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Abstract. Quantum amplitude estimation is a key subroutine in a number
of powerful quantum algorithms, including quantum-enhanced Monte Carlo
simulation and quantum machine learning. Maximum-likelihood quantum
amplitude estimation (MLQAE) is one of a number of recent approaches that
employ much simpler quantum circuits than the original algorithm based on
quantum phase estimation. In this article, we deepen the analysis of MLQAE
to put the algorithm in a more prescriptive form, including scenarios where
quantum circuit depth is limited. In the process, we observe and explain particular
ranges of ‘exceptional’ values of the target amplitude for which the algorithm
fails to achieve the desired precision. We then propose and numerically validate
a heuristic modification to the algorithm to overcome this problem, bringing the
algorithm even closer to being useful as a practical subroutine on near- and mid-
term quantum hardware.

1. Introduction

Quantum computing promises significant computational speedups compared to
classical computing in a number of important tasks throughout science and industry
[1, 2], and has consequently been an active and important topic of research for
several decades [3–5]. Among the wide variety of quantum algorithms that have been
developed exists a core set of general purpose subroutines with broad applicability, and
a key example is the quantum amplitude estimation algorithm. Quantum amplitude
estimation can be used to estimate the probability that the output of another algorithm
satisfies a particular target property, and can do this with a quadratic speedup in terms
of the desired precision of the estimate, compared to classical sampling. This can be
employed as a subroutine in a number of important algorithms, including quantum-
enhanced Monte Carlo simulation [6–8] and algorithms in quantum machine learning
[9–14].

The original quantum amplitude estimation due to Brassard et al. [15] essentially
combines Grover’s algorithm [16] and quantum phase estimation [17], and as a
consequence involves quantum circuits with complicated controlled operations that
may be challenging to implement in near- and mid-term quantum hardware. More
recently, a number of much simpler quantum amplitude estimation algorithms have
been developed that employ much simpler circuits while achieving the same speedup
[18–26], including the maximum likelihood method (MLQAE) of Suzuki et al. [27]
and its extensions [25, 28–33].
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MLQAE employs a combination of Grover-like circuits and classical likelihood-
maximisation-based post-processing in order to find a high-quality amplitude estimate,
and as such can be viewed as a hybrid quantum-classical algorithm [34]. Unlike the
original quantum amplitude estimation algorithm and many of the other more recent
proposals, the theoretical scaling analysis of maximum-likelihood quantum amplitude
estimation relies on certain regularity and asymptotic assumptions related to the
Bernstein-von Mises theorem [35], and as a consequence the quadratic speedup is
not completely analytically rigorous. Nevertheless, numerical experiments in prior
work show that the algorithm appears to achieve the quadratic speedup in practice
with low constant overhead using relatively simple quantum circuits.

In this work, we extend the analysis of MLQAE to give the algorithm a more
prescriptive structure: given an achievable circuit depth (expressed abstractly as
the achievable number of applications of a Grover-like operator), we show how to
approximately target a particular desired precision with some target probability. In
the process of validating this extension through numerical simulations, we observe
and explain in detail particular ranges of ‘exceptional’ values of the target amplitude
for which the algorithm fails to achieve the desired precision. We then propose a
heuristically-motivated modification to the algorithm to prevent this issue, and show
through numerical simulation that our approach works. Overall, through the insights
in this work, we improve the understanding of MLQAE, and move it toward usefulness
as a practical algorithm in the near- and mid-term.

The article is structured as follows: in section 2, we review the relevant
background for quantum amplitude estimation, including the problem definition,
a discussion of some of its applications, and a detailed description of maximum-
likelihood quantum amplitude estimation and its information-theoretic analysis. We
begin our contribution in section 3 by extending the analysis and showing how to target
a desired precision with a specified probability (up to certain regularity assumptions
related to the Bernstein-von Mises theorem), including in depth-limited scenarios. In
doing so, we identify particular ‘exceptional’ values of the target amplitude for which
the algorithm fails to achieve the desired precision, and we explore and explain this
phenomenon in detail in section 4. In section 5, we develop and numerically validate
a heuristic method to mitigate the problematic exceptional values. Finally, in section
6, we summarise the article and suggest some directions for future work.

2. Background

2.1. Problem definition

The formal setting in which quantum amplitude estimation (QAE) is typically
considered assumes that one has access to some unitary quantum algorithm Â on
n qubits and an oracle Ô that partitions the computational basis {|j〉n}2

n

j=1 into two

disjoint subsets, the ‘good’ subset G and the ‘bad’ subset B = {|j〉n}2
n

j=1 −G, via the
action

Ô |j〉 =

{
|j〉 , for j ∈ G
− |j〉 , for j ∈ B. (1)
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Figure 1. Circuit for conventional quantum amplitude estimation

The state prepared by applying the algorithm Â to some reference state, which can
be taken without loss of generality to be the all-zero state |0〉⊗n, can be written as

|A〉n ≡ Â |0〉
⊗n

(2)

=
√
a |AG〉n +

√
1− a |AB〉n , (3)

where the (normalised) states |AG〉n and |AB〉n have support only on the ‘good’ and
‘bad’ subsets respectively, with phases chosen such that a is a positive real number.
With these definitions, the goal of QAE is to find an estimate ã of the probability a
(referred to in this setting as an amplitude) that is correct up to a particular precision
ε with high probability. The precision requirement is sometimes considered to be
relative

a(1− ε) ≤ ã ≤ a(1 + ε), (4)

and is sometimes considered to be additive

a− ε ≤ ã ≤ a+ ε. (5)

2.2. Conventional QAE

The first algorithm for quantum amplitude estimation is due to Brassard et al. [15],
and draws on ideas from Grover’s algorithm [16] and the Quantum Phase Estimation
(QPE) algorithm [17]. The core of the algorithm is the Grover-like iteration operator

Q̂ = Â (1− 2 |0〉 〈0|n) Â†Ô, (6)

which can be shown to have a pair of eigenvalues λ± = e±2iθa , where θa is defined by

a ≡ sin2 θa (7)

0 ≤ θa ≤
π

2
. (8)

The corresponding eigenvectors |λ±〉n span the subspace span({|AG〉n , |AB〉n}) and
have no support outside this subspace.
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The original QAE algorithm uses the circuit shown in Fig. 1; it requires not only
the n-qubit (target) register needed for applying the algorithm Â, but an additional
q-qubit control register, used for controlling applications of the Grover iteration Q̂.
The first application of the algorithm Â on the target register prepares the state
|A〉n, which has no support outside span({|AG〉n , |AB〉n}), and thus no overlap with

any eigenstates of the Grover iteration Q̂ other than |λ±〉n. The remainder of the

circuit simply applies standard QPE to the Grover iteration Q̂; that is, turning
the results m0,m1, . . . ,mq − 1 of the final layer of measurements into an integer
k = 20m0 + 21m1 + . . . , 2q−1mq−1 and converting it into an angle will, with high
probability, result in either πk

2q = θã or πk
2q = π − θã where |θã − θa| = O

(
1
2q

)
. Thus,

with high probability, the amplitude estimate

ã = sin2

(
min

[{
πk

2q
, π − πk

2q

}])
(9)

will be within an error ε ∼ O
(

1
2q

)
of the true amplitude a.

An application of the Grover iterator Q̂ requires two calls to the algorithm Â
(more correctly, one call to Â and one to its inverse Â†). Thus, an application of a
power l of Q̂ (Q̂l) requires 2l applications of the algorithm Â. Inspecting the target
register in Fig. 1, it can be seen that the total number of calls to Â is

Ncalls = 1 + 2

q−1∑
j=0

2j (10)

= 2 · 2q − 1 (11)

= O

(
1

ε

)
. (12)

This constitutes a quadratic speedup over the case of simply sampling from the output
of Â, for which the number of calls scales as Ncalls = O

(
1
ε2

)
.

While other forms of QPE exist that avoid the use of a quantum Fourier transform
(QFT), they typically still require the unitary being studied (in this case the Grover
iterator Q̂) to be controlled [17, 36–40], or the ability to implement Haar-random
unitaries [41], both of which can be costly in terms of quantum resources [27].

2.3. Applications of quantum amplitude estimation

In this subsection, we briefly review a number of applications of QAE as a subroutine
in quantum algorithms.

2.3.1. Monte Carlo simulation In [6], Montanaro showed that QAE can be used
as a subroutine in otherwise classical Monte Carlo algorithms in order to achieve a
quadratic quantum speedup, compared to the best-known fully classical approaches.
As a simple example, consider the problem of estimating the mean µ of a randomized
(classical) algorithm A to within some additive error ε with high probability. If an
upper bound σ2 is known on the variance of the random output from the algorithm
A, then it is a well-known result from classical statistics that such an estimate µ̃ for
the mean µ requires a number of Monte Carlo samples that scales as

N
(Monte Carlo)
samples = O

(
σ2

ε2

)
. (13)
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Montanaro showed that, by essentially replacing the classical algorithm A with a
quantum algorithm Â that outputs a quantum state which, if it were to be measured
in the computational basis, would have the same probability distribution as the original
algorithm Â, then QAE can be applied to produce an estimate µ̃ of the mean µ more
efficiently. The number of calls to the quantum algorithm Â in this case scales (up to
polylogarithmic factors) as

N
(QAE Monte Carlo)
calls = O

(σ
ε

)
, (14)

essentially a quadratic speedup over purely classical Monte Carlo. As an important
extension, he also pointed out that if the quantum algorithm Â already has a quantum
speedup compared to its classical counterpart A, that is if Â produces ‘quantum
samples’ more efficiently than A produces samples, then this speedup will concatenate
with the QAE Monte Carlo speedup.

Among a number of other more sophisticated examples, Montanaro showed
how to use QAE to speed up Markov chain Monte Carlo algorithms for computing
approximate partition functions; in this case, discrete-time quantum walks [42] are
used to gain a quadratic speedup in the mixing time of the Markov chain, which then
concatenates with the QAE-related speedup, producing an overall speedup compared
to the best known classical algorithms. Other applications of quantum-enhanced
Monte Carlo simulation are reported elsewhere [7, 8].

2.3.2. Machine learning Within the flourishing field of quantum machine learning,
two key research directions are that of quantum clustering algorithms and quantum
classification algorithms [9, 13]. In these algorithms, a core step is the estimation of
the inner product 〈x|y〉 between two vectors x and y for which unitary circuits Ux

and Uy are known that can load them into quantum states via

|x,y〉 = Ux,y |0〉 . (15)

By choosing the product of unitaries U†yUx as the quantum algorithm Â and the state
|0〉 as the (unique) ‘good’ state (as well as the initial state), QAE can be performed
to produce an estimate of the inner product

〈x|y〉 = 〈0|U†yUx |0〉 , (16)

as required. Other applications of QAE within quantum machine learning are reported
elsehwere [10–12, 14].

2.3.3. Finance In the field of finance, an important task is to calculate a quantity
known as the Economic Capital Requirement (ECR), which is essentially the amount
of capital an investor must keep in order to protect against losses. This in turn requires
an accurate understanding of the risk associated with a particular portfolio, and an
often used measure of this risk is the “Value at Risk” (VaR) metric, defined for a loss
distribution L as the smallest total loss with probability P greater than or equal to
the parameter α; that is

VaRα [L] = infx≥0 [x|P (L ≤ x) ≥ α] (17)

where α is often chosen to be around 99.9% [43, 44]. In [44], Egger et al. showed that
QAE can be used to gain a quantum speed-up for the calculation of VaR (and other
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related measures of risk). To do this, Egger et al. propose a quantum algorithm ÂVaR

that can be described at a high-level as being a combination of three parts; that is,
ÂVaR = CSU . The first operator U loads the correlated uncertainty for a portfolio
of k assets into one register of qubits. The second operator S then computes the
total loss over the portfolio and stores the result, as a superposition, in another qubit
register. The final operator C applies a threshold to the total loss and flips a single
target qubit if the total loss is less than or equal to a given x value, and QAE is used
to accurately determine the amplitude/probability of this target qubit having been
flipped. A classical outer loop is then used to perform a bisection search to find the
smallest x that is flipped with probability greater than or equal α.

2.4. QAE without QPE

The conventional QAE of [15] (see subsection 2.2) includes a number of complicated
controlled operations, as well as a quantum Fourier transform as the final step (see
Fig. 1). As a result, the entire procedure may be difficulty to implement, particularly
on near- and mid-term quantum hardware. The subsequent identification of a number
of important applications for QAE (see subsection 2.3.1) led to a renewed interest in
the algorithm, and a number of new approaches to the problem were developed that
avoid the need for the quantum Fourier transform and the associated controlled-Q̂
operations.

One of the first examples of QAE without QPE was proposed in [18]. In that
work, Aaronson and Rall present a new, iterative algorithm for QAE that makes use
of the Grover-like iteration operator Q̂ but which does not use the quantum Fourier
transform and does not require the Q̂ operations to be controlled. Furthermore,
Aaronson and Rall gave a rigorous analysis, proving that the same quadratic speedup
as in conventional QAE is achieved, albeit with a large constant factor [23].

Around the same time, an entirely different approach was proposed in [27]
that, like the algorithm of [18], uses simple circuits consisting of various numbers
of iterations of the Grover-like iteration operator Q̂, but exploits the measurement
outcomes via maximum-likelihood classical post-processing in order to make efficient
use of the information gained in each measurement. This maximum-likelihood QAE
(MLQAE) also achieves the quadratic speedup of the conventional QAE in practice,
and seemingly with a smaller constant factor than the algorithm of [18]. However,
the analysis makes assumptions that are only approximately true, and thus the formal
scaling results are themselves only approximate and without the rigor of previous QAE
algorithms. Many extensions to this algorithm have since been proposed, including a
version intended for low-circuit-depth scenarios [25] (a different algorithm with more
rigorous analysis, based on the Chinese Remainder Theorem, was also presented in
this work) and versions which modify the algorithm and analysis to account for noise
on the quantum device [25, 28–33, 45]. Despite the formal drawbacks, MLQAE has
the potential to be a promising algorithm in practice, and is the focus of the present
work. We will detail the MLQAE algorithm in the next subsection.

There have also been other approaches to QAE that are iterative in style, similar
to the algorithm of [18], which have reduced the constant factor on the scaling while
retaining the rigorous guarantees [19–21, 26, 46, 47] (the algorithms of [27] and [21] are
compared experimentally in [48]), including one that is also sensitive to the sign of the
amplitude [24]. Other algorithms which have the added advantage of only requiring a
single state preparation are presented in [22, 23].
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|0〉⊗n Â Q̂dj

Figure 2. Example circuit for maximum-likelihood quantum amplitude
estimation.

2.5. Maximum-likelihood QAE

It has been shown that MLQAE [27] performs as well or better than many of the other
QAE algorithms [21]. Due to this, MLQAE has the potential to be a promising QAE
algorithm in practice, and so it is worthwhile to find ways to better understand and
improve the MLQAE algorithm.

MLQAE involves running a series of quantum circuits of the form shown in Fig.
2, much simpler than the circuit in Fig. 1, and feeding the measurement outcomes
into some classical post-processing that includes numerically maximising a likelihood
function. Like the conventional QAE algorithm of [15], the MLQAE algorithm begins
by applying the algorithm Â to the n-qubit register (now the only the register) to
prepare the state |A〉, and follows by applying some number of iterations of the Grover-
like iterator Q̂. However, here, these applications of Q̂ are not controlled on another
register.

It can be shown that performing dj (where the index j is introduced for later

convenience) applications of the Grover iteration operator Q̂ (which we will refer to as
the ‘Grover-depth’) to the state |A〉 = sin (θa) |AG〉+ cos (θa) |AG〉 produces the state∣∣ψdj〉 ≡ Q̂dj |A〉 (18)

= sin [(2dj + 1) θa] |AG〉+ cos [(2dj + 1) θa] |AB〉 . (19)

A computational-basis measurement then produces a ‘good’ state from G with
probability

pdj (θa) = sin2 [(2dj + 1) θa] . (20)

If the state
∣∣ψdj〉 is prepared and measured some number Nshot times and the number

of time a ‘good’ state is found is denoted as hdj , then the likelihood Ldj (θa = θ;hdj )
of this value of hdj as a function of the possible values θ for the angle θa is given by

Ldj (θa = θ;hdj ) =
[
pdj (θ)

]hdj [1− pdj (θ)
]Nshot−hdj . (21)

In the MLQAE algorithm, a number of shots Nshot and a Grover-depth schedule
D = {dj}q−1

j=0 are chosen (where the number of depths q can be considered arbitrary

at this point), and for each depth dj a circuit like the one in Fig. 2 is used
to prepare and measure the

∣∣ψdj〉 state Nshot times, and the measurement record
h = (hd0 , hd1 , . . . , hq−1) is obtained. The individual likelihood functions [Eq. (21)] can
then be combined to produce an overall likelihood function for the entire measurement
record h

L(θa = θ;h) =

q−1∏
j=0

Ldj (θa = θ;hdj ) (22)
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Figure 3. (a) Illustrations of the likelihood Ldj (θa = θ;hdj ) that the angle θa is
equal to a value θ, given that a Grover-like QAE circuit with dj Grover iterations
(dj larger for lower plots) produced hdj ‘good’ states from Nshot shots. The actual

angle θa that generated the outcomes is indicated by the dashed line. (b) The
overall likelihood L(θa = θ;h) produced by multiplying together the likelihoods
for each dj .

Typical forms for the individual likelihood functions Ldj (θa = θ;hdj ) are
illustrated in Fig. 3(a) (dj larger for lower plots). It can be seen that smaller Grover-
depths dj produce a likelihood function with few broad peaks, while larger Grover-
depths produce a likelihood function with many sharp peaks. The typical form of the
overall likelihood function, produced by multiplying together the likelihoods for each
dj , is illustrated in Fig. 3(b); the combined effect is a single, sharp peak which, if
located by a numerical maximisation, will produce an accurate estimate of θã of the
angle θa (which can be turned into an accurate estimate ã for the amplitude a).

2.5.1. Information theory analysis of MLQAE It can be shown (see appendix
Appendix A) that the Fisher information carried by the measurement record h
regarding the amplitude a is

I(a) =
Nshot

a(1− a)

q−1∑
j=0

(2dj + 1)2 (23)

=
Nshot

a(1− a)
(S

(2)
D )2, (24)

where in the second line the definition

S
(2)
D ≡

√√√√q−1∑
j=0

(2dj + 1)2 (25)

has been made.
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Assuming the likelihood function satisfies certain regularity conditions detailed in
the Bernstein–von Mises theorem [35], which will be explained in more detail in section
4, then as Nshot increases the estimate ã becomes approximately distributed according
to a normal distribution N

[
a, I−1(a)

]
with mean equal to the true amplitude a and

standard deviation related to the Fisher information as I−
1
2 (a). That is, the average

additive error in the estimate ã will be approximately

εavg ≡
√

E [(ã− a)2]

≈
√
a(1− a)

Nshot
· 1

S
(2)
D

. (26)

The number of calls to the algorithm Â, including the call at the beginning of each
circuit and the two calls required for each application of the Grover iteration operator
Q̂, is

Ncalls = Nshot

q−1∑
j=0

(2dj + 1) (27)

= NshotS
(1)
D (28)

where in the second line the definition

S
(1)
D ≡

q−1∑
j=0

(2dj + 1) (29)

has been made. Combining Eq. (26) and Eq. (28) gives

εavg ≈
√
a(1− a)

Ncalls
·

√
S

(1)
D

S
(2)
D

. (30)

The primary Grover-depth schedule considered by Suzuki et al. in [27] is the
exponential schedule

DEXP = {d0 = 0} ∪
{
dj = 2j−1

}q−1

j=1
. (31)

With this choice, and writing the maximum Grover-depth as d ≡ dq−2, the quantities

S
(1,2)
D can be evaluated (except for the trivial case of d = 0) as

S
(1)
DEXP

= 4d+ log2 d (32)

= O(d) (33)

S
(2)
DEXP

=

√
16d2

3
+ 8d+ log2 d−

10

3
(34)

= O(d). (35)

Combining the scalings in Eq. (33) and Eq. (35) with Eq. (30) gives

εavg

√
Ncalls ≈ O

(
1√
d

)
. (36)
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Thus, the quadratic speedup of εavg ≈ O
(
N−1

calls

)
over simply sampling from the output

of the algorithm Â can be achieved by allowing (via the choice of the number q
of depths) the maximum Grover-depth d to scale linearly with the desired average
accuracy as d = O

(
ε−1
avg

)
. The numerical maximisation of the likelihood function can

also be performed in time O
(
ε−1
avg

)
by simply calculating the likelihood function (or,

in practice, its logarithm) at O
(
ε−1
avg

)
regularly-spaced values of θ and choosing the

maximum, though this may not be the fastest method in practice.
It is worth noting that in the case where the maximum Grover-depth d scales with

the desired average accuracy as d = O
(
ε−1
avg

)
, the average error εavg and the target

amplitude a would appear in Eq. (30) at the same order, suggesting that a version
of this algorithm exists that achieves relative error. More explicitly, we find from Eq.
(30) that

ε2avg

a(1− a)
Ncalls ≈

S
(1)
D(

S
(2)
D

)2

= O

(
1

d

)
= O (εavg)

εavg

a(1− a)
Ncalls ≈ O(1).

Making use of this scaling in practice will require a more sophisticated approach to the
numerical likelihood maximisation, such as a grid-search that iteratively focuses more
finely on smaller regions of the θ domain, to ensure that it can be performed in time

O
(
a(1−a)
εavg

)
rather than in time O

(
ε−1
avg

)
. While this is an interesting observation, we

will not consider relative error further in this work.

3. Targeting a desired precision

Suzuki et al.’s analysis [27] shows how the maximum Grover-depth d can be scaled to
achieve a quadratic speedup compared to classical sampling, but leaves the number of
shots Nshot performed at each Grover-depth as a free parameter. In this section, we
extend the analysis to show how, for a given maximum Grover-depth d, the number
of shots Nshot can be chosen to approximately target a particular precision ε with
probability at least 1− δ.

As mentioned in subsection 2.5, the Bernstein-von Mises theorem implies,
assuming the likelihood function satisfies its regularity conditions, that for sufficiently
large number of shots Nshot, the estimate ã becomes approximately distributed
according to a normal distribution N

[
a, I−1(a)

]
with mean equal to the true

amplitude a and standard deviation related to the Fisher information as I−
1
2 (a). The

probability that the estimate ã is within a precision ε of the true amplitude a is thus
approximately

P (|ã− a| ≤ ε) ≈ 1

I−
1
2 (a)
√

2π

a+ε∫
a−ε

dx exp

[
− (x− a)2

2I−1(a)

]
. (37)
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Writing this probability as 1− δ ≡ P (|ã− a| ≤ ε), it can be shown that

I(a) ≈ 2erfinv2 (1− δ)
ε2

, (38)

where erfinv is the inverse error function. Combining Eq. 38 and Eq. 24 then gives
an expression for the required number of shots

Nshot ≈ a(1− a)
2erfinv2 (1− δ)(

S
(2)
D

)2

ε2
. (39)

Given that the goal is to find an estimate for the amplitude a, which is not known a
priori, we must also maximise Nshot over all values of the amplitude a. This maximum
occurs at a = 0.5 and gives

Nshot ≈
erfinv2 (1− δ)
2
(
S

(2)
D

)2

ε2
. (40)

Hereafter, we will focus on the regime in which the targeted precision ε and

acceptable failure probability δ are small compared to 1/
(
S

(2)
D

)2

= O(1/d2) to avoid

contradicting the the assumption that the number of shots is sufficiently large for the
Bernstein-von Mises theorem to apply. For small δ, the erfinv2 (1− δ) factor can be

approximated as ln
(√

π
δ

)
[49]. Returning to the exponential schedule DEXP from Eq.

(31) and relating Nshot to Ncalls by Eq. (28), this gives a scaling of

ε
√
Ncalls ≈ O

√ ln
(

1
δ

)
d

 , (41)

in agreement with Eq. (36).

3.1. Depth-limited scenarios

Relevant to implementations of MLQAE on near- and mid-term hardware, it is
important to consider scenarios in which the maximum Grover-depth d cannot be
made to scale linearly with the desired precision ε. In prior work [25], Giurgica-Tiron
et al. introduce a parameter 0 ≤ β ≤ 1, and allow the maximum Grover-depth d to
scale only as O

(
ε−(1−β)

)
. Then, a polynomial Grover-depth schedule is chosen as

DPOLY,β =
{
dj = Round

(
j

1−β
2β

)}q
j=1

, (42)

where q = max
(

1
ε2β
, ln
(

1
ε

))
so that the schedule approaches an exponential schedule

for small β and the maximum Grover-depth d ≡ dq becomes approximately 1
ε1−β

otherwise, as required. Through analysis of the Fisher information content of
measurements, Giurgica-Tiron et al. show that that the total number of calls Ncalls

to the algorithm Â scales with the precision ε as

Ncalls ≈ O
(

1

ε1+β

)
. (43)
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From this result, it can be seen that this scheme allows for trade-off between
circuit depth and quantum speedup compared to classically sampling from simple
measurements of the algorithm Â.

However, we observe here that the same trade-off can be achieved using the
standard exponential schedule DEXP (or a similar one, as will be explained below), by
simply choosing the maximum Grover-depth d to scale appropriately as O

(
ε−(1−β)

)
.

In this case, it can be seen from Eq. (41) (or even Eq. (36)) that the number of
calls Ncalls scales in the same way as in Eq. (43). If the Grover-depth scaling of
d = O

(
ε−(1−β)

)
is not compatible with DEXP as defined in Eq. (31), then once

a maximum Grover-depth d is identified for a particular run of MLQAE, a similar
schedule can be chosen as

DEXP,ν = {d0 = 0} ∪
{
dj = Round

(
νj−1

)}q−1

j=1
, (44)

where the base ν and number of depths q are chosen together such that ν is the closest
value to 2 that supports νq−2 = d. Explicit pseudo-code for generating the schedule
is given in Algorithm 1. The difference |ν − 2| becomes smaller over larger scales of

Algorithm 1 Generate depth-limited exponential schedule

Input: d: Maximum Grover-depth.
Output: DEXP,ν : Compatible exponential Grover-depth schedule, in
ascending order.

1: set pmax,ceil := Ceil[log2 d], pmax,floor := Floor[log2 d] #two options for

the maximum power

2: if pmax,floor = 0: #discard a maximum power of 0

3: set pmax := pmax,ceil

4: set ν := d1/pmax

5: else:
6: set base upper := d1/pmax,ceil , base lower := d1/pmax,floor

7: if |base upper−2| < |base lower−2|:#choose the base closest

to 2

8: set pmax := pmax,ceil, ν := base upper

9: else:
10: set pmax := pmax,floor, ν := base lower

11: set DEXP,ν = {d0 = 0} ∪
{
dj = Round

(
νj
)}pmax

j=0

12: return DEXP,ν

maximum Grover-depth d (see appendix Appendix B), meaning that the approximate
scaling results for the standard exponential schedule DEXP shown in subsubsection
2.5.1 and in this section still hold approximately.

An important case to consider is that of β = 1; that is, when the maximum
Grover-depth d is fixed and not allowed to scale with the desired precision ε. This
case is relevant to near- and mid-term hardware for which the useful circuit depth, and
thus the achievable Grover-depth d for MLQAE on a particular algorithm Â, will have
some upper-limit on any particular device due to interactions with the environment.
Indeed, even specific devices employing error-correction will have some limit on the
achievable Grover-depth d, as the available number of qubits will limit the size of
error-correcting codes [50]. In this case, as the maximum Grover-depth d is constant,
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it is clear from the approximate scaling in Eq. (41) that the required number of calls
Ncalls will scale inversely-proportionally to the square ε2 of the desired precision, as in
the case of classical sampling; that is, no scaling advantage is achieved. However, it is
also the case in this case that the achievable Grover-depth d determines the constant
factor on this scaling. Combining Eq. (28) and Eq. (40) gives the required number of
calls Ncalls to be

Ncalls ≈
S

(1)
DEXP,ν(

S
(2)
DEXP,ν

)2 ·
erfinv2 (1− δ)

2ε2
. (45)

The speed-up factor Rd ≡ N
(classical)
calls /Ncalls achieved by using a maximum Grover-

depth d compared to classical sampling case (for which d = 0 and S
(1)
D = S

(2)
D = 1),

can be quantified approximately as

Rd ≈

(
S

(2)
DEXP,ν

)2

S
(1)
DEXP,ν

. (46)

Taking for simplicity the case where the maximum Grover-depth d is a power of 2,
this can be rewritten as

Rd ≈
16d2

3 + 8d+ log2 d− 10
3

4d+ log2 d
(47)

= O(d). (48)

The meaning of Eq. (48) is that, assuming the Bernstein-von Mises theorem
holds, then using a quantum processor that supports a maximum Grover-depth d (for
the particular algorithm Â) to run MLQAE should produce an estimate ã for the
amplitude a within precision ε with probability approximately greater than 1− δ with
a O(d) factor speed-up compared to simply classically sampling from the algorithm
Â. If we return to the case where the maximum Grover-depth d can scale with the
targeted precision ε as d = O

(
ε−1
)
, then a quadratic speedup over the classical scaling

of N
(classical)
calls = O(ε−2) is achieved, as expected.
In practice, even when limiting the circuit-depth to keep the noise under control,

low levels of noise may still affect the results and place a limit on the achievable
precision ε. Methods to mitigate this issue by modifying the the likelihood functions
Ldj (θ = θa;hdj ) to include the effects of noise are discussed in [25, 27–29, 32], while
other QAE-specific noise-mitigation methods are discussed in [30, 31, 33, 45]. In this
work, we do not consider the effects of noise beyond the notion of a depth limitation.

3.2. Numerical validation

To test the analysis presented in this section, we have performed numerical simulations
of the MLQAE algorithm. Given the simple description of the action of the operators
Q̂dj in terms of the angle θa given in Eq. 19, it is not necessary to perform full
quantum-circuit simulations in order to simulate MLQAE for a particular pre-chosen
value of the amplitude a. Instead, for each Grover-depth dj in the chosen schedule D,
we calculate the ‘good’ state probability pdj (θa), according to Eq. (20), draw a number
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Figure 4. The error in an estimate ã, produced from a single run of the MLQAE
algorithm, of the amplitude a for 1 000 000 equally-spaced values of the amplitude
a covering the full range from a = 0 to a = 1, using maximum Grover-depth d,
targeting a precision ε with failure probability at most δ and a number of shots
Nshot calculated according to Eq. (40). The black, horizontal dashed line is the
target precision ε, while the vertical dashed lines indicate the exceptional values
according to Eq. (49), where the blue (orange) lines are fore even (odd) j. The
parameters for the two plots are (a) d = 16, ε = 10−3, δ = 0.01 (resulting in
Nshot = 1111) and (b) d = 50, ε = 10−4, δ = 0.01 (resulting in Nshot = 11 688).

of ‘good’ states hdj from the binomial distribution B
[
Nshot, pdj (θa)

]
, and collect these

together into the measurement record h. From this measurement record, we construct
the likelihood function L(θa = θ;h) according to Eq. (22) and numerically maximise
its logarithm by simply calculating it at 3/ε regularly-spaced values of θ (where the
3 has been chosen arbitrarily) and finding the maximum.

Fig. 4 shows, for two sets of parameters, the error in the estimate ã, produced
from a single run of the MLQAE algorithm, of the amplitude a for 1 000 000 equally-
spaced values of the amplitude a covering the full range from a = 0 to a = 1, targeting
a precision ε with failure probability at most δ, and using using maximum Grover-
depth d and a number of shots Nshot calculated according to Eq. (40). The parameters
for the two plots are (a) d = 16, ε = 10−3, δ = 0.01 (resulting in Nshot = 1111) and
(b) d = 50, ε = 10−4, δ = 0.01 (resulting in Nshot = 11 688).

It can be seen in both plots of Fig. 4 that, for most typical values of the amplitude
a, MLQAE produces an estimate with an error that is either close to or much smaller
than the target precision ε. However, it is also clear that some small, regularly-spaced
regions of the amplitude a exist in which the estimates ã produced are significantly
worse. These exceptional values occur in the vicinity of a-values for which the circuit
with the maximum Grover-depth d produces ‘good’ states with probability 1 or 0;
that is, the exceptional values occur in the vicinity of

a
(d→pd(θa)=0,1)
k = sin

[
kπ

2 (2d+ 1)

]2

for k = 0, 1, . . . , 2d, 2d+ 1. (49)

The reason for this, as well as precisely what is meant by “in the vicinity of”, will
be explained in detail in the next section, but for now, this observation allows us to
examine the exceptional values more closely.

In Fig. 5, each data point represents the minimum precision εachieved achieved
with probability at least 1 − δ, estimated from 10 000 runs of MLQAE, for various
values of the number of shots Nshot and for various values of the amplitude a. The
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Nshot values used are powers of 2, as well as an extra data point for the Nshot calculated
according to Eq. (40) for a particular target precision ε, which are also indicated in
each plot by the vertical dotted and horizontal dashed lines respectively. The left
column uses the parameters d = 16, ε = 10−3, δ = 0.01, while the right column uses
the parameters d = 50, ε = 10−4, δ = 0.01. The top (bottom) row shows some typical
(exceptional) values of the amplitude a. For each plot in Fig. 5, we performed the
numerical likelihood maximisation with a grid of 3/εmin equally-spaced points, where
εmin is the precision expected for the largest value of Nshot plotted. It can be seen
that for the typical values of the amplitude a, the target precision ε is achieved at
values of Nshot that are lower than or close to the value predicted by Eq. (40). For
the exceptional values of the amplitude a, however, it can be seen that values of Nshot

that are between 2 and 4 times larger than the value predicted by Eq. (40) are required
to achieve the target precision ε. This is consistent with the plots in Fig. 4, and the
reasons for these exceptional values will be explored in the next section.

A similar observation was made in [29] in the case of MLQAE in a noisy setting,
where a multiparameter likelihood maximisation is performed that includes the noise
rate as a nuissance parameter. In that work, ‘anomalous target’ values of the amplitude
a are observed for which the algorithm fails to achieve the desired precision; however,
those anomalous target values are identified as being caused by a failure of the
multiparameter likelihood maximisation procedure to accurately estimate the noise
rate, which is not relevant in the noiseless case where the likelihood-maximisation is
performed only in one dimension. Thus, the exceptional values seen here are a distinct
phenomenon to the anomalous target values seen in [29].

4. Exceptional values

In subsection 3.2, we showed numerically that choosing the number of shots Nshot

according to Eq. (40) approximately achieves the target precision ε with probability
at least 1 − δ for typical values of the amplitude a, but that it fails for particular

exceptional values in the vicinity of a = a
(d→pd(θa)=0,1)
k for which the maximum

Grover-depth d produces ‘good’ states with probability 1 or 0. To see why this problem
occurs, it is helpful to examine the likelihood-maximisation process at a conceptual
level.

To this end, Fig. 6 shows a qualitative illustration of the emergence of exceptional

in the vicinity of a = a
(d→pd(θa)=0,1)
k [see Eq. (49)]. The top row illustrates the case

of typical values of the amplitude a (and of the corresponding angle θa). Fig. 6(a)
illustrates the probability pd(θa) of measuring a ‘good’ state after running the circuit
with the maximum Grover-depth, d. The true value of the angle θa is indicated
by the black cross and the vertical dashed line, while other angles that produce the
same probability are indicated by grey crosses. As the typical values occur far from
pd(θa) = 0 and pd(θa) = 1, the corresponding Grover-depth d likelihood function Ld
typically looks as in Fig. 6(b), where the likelihood peaks correspond to the crosses
from plot (a). The Grover-depth d measurement data does not contain the information
to determine which of the peaks correspond to the true angle θa, but the information
gained from the lower Grover-depth circuits is typically sufficient to narrow θ down
to a small range, indicated by the shaded area in plot (b), that contains only one of
these peaks.

However, the bottom row illustrates the case of an exceptional value, which in
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Figure 5. Each data point represents the minimum precision εachieved achieved
with probability at least 1−δ, estimated from 10 000 runs of MLQAE, for various
values of the number of shots Nshot and for various values of the amplitude a.
The Nshot values used are powers of 2, as well as an extra data point for the
Nshot calculated according to Eq. (40) for a particular target precision ε, which
are also indicated by the vertical dotted and horizontal dashed lines respectively.
The left column ((a) and (c)) uses the parameters d = 16, ε = 10−3, δ = 0.01,
while the right column ((b) and (d)) uses the parameters d = 50, ε = 10−4,
δ = 0.01. The top row ((a) and (b)) shows typical values of the amplitude a,
chosen as a = 0.1, 0.2 . . . , 0.8, 0.9 as well as the results for choosing a randomly
from the full range for each of the 10 000 runs. The bottom row ((c) and (d))

shows exceptional values of the amplitude a, chosen as a = a
(d→pd(θa)=0,1)
k + ε

see [Eq. (49)], with (c) k = 14, 15, 16, 17, 18 and (d) k = 45, 46, . . . , 54, 55 in order
to be reasonably close to a = 0.5. For each plot, we performed the numerical
likelihood maximisation with a grid of 3/εmin equally-spaced points, where εmin

is the precision expected for the largest value of Nshot plotted.

this example is close to pd(θa) = 1. As some pairs of crosses occur close together in
Fig. 6(c), some pairs of peaks occur close together in the corresponding likelihood
function in Fig. 6(d), including two peaks that both appear in the shaded region,
meaning that it is not possible to determine which of the two peaks correspond to
the true angle θa. If the distance |ã − ãFalse| between the correct estimate ã and
the nearby ‘false’ estimate ãFalse is much smaller than the target precision, that is
if |ã − ãFalse| � ε, then either estimate is likely to work well, and this ambiguity
will not cause an issue. In the opposite extreme, if |ã − ãFalse| & 2ε, then the false
estimate ãFalse is unlikely to be in the ambiguous region (illustrated by the shaded
regions in Fig. 6), as 2ε is approximately the precision that would be achieved if
the data from the maximum Grover-depth d runs were not included in the analysis.
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Figure 6. A qualitative illustration of the emergence of exceptional values of

the amplitude a in the vicinity of a = a
(d→pd(θa)=0,1)
k [see Eq. (49)]. The top row

illustrates the case of typical values of the amplitude a (and of the corresponding
angle θa). Plot (a) illustrates the probability pd of measuring a ‘good’ state after
running the circuit with the maximum Grover-depth, d. The true value of the
angle θa is indicated by the black cross and the vertical dashed line, while other
angles that produce the same probability are indicated by grey crosses. As the
typical values occur far from pd = 0 and pd = 1, the corresponding Grover-depth
d likelihood function Ld typically looks as in plot (b), where the likelihood peaks
correspond to the crosses from plot (a). The Grover-depth d measurement data
does not contain the information to determine which of the peaks correspond to
the true angle θa, but the information gained from the lower Grover-depth circuits
is typically sufficient to narrow θ down to a small range, indicated by the shaded
area in plot (b), that contains only one of these peaks. The bottom row ((c) and
(d)) illustrates the case of exceptional values, in this example close to pd = 1. As
some pairs of crosses occur close together in plot (c), some pairs of peaks occur
close together in the corresponding likelihood function in plot (d), including two
peaks that both appear in the shaded region, meaning that it is not possible to
determine which of the two peaks correspond to the true angle θa.

The exceptional values are thus expected to occur roughly in the intermediate regime,
where ε . |ã − ãFalse| . 2ε. In Fig. 7, this corresponds to the expectation that
the exceptional values should be approximately contained in the region of medium
darkness. This intuition is approximately confirmed, although the exceptional values
do extend further out in to the lightest shaded region.

This can also be understood in terms of the Bernstein-von Mises theorem. The
starting point of the derivation of the required number of shots Nshot in Eq. (40)
was the assumption that the regularity conditions set out in the Bernstein-von Mises
theorem hold. The theorem is neatly explained and summarised by Giurgica-Tiron et
al. in [25], and the conditions can be expressed most simply as the following three
requirements:

(i) The likelihood function L(θa = θ;h) and its logarithm should be smooth over the
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Figure 7. The red line shows the precision εachieved achieved with probability
1 − δ = 99% (estimated from 10 000 MLQAE runs), when targeting a precision
ε = 10−4, indicated by the horizontal dashed line, using an exponential Grover-
depth schedule with maximum Grover-depth d = 50, at 1000 different values

of the amplitude a in the vicinity of a
(d→pd(θa)=0,1)
k with k = 50, indicated

by the vertical dotted line, and the shaded regions are centred on this value.
The numerical likelihood maximisation has been performed by calculating the
likelihood function at ∼ 30/ε equally spaced values of θ, a much finer search than
is needed in practice in order to reduce the size of the fluctuations in the plot. The
darkest shaded region in the centre has width ε, while the medium and lightest
shaded regions have width 2ε and 4ε respectively.

relevant interval of θ.

(ii) The Fisher information I(a) should be smooth over the relevant interval of a (and
thus of θ). This implies that that the logarithm of the likelihood function should
be at least thrice differentiable

(iii) The first derivative of the prior distribution should exist and be continuous.

In the present case, the prior distribution is uniform, and so condition iii is trivially
satisfied. However, it can be seen from Eq. (21), Eq. (22) and Fig. 3 that the

likelihood function L(θa = θ;h) goes to 0 at the amplitude values a
(dj→Pgood=0,1)
k if

the measurement record hdj contains both ‘good’ and ‘bad’ outcomes, meaning that
at these points the logarithm of the likelihood function diverges to negative infinity,
violating conditions i and ii. If the information gained from measurements at lower
Grover-depths is sufficient to restrict the likely estimates ã to an interval around the

amplitude a that does not include any a
(dj→pd(θa)=0,1)
k values, the validity of conditions

i and ii is recovered in this interval, but if this is not the case than the Bernstein-von
Mises theorem does not apply, explaining why using a number of shots Nshot according
to Eq. (40) is not even approximately sufficient for the exceptional values. From this

perspective, exceptional values should occur near the a
(dj→pd(θa)=0,1)
k at any Grover-

depth dj in the depth schedule, but in practice those at depths smaller than the
maximum depth d have a much less significant impact due to the lower information
content of measurements at those depths.
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5. Depth jittering heuristic

As discussed in section 4, exactly which values of the amplitude value a are exceptional
depends on exactly which Grover-depths appear in the Grover-depth schedule D, with
a particular importance associated with the maximum depth d. With this in mind, we
propose a heuristic method to produce a modified Grover-depth schedule D′ in which
the Nshot shots for some Grover-depths dj ∈ DEXP,ν are instead spread out over a
small number of nearby depths, in order to mitigate the effects of exceptional values.
We refer to this process as ‘depth jittering’, and the jittered Grover-depth schedule
D′ can be produced from the original Grover-depth schedule D via Algorithm 2.

Algorithm 2 Depth jittering algorithm

Inputs: D: Original Grover-depth schedule, with size at least 2, in ascending
order.

c: Logarithmic spread coefficient.
Outputs: D′: Jittered Grover-depth schedule, in ascending order.

F (shot): Corresponding shot fractions.

1: initialise D′ := {}, F (shot) := {}
2: for dj in reverse(D): #reverse order to prioritise jittering

larger depths

3: initialise jitter := False

4: calculate depth spread := Round [ln (cdj)]
5: if dj = max(D):
6: set lower := dj − depth spread

7: set upper := dj #don’t go beyond maximum depth

8: if lower > dj−1 + 1: set jitter := True

9: elif min(D) < dj < max(D):
10: set lower := dj − depth spread and upper := dj +

depth spread

11: if lower > dj−1 + 1 and upper < min(D′)− 1: set jitter :=
True

12: elif dj = min(D) and not dj = 0: #jittering at depth 0 not

necessary

13: set lower := max(0, dj − depth spread) #don’t go below 0

depth

14: set upper := dj + depth spread

15: if upper < min(D′)− 1: set jitter := True

16: if jitter:

17: for (dj)
′
k from upper to lower: #add in descending order to

be reversed at end

18: add (dj)
′
k to D′ and 1/ (upper− lower + 1) to F (shot)

19: else:
20: add dj to D′ and 1 to F (shot)

21: set D′ := reverse(D′) and F (shot) := reverse(F (shot))
22: return D′ and Fshot

In short, Algorithm 2 takes each Grover-depth dj in the original schedule D,
as well as a ‘logarithmic spread coefficient’ c and adds all the depths between
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∼ (dj − log (cdj)) and ∼ (dj + log (cdj)) to a new ‘jittered’ schedule D′. This is
not done for zero-depth dj = 0, as this depth has no exceptional values. This is
also not done for depths dj where this spread would overlap with the spreads from
neighbouring depths dj−1 and dj+1, where jittering the larger depths is prioritised in
these cases. For the maximum Grover-depth d, only the part of the spread that is less
than or equal to d is included, to avoid exceeding the maximum Grover-depth, while
for the minimum Grover-depth the spread is truncated if necessary to avoid impossible
depths below 0.

The use of depth-spreads of logarithmic size is a heuristic choice, motivated by
the need to preserve the approximate scaling results presented in previous sections.
Algorithm 2 also outputs a set of ‘shot fractions’ F (shot) that simply keeps track of the
factor by which Nshot should be scaled down at each new of the new depths d′j ∈ D′
in order to effectively spread the Nshot shots that would have originally been run
at depth dj over the relevant jittered depths. Taking the examples of exponential
schedules DEXP,ν with maximum depths d = 16 and d = 50 (as in Fig. 4 and Fig. 5)
and setting the spread coefficient c = 2 (this choice is arbitrary, but seems to work
well in practice), the original schedules are

DEXP,ν = {0, 1, 2, 4, 8, 16} (50)

DEXP,ν = {0, 1, 2, 4, 7, 14, 26, 50}, (51)

while the jittered schedules are

D′EXP,ν = {0; 1; 2; 4; 8; 13, 14, 15, 16} (52)

D′EXP,ν = {0; 1; 2; 4; 7; 11, 12, 13, 14, 15, 16, 17;

22, 23, 24, 25, 26, 27, 28, 29, 30; 45, 46, 47, 48, 49, 50}, (53)

where semicolons have been used to separate the jittered depths into groups
corresponding to the original depths.

It is also necessary to define jittered versions of the quantities S
(1)
D and S

(2)
D from

Eq. (29) and Eq. (29). These are simply

S
(1)′

D′ ≡
q−1∑
j=0

F
(shot)
j (2d′j + 1) (54)

and

S
(2)′

D′ ≡

√√√√q−1∑
j=0

F
(shot)
j (2d′j + 1)2. (55)

With these definitions, the jittered number of shots N ′shot can be calculated according
to Eq. (40), which is in general slightly different from the original Nshot. When the
jittered MLQAE algorithm is run, the actual number of shots used at depth d′j is

dF (shot)
j N ′shote.

To demonstrate that the extent of the speedup for MLQAE compared to
classically sampling from the outputs of the algorithm Â is not significantly affected by
the depth-jittering procedure, Fig. 8 shows the ratio of the number of calls N ′calls and

Ncalls to the algorithm Â in the case of a jittered and unjittered Grover-depth schedule
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Figure 8. The ratio of the number of calls N ′calls and Ncalls to the algorithm

Â in the case of a jittered and unjittered Grover-depth schedule respectively as
a function of maximum Grover-depth d, for three different choices of the target
precision ε. An acceptable failure probability of δ = 0.01 is used in all cases.
The visible increase at the highest depths for the ε = 10−4 case (solid green line)

occurs because of the ceiling function applied in the expression dF (shot)
j N ′shote for

the actual number of shots used at depth d′j , as N ′shot becomes small.

respectively as a function of maximum Grover-depth d, for three different choices of
the target precision ε. An acceptable failure probability of δ = 0.01 is used in all
cases. The visible increase at the highest depths for the ε = 10−4 case (solid green

line) occurs because of the ceiling function applied in the expression dF (shot)
j N ′shote for

the actual number of shots used at depth d′j , as Nshot becomes small. For the more
strict precision requirements (the dashed red and dotted blue lines) where Nshot is not
small at the larger Grover-depths, the ratio is convincingly tending toward a value of
1.

5.1. Numerical validation

To show that the depth-jittering heuristic is effective, we have repeated the numerical
experiments described in subsection 3.2 with exactly the same parameters, but using
the depth-jittered schedule D′EXP,ν instead of the original schedule DEXP,ν . Fig. 9
should be compared with Fig. 4. It can be seen that the sharp features associated
with exceptional values of the amplitude a have been largely removed by the depth-
jittering procedure. Likewise, Fig. 10 should be compared with Fig. 5. It can be
seen that the MLQAE algorithm with the depth-jittering heuristic now achieves the
target precision ε at an N ′shot value much closer to the value predicted by Eq. (40)
for the exceptional values of the amplitude a (Fig. 10(c) and Fig. 10(d)), without
significantly affecting the performance for the typical values of the amplitude a (Fig.
10(a) and Fig. 10(b)).

6. Summary and further work

In this paper, we have given new insights and made improvements to MLQAE,
the maximum-likelihood quantum amplitude estimation algorithm first proposed by
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Figure 9. Data produced by exactly the same procedure and with the same
parameters as in Fig. 4, but with a jittered Grover-depth schedule D′EXP,ν . The
sharp features in Fig. 4 associated with exceptional values of the amplitude a
have been largely removed by the depth-jittering procedure.
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Figure 10. Data produced by exactly the same procedure and with the same
parameters as in Fig. 5, but with a jittered Grover-depth schedule D′EXP,ν .

The MLQAE algorithm now achieves the target precision ε at an N ′shot value
much closer to the value predicted by Eq. (40) for the exceptional values of the
amplitude a [(c) and (d)], without significantly affecting the performance for the
typical values of the amplitude a [(a) and (b)].
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Suzuki et al. [27]. Quantum amplitude estimation has the potential to be an
important subroutine in quantum algorithms, offering quadratic speedups in many
areas of science, engineering, and industry through its applications to quantum-
enhanced Monte Carlo simulation [6], as well as to quantum machine learning [9, 13].
The maximum-likelihood-based quantum amplitude estimation algorithm is one of
a number of recent proposals that use much simpler quantum circuits than earlier
work [15], bringing quantum amplitude estimation closer to suitability for near- and
mid-term quantum hardware.

The analysis in prior work focused on understanding how the average error scales
with the number of calls to the quantum circuit whose output contains the amplitude
we are trying to estimate, observing a quadratic speedup compared to simple classical
sampling in the process. In section 3, we began our contribution by extending this
analysis and showed how to calculate how many calls are required to target a particular
precision with a particular choice of probability, rather than simply on average.
As with the prior work, our analysis assumed that the conditions required for the
Bernstein-von Mises theorem to hold are satisfied, and was therefore not completely
rigorous. We also considered scenarios in which the circuit-depth cannot be made
arbitrarily large, arguing that a trade-off between circuit-depth and quantum speedup
developed in [25] can be achieved in a more a direct way.

While numerically validating our analysis in section 3 over the full range of target
amplitudes, we observed that there are particular values of the amplitude, exceptional
values, at which the algorithm fails to achieve the target precision. In section 4, we
described at which values of the amplitude these occur, and explained in detail why
they occur, both formally in terms of violations of the Bernstein-von Mises theorem
and via a more intuitive picture in terms of the likelihood maximisation process.

Having explained in section 4 how the amplitudes which are the problematic
exceptional values depended on the ‘Grover-depth’ (the number of applications of a
‘Grover-like’ operator present in the circuits that are run), we proposed in section 5 a
heuristic method to mitigate the problem, which we refer to as ‘depth-jittering’. This
method involves taking the shots that would ordinarily all be performed on identical
circuits at a single Grover-depth, and instead spreading them over a small number
of nearby Grover-depths in order to bypass much of the sensitivity to Grover-depth.
We show numerically that this process has only a negligible effect on the algorithm
runtime, and that the algorithm now achieves approximately the expected precision
across the full range of target amplitudes and the previously exceptional values are no
longer problematic.

Our work leads naturally to a number of questions. Most importantly, the only
way in which we consider the effects of the noise that would be unavoidably present in
near- and mid-term implementations of this algorithm is by imposing limitations on
the available circuit depths, but prior work [25, 27–29, 32] has shown how to modify
the likelihood functions to account for the noise on the quantum device. It will be
important to understand how these modifications would affect the exceptional values,
as well as the effectiveness of our depth-jittering heuristic. Another possible extension
to our work is exploring the possibility of performing ‘adaptive’ jittering, perhaps
by detecting possible exceptional values through the low-depth measurements and
only then jittering the high-depth runs if necessary. The runs at each Grover-depth
could still be performed in parallel, and so this advantage of MLQAE is not lost.
A further possible extension is to investigate whether there are numerical factors by
which the number of measurement shots can be scaled up to reliably guard against
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the approximate nature of the theoretical analysis. Overall, the insights we offer in
this work help to improve the understanding of the maximum-likelihood quantum
amplitude estimation algorithm, and move it toward being a useful tool for practical
algorithms in the near- and mid-term.
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Appendix A. Fisher information content of measurement record

In this appendix, we show that that the Fisher information carried by the measurement
record h regarding the amplitude a is

I(a) =
Nshot

a(1− a)

q−1∑
j=0

(2dj + 1)2,

as in Eq. (23).
The probability of measuring a ‘good’ state after performing the MLQAE circuit

of Grover-depth dj as a function of the amplitude a is

pdj (a) = sin2 [(2dj + 1)θa]

= sin2
[
(2dj + 1) arcsin

√
a
]

Denoting the outcome of the single measurement as mdj = 1, 0 for a ‘good’ or ‘bad’
outcome respectively, the likelihood of the estimate ã being the correct amplitude a
can be written as

L
(single shot)
dj

(
ã = a;mdj

)
=
[
pdj (ã)

]mdj [1− pdj (ã)
]1−mdj .

In the region around the true amplitude a where the logarithm of the likelihood
function is differentiable, the Fisher information gained from the measurement can be
written as

I(single shot)(a) = Emdj

[(
∂

∂ã
logL

(single shot)
dj

)2
∣∣∣∣∣a
]

where the expectation value is being taken over the measurement outcome mdj and
then evaluated at the true amplitude a.
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The derivative can be developed as

∂

∂ã
logL

(single shot)
dj

=

∂
∂ãL

(single shot)
dj

L
(single shot)
dj

=

∂
∂ã

([
pdj (ã)

]mdj ) [1− pdj (ã)
]1−mdj +

[
pdj (ã)

]mdj ∂
∂ã

([
1− pdj (ã)

]1−mdj )[
pdj (ã)

]mdj [1− pdj (ã)
]1−mdj

=
∂
∂ã

([
pdj (ã)

]mdj )[
pdj (ã)

]mdj +

∂
∂ã

([
1− pdj (ã)

]1−mdj )[
1− pdj (ã)

]1−mdj
= mdj

∂
∂ã

[
pdj (ã)

]
pdj (ã)

+ (1−mdj )
∂
∂ã

[
1− pdj (ã)

]
1− pdj (ã)

where the last line is valid because the mdj is a binary variable.
The two remaining derivatives can be developed as

∂

∂ã

[
pdj (ã)

]
=

∂

∂ã

(
sin2

[
(2dj + 1) arcsin

√
ã
])

= 2(2dj + 1) sin
[
(2dj + 1) arcsin

√
ã
]

cos
[
(2dj + 1) arcsin

√
ã
] ∂

∂ã

(
arcsin

√
ã
)

=
2dj + 1√
ã(1− ã)

sin
[
(2dj + 1) arcsin

√
ã
]

cos
[
(2dj + 1) arcsin

√
ã
]

=
2dj + 1√
ã(1− ã)

√
pdj (ã)

[
1− pdj (ã)

]
and

∂

∂ã

[
1− pdj (ã)

]
=

∂

∂ã

(
cos2

[
(2dj + 1) arcsin

√
ã
])

= −2(2dj + 1) cos
[
(2dj + 1) arcsin

√
ã
]

sin
[
(2dj + 1) arcsin

√
ã
] ∂

∂ã

(
arcsin

√
ã
)

= − 2dj + 1√
ã(1− ã)

cos
[
(2dj + 1) arcsin

√
ã
]

sin
[
(2dj + 1) arcsin

√
ã
]

= − 2dj + 1√
ã(1− ã)

√
pdj (ã)

[
1− pdj (ã)

]
,

giving

∂

∂ã
logL

(single shot)
dj

=
2dj + 1√
ã(1− ã)

√
pdj (ã)

[
1− pdj (ã)

] [ mdj

pdj (ã)
− 1−mdj

1− pdj (ã)

]
=

(2dj + 1)
(
mdj

[
1− pdj (ã)

]
−
[
1−mdj

] [
pdj (ã)

])√
ã(1− ã)

[
pdj (ã)

] [
1− pdj (ã)

] .

As mdj is a binary value, squaring this gives

(
∂

∂ã
logL

(single shot)
dj

)2

=
(2dj + 1)

2
(
mdj

[
1− pdj (ã)

]2
+
[
1−mdj

] [
pdj (ã)

]2)
ã(1− ã)

[
pdj (ã)

] [
1− pdj (ã)

] ,
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and, finally, the expectation value over mdj can be taken and evaluated at the true
amplitude a to find the Fisher information as

I(single shot)(a) =
(2dj + 1)

2
([
pdj (a)

] [
1− pdj (a)

]2
+
[
1− pdj (a)

] [
pdj (a)

]2)
a(1− a)

[
pdj (a)

] [
1− pdj (a)

]
=

(2dj + 1)2

a(1− a)

([
1− pdj (a)

]
+
[
pdj (a)

])
=

(2dj + 1)2

a(1− a)
.

As Fisher information is additive, the single shot Fisher information Isingle shot(a)
can be summed over the Nshot shots at each Grover-depth dj to give the total fisher
information

I(a) =
Nshot

a(1− a)

q−1∑
j=0

(2dj + 1)2,

as required.

Appendix B. Analysis of the base for the exponential schedule

In subsection 3.1, we defined a slight modification to the exponential Grover-depth
schedule DEXP (from Eq. (31)) to accommodate a maximum Grover-depth d that is
not a power of 2. The modification, as stated in Eq. (44), is given by

DEXP,ν = {d0 = 0} ∪
{
dj = Round

(
νj−1

)}q−1

j=1
,

where the base ν and number of depths q are chosen together such that ν is the closest
value to 2 such that νq−2 = d. However, our scaling analyses consider only the case
where the maximum Grover-depth d is a power of 2; that is, for ν = 2. We assume
that the scaling results still apply for other values of the base ν and justify this with
the claim that “the difference |ν − 2| becomes smaller over larger scales of maximum
Grover-depth d”. In this appendix, we briefly show that this is true.

By definition,

νlower < ν < νupper,

where

νq−2
lower = 2q−3

νq−2
upper = 2q−1.

These bounds can be evaluated as

νlower = 2
q−3
q−2

νupper = 2
q−1
q−2 ,

both of which tend to 2 with increasing q, and thus with increasing Grover-depth d.
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