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We investigate how magnetic impurities may affect a system exhibiting charge-density wave
(CDW) in its ground state. We consider a disordered Hubbard-Holstein model with a homogeneous
electron-phonon interaction, but with a (randomly chosen) fraction of sites displaying a non-
zero Coulomb repulsion, U , and perform state-of-the-art finite-temperature quantum Monte Carlo
simulations. For a single magnetic impurity, charge-charge correlations hamper the spin-spin ones
around the repulsive site, thus requiring a strong enough value of U to create non-negligible
antiferromagnetic (AFM) correlations. As the number of magnetic impurities increases, these AFM
correlations become deleterious to CDW order and its features. First, the critical temperature is
drastically reduced, and seems to vanish around 40% of impurities (for fixed U/λ = 2), which we
correlate with the classical percolation threshold. We also notice that just a small amount of disorder
suffices to create a bad insulating state, with the suppression of both Peierls and spin gaps, even
within the charge-ordered phase. Finally, we have also found that pairing correlations are enhanced
at large doping, driven by the competition between CDW and AFM tendencies.

I. INTRODUCTION

Over the past decades, much interest has been
given to unveil the nature and interplay between long-
range ordered phases in transition-metal dichalcogenides
(TMDs) [1–3]. A great experimental effort through
different scenarios has been invested to understand
the occurrence of charge-density wave (CDW) and
superconductivity (SC) in these compounds – from
gate-induced [4] and hydrostatic pressure [5] to chemical
doping [6] and substitutional disorder [7] –, even though
the emergence and competition between these phases
are still open issues. Interestingly, the phase diagrams
of TMDs [5] resemble those of doped high-temperature
cuprate superconductors, which has raised the possibility
of investigating pseudo-gap phenomena in the former to
further understand the latter [8]. However, a still open
question about TMDs, and more generally about the
nature of the charge [9] and pairing interplay, is how spin-
spin correlations may affect this competition. In other
words, how repulsive electron-electron (e-e) and retarded
electron-phonon (e-ph) interactions affect the ground
state and thermodynamic properties of such compounds.

Within this context, the TMDs provide odd
opportunities to investigate this interplay. For instance,
most of the 1T polytypes [5, 10] exhibit flat bands, a
feature that renders both e-e and e-ph interactions non-
negligible. Beyond this case, the effects of spin-spin
correlations on CDW and SC phases may be investigated
by systematically intercalating magnetic ions, such as
Fe atoms, between layers of a given TMD. As a direct
consequence of such procedure, it has been established
that a small amount of doping/intercalation is already
enough to suppress the CDW order, and to change the
SC critical temperature [11, 12]. In addition, the effects
on transport properties have been examined, e.g., for
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NbSe2 intercalated by Fe ions [13], providing evidence
that electric current could be used to adjust the magnetic
orientation of the spins, which can make this material
suitable for spintronic devices. Other important features,
such as the occurrence of the Kondo effect and its
relevance to transport properties are still under intense
debate [14–16].

In order to investigate fundamental properties of
such a interacting compounds, one should examine the
features of simplified effective Hamiltonians. Within
this context, the single-band Hubbard-Holstein model
(HHM) [17] takes into account the Coulomb repulsion
between electrons, as well as an indirect retarded
electronic interaction due to an e-ph coupling. The
inclusion of these interactions may lead to electronic
instabilities, with the enhancement of strong charge,
spin, and/or pairing correlations – therefore capturing
the interplay between CDW, AFM and/or SC phases.
For instance, the ground state of the pure Holstein
model on a half-filled square lattice has been extensively
scrutinized [18–22], exhibiting a CDW for any e-ph
interaction [23]. However, this ordered phase is unstable
under external parameters, with the enhancement of
(conventional) pairing correlations when doping [24, 25],
pressure or strain [26, 27], nonlinear e-ph couplings [28–
30], Anderson disorder [31] or phonon dispersion [32] take
place. The addition of a repulsive Hubbard-like term
to the Holstein model leads to similar behavior: the e-
e interaction suppresses double occupation, destroying
the CDW phase, while enhancing AFM or pairing
correlations [23, 33].

In this work, we examine a case interpolating between
the pure Holstein model and the HHM, in the sense that
an e-e interaction is only considered on a fraction of
sites/orbitals – i.e., when a percentage of sites are treated
as e-e interacting. Such “dilute-to-dense” crossover may
be a rough model for intercalated magnetic impurities
on TMD’s, with the e-e interacting sites playing the
role of an intercalated magnetic site. In particular,
we investigate the stability of the well-known staggered
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CDW phase on the half-filled square lattice as the number
of impurity sites increases. To this end, we perform
unbiased quantum Monte Carlo (QMC) simulations
aiming to analyze three main aspects: the behavior of
charge and spin correlations [i] in the dilute regime –
one or two magnetic impurities – and [ii] in the dense
regime, as well as [iii] the behavior of thermodynamic
quantities. Within such analyses, we expect to provide
further insights about the nature of the charge ordered
phase in the HHM. The paper is organized as follows: the
model and methodology are outlined in the next Section,
while our results are presented in Sections III and IV. Our
final remarks are given in Section V.

II. MODEL AND METHODS

The Hubbard-Holstein model describes electrons on a
lattice interacting with each other through both a direct
on-site Coulomb repulsion and a coupling with phononic
degrees of freedom. In the standard second quantization
formalism, the Hamiltonian reads

H =− t
∑
〈ij〉,σ

(
c†iσcjσ + H.c.

)
− µ

∑
i,σ

niσ +
∑
i

Uini↑ni↓

+
∑
i

(
P̂ 2
i

2M
+
Mω2

0X̂
2
i

2

)
− g

∑
i,σ

niσX̂i

(1)

where c†iσ(ciσ) are creation (annihilation) operators of
electrons with spin σ at a given site i, while niσ ≡
c†iσciσ are number operators. Here, the sums run over a
two-dimensional square lattice under periodic boundary
conditions, with 〈ij〉 denoting nearest-neighbor sites.
The first two terms on the right hand side of Eq. (1)
correspond to the kinetic energy of electrons, and their
chemical potential µ term, respectively, while the on-
site Coulomb repulsion between electrons is included
through the third term. Notice that we have introduced
a site dependence on the interaction strength, Ui, which
is described in detail below. The phonon degrees of
freedom appear in the fourth term as quantum harmonic
oscillators with frequency ω0 (as an Einstein model),

with P̂i and X̂i being conjugate momentum and position
operators, respectively. The last term corresponds to the
electron-ion coupling, whose strength is g. Hereafter,
we define the mass of the ions, M , and the lattice and
Boltzmann constants as unity, while using the hopping
integral, t, to define the scale of energy.

At this point, it is important to recall that the electron-
phonon coupling leads to polarons, i.e. quasiparticles
formed by electrons dressed by a cloud of phonons, whose
characteristic energy scale is λ = g2/ω2

0 . Therefore,
it is convenient to adopt λ/t as the strength of the e-
ph interaction. In addition, we also define ω0/t as the
adiabaticity ratio. Throughout this work, we have fixed

λ/t = 2, and ω0/t = 1, while varying the Coulomb
strength, U/t, and the fraction x of magnetic impurities.

We investigate the properties of Eq. (1) by performing
finite temperature determinant quantum Monte Carlo
(DQMC) simulations [18, 34–36]. The DQMC approach
is an unbiased method based on the decoupling of
the non-commuting terms of the Hamiltonian in the
partition function by Trotter-Suzuki decomposition, i.e.,
by discretizing the inverse of temperature into small
imaginary-time steps, β = M∆τ . For the Hubbard-
Holstein Hamiltonian, such a procedure leads to

Z = Tr e−βĤ

≈ Tr [· · · e−∆τĤKe−∆τĤphe−∆τĤel−phe−∆τĤU · · · ],
(2)

with error of O(∆τ2), but becoming exact for ∆τ →
0. Here, HK , Hph, Hel−ph, and HU correspond to the
kinetic, bare phonon modes, electron-phonon coupling,
and Hubbard interaction terms, respectively.

To proceed, we employ a Hubbard-Stratonovich

transformation to obtain the e−∆τĤU operators as
quadratic forms, but with the price of adding new degrees
of freedom si,l: the Hubbard-Stratonovich fields. The
bosonic and fermionic traces ‘Tr’ lead to

Z ∝
∫
D{xi,l}D{si,l} e−∆τSB×

Πσ

[
det
(
I +BσMB

σ
M−1 · · ·Bσ1

)]
, (3)

with xi,l being phonon degrees of freedom, and SB the
bare phonon action,

SB =
ω2

0

2

∑
i

M∑
l=1

[
1

ω2
0∆τ2

(
xi,l − xi,l+1

)2
+ x2

i,l

]
. (4)

The matrices Bσl ≡ Bσl (xi,l, si,l) result from a product
of an exponential of the kinetic term and site-diagonal
matrices with the exponential of the electron-phonon
and Hubbard terms, at a given imaginary time slice
l. The integrals

∫
D{xi,l}D{si,l} – i.e., the bosonic

traces – are performed by Monte Carlo methods.
Within this approach, one may obtain both equal-
time and unequal-time Green’s functions, Gσ(τ, τ ′), and,
therefore, any higher-order correlation functions. Further
methodological details may be found, e.g., in Refs. [37–
39].

Given this, we investigate the magnetic properties
of the Hamiltonian in Eq. (1) through the spin-spin
correlation functions,

Cspin(i, j) = 〈(ni↑ − ni↓)(nj↑ − nj↓)〉, (5)

while its charge response is examined through the charge-
charge ones,

Ccharge(i, j) = 〈(ni↑ + ni↓)(nj↑ + nj↓)〉. (6)
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FIG. 1. Spin-spin correlation functions between the impurity
site and the three nearest neighbors, as a function of U .

In particular, we probe the occurrence of charge
instabilities through the behavior of the charge structure
factor,

Scdw(q) =
1

N

∑
i,j

e−iq·(i−j)Ccharge(i, j), (7)

and its correlation ratio

Rcdw(L) = 1− Scdw(Q + δq)

Scdw(Q)
(8)

with N = L × L being the number of sites, |δq| =
2π/L, and Q = (π, π). The crossing of Rcdw(L)
for different lattice sizes, together with their finite-size
scaling analyses, provides estimates for the location of
the critical region [40–44].

Finally, we also examine the pairing response by means
of the finite temperature pair susceptibility

χsc(α) =
1

N

∑
i,j

∫ β

0

〈∆α(i, τ)∆†α(j, 0)〉dτ , (9)

with

∆α(i, τ) =
1

2

∑
a

fα(a)ci↓(τ)ci+a↑(τ), (10)

where ciσ(τ) = eτHciσe
−τH, and fα(a) is the pairing

form factor for a given wave symmetry α = s or d.
Under some circumstances, such as in the present case, it
is more adequate to remove the noninteracting (vertex)
contribution to the susceptibility, χ̄sc(α), and define the
effective response as χeff

sc (α) = χsc(α)− χ̄sc(α); see, e.g.,
Ref. [45].

In order to describe the effects of magnetic impurities
in a CDW environment, here we deal with the half-filled
square lattice, which is known to exhibit a charge-ordered
ground state for any finite electron-phonon coupling,
λ/t > 0. We model the impurities by allowing for random
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FIG. 2. Spin-spin correlation functions between two
impurities on the same sublattice, as a function of the distance
|r2 − r1| between them, and for different values of U/t.

distributions of Ui > 0 on the lattice, for a given fraction
x of the sites, as

Ui =

{
U with probability x;
0 with probability (1− x).

(11)

To ease the discussion, in what follows we present
the results for the dilute regime (i.e. one and two
impurities) separate from those for the dense regime
of many impurities. All results for the dense limit
were obtained by averaging the quantities over 100-200
disorder configurations.

III. RESULTS FOR THE DILUTE CASE

A. Single impurity

We start with the investigation of the single-impurity
case. For the sake of comparison, we recall that when a
magnetic impurity is placed in a metallic environment
(λ = 0), AFM correlations are enhanced around it,
whose strength decays with distance; in addition, as the
number of impurities increases, this AFM cloud evolves
towards a long-range ordered configuration [46, 47]. In
a CDW background, on the other hand, such staggered
spin-spin correlations are drastically suppressed or even
destroyed, as displayed in Figure 1. Notice that for small
values of U , first-, second-, and third-neighbor spin-spin
correlations exhibit negative responses, in stark contrast
with the previous picture of an AFM cloud in the metallic
case. In order to understand this difference, note that
the effects brought about by a single U -impurity in a
charge-ordered background start with the broken two-
fold degeneracy of the CDW ground state on a square
lattice: if the impurity is located on, say the α-sublattice,
the CDW is stabilized on the β-sublattice. The very
weak spin correlations between the impurity site and
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FIG. 3. Real space results for the double occupancies (upper panels), local moments (middle panels), and charge-charge
correlation functions (lower panels) for a system with two impurities, one in the origin, and the other the coordinates (2, 2).
Here we fixed L = 12.

its second- and third-neighbors is accounted for by the
fact these sites belong to the α-sublattice, hence with
a very small local moment when U is small. More
robust spin correlations with sites on the β-sublattice,
on the other hand, indicate a redistribution of the spin
cloud surrounding the impurity. As U increases, nearest
neighbor correlations are first strengthened and then
weakened [48], which is accompanied by a reversal of the
sign of c(1, 1) (blue circles in Fig. 1): this indicates a new
redistribution such that antiferromagnetic correlations
become dominant locally, with the creation of an AFM
cloud around the impurity. That is, in the presence of
a CDW background, a large U is needed to generate an
AFM cloud around the impurity; such “critical” value
of U has a strong dependence with the electron-phonon
coupling strength (not shown). The occurrence of this
AFM cloud is what leads to the emergence of long-range
order for the many-impurity case, discussed below.

B. Two impurities

Let us now consider the case of two impurities,
and examine how the relative position between the
Ui 6= 0 centers affects the overall properties. Figure 2
shows the spin-spin correlation functions between two
impurity sites on the same sublattice as a function

of their distance. Similarly to the single-impurity
case, the profile of correlations is very sensitive to
the magnitude of U . For U = 2 and when
the impurity sites are nearest neighbors within the
same sublattice (NNα), the impurity spins are weakly
antiferromagnetically correlated, while for U = 4 they are
already ferromagnetically correlated. As U is increased
further, the profile changes considerably, in the sense that
the period of oscillation seems to decrease.

The first row of Figure 3 shows the profile of double
occupancy,

Di ≡ 〈ni↑ni↓〉, (12)

with Di ∈ [0, 1/2] at half filling, for different values of
U ; the impurity sites are placed on the same sublattice,
at (x, y) = (0, 0) and (x, y) = (2, 2). As expected, the
sublattice symmetry is broken, with Di being always
larger on the sublattice not containing the impurities.
Further, as U increases, Di on the impurity sites
decreases steadily. The middle row of Figure 3 shows
the local moment,

〈m2
i 〉 ≡ 〈(ni↑ − ni↓)2〉 = [〈ni〉 − 2Di], (13)

with 1
N

∑
i〈ni〉 = n = 1 at half filling, for different values

of U . It is clear that the local moment is suppressed
on all sites, except on the impurity ones. We may thus
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FIG. 4. The CDW correlation ratio [Eq. (8)] for fixed ω0, λ,
and U as a function of temperature, for x = 0.2 and different
lattice sizes, L. The crossings provide estimates for Tc.

conclude that there is an increasing tendency to occupy
the impurity sites with a single spin.

The bottom row of Figure 3 shows the spin correlations
between an impurity site (placed at the origin) and
sites with coordinates r ≡ (x, y), in the presence
of the second impurity at (x, y) = (2, 2). If U is
small, the sites surrounding the impurity tend to align
antiferromagnetically with it, which includes, although
less intense, the other impurity; in view of the analysis
of the single impurity case, the presence of a second
impurity strengthens the AFM correlations around the
impurities. However, for increasing values of U , the
correlations along the diagonal display oscillations with
U . Further, the period of oscillation depends on the
relative position between the sites, reminiscent of an
RKKY-like interaction, but having in mind that this
occurs in the presence of a CDW background.

IV. THE DENSE REGIME

A. CDW transition

In the previous section we established that AFM
correlations are able to overcome the charge order locally
by increasing U in a single impurity, or in two repulsive
sites. In this section we aim to determine the minimum
concentration of U -sites required to destroy the CDW
for U > λ. Since the presence of impurity sites tends
to deplete doubly occupied sites, a decrease in the CDW
critical temperature is expected to occur for increasing
x = Nimp/N , where Nimp is the number of impurity sites
with U 6= 0.

For the many-impurity case, we recall that the
quantities of interest are obtained after performing
configurational averages. Figure 4 shows the
configurationally averaged CDW correlation ratio
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FIG. 5. Finite-size scaling plots of the estimated CDW critical
temperatures as determined from intersects such as those in
Fig. 4, using ∆L = 4; see text. Empty symbols are the
estimates, and filled symbols are the extrapolated values.

Rcdw(L) [Eq. (8)] as a function of temperature, for
different system sizes. The temperatures at which two
curves, Rcdw(L) and Rcdw(L − ∆L), intersect provides
an estimate Tc(L,L − ∆L). Figure 5 exhibits these
crossings for U = 4 and U = 6, and for fixed ∆L = 4,
from which we may extrapolate towards the critical
temperature in the thermodynamic limit (see, e.g., the
filled symbols). By extrapolating these estimates for
1/L → 0, we obtain the phase diagrams Tc versus x
displayed in Fig. 6, from which we see that Tc decreases
with increasing x, as expected. Further, the data in
Fig. 6 provides an estimate for the critical disorder
concentration above which there is no CDW at finite
temperatures for U = 4, namely xc ≈ 0.41. The same
estimation for U = 6 is challenging due to the minus
sign problem, which is more severe at low temperatures,
and larger values of U .

Nonetheless, it is interesting to note that the U 6=
0 sites play the role of disordering agents as far as
CDW order is concerned, so that x corresponds to
the concentration 1 − p of inactive sites in ordinary
percolation [49]; given that the critical site percolation
threshold for the square lattice is pc = 0.59 (see,
e.g. Ref. [49]), our estimate xc = 0.41 may indicate
a major role played by geometrical constraints. This
should be contrasted with a recent study of the Hubbard
model on a disordered Lieb lattice, which shows that
the concentration threshold for magnetism is strongly
dependent on the on-site repulsion [47]. For the present
case, it is not a coincidence that our xc is close to the
geometric percolation threshold of the square lattice.
One may understand this from the results of the single-
and two-impurity cases. As discussed in Fig. 1, an AFM
cloud is not formed when U/t = 4 and λ/t = 2,
requiring that impurities should be sited side-by-side in
order to have strong spin-spin correlations. Indeed, this
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FIG. 6. The CDW critical temperature as a function of
impurity concentration, for U/t = 4, and the same parameters
of Fig. 5. Inset: same analysis, but for U/t = 6. The error
bars are smaller than the data points, and the lines are guides
to the eye.

picture is confirmed in the two impurities case, where
Figs. 2 and 3 show a drastic suppression of the spin-
spin correlation functions for U/t . 8. That is, due to
these short-range correlations, one may expect the CDW
phase to be destroyed close to the classical geometric
percolation threshold, even at moderately large values
of U/λ. Therefore, xc should be unchanged for U/t =
6, although the minus-sign problem prevents us from
presenting numerical data.

B. The insulating state

In a clean system (x = 0), the temperature-driven
CDW transition leads to an insulating state at half-
filling, characterized by a Peierls gap and absence of
superconductivity [18, 22, 32]. We will now discuss how
the presence of repulsive centers affects the transition to
the insulating state. To this end we resort to several
quantities such as the double occupancy, D [Eq. (12)],
the compressibility,

κ =
β

N

∑
i,j

〈δniδnj〉, (14)

where

δni ≡
∑
σ

[niσ − 〈niσ〉], (15)

the kinetic energy Ek, and the uniform static spin
susceptibility,

χsp =
β

N

∑
i, j

Cspin(i, j). (16)
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FIG. 7. (a) Double occupancy, (b) kinetic energy, (c)
compressibility, and (d) uniform static spin susceptibility as
functions of temperature, T/t. Each curve is for a given
impurity concentration, and all data are for fixed values of
ω0, λ, and U .

Further analyses of these quantities may provide
signatures of the crossover into a bad-metallic phase, as
discussed in Ref. [50].

Figure 7 (a) displays the behavior of the double
occupancy as a function of temperature. For a CDW
ground state, one expects a large value of D below
T . Tc, while for a noninteracting metallic state one has
D = 0.25. Given this, notice that a peak in ∂D(x, T )/∂T
appears for temperatures close to critical ones (see, e.g.,
Fig. 6), with the exception of x = 0.4, which presents
D ≈ 0.25 at low-T . This is in agreement with our
previous analysis, for the destruction of the CDW ground
state for xc ≈ 0.4. Similar observations apply to the
compressibility [Fig. 7 (c)], for which the change in slope
is accompanied by a peak, whose positions decrease with
increasing disorder.

However, the behavior of the kinetic energy, exhibited
Fig. 7 (b), is more subtle. The black square symbols show
its behavior for the clean case, where the ground state has
a well-formed Peierls gap. For such a case, notice that
the kinetic energy exhibits a slight increase for T . Tc,
clearly showing an insulating behavior. In the presence
of disorder, however, the kinetic energy still decreases
within the insulating phase, although at a smaller rate
than in the metallic phase. That is, we still have an
insulating phase, but a bad insulator, when compared to
the Peierls one. We shall return to this discussion below.

Finally, Fig. 7 (d) shows the temperature dependence
of the uniform spin susceptibility for different impurity
concentrations. For the clean system, the susceptibility
goes to zero exponentially, reflecting the presence of
a spin gap due to the doubly occupied sites forming
the CDW state. As discussed before, the impurities
tend to form antiferromagnetic clouds around them
by depleting the doubly occupied sites. For several
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impurities, however, these clouds display no long range
antiferromagnetic order, so that a uniform magnetic field
may easily polarize the local moments at the impurity
sites, and a Curie-like magnetic response sets in as x
increases, explaining the disappearance of the spin gap.

C. Superconducting and spectral properties

Having established that magnetic impurities destroy
the CDW insulating state, one may wonder whether
this can favor superconducting correlations. In order
to check this, we have calculated the effective pairing
susceptibility χeff

sc (α) for s-wave, sxy-wave, and dx2−y2-
wave symmetries; when this quantity is positive, an
attractive channel sets in. Figure 8(a)-(c) shows
the temperature dependence of the effective pairing
susceptibility, from which we may rule out any pairing
tendencies in the dx2−y2 symmetry [panel (c)] – notice

that χeff
sc is strongly suppressed as the temperature is

lowered for all x. For the s- and sxy-wave channels, on the
other hand, the dirty system displays a behavior different
from the clean one: χeff

sc increases as T decreases.
Although the pairing tendency is enhanced with the

presence of impurities in a CDW background, pairing
correlations are unable to drive the system to a long-
range superconducting ordered state in the regime of
electron-phonon coupling considered here; a much larger
λ is required to unequivocally reach long-range order.
This is evidenced by the stabilization of χeff

sc at low
temperatures, around the critical CDW temperature –
long-range order would require a divergence in χeff

sc , which
does not seem to occur for the range of temperatures
analyzed. By contrast, in the absence of a CDW
background, for x > xc, χ

eff
sc > 0 may be interpreted

as favoring the formation of a superconducting phase.
Unfortunately, for x & xc, the average fermionic sign is
small, thus preventing analyses at low temperatures. At
any rate, it is interesting to notice that for x = 0.4 the
only attractive pairing channel is the sxy-wave. That is,
a superconducting state emerging in this region would
display a pairing symmetry different from the standard
on-site s-wave, due to the Coulomb electron-electron
interaction, in agreement with Refs. [23, 33].

Finally, it is also worth examining the spectral
properties of the system. We compute the density of
states (DOS) by performing an analytic continuation of
the imaginary-time dependent Green’s function, using
the Maximum Entropy Method [51]; this amounts to
inverting the integral equation

G(rij = 0, τ) =

∫
dωN(ω)

e−ωτ

eβω + 1
, (17)

with rij denoting the relative displacement between sites,
and N(ω) is the sought DOS. Figure 8 (d) shows the
evolution of the DOS as the impurity concentration
increases, for fixed β/t = 12. We see that disorder
suppresses the Peierls gap present in the clean system,
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FIG. 8. Effective pairing susceptibility χeff
sc as a function of T

for: (a) s-wave, (b) sxy-wave, and (c) dx2−y2 -wave channels.
Panel (d) shows the density of states (DOS) for β/t = 12 and
several impurity concentrations. In each panel, the curves
are for the given impurity concentrations, and all data are for
fixed values of ω0, λ, and U .

even for a small amount of impurities, e.g., for x = 0.10.
Although it seems contradictory with the compressibility
results in Fig. 7 (c), which shows an insulating state for
these values of x and T , it gives support for the results
of Fig. 7 (d), which suggests the appearance of localized
states. Therefore, the scenario brought about by these
results is that magnetic impurities suppress the Peierls
gap by creating in-gap localized states, which, in turn,
enhance magnetic correlations while destroying the CDW
background at the percolation threshold.

V. CONCLUSIONS

We have studied the effect of magnetic impurities
interacting with a charge density wave background,
stabilized by electron-phonon coupling within the
Holstein model scenario. The impurities are modelled
by assigning a repulsive Hubbard-U coupling to a site,
which tends to favor the formation of a local moment,
and we have considered a square lattice with a half-filled
electronic band.

By first analyzing the dilute regime (one and two
impurities) we have established that, unlike the metallic
case, only for large U the local moment is significant
and an AFM cloud forms around the isolated impurity
site; this results from depleting nearby doubly occupied
sites. When two impurities are placed on the same
sublattice, spin correlations between them oscillate with
U , reminiscent of an RKKY behavior. However, these
correlations are strongly suppressed with distance, so
that only nearest or next-nearest neighbors are relevant.
In the dense regime, the impurities lower the critical
temperature for CDW formation, which vanishes at



8

some critical impurity concentration, xc. Interestingly,
our data for U = 4 yield xc ≈ 0.4, consistent with
the classical percolation threshold for the square lattice
(0.41). That is, due to the short-range charge-charge
correlations the destruction of the CDW phase depends
on geometrical aspects.

However, the CDW state that emerges when magnetic
impurities are present is not a regular Peierls one. We
have also established that the Peierls and the spin
gaps are both suppressed by even a small amount of
impurities. The occurrence of such a bad insulating phase
is due to localized states at the Fermi level filling the
gap, whose local moments, in turn, give rise to a Curie-
like magnetic response. For x . xc, these magnetic
impurities are not able to suppress the CDW background,
but may drastically change thermodynamic properties,
such as the average kinetic energy.

Our data also show that superconducting correlations
are enhanced in the s- and sxy channels, as a result
of suppression of the CDW state. This is consistent
with recent experimental findings [11] of an increase in
the superconducting temperature with intercalation of
Fe in CDW materials. For x & xc, when magnetic

impurities destroy the CDW background, we expect
that long-range order should emerge, but for nonlocal
(not on-site) pairs, as an effect of the electron-electron
interaction. In closing, we note that it has been
recently suggested [31] that Anderson-like disorder in
the Holstein model also gives rise to an enhancement
of superconducting correlations at low temperatures,
in agreement with our overall findings that disorder
significantly disturbs the CDW state, and leads to
pairing.
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