH + PV V ) / (PHV + PV H). In the experiment only photons
emitted along the direction k1 (with a small solid angle ∼ 0.005 rad) are collected and detected, so χ (t) can be
approximated by

χ (t) ≈ |Ck1H,k1H (t)|2 + |Ck1V,k1V (t)|2

|Ck1H,k1V (t)|2 + |Ck1V,k1H (t)|2

=
1

N4

∣∣∣∣∣∣
∑

jj′∈U

e−i
V
jj′
ℏ t

∣∣∣∣∣∣

2

. (39)

Here, we have assumed in the last step that apart from the positions, the two atomic ensembles are identical.
Based on Eq. 39, the evolution of suppression ratio χ (Fig. 3, C and D) and output state fidelity F (Fig. 4, A and C)

with time can be numerically simulated with Monte-Carlo method. We first generate random positions configuration
{r1, ..ri..., rN} for the N ∼ 440 atoms in one ensemble that satisfy the geometry of the atomic sample mentioned in
the Supplementary Material Section I. Next, we obtain the interaction-induced two-body phase shifts Vjj′t/ℏ for all
Rydberg pairs consisting of any two atoms separated by Rjj′ using the atomic-positions configuration {r1, ..ri..., rN}.
The distribution of the phase φjj′ ≡ (Vjj′t/ℏ)mod (2π) at different quantum evolution time t is displayed in Fig. S3.
At time t = 0, all atom pairs have the same phase 0, so the normalized probability PNor is zero for φjj′ ̸= 0, as shown
in Fig. S3A. The accumulation of random phases with longer evolution time t is shown in Fig. S3B-E. The interaction
leads to strongly disordered phases distribution and deteriorates the two-body coherence.

With the two-body phases distribution at hand, the suppression ratio χ and consequently the output state fidelity

F = 1
2 + 1−χ

2+2χ can be obtained based on Eq. 39, by summing up the phase terms ei
Vjj′
ℏ t for all Rydberg pairs. The

evolution of χ strongly depends on the Rydberg interaction strength. To characterize the disorder of interaction, we
define the standard deviation of interaction between Rydberg atomic pairs dU = SD(Vjj′) =

C6

SD(R6
jj′)

. The dU can

be varied by changing the C6 interaction coefficient with different Rydberg states na and nb. Besides the dissipative
evolution using states na = 47 (nb = 48) and na = 55 (nb = 56) demonstrated in Fig. 3D, we also perform the
experiment using states na = 45 (nb = 53) (blue diamonds in Fig. S3). The dU for states na = 45, nb = 53 are two
orders of magnitude weaker than that for states (na = 55, nb = 56), leading to a slower decay of χ as a function of t.
The simulated result remains very similar when the atom number N is increased, showing that an atomic ensemble
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FIG. S3. Evolution of the interaction-induced phase. The normalized probability of the Rydberg interaction-induced
phase φjj′ = (Vjj′t/ℏ)mod (2π) at different interaction time t with states na = 47, nb = 48.

with N ∼ 440 can generate enough two-body decoherence for effective dissipative quantum state engineering. Note
that apart from the atomic ensemble configuration and the Rydberg interaction Vjj′ =

C6

R6
jj′

, our simulation contains

no additional information or adjustable fitting parameters.

In the dissipative entanglement filter protocol, high output state fidelity is achieved after a storage time long enough
to generate two-body dissipation. During this process, the single Rydberg excitation dephasing, induced mainly by the
Doppler effect and density-dependent dephasing (9, 10 ) , could lead to single-excitation dissipation during read-out.
However, this single-excitation dissipation does not deteriorate the achieved output state fidelity.

To quantitatively investigate the influence of the single-excitation dephasing on output state fidelity, high principal
quantum numbers na = 76 and nb = 77 are used, so each atomic ensemble only has a single excitation due to the
Rydberg blockade effect. The single-excitation dephasing time with n ∼ 77 is about 1.4µs. The state fidelity with
different storage time is shown in Table S2. We found that the output state fidelity stays around F ∼ 0.988 when
the storage time increases from t = 200 ns to t = 1300 ns, which means that the single-excitation decoherence has
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FIG. S4. Dissipative quantum evolution with different interaction disorder. The suppression ratio χ as
a function of interaction time t with states |ra⟩ = |45D5/2, J = 5/2,mj = 5/2⟩ , |rb⟩ = |53D5/2, J = 5/2,mj = 5/2⟩
(blue diamonds), |ra⟩ = |47D5/2, J = 5/2,mj = 5/2⟩ , |rb⟩ = |48D5/2, J = 5/2,mj = 5/2⟩ (green squares), and |ra⟩ =
|55D5/2, J = 5/2,mj = 5/2⟩ , |rb⟩ = |56D5/2, J = 5/2,mj = 5/2⟩ (red circles). The solid lines are the corresponding theoretical
simulations based on the two-body decoherence mechanism.

negligible effects on the output state fidelity.

Storage time (ns) 200 700 1300

Fidelity 0.988(5) 0.985(18) 0.987(27)

TABLE S2. Effect of single-excitation dephasing. Output state fidelity as a function of the storage time with two
Rydberg states |ra⟩ = |76D5/2, J = 5/2,mj = 5/2⟩ , |rb⟩ = |77D5/2, J = 5/2,mj = 5/2⟩.

2. Dissipative entanglement filter using dipole-dipole interaction

Our dissipative entanglement filter protocol can, in principle, be applied to Rydberg states with very low principal
numbers, by exploiting the dipole-dipole interaction Vdd = C3/R

3 instead of the van der Waals interaction VvdW =
C6/R

6. For example, a pair of Rydberg states with different parities, such as |ra⟩ = |nD5/2, J = 5/2,mj = 5/2⟩ and
|rb⟩ = |(n+ 1)P3/2, J = 3/2,mj = 3/2⟩, feature resonant dipole-dipole interaction. Compared with the EIT storage
scheme illustrated in Fig. 1 of the main text, the photon storage in Rydberg P state can be achieved with a control
laser connecting |e⟩-|nD5/2, J = 5/2,mj = 5/2⟩ transition and a MW field connecting the |nD5/2, J = 5/2,mj = 5/2⟩
- |(n+ 1)P3/2, J = 3/2,mj = 3/2⟩ transition. Photon a is first stored in Rydberg state |nD5/2, J = 5/2,mj = 5/2⟩
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FIG. S5. Dissipative quantum evolution using dipole-dipole interaction. (A) The theoretical interaction-induced
energy shift ∆E of pair state |rarb⟩ as a function of separation R at θ = 0 (atom aligned parallel to the quantization axis)
calculated by diagonalizing the interaction Hamiltonian. The red line represent the symmetric state |+⟩ = (|rarb⟩+ |rbra⟩)/

√
2

and the blue depict the anti-symmetric |−⟩ = (|rarb⟩−|rbra⟩)/
√
2. The two curves are fitted by the C3/R

3 and give the coefficient
of C3 = 70MHz · µm3. (B) The theoretical simulation of χ as the function of interaction time t with |19D5/2, J = 5/2,mj = 5/2⟩
and |20P3/2, J = 3/2,mj = 3/2⟩. (C) The theoretical simulation of output state fidelity F as a function of interaction time t
with |19D5/2, J = 5/2,mj = 5/2⟩ and |20P3/2, J = 3/2,mj = 3/2⟩.

by the 480 nm control laser and then transferred to |(n+ 1)P3/2, J = 3/2,mj = 3/2⟩ by a MW π−pulse. Photon b is
directly stored in Rydberg state |nD5/2, J = 5/2,mj = 5/2⟩ with the 480 nm control laser. After the storage of both
photons, the interaction-induced phase is accumulated between Rydberg states |ra⟩ = |nD5/2, J = 5/2,mj = 5/2⟩ and
|rb⟩ = |(n+ 1)P3/2, J = 3/2,mj = 3/2⟩, resulting in dissipative quantum evolution. In the read-out process, photons
a and b can be retrieved by reversing operations in the storage process.

The resonant dipole interaction leads to the symmetric and anti-symmetric states |±⟩ = 1/
√
2(|ra⟩ |rb⟩ ± |rb⟩ |ra⟩),

using the principal number n = 19. As shown in Fig. S5A, the interaction-induced energy shift ∆E of state |+⟩ and
|−⟩ as a function of separation R is calculated by diagonalizing the interaction Hamiltonian (11 ) . The dipole-dipole
interaction coefficient C3 ∼ 70MHz · µm3 can be extracted by fitting Fig. S5A with C3/R

3. With the value of C3,
the evolution of suppression χ and output state fidelity F are simulated and shown in Fig. S5, B and C. When
the interaction time gradually increases to 4µs, the suppression ratio χ decreases from 1 to 0.04 and the output
state fidelity is improved from 0.5 to 0.96. With the analysis above, we show that our entanglement filter can work
efficiently and robustly over a very large Rydberg spectrum spanning from low-lying (n ∼ 19) to a highly-excited
(n > 77) states.

IV. ENTANGLEMENT FILTERING FOR ARBITRARY STATES

We have shown that our entanglement filter can extract the target Bell state |Ψ+⟩ from a product state ∼
(α |H⟩a + β |V ⟩a) (α |H⟩b + β |V ⟩b) with an arbitrarily low initial entanglement fidelity. However, the target Bell
state of our entanglement filter is not limited to |Ψ+⟩. For example, a proof-of-principle experiment that extract state

|Ψ−⟩ from a input state of |H⟩a |V ⟩b = 1/
√
2(|Ψ−⟩ + |Ψ+⟩) is performed in this section. Moreover, we show that,

in principle, any of the four Bell states can be used as the target state and can be extracted from any input state
containing the desired entanglement, by multiplexing the EF protocol and corresponding single-qubit rotations. This
essential capability is important for many highly demanding applications in quantum photonics.

As a proof-of-principle demonstration of entanglement filtering beyond using |Ψ+⟩ as the target state, we perform

an experiment that extracts the desired state |Ψ−⟩ from an input state of |H⟩a |V ⟩b = 1/
√
2(|Ψ+⟩+ |Ψ−⟩), where the
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four Bell states are defined as

|Ψ+⟩ = 1√
2
(|H⟩a |V ⟩b + |V ⟩a |H⟩b)

|Ψ−⟩ = 1√
2
(|H⟩a |V ⟩b − |V ⟩a |H⟩b)

|Φ+⟩ = 1√
2
(|H⟩a |H⟩b + |V ⟩a |V ⟩b)

|Φ−⟩ = 1√
2
(|H⟩a |H⟩b − |V ⟩a |V ⟩b).

(40)

Employing the states na = 76 and nb = 77, the experiment is performed in the Rydberg blockade regime. Before
sending the input state |H⟩a |V ⟩b to the EF, a Hadamard gate is performed on both qubits a and b with a HWP. The
Hadamard gate changes state |Ψ+⟩ to |Φ−⟩ and keeps the |Ψ−⟩ component invariant. The following EF operation
blocks the |Φ−⟩, while transmitting the target Bell state |Ψ−⟩. Figure S6, A and B, show the reconstructed density
matrices for the input and the output states, respectively. The measured input state fidelity is FΨ− = ⟨Ψ−| ρin |Ψ−⟩ =
0.495(7) and the entanglement filter improves it to FΨ− = ⟨Ψ−| ρout |Ψ−⟩ = 0.989(10). The near-unity state fidelity
demonstrates again our entanglement filter’s capability of extracting desired entangled state from a input state with
low initial fidelity.

One of the important application of EF is entanglement distillation, which requires the capability of improving the
state fidelity from an input state with fidelity lowered by either “spin-flip” or “phase-flip” error. In this context, the
EF operation that extracts |Ψ+⟩ from 1/2(|H⟩a |H⟩b+ |H⟩a |V ⟩b+ |V ⟩a |H⟩b+ |V ⟩a |V ⟩b) = 1/

√
2(|Ψ+⟩+ |Φ+⟩) can be

considered as distilling desired entanglement from a input state with “spin-flip error”, while the EF that distills |Ψ−⟩
from |H⟩a |V ⟩b = 1/

√
2(|Ψ+⟩ + |Ψ−⟩) corresponds to entanglement distillation from an input state with “phase-flip

error” .

FIG. S6. Quantum state filtering using the |Ψ−⟩ as the target state. (A and B) The reconstructed density matrix
of the input state |H⟩a |V ⟩b (A) and output state |Ψ−⟩ = 1/

√
2(|H⟩a |V ⟩a − |V ⟩b |H⟩b) (B).

Moreover, any of the four Bell states can, in principle, be used as the target state and can be extracted from arbitrary
mixed states. Without loss of generality, we assume the density matrix of the initial state ρ̂initial is diagonalized in
the Bell bases:

ρ̂initial = b1 |Ψ+⟩ ⟨Ψ+|+ b2 |Ψ−⟩ ⟨Ψ−|+ b3 |Φ+⟩ ⟨Φ+|+ b4 |Φ−⟩ ⟨Φ−| , (41)

where bj with j = 1, 2, 3, 4 are the corresponding probabilities. We first consider the target output state as |Ψ+⟩.
After passing through the entanglement filter, the |H⟩a |H⟩b and |V ⟩a |V ⟩b components in ρ̂initial are eliminated due
to the Rydberg blockade effect or dissipative quantum evolution, leading to an output state of

ρ̂out1 = b1 |Ψ+⟩ ⟨Ψ+|+ b2 |Ψ−⟩ ⟨Ψ−| . (42)

Before sending ρ̂out1 to the second entanglement filter, a Pauli-Z rotation is performed on the V -polarized component
in photonic qubit b, such that states |Ψ+⟩ and |Ψ−⟩ are exchanged: ρ̂out1 → b2 |Ψ+⟩ ⟨Ψ+|+b1 |Ψ−⟩ ⟨Ψ−|. This rotation
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can be accomplished by using an EOM is to add a π phase to the V -polarized component in photonic qubit b. Next,
a Hadamard gate is executed on both qubits a and b with a half-wave plate, which changes the polarization |H⟩ to
(|H⟩+ |V ⟩) /

√
2 and |V ⟩ to (|H⟩ − |V ⟩) /

√
2. After above rotations, the input state ρ̂in2 for the second entanglement

filter is

ρ̂in2 = b2 |Φ−⟩ ⟨Φ−|+ b1 |Ψ−⟩ ⟨Ψ−| . (43)

Then, state |Φ−⟩ is removed by the second entanglement filter, while state |Ψ−⟩ is transmitted. Therefore, the
output state after the second filtering process is given by ρ̂out2 = b1 |Ψ−⟩ ⟨Ψ−|. Finally, we perform the Pauli-Z rotation
again to obtain the desired entangled state ρ̂final = b1 |Ψ+⟩ ⟨Ψ+|. Similar operations can be applied, when other Bell
states are chosen as the target state. Figure S7 summarizes the required operation combinations of entanglement filters
and Pauli rotations to extract any of the four Bell states from ρ̂initial. In principle, Bell states can also be extracted
using the EF operations based on linear-optical approaches. However, compared with our intrinsically deterministic
scheme, the linear-optical EF operations are probabilistic and require extra ancillary quantum resources, resulting in
limited scalability.

FIG. S7. Quantum state filtering for any of four Bell states from arbitrary mixed states. (A-D) The quantum
circuit diagram for multiplexing the EF operation to extract the chosen Bell states. All the input states are mixed states:
ρ̂initial = b1 |Ψ+⟩ ⟨Ψ+|+ b2 |Ψ−⟩ ⟨Ψ−|+ b3 |Φ+⟩ ⟨Φ+|+ b4 |Φ−⟩ ⟨Φ−|. The Pauli-X rotation X maps |Ψ±⟩ ↔ |Φ±⟩, the Pauli-Y
rotation Y maps |Ψ±⟩ ↔ |Φ∓⟩, and the Pauli-Z rotation Z maps |Ψ+⟩ ↔ |Ψ−⟩ , |Φ+⟩ ↔ |Φ−⟩. The Hadamard gates H are
executed by a HWP to realize a bilateral π/2 operation, which transforms |Ψ+⟩ ↔ |Φ−⟩.

We note that in some linear-optical EF literature, the two-qubits polarization configuration for the target state of
the entanglement filter is defined differently. Devices that block photon pairs with different (12, 13 ) or the same (14,
15 ) polarizations are sometimes called entanglement filter/splitter (EF/ES), which can be described by the EF/ES
matrices in the {|H⟩a |H⟩b , |H⟩a |V ⟩b , |V ⟩a |H⟩b , |V ⟩a |V ⟩b} basis as

EF =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ES =



0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 . (44)

Here, we do not distinguish the EF and ES operations, since our protocol features the capability of extracting any
of the four Bell states from an input of arbitrary mixed state.
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