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Abstract

We consider bi-objective ranking and selection problems, where the goal is to correctly

identify the Pareto optimal solutions among a finite set of candidates for which the two

objective outcomes have been observed with uncertainty (e.g., after running a multiobjec-

tive stochastic simulation optimization procedure). When identifying these solutions, the

noise perturbing the observed performance may lead to two types of errors: solutions that

are truly Pareto-optimal can be wrongly considered dominated, and solutions that are

truly dominated can be wrongly considered Pareto-optimal. We propose a novel Bayesian

bi-objective ranking and selection method that sequentially allocates extra samples to

competitive solutions, in view of reducing the misclassification errors when identifying the

solutions with the best expected performance. The approach uses stochastic kriging to

build reliable predictive distributions of the objective outcomes, and exploits this infor-

mation to decide how to resample. Experimental results show that the proposed method

outperforms the standard allocation method, as well as a well-known the state-of-the-art

algorithm. Moreover, we show that the other competing algorithms also benefit from the

use of stochastic kriging information; yet, the proposed method remains superior.

Keywords: Multiple criteria analysis, Multiobjective Simulation Optimization,

Stochastic Kriging, Multiobjective Ranking and Selection

1. Introduction

In multiobjective or multi-criteria optimization problems, the goal is to find the set

of solutions that reveal the essential trade-offs between the objectives (i.e., where no

single objective can be improved without negatively affecting any other objective). These

solutions are referred to as non-dominated or Pareto-optimal, and form the Pareto set,

also referred to as the efficient set ; the evaluation of these solutions in the objectives

corresponds to the Pareto front (see Figure 1 for some examples of continuous fronts).

Depending on the type of problem, the Pareto front may have different geometries (e.g.

concave, convex, linear, disconnected). In real-life problems, the location and geometry

∗Corresponding author
Email address: sebastian.rojasgonzalez@ugent.be (Sebastian Rojas Gonzalez)

Preprint submitted to Elsevier

ar
X

iv
:2

20
9.

03
91

9v
3 

 [
st

at
.M

L
] 

 2
8 

M
ar

 2
02

4



of the Pareto front are evidently unknown, and a discrete set of solutions is often used to

approximate it (Miettinen, 1999; Hunter et al., 2019).

Figure 1: Bi-objective (left) and tri-objective (right) Pareto fronts with different geometries.

This article considers problems where the outcomes of the objective functions could

only be measured through stochastic experiments (e.g., stochastic simulation), i.e., the

observations are noisy. Such problems occur frequently in real life. For instance, in manu-

facturing and distribution problems (e.g., lot sizing in manufacturing plants), it is common

to maximize the expected profit of the production system, while also minimizing profit

risk; in transportation problems (e.g., constructing optimal routes for dial-a-ride services)

it is common to minimize tardiness of deliveries while also using minimal resources; and in

the healthcare sector it is often equally important to minimize the waiting time of patients

and the idle time of doctors. We assume that a fixed set of candidate solutions is available,

for which the objective outcomes have been evaluated (with observational noise). Such

a set may result, for instance, from running a multi-objective metaheuristic (see, e.g.,

Fieldsend & Everson 2015), or a multiobjective simulation optimization procedure (see

e.g., Li et al. 2015). The goal of multi-objective ranking and selection (MORS) then is

to correctly identify the true Pareto-optimal solutions among such a finite set, by adding

extra replications to solutions in the most informative way.

In the current literature on multi-objective stochastic simulation optimization (see e.g.,

Horn et al. 2017; Feliot et al. 2017; Hernández-Lobato et al. 2016), this identification phase

is often neglected, and the observed mean performance is directly used to determine the

Pareto-optimal set. Evidently, sampling variability may then lead to two types of identifi-

cation errors: designs that are truly Pareto-optimal can be wrongly considered dominated,

or designs that are truly dominated can be considered Pareto-optimal. Chen & Lee (2010)

refer to these errors as Error Type 1 and Error Type 2 respectively, whereas Hunter et al.

(2019) refer to them as misclassification by exclusion (MCE) and misclassification by in-

clusion (MCI). Throughout this paper, we use the MCE/MCI terminology. The accuracy

of the objective estimates can obviously be improved by allocating extra samples, yet it

is natural to assume that the resampling budget is limited. Allocating this computational

budget among the candidates is not trivial. Static resampling (allocating the resampling

budget uniformly across all alternatives) tends to be inefficient, in particular in settings

with limited budget and complex noise structures, as it often wastes a lot of replications

on inferior solutions (Rojas-Gonzalez et al., 2020).

Literature on the MORS problem is relatively recent, and still very limited (Hunter
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et al., 2019). In this paper, we propose a sequential MORS method that uses stochas-

tic kriging (SK) metamodels (Ankenman et al., 2010) to build predictive distributions of

the objectives, based on the sample means and variances after replication. This allows

the proposed method to exploit correlations in the objective outcomes across different

solutions, even in the presence of heteroscedastic noise. Under a few mild conditions,

SK metamodels provide reliable predictions that are superior to using sampling informa-

tion directly (Staum, 2009), as the noise in the observed performance is considered in

the predictions. We exploit the SK information in a novel heuristic to determine which

solutions to resample, and show how other MORS algorithms can also benefit from using

such metamodel information. In addition, we propose two screening procedures to reduce

the computational burden at each iteration. While some preliminary ideas of the method

presented here were published in Rojas-Gonzalez et al. (2019), all the allocation decisions

we put forward in this paper are novel and shown competitive against the state-of-the-art.

The remainder of this article is organized as follows: Section 2 gives an overview of

the relevant literature. Section 3 defines the problem and Section 4 gives the necessary

stochastic kriging background. Section 5 explains the proposed sampling criteria and

screening procedures; the proposed algorithm, referred to as SK-MORS, is outlined in

Section 5.3. We design the experiments to evaluate the performance of the algorithm in

Section 6, analyze the results in Section 7 and conclude in Section 8.

2. Related work

The ranking and selection problem has been widely studied in the single-objective case,

and has been approached in different ways. One of the most common goals is to maximize

the probability of correct selection (PCS), where under some mild conditions, convergence

to the solution with the true best expected performance can be theoretically guaranteed

(see e.g., Boesel et al. 2003; Kim & Nelson 2006; Frazier 2014). In some cases, however,

an extremely large replication budget might be required to differentiate two solutions with

almost identical performance, while such small differences in performance are likely not

relevant to the decision maker. Therefore, indifference zone (IZ) approaches have been

developed which give a probabilistic guarantee on the selection of the best solution or a

solution within a given user-defined quantity from the best (known as the probability of

good selection). This user-specified quantity defines the indifference zone, and represents

the smallest difference worth detecting (see e.g., Kim & Nelson 2001; Boesel et al. 2003;

Fan et al. 2016).

Relative to the single-objective case, the literature on multiobjective ranking and selec-

tion is scarce; a good overview can be found in Hunter et al. (2019). The multi-objective

PCS (hereafter denoted mPCS) is defined as the probability of correctly identifying the

entire Pareto set, and only this set (Branke & Zhang, 2019). For both the single and

multiobjective case, the true PCS must be estimated, usually via Monte Carlo simulation,

which often leads to a computational bottleneck (Chen & Lee, 2010). The multiobjective
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case is evidently more complex, as not only the true Pareto front is often continuous and

unknown (and thus approximated with a relatively large discrete set), but the dominance

relationships between solutions are extremely sensitive to simulation replications (see e.g.

the results in Rojas-Gonzalez et al. 2020).

One of the most widely used MORS methods is the Multiobjective Optimal Computing

Budget Allocation (MOCBA), proposed in Lee et al. (2010), built upon the well-known

single-objective ranking and selection approach OCBA (Chen & Lee, 2010). As discussed

by the authors, the MORS problem can be formulated in several ways (e.g., maximizing

the mPCS or minimizing the classification errors when identifying the non-dominated set).

The proposed allocation rules are complex, and use numerical approximations to estimate

which solutions are likely to be dominated. In Chen & Lee (2010) a simplified version

of the original MOCBA is proposed, which avoids most of these issues. Another relevant

framework is the SCORE allocations for bi-objective ranking and selection (Feldman et al.,

2015; Feldman & Hunter, 2018), which aims to allocate replications to maximize the rate of

decay of the probability of wrongly identifying the true Pareto set, and is asymptotically

optimal. Later in Applegate et al. (2020), the work was extended to handle 3 and 4

objectives, showing promising results despite the high computational cost.

More recently, Andradóttir & Lee (2021) proposed a multi-objective IZ procedure to

estimate the Pareto set with the true best expected performance with statistical guaran-

tees. The work focuses on providing a stopping criterion for replicating designs until a

predetermined desired mPCS is achieved, which is desirable in some MORS settings, but

at the expense of a large replication budget due to the approximation of several param-

eters. Another related work appears in Binois et al. (2015), where by means of kriging

metamodels, predictive distributions are built over the objectives and conditional simu-

lations are used to estimate the probability that any given point in the objective space

is dominated; the method is found to be very sensitive to the (unknown) geometry of

the Pareto front, and is computationally expensive. To the best of our knowledge, there

are only two other multi-objective IZ procedures in the literature: Teng et al. (2010) and

Branke & Zhang (2019). The latter work clearly highlights the shortcomings of the first,

but remains limited to the biobjective case, and is computationally demanding.

A different approach appears in the M-MOBA and M-MOBA-HV algorithms (Branke

et al., 2016; Branke & Zhang, 2019), which apply a Bayesian approach to determine the

solution that, when replicated further, is expected to yield the maximum information value

(Chick et al., 2010). In the M-MOBA algorithm, this solution is the one with the highest

probability of changing the current Pareto set, whereas in M-MOBA-HV, it is the one

leading to the largest change in the observed hypervolume (a widely used performance

metric in deterministic multiobjective optimization, that quantifies the volume of the

objective space dominated by a given set of points; see Zitzler et al. 2007; Auger et al.

2012 for further details on hypervolume).

Another related stream of research comes from the evolutionary multiobjective opti-

mization community, which has to rank the solutions in the population in each iteration,
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and thus needs to solve a multi-objective ranking and selection problem in each iteration

if the underlying optimization problem is noisy. However, this problem is often neglected

and the observed mean performance is used to rank the solutions in each iteration. Several

authors have looked at formalizing the concept of dominance in noisy multi-objective opti-

misation (see e.g., Teich 2001; Hughes 2001; Fieldsend & Everson 2005; Basseur & Zitzler

2006). In Trautmann et al. (2009) and Voß et al. (2010), probabilistic dominance is de-

fined by comparing the volume in the objective space of the confidence intervals, and the

center point of these volumes is used to determine the dominance relationship. Another

related approach is dynamic resampling, which varies the additional number of samples

based on the estimated variance of the observed objective values. It aims to assess the

observed responses at a particular confidence level before determining dominance, and to

avoid unnecessary resampling (see e.g., Di Pietro et al. (2004); Syberfeldt et al. (2010)).

A relatively simple yet well performing approach is to simply allocate additional samples

to solutions that survive from one generation to the next, as is proposed in the Rolling

Tide Evolutionary Algorithm (Fieldsend & Everson, 2015).

3. Problem definition

A multiobjective optimization problem can be defined as follows: min[f1(x), ..., fm(x)],

for m = {2, 3} objectives. The solution to this problem is a discrete set of decision vectors

xi = [x1, ..., xd]
T , i = 1, ...n, also referred to as designs or points, which are contained in

the decision space X (usually X ⊂ Rd), with f : X → Rm the vector-valued function

with coordinates f1, ..., fm in the objective space. In the stochastic case, the objectives

are perturbed by observational noise: fj(x) = fj(x) + ϵj , j = 1, ...,m. The observational

noise, denoted by ϵj , j = 1, ...,m, is commonly assumed to be independent among the

different objectives and identically distributed across replications. In practice, the noise

tends to be heteroscedastic (Kim & Nelson, 2006; Ankenman et al., 2010); its level is

dependent on the decision variables and thus varies throughout the search space: fj(x) =

fj(x) + ϵj(x), j = 1, ...,m. In this paper, we focus on the bi-objective case (i.e., m = 2

objectives); to simplify notation, we sometimes use fij to denote the noisy performance

fj(xi) = fj(xi) + ϵj(xi) of point xi on objective j.

In a multi-objective setting, usually the concept of dominance is used to compare

solutions:

Definition 1. For x1 and x2 two vectors in X :

• x1 ≺ x2 means x1 dominates x2 iff fj(x1) ≤ fj(x2),∀j ∈ {1, ..,m}, and ∃j ∈
{1, ..,m} such that fj(x1) < fj(x2)

• x1 ≺≺ x2 means x1 strictly dominates x2 iff fj(x1) < fj(x2), ∀j ∈ {1, ..,m}.

The set of solutions not dominated by any other solution is called the Pareto set, its

corresponding image in the objective space is called Pareto front. In the noisy case, the
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observed performance for a given objective at a given decision vector xi is commonly

estimated by the sample mean of that objective over ri replications: f̄ij =
∑ri

k=1 f̄
k
ij/ri,

j = 1, ...,m, where f̄k
ij denotes the performance of the k-th replication of xi on objective

j. These sample means are then directly used to obtain the observed Pareto front, which

clearly may incur MCE/MCI errors.

We thus consider the problem of efficiently identifying the designs with the true best

expected performance out of a given set of alternatives, when these alternatives are eval-

uated on multiple objectives using a stochastic simulator. As common in the literature,

we assume that the true performance measure fij for any arbitrary objective j in design i

follows a normal prior distribution, and no prior knowledge is available on the performance

before conducting the simulation studies.

Given ri independent and identically distributed replications (iid) of design i, the

posterior distribution of the performance is then commonly estimated by

{fij}∼N (f̄ij ,
s2ij
ri

),∀i = 1, .., n; j = 1, ...,m (1)

where f̄ij and s2ij denote the sample mean and sample variance of objective j in design

i, respectively. If every possible solution has been evaluated at least once, the observed

Pareto set (i.e., the Pareto set based on sample means) can be determined based on

the ri, i = 1, ..., n replications available so far on each objective. After an additional r′i
simulation replications are performed, yielding an average performance of f̄ ′

ij , the observed

mean is updated as (Branke & Zhang, 2019):

f̄ij =
rif̄ij + r′if̄

′
ij

ri + r′i
. (2)

Naturally, when the observed means are updated, the dominance relationships among

some alternatives will most likely change, and in some cases change drastically (see Figure

2), thereby also changing the observed Pareto set. We thus focus on solving the following

optimization problem (see also Lee et al. 2010):

min
r1,...,rn

(MCE+MCI) (3)

s.t.
n∑

i=1

ri ≤ R

ri ≥ 0, i = 1, ..., n

where ri denotes the number of replications on design i, R is the total replication budget

available, and MCE and MCI are the number of misclassification errors by exclusion

and inclusion, respectively. Problem 3 is analytically intractable: the exact number of

errors cannot be computed, as the true Pareto optimal points are in general unknown.

Furthermore, the observed sample means are random variates themselves, given that they

are estimated from the samples. In this paper we present a sequential heuristic that aims
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to solve the problem using stochastic kriging metamodels (Ankenman et al., 2010). In

what follows, we first present the important background of stochastic kriging in Section

4, succeeded by the description of the proposed approach in Section 5.

Figure 2: Left panel: True performance of a given set of solutions, for a bi-objective minimization problem.
Center panel: Observed performance based on the sample means after r replications per solution. Right
panel: Observed performance after r + 1 replications per solution.

4. Stochastic kriging

Let f(x) be an unknown objective function, which can only be observed with (het-

eroscedastic) noise:

f̃(xi) = f(xi) + ϵ(xi) (4)

Assume that we have observed this function in a finite set of d-dimensional designs xi, i =

1, ..., n, using ri replications per design. Stochastic kriging (SK) (Ankenman et al.,

2010) then represents the simulation output in replication k by the following model:

f̃k(xi) = β +M(xi) + ϵk(xi). (5)

where β is a constant, and M(xi) is a realization of a mean 0 random field. The random

field M is assumed to exhibit spatial correlation, meaning that the outcomes M(xi) and

M(xh) will tend to be similar when xi is close to xh in the design space. Ankenman et al.

(2010) refer to the random nature of M as extrinsic uncertainty, as it is imposed on the

problem in view of developing the model. In the design and analysis of computer exper-

iments, the standard assumption for M is that it is a Gaussian random field. Note that,

in stochastic simulation, the intrinsic noise terms in Eq. 5 are naturally independent and

identically distributed across replications, with E[ϵk(xi)] = 0 and V ar[ϵk(xi)] = τ2(xi); as

τ2(xi) depends on the location of xi, the model naturally allows for heterogeneous noise.

The core of the extrinsic spatial correlation model is the covariance function or kernel,

which is used to quantify the covariance between the outcomes of any two decision vectors

xi and xh. In this work we use the (stationary) squared exponential kernel, also known as

Gaussian kernel (for further details on other popular kernels, see Rasmussen & Williams
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(2005), Chapter 5):

cov[M(xi),M(xh)] = v2 exp

− d∑
q=1

(
|xi,q − xh,q|

lq

)2
 (6)

where v2 and lq, q = 1, ..., d are hyperparameters that denote the process variance and the

length-scale of the process along dimension q, respectively, for all i, h = 1, ..., n and i ̸= h.

These hyperparameters, along with the constant β in Eq. 5, need to be estimated from the

available data (i.e., the finite set of design points and their corresponding sample means),

usually by means of maximum likelihood estimation (MLE).

Using the resulting MLE estimates β̂, v̂2 and l̂q, q = 1, ..., d, the analyst can predict

the outcome for the objective function in Eq. 4, at any arbitrary xi, by means of the

stochastic kriging predictor:

f̂(xi) =β̂ +ΣM (xi, ·)T [ΣM +Σϵ]
−1(f̄ − β̂1n) (7)

where f̄ = [f̄(x1), ..., f̄(xn)]
T is the n × 1 vector containing the sample means of the

available solutions, and 1n is a n×1 vector of ones. The n×nmatrix ΣM contains the kernel

results for each couple of available points (i.e., cov[M(xh),M(xh′)], for h, h′ = 1, ..., n).

Analogously, the n× 1 vector ΣM (xi, ·) contains the kernel results for the given point xi

and each of the n already sampled points (i.e., cov[M(xi),M(xh)], for h = 1, ..., n). The

n × n matrix Σϵ contains the covariances implied by the intrinsic noise at the available

points. As discussed in Ankenman et al. (2010), it is in general not recommended to

use common random numbers (CRN) in the simulations when stochastic kriging is used

(see also Chen et al. (2012) for further details); consequently, Σϵ reduces to the diagonal

matrix diag[τ2(x1)/r1, ..., τ
2(xn)/rn]. The predictor uncertainty is quantified by its

mean squared error (MSE ), and is given by

ŝ2(xi) =ΣM (xi,xi)− ΣM (xi, ·)T [ΣM +Σϵ]
−1ΣM (xi, ·) +

γTγ

1Tn [ΣM +Σϵ]−11n
(8)

with γ =1− 1Tn [ΣM +Σϵ]
−1ΣM (xi, ·).

Note that when Σϵ reduces to a zero matrix, the stochastic kriging estimates in Eq.

7 and Eq. 8 reduce to the well-known ordinary kriging expressions (Jones et al., 1998;

Kleijnen, 2015), as the output observations are then essentially deterministic. When that

happens, the kriging predictor will perfectly coincide with the sample means at all simu-

lated design points, and the predictor uncertainty will reduce to zero. Yet, in stochastic

simulation, this would require all points in the design to be evaluated with an infinite

replication budget. Consequently, in all practical settings, the SK predictor in Eq. 7 will

not coincide with the sample means at the observed points; yet, the difference between

them should tend to zero as more replications are added. We exploit this crucial property
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in our proposed ranking and selection procedure, as discussed in the next section.

5. Proposed MORS procedure

5.1. Proposed sampling criteria

Let S be the entire set of sampled points. Relying solely on sample means, the ana-

lyst could detect an “observed” Pareto set (denoted PS) and a corresponding “observed”

Pareto front (denoted PF ), among the points in S. Relying on the SK predictors, also

a “predicted” P̂S (and corresponding P̂F ) could be distinguished. Given the presence of

noise, the predicted and observed sets (and fronts) are typically not the same; yet, adding

more replications will likely reduce the noise, thus reducing the difference between the

sample means and the SK predictors, as argued at the end of the previous section. As op-

posed to previous work, the sampling criteria proposed in our approach rely on both types

of information, to make decisions on where to allocate extra replications. The proposed

criteria are referred to as expected hypervolume difference (EHVD), and posterior distance

(PD). For ease of notation (analogous to the sample means and variances), for point xi

on objective j, hereafter the stochastic kriging predictor and predictor uncertainties are

denoted f̂ij and ŝij , respectively. Furthermore, f̄i and f̂i denote the sample mean objective

vectors and predicted objective vectors, respectively.

5.1.1. Expected hypervolume difference

The hypervolume dominated by a given Pareto front P with respect to a reference

point r is defined as the Lebesgue measure, denoted Λ, of the set of objective vectors

dominated by the solutions in P , but not by r:

HV (P, r) = Λ

(⋃
z∈P
{z′ : z ≺ z′ ≺ r}

)
. (9)

Thus, all the non-dominated vectors contribute to the indicator value, and the dominated

vectors do not contribute. For two fronts P and Q and a reference point r, the expected

hypervolume change (Branke & Zhang, 2019) is then defined as:

EHV C(P,Q, r) := HV (P, r) +HV (Q, r)− 2× Λ (HV (P, r) ∩HV (Q, r)) . (10)

Figure 3 illustrates the concept; for a given Pareto front (set P) based on sample means (left

panel), the EHVC calculates how much this set is expected to change (set Q), under the

assumption that the performance of each solution follows a certain probability distribution.

The EHVC was proposed in Branke et al. (2016) and Branke & Zhang (2019) as a

criterion to allocate samples. Analytical expressions for EHVC were proposed for the bi-

objective case; yet, computational complexity remains high. We use the concept of EHVC

to estimate the expected change in the observed HV, if more samples were allocated

to a given point xi, by replacing the observed objective outcomes (i.e., f̄i) by their SK

9



Figure 3: Left panel: Hypervolume (shaded area) dominated by a given non-dominated set (filled points)
with respect to a reference point r. Right panel: the EHVC (shaded area) of a set of non-dominated
points with respect to a reference point r. The filled circles denote the current observed front (set P), and
the filled squares the expected new performance after new samples are allocated (set Q). Empty circles
represent the dominated points.

predictors (i.e., f̂i), as we expect these predictors to yield more accurate estimates of the

true objective values. We refer to this criterion as the expected hypervolume difference

(EHVD):

EHVDi =| HV (PF )−HV
(
PF\f̄i ∪ f̂i

)
|, ∀i ∈ S. (11)

As mentioned before, f̄i and f̂i will converge as the number of replications for design

i grows, and the noise is reduced. As the computation of the HV only uses the non-

dominated points, there are five cases to be considered:

• Case 1: f̄i ≺ f̂i, and f̂i is on the Pareto front. The HV will change (decrease) as the

observed vector dominates the predicted vector (see Figure 4(a)).

• Case 2: f̂i ≺ f̄i, and f̂i is on the Pareto front. The HV will change (increase) as the

predicted vector dominates the observed vector (see Figure 4(b)).

• Case 3: f̄i ≺ f̂i, and there are one or more points that dominate f̂i (denoted ḡ in

Figure 4(c)). The HV will change (decrease) as the sample mean vector dominates

the predicted vector, but the change is not equally significant as in Case 1.

• Case 4: f̂i ≺ f̄i, and there are one or more points that dominate f̄i (denoted ḡ in

Figure 4(d)). The HV will change (increase) as the predicted vector dominates the

sample vector, but the change is not equally significant as in Case 2.

• Case 5: f̄i ≺ f̂i or viceversa, and both performance vectors are observed in the

dominated space. The HV will thus not change and will not impact the EHVD (see

Figure 4(e)).

Clearly, the EHVD will tend to allocate more budget to points belonging to Cases 1 and

2; points belonging to Cases 3-4 may have little or no replications allocated, while points in

Case 5 will not be considered, though they may as well belong to the true non-dominated

set. This is true especially when the noise is high and/or strongly heterogeneous, and
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thus the sample and predicted means are both relatively far from the true performance;

indeed, an extra replication on a given point might then significantly change its position

in the objective space.

r

(a) (b)

(c)

(e)

r

r r

r

(d)

Figure 4: The five cases to be considered when calculating the EHVD.

5.1.2. Posterior distance

The EHVD looks only at the points that are likely to change the current HV the most.

In a ranking and selection context, all the points sampled have a probability of belonging

to the true Pareto front, as they are relatively close to each other. Thus, we propose
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a criterion to improve the position in objective space of any point in S. We define the

posterior distance (PD) between the observed and predicted means as:

PDi =

√√√√ m∑
j=1

[
| f̄j(xi)− f̂j(xi) | +ŝij

]2
, ∀i ∈ S. (12)

The PD is the Euclidean distance between the sample means and the predicted means

(also referred to as the posterior means of the model). If the sample mean and prediction

are far away from each other, by running more replications on these points, we expect

them to come closer to each other and move towards the true position of the point in

the objective space, which aids in minimizing both MCE and MCI errors. Note that in

Equation 12, we add the posterior uncertainty to the distance between the means, as we

intend to inflate the PD when the uncertainty of the predictor is high, such that points

with high uncertainty will be rewarded more (see Figure 5 for an illustration).

Figure 5: Left panel: Sample means (black dots), posterior means (red line) and posterior uncertainty (gray
area) for a single objective. The distance between the prediction and the sample mean is denoted with a
blue line. Right panel: The posterior distance between the sample means (circles) and predicted means
(squares). The observed and predicted fronts are depicted with filled circles and squares respectively.

5.2. Proposed screening procedures

As is well-known in ranking and selection, in many cases some of the points included

in the solution set will be clearly inferior to other solutions in the set (Boesel et al., 2003).

Screening or subset-selection heuristics are widely used prior to running the ranking and

selection procedure in order to filter out these clearly inferior solutions. We propose two

subset selection procedures that will exploit both the sample variance and prediction un-

certainties to enclose confidence regions that reduce the number of points to be considered

at each iteration. To do this, we use the lower confidence bounds (LCB) and upper con-

fidence bounds (UCB) of the mean performance, defined as f̄j(x) ± ωsj(x), j = 1, ...,m,

where ω is usually a number in the interval [1, 3], to yield the 60%-99% confidence intervals

(CI) (Rasmussen & Williams, 2005). Analogously, the CI of the predicted means (denoted

L̂CB and ÛCB) are defined as f̂j(x) ± ωŝj(x), j = 1, ...,m. Unless stated otherwise,
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hereafter we will use a value of ω = 3, in order to enclose the 99% CI (i.e., 3 standard

deviations from the mean).

The first of the proposed screening procedures is outlined in Algorithm 1. The worst

confidence bounds (i.e., the side of the bound that worsens the performance) among all the

non-dominated points for each objective j, denoted ūj for the sample means, and ûj for

the predicted means, are used to enclose a confidence region (see left panel of Figure 6).

The second screening procedure, outlined in Algorithm 2, will instead enclose a confidence

region using the upper confidence bounds of all the non-dominated points (see right panel

of Figure 6). These confidence regions are computed for both the PF and P̂F .

Algorithm 1 Screening Box

1: Input: UCB, LCB, ÛCB and L̂CB
2: S̄ = ∅ ▷ Initialize set of clearly inferior points
3: ūj : maxi∈PF UCBi, j = 1, ...,m

4: ûj : max
i∈P̂F

ÛCBi, j = 1, ...m

5: NP = S \ PS ∩ S \ P̂S.
6: for i ∈ NP do
7: for j = 1 : m do
8: if LCBij > ūj and L̂CBij > ûj then
9: S̄ ∪ {xi}

10: break
11: end if
12: end for
13: end for
14: return S̄

Figure 6: Illustration of both screening procedures proposed: Screening Box (left panel) and Screening
Band (right panel). Filled marks denote the non-dominated points, and unfilled marks the dominated
points. The performance is denoted with circles, and confidence bounds with squares.

Subsequently, the performance of every dominated mean objective point (visualized

with empty circles) is substituted by the lower confidence bounds (visualized with empty

squares). Similarly, the performance of the non-dominated points (denoted with filled
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Algorithm 2 Screening Band

1: Input: UCB, LCB, ÛCB and L̂CB
2: S̄ = ∅ ▷ Initialize set of clearly inferior points
3: NP = S \ PS ∩ S \ P̂S
4: procedure Distance(fi, fk)

5: hik =
√∑m

j=1[fij − fkj ]2

6: return hik
7: end procedure
8: for i ∈ NP do
9: h̄ik =Distance(LCBi, UCBk), ∀k ∈ PF

10: ĥik =Distance(L̂CBi, ÛCBk), ∀k ∈ P̂F
11: end for
12: for i ∈ NP do
13: u = argmink∈PF h̄ik
14: v = argmin

k∈P̂F
ĥik

15: for j = 1 : m do
16: if LCBij > UCBuj and L̂CBij > ÛCBvj then
17: S̄ ∪ {xi}
18: break
19: end if
20: end for
21: end for
22: return S̄

circles) is substituted by the upper confidence bounds (denoted with filled squares). This

is done for both, the performance based on sample means and the performance based on

predicted means. If the new position of a given dominated point does not enter any of

the confidence regions enclosed by the non-dominated points (i.e., the region enclosed by

PF or P̂F ), then this point is screened out from the current iteration (see e.g., points

a and b in Figure 6). Otherwise, it will be considered in the current iteration (see e.g.,

points c and d in Figure 6). This is to ensure that, even with very high noise levels

(as in the experiments in Section 7), with a high confidence, we are not excluding truly

non-dominated solutions.

5.3. Algorithm outline

The general steps of the proposed MORS procedure are summarized in Algorithm

3; for ease of reference, we summarize the different sets of points used in Table 1. The

initial step of algorithm fits a SK metamodel to each objective based on sample means and

variances of the points in S, after b0 replications performed in each point. The metamodels

are then used to predict each response and respective prediction errors on these sampled

points. The current observed Pareto-optimal sets are obtained based on both the sample

means (PS and PF ) and predicted means (P̂S and P̂F ). In the next step, the upper and

lower confidence bounds for each point are calculated. Using these confidence bounds, if

a screening procedure is invoked (lines 11-13 in Algorithm 3), the algorithm filters out
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from the current iteration the points that are observed as clearly inferior. Note that these

points might be considered in further iterations.

Table 1: Overview of the different sets of points used in the proposed algorithms.

Notation Description

S Entire set of sampled points.
PS Pareto set based on sample means.
PF Pareto front based on sample means.

P̂S Pareto set based on predicted means.

P̂F Pareto front based on predicted means.
UCB Set of the upper confidence bounds of all points in PS.

ÛCB Set of the upper confidence bounds of all points in P̂S.
LCB Set of the lower confidence bounds of all points in S\PS.

L̂CB Set of the lower confidence bounds of all points in S\P̂S.

After screening out a subset of clearly inferior points, the algorithm proceeds to cal-

culate the EHVD values using Equations (9) and (11), and the PD values using Equation

(12), only on the points that have not reached the maximum number of replications (i.e.,

bmax replications). As illustrated in Figure 7, a Pareto front can be distinguished (denoted

P̃F ), for which both criteria are maximized. The algorithm then iterates over this non-

dominated set (sorted in ascending order according to the number of replications allocated

to each point so far ri), allocating one replication per point, until the budget B is depleted.

Note the number of points in this Pareto front can differ per iteration.

Selecting the parameters b0, B and bmax will depend on the specific budget and number

of points in a given problem. As discussed in Lee et al. (2010), a value of b0 >= 5

is recommended to approximate the sample means and variances, and bmax is used to

prevent the algorithms to allocate an extreme number of replications to a given point.

In our experiments, we use a value of B = |S| (i.e, the budget per iteration equals the

cardinality of the set of points). This is because the standard EQUAL allocation uniformly

distributes the replication budget among all alternatives, and thus a budget of B = |S|
will run 1 additional replication per point per iteration. Furthermore, a value of b0 = 5

and bmax = 100 are used in our experiments for all competing algorithms.

Recall that the two criteria serve different goals: while the EHVD allocates budget

to those points that are expected to change the current HV the most, the PD focuses

on improving the prediction accuracy of the performance. As it will be shown in the

experimental results, allocating extra samples based on the trade-off between EHVD and

PD yields better results than using either of the criteria individually. If the stopping

criterion is met, the algorithm returns the predicted Pareto set. As the proposed allocation

procedure is sequential, after the budget in the current iteration has been depleted, the

SK parameters are recomputed with the new (more accurate) sample means and variances

to perform a new iteration.
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Algorithm 3 SK-MORS algorithm

1: Input:
2: S ▷ Set of candidate points
3: b0 ▷ Initial replication budget per point
4: bmax ▷ Maximum replication budget per point
5: B ▷ Replication budget to be allocated per iteration
6: Output:
7: PS ▷ The observed Pareto set

8: Perform b0 replications on all points in S
9: Smax = ∅ ▷ Initialize set of points that reached bmax

10: while stopping criterion not met do
11: Matreps ← Matrix of sample means and variances for all candidates

12: f̂j(x)← Fit a SK metamodel to each objective j using Matreps
13: Matpreds ← Matrix of predicted means and MSEs for all candidates

14: Compute UCB, LCB, ÛCB and L̂CB
15: procedure Screening(UCB, LCB, ÛCB, L̂CB)
16: S̄ ← Set of points screened out based on sample means
17: Ŝ ← Set of points screened out based on predicted means
18: S̃ = S\(S̄ ∩ Ŝ) ▷ Temporarily remove clearly inferior points
19: end procedure
20: S̃ = S̃\Smax ▷ Remove points that have reached bmax

21: Compute EHVDi and PDi, ∀i ∈ S̃ ▷ Eq. 11 and 12
22: P̃F ← Pareto front of S̃ ▷ Maximization of PD and EHVD
23: b← Vector of the number of replications allocated to each point in P̃F
24: P̃F sort ← P̃F sorted in ascending order of b ▷ Prioritize allocating to solutions

with low b
25: while P̃F sort is not empty do
26: for i ∈ P̃F sort do
27: if B > 0 and ri < bmax then
28: Allocate 1 additional replication on xi ▷ Update Matreps
29: B = B − 1
30: else if ri == bmax then
31: Smax ∪ {xi}
32: else
33: break
34: end if
35: end for
36: P̃F sort = P̃F sort\Smax

37: end while
38: end while
39: Return the PS

6. Test problems

In Section 6.1, we present the implementation details of our experiments on a set of

well-known analytical bi-objective test functions. These functions have different Pareto

front geometries, and were implemented with varying number of decision variables, and
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Figure 7: Pareto front between the maximization of both criteria (normalized in the [0, 1] interval) at two
arbitrary iterations.

different levels of noise. They are used to (1) evaluate the performance of the proposed

allocation criteria against EQUAL allocation and the MOCBA algorithm (Lee et al., 2010),

which we consider state-of-the-art; in Appendix A we provide the allocation ratios, but

the full procedure is as described in (Chen & Lee, 2010)), (2) test the impact of the two

screening procedures proposed, and (3) examine the impact of using the SK information

instead of the sample means and variances. In addition, in Section 6.2 we evaluate the

performance of our proposed algorithm against EQUAL and MOCBA on a real life supply

chain problem that we obtained from one of our industrial partners.

All three algorithms are stopped when a predetermined number of samples have been

allocated; this is a natural criterion, as in most practical settings, the sampling budget

will determine the length of the run. We compare their performances by means of the

accuracy of the Pareto set (APS) metric:

APS = 1− MCE +MCI

|S|
(13)

where MCI and MCE are the number of misclassification errors by inclusion and exclusion,

respectively, and |S| is the total number of designs. The metric is an intuitive measure to

evaluate the accuracy of the Pareto set identified by the algorithms. Evidently, it takes

a value between 0 and 1: if the algorithm correctly identifies the entire true Pareto set,

there is no misclassification of points, and APS = 1. Note that APS implicitly considers

both errors to be equally important, which in the MORS context is a desirable property

for algorithm evaluation.

6.1. Artificial test problems

We choose three standard test problems from the deterministic multi-objective litera-

ture (WFG3, WFG4 and DTLZ7) to assess the performance of the proposed procedures.

The WFG test suite is state-of-the-art and allows the analyst to construct problems with

any number of objectives and decision variables; features such as modality and separabil-

ity can also be customized, using a set of shape and transformation functions. WFG3 is
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a non-separable and unimodal problem with a linear Pareto front, WFG4 is a separable

and multimodal problem with a concave Pareto front, and DTLZ7 is a disconnected and

multi-modal problem (see Huband et al. 2006 for the analytical expressions and detailed

characteristics of these problems). The set of points S being considered is discrete and

contains a fixed and known number of truly Pareto optimal points, denoted PSt. Table 2

summarizes the experimental scenarios, and Figure 8 illustrates the objective space of the

test functions.

Figure 8: True Pareto front (PFt, black points) and dominated points in the bi-objective scenarios.

The true objective outcomes are perturbed with heterogeneous Gaussian noise. Hence,

we obtain noisy observations f̃k
j (xi) = fj(xi) + ϵkj (xi), with ϵkj (xi) ∼ N (0, τj(xi)) for j =

{1, 2} objectives at the kth replication. In accordance with the previous literature (Picheny

et al., 2013; Jalali et al., 2017; Rojas-Gonzalez et al., 2020), we set the standard deviation

of the noise (τj(x)) such that it varies linearly with respect to the objective values. The

maximum and minimum values of τj(x) are linked to the range of each objective value

in the region of interest (i.e., RFj = maxx∈S fj(x) − minx∈S fj(x), j = {1, 2}). In the

experiments, we set the minimum noise at the individual optima (i.e. , the minima) of

both objective functions. Because of the trade-off between the function values in the

Pareto-optimal points, this assumption automatically leads to a trade-off in the noise of

the functions at these points (in the extremes of the bi-objective front, the noise is minimal

for one objective, while maximal for the other). In that way, the linear structure ensures

that the resulting R&S problems are not trivial, as none of the Pareto-optimal points has

accurate sample means on both objectives. Evidently, the same could have been achieved

with other monotonous noise structures. As shown in Table 2, we consider three levels of

noise perturbing the responses (low, medium and high), varying between 0.001RFj and

2RFj .

6.2. Practical application from industry

We also test the competing algorithms on a real-life multi-period supply chain prob-

lem, obtained from one of our industrial partners in the chemical process industry. The

company has several plant sites, each of them equipped with several processing units for

production. Each of these units has unique processing capabilities and is responsible for a

different category of products. Each category consists of products showing similarities in
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Table 2: Summary of the experimental scenarios for the artificial test functions

WFG3 WFG4 DTLZ7

Number of objectives m 2 2 2

Number of decision variables d 5 5 2

Number of points in S (|S|) 100 100 100

Size of the true Pareto set |PSt| 20 20 50

Noise level High Medium Low

Total number of iterations 15 30 30

Stochastic kriging metamodels Squared exponential kernel: Eq. 6

Low noise std. dev. 0.001RFj ≤ τj(x) ≤ 0.5RFj

Medium noise std. dev. 0.01RFj ≤ τj(x) ≤ 1RFj

High noise std. dev. 1RFj ≤ τj(x) ≤ 2RFj

their physical and chemical properties. The customers are separated into sales regions, and

the demand forecasts per period (for all products) are generated at the level of these sales

regions. The demand uncertainty for each product is modeled using a normal distribution,

where the mean of this distribution is given by the forecast, and the standard deviation

is approximated using historical data. Transportation is assumed to always be available,

on each route from the sites to the regions. This problem setting has already been used

as a real-life case in other articles (e.g., Jung et al. 2004), but then as a single-objective

problem with a stochastic constraint (i.e., minimize the cost function subject to a service

level constraint).

The company needs to decide the number of units produced per week, for each product

and each facility. Any excess product is stored in a warehouse next to the production

facility. Once demand in each sales region is known, it is satisfied by the available supply

from the facility closest to the sales region (i.e., pairs of sales region and facility are sorted

in increasing distance, and demand is satisfied in this order). Any demand that cannot

be satisfied by the company is outsourced and satisfied by a third party at a higher cost.

There are two objectives: minimizing total cost (consisting of production cost, outsourcing

cost, transportation cost, and inventory holding cost), and maximize customer service level

which is defined as the percentage of periods that the company does not need outsourcing

to meet customer demand. In the example below we use 3 production facilities and 5

products, so a total of 15 decision variables. Based on Jung et al. (2004), we provide

a more detailed formulation of the problem in Appendix B. Each simulation period is a

week and the simulation runs over 1 year (i.e., 52 periods). Evidently, the demand from

the customers is uncertain, and we consider different levels of uncertainty by varying the

coefficient of variation of the demand, denoted χ (see Appendix B). We evaluate 4 different

scenarios: χ = 0.1, 0.3, 0.6 and 0.9. Table 3 summarizes the parameters of the scenarios.
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Table 3: Summary of the experimental scenarios for the practical problem

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Number of points in S (|S|) 125 96 93 99

Size of the true Pareto set |PSt| 33 32 22 25

Coefficient of variation of demand χ = 0.1 χ = 0.3 χ = 0.6 χ = 0.9

Figure 9: Pareto front for the simultaneous minimization of cost (denoted f1) and negative service level
(denoted f2). The left panel shows the approximation of the true performance, and the right panel the
misclassification errors at an arbitrary iteration.

7. Results

We first evaluate the performance of the proposed screening procedures in Section 7.1.

In Section 7.2, we compare the SK-MORS algorithm against EQUAL allocation and the

MOCBA algorithm. Furthermore, we show that resampling points based on the com-

bination of EHVD and PD outperforms a resampling approach based on either of these

criteria in isolation. In Section 7.3, we analyze the benefit of using the SK information

instead of the sample means in the EQUAL allocation and MOCBA algorithms. Finally,

in Section 7.4 we evaluate the performance on the practical problem. In all cases, we run

the algorithms 30 times on the same instance (i.e., 30 macroreplications); in the figures,

we report the average APS value obtained at each iteration of the algorithms, along with

the 95% confidence intervals. Table 4 summarizes the algorithms evaluated.

7.1. Impact of the screening procedures

The impact of the proposed screening procedures is shown in Figure 10; the metric

|S| shows the number of points that remain in the set after screening, at a given itera-

tion. Both screening procedures succeed in sequentially reducing the number of candidate

points considered as the observed performance becomes more accurate (see (a), (c) and

(e) in Figure 10); evidently, the biggest reduction is obtained with Screening Band.

Such reduction significantly reduces the computational cost of executing the hypervolume

calculations in Eq. 11 for every candidate point at each iteration.

As clear from Figures 10(b), (d) and (f), the noise levels for the different scenarios have

an impact on the performance of the proposed algorithm w.r.t. the the convergence to the

20



Table 4: Overview of the different algorithms tested.

Algorithm Description

SKMORSnone SK-MORS algorithm without using a screening heuristic.

SKMORSbox SK-MORS algorithm using the Screening Box heuristic (Algorithm 1).

SKMORSband SK-MORS algorithm using the Screening Band heuristic (Algorithm 2).

SKMORS-PD SK-MORS algorithm using only the PD criterion.

SKMORS-HV SK-MORS algorithm using only the EHVD criterion.

EQUAL Allocate replications uniformly to all sampled points.

EQUAL-SKi EQUAL allocation using the SK predictions for identification.

MOCBA Multiobjective Optimal Computing Budget Allocation algorithm.

MOCBA-SK MOCBA algorithm using the SK predictions for allocation and identification.

MOCBA-SKi MOCBA algorithm using the SK predictions only for identification.

true front. While for low and medium levels of noise (i.e., scenarios DTLZ7 and WFG4

respectively) no particular differences are observed between both proposed methods, for

a high level of noise (i.e., scenario WFG3) the performance of Screening Band clearly

worsens. This is not entirely surprising, as filtering out some points may result in leaving

out truly non-dominated points (i.e., MCE points) in one or more iterations, especially for

the Band procedure. Moreover, in Figure 10(e), we observe that the BAND procedure

screens out a very large number of points, including some of the MCE errors. This

happens because the noise is low and the dominated points are relatively far from the

non-dominated points. Screening Box on the other hand, shows consistent performance;

thus in further sections we use SK-MORSbox as the default proposed algorithm.

7.2. Proposed allocation criteria

Fig 11 clearly shows that, for all test problems considered, our algorithm converges

much faster towards the correct identification of the true Pareto front than EQUAL or

MOCBA. Note that the superiority of MOCBA vs. EQUAL is not entirely clear for all

scenarios (e.g., Figures 11(a) and 11(c)), as in these scenarios MOCBA and EQUAL require

a much larger budget to converge. On the other hand, the proposed algorithm shows

consistent performance. It is also remarkable that in scenario DTLZ7 the SK predictions

provide clearly superior estimates already from the beginning of the procedure, which we

attribute to the low level of noise compared to the other scenarios.

Figure 12 shows that the convergence is faster when both criteria are combined, as

opposed to using the PD and EHVD separately (see Figure 7). This is expected, given

that one criterion complements the limitations of the other. An advantage of the PD

criterion is its very low computational cost, although the EHVD is shown to be more

efficient in convergence (also observed in further experiments with other scenarios).

7.3. Impact of stochastic kriging

As evident from Figure 13, feeding SK information to the identification phase of

EQUAL and MOCBA (i.e., using SK predictions only when computing the misclassifi-
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(a) Average number of points considered at each iteration
for scenario WFG3 (high noise)

(b) Performance on WFG3 (high noise)

(c) Average number of points considered at each iteration
for scenario WFG4 (medium noise)

(d) Performance on WFG4 (medium noise)

(e) Average number of points considered at each iteration
for scenario DTLZ7 (low noise)

(f) Performance on DTLZ7 (low noise)

Figure 10: Performance of the proposed screening procedures.

cation errors), leads to a drastic improvement in both algorithms (referred to as EQUAL-

SKi and MOCBA-SKi respectively); yet, they still show worse performance than the pro-

posed method. The bad performance of MOCBA-SK (i.e., feeding SK information to the
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(a) Performance on WFG3 (high noise) (b) Performance on WFG4 (medium noise)

(c) Performance on DTLZ7 (low noise)

Figure 11: Convergence to the true Pareto front: the proposed algorithm versus standard EQUAL alloca-
tion, and the state-of-the-art MOCBA procedure, for the 3 test problems considered.

Figure 12: Individual performance of the proposed resampling criteria on WFG4 (medium noise).

MOCBA algorithm for allocation and identification) is somewhat surprising; however, as

the sample variance and prediction MSE don’t reflect the same information (i.e., sampling
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variability and prediction error respectively). Overall, it is clear that the efficient identifi-

cation of the solutions with the true best expected performance is facilitated by exploiting

the stochastic kriging information (as opposed to relying on the sample means).

Figure 13: Performance on WFG4 (medium noise).

7.4. Performance on the supply chain problem

Figure 14 shows that the proposed method remains superior to MOCBA and EQUAL;

with increasing noise levels, the superiority becomes more evident. This result is analogous

to those observed with analytic test functions. A relevant observation that is not visible

from the figure, all algorithms struggle to converge to zero errors on this problem, even

with very large budgets of 100 or more iterations, because of several solutions with only

marginally different performance (conversely, see the results in Figure 11). Indeed, in prac-

tice we will often encounter several solutions whose performance is marginally different,

and thus also incorporating a multiobjective indifference zone procedure can be benefi-

cial. Yet again, as discussed in Section 2, multiobjecive IZ procedures remain very scarce

in the literature. Finally, in Table 5 we report the overhead running time per iteration

for all the algorithms. Evidently, fitting the metamodels and quantifying the acquisition

functions implies a significant computational effort, especially in this case with 15 input

dimensions). In fact, 15 input dimensions is already close to the limit for Gaussian Pro-

cess regressors Rasmussen & Williams (2005); Kleijnen (2015); higher dimensions would

require implementing a dimensionality reduction technique (see e.g., (Binois & Wycoff,

2022)], which in turn incorporates yet another source of error.

Table 5: Average (std. dev.) running time per macroreplication in seconds for the practical application
(including the simulation evaluations).

SK-MORSnone SK-MORSbox SK-MORSband MOCBA EQUAL

57.77 (12.01) 52.44 (9.97) 31.21 (8.40) 7.73 (0.44) 5.77 (0.21)
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(a) Performance on Scenario 1 (b) Performance on Scenario 2

(c) Performance on Scenario 3 (d) Performance on Scenario 4

Figure 14: Performance of the proposed algorithm versus standard EQUAL and MOCBA, for the 4
scenarios considered.

8. Conclusions and future research

This paper proposed a bi-objective ranking and selection technique that can deal with

heteroscedastic noise and exploit spatial correlations between the alternatives by using

stochastic kriging metamodels. The proposed sampling criteria are able to allocate samples

efficiently in view of minimizing both misclassification errors. A high value for the EHVD

criterion at a given point indicates that extra replications at that point are expected

to generate a drastic change to the estimated front, implying that it is interesting for

the decision maker to spend additional replication budget there. This criterion tends to

be highest for points that are expected to be on the true front. The PD on the other

hand, focuses on improving the accuracy of all the alternatives in objective space, and

explicitly neglects the dominance relationships between the alternatives. The PD has the

additional advantage of being significantly cheaper to compute. By selecting the points

that are on the Pareto front when simultaneously maximizing both criteria, we obtain

an algorithm that efficiently allocates the available replication budget in view of reducing

misclassification errors.

To reduce the computational effort, we proposed two screening procedures: as shown,
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the use of these procedures did not significantly impact the performance of the algorithm in

terms of convergence to the true front with low and medium noise levels. The performance

of the Screening Band procedure was observed to deteriorate with higher noise levels,

as it has a higher risk of filtering out truly non-dominated points (i.e., MCE points). The

choice of which one to use in practice will depend on the specific problem at hand. For

example, if detecting small differences in performance for the observed non-dominated

solutions is not crucial for the decision-maker, using Screening Band can be helpful

to reduce the computational overhead significantly, while still considering well-performing

solutions. Moreover, both procedures may be combined, first using Screening Box and

then switching to Screening Band in later iterations.

Especially in settings with high noise, the sample variance can be inaccurate with re-

spect to the true variance if only a small number of replications is taken. Yet, the results

obtained on the real-life supply chain problem illustrate that the proposed algorithm con-

sistently performs well, even if the (endogenous) noise on the objective values is increased

by manipulating the coefficient of variation of the demand. We are quite confident that the

assumption of linear noise structure in the analytical test problem does not significantly

influence our results; yet, other noise structures may be tested. This poses an interesting

avenue for further work.

Extending the algorithm to more objectives seems straightforward, as we can build

metamodels for as many objectives as is required. However, the computational cost

for the hypervolume computations in Equation 11 would increase substantially. Higher-

dimensional objective spaces are an open question in MORS research, as MORS proce-

dures tend to invest an extremely large replication budget to differentiate solutions that are

marginally different (Feldman & Hunter, 2018; Cooper & Hunter, 2020), especially when

the number of alternatives are in the hundreds or thousands (as with many objectives).

In this context, analyzing the parallelization of the resampling criteria and/or resampling

in batches of solutions (e.g., by computing the batch of solutions that jointly maximize

the EHVD) would evidently be valuable. We thus believe that a thorough study with 3

or more objectives is non-trivial, and poses a major challenge to the MORS community

as well.
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Appendix A MOCBA allocation rules

The allocation rules for the simplified MOCBA algorithm Chen & Lee (2010) are

summarized below:

f̄ij : The averaged observed performance of design i for objective j after a certain

number of replications.

pi : The design that dominates design i with the highest probability.

jipi : The objective j of pi that dominates the corresponding objective of design i

with the lowest probability.

τij : The observed intrinsic standard deviation of design i for objective j after a

certain number of replications.

αi : The budget allocation for design i.

S: The entire set of sampled points.

SA: The subset of designs in S labeled as being dominated.

SB: The subset of designs in S labeled as being non-dominated.

For any given design g, h ∈ SA and d ∈ SB:

αh =

(
τhjhph

/δhphjhph
τgjgpg /δgpgj

g
pg

)2

(14)

αd =

√√√√∑
h∈Dd

τ2
djhd

τ2
hjhd

α2
h (15)

where

δipj = f̄pj − f̄ij (16)

jip = argmin
j∈{1,...,m}

P (X̄pj ≤ X̄ij) = argmax
j∈{1,...,m}

δipj |δipj |
τ2ij + τ2pj

(17)

pi = argmax
p∈S
p ̸=i

m∏
j=1

P (f̄pj ≤ f̄ij) = argmin
p∈S
p ̸=i

δipjip |δipj
i
p|

τ2
ijip

+ τ2
pjip

(18)

SA =

h|h ∈ S,
δ2
hphjhph

τ2
hjhph

+ τ2
phjhph

< min
i∈Dh

δ2
ihjih

τ2
ijih

+ τ2
hjih

 (19)

SB = S \ SA (20)

Dh = {i|i ∈ S, pi = h} (21)

Dd = {h|h ∈ SA, ph = d} (22)
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Appendix B Formulation of the practical problem

We define the following:

Pijst: production amount of product i on processing unit j at facility s in time period

t, this is a decision variable.

Cijs: unit production cost of product i on processing unit j at facility s.

Sisct: supply of product i from facility s to sales region c in time period t, this is a

decision variable.

tsc: unit transportation cost to move a unit of product from facility s to sales region

c.

Γict: amount of product i to customer c in time period t that must be outsourced

due to insufficient supply at company’s facilities.

ξic: unit price of outsourcing for product i demanded in sales region c.

Iist: inventory level for product i at the end of time period t at facility s.

hist: inventory cost for holding a unit of product i in facility s for the duration of

time period t.

Rijst: effective rate for product i on processing unit j at facility s in time period t.

RLijst: run length of product i on processing unit j at facility s in time period t.

Hjst: amount of time available for production on process j at facility s during time

period t.

ωict: uncertain demand for product i from customer c at time period t.

Zict: binary variable that takes value 1 if demand in sales region c in time period t is

met through production at one of the facilities, and 0 if the demand is met through

outsourced production.

Mb: maximum order size for a sales region in a single time period.

Ms: minimum order size for a sales region in a single time period.

χ: coefficient of variation of the demand.

Nc is the number of sales regions.

Nt is the number of time periods.
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The minimization of the cost and maximization of service level is formulated as

min
∑
i,j,s,t

CijsPijst +
∑
i,s,c,t

tscSisct +
∑
i,c,t

ξicΓict +
∑
i,s,t

histIist (23)

max
1

NcNt

∑
c,t

Zict (24)

subject to:

Pijst, Sisct,Γict, Iist ≥ 0 non-negativity constraint

Pijst = Rijs(RLijst)

Pijst ≤ RijsHjst production capacity constraints

Iist = Iis(t−1) +
∑
j

Pijst −
∑
c

Sisct ∀i, s, t inventory balance constraint

Ms(1− Zict) ≤ Γict ≤Mb(1− Zict) outsource amount constraints
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