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We propose a simple design of a quantum electron microscope that “queries” a beam-sensitive
phase object, such as a biological specimen, as part of quantum computation. Lower quantum query
complexity, not the time complexity, of a quantum algorithm means less specimen damage, which
translates to more data extracted from the specimen. Hence small-scale quantum computing offers
provable quantum advantage in this context. A possible application of the proposed microscope is
the Grover search for a true structure, out of a set of candidate structures.

Quantum query complexity is the number of calls a
quantum computer (QC) needs to make to an “oracle”
to solve a problem [1]. The query model has been exten-
sively studied in the field of quantum computing because
it is relevant to many quantum algorithms and it also
makes certain theoretical analyses tractable.

In a sense, the abstract concept of quantum query
complexity becomes “real” in quantum measurement of
fragile specimens. Specifically in the context of high-
resolution biological electron microscopy (EM) [2], each
query to the biological specimen, i.e., passing of a probe
electron, damages the specimen with a certain probabil-
ity. Hence, in principle, low query complexity of a quan-
tum algorithm designed to obtain information about the
“oracle”, namely the specimen, translates to a measure-
ment associated with a small amount of specimen dam-
age. This in turn means that a large amount of informa-
tion is obtainable from the specimen before we destroy
it. Thus, query complexity is the figure of merit of an al-
gorithm designed for a given task in this context, rather
than a proxy for more fundamental measures such as the
time complexity. It is also worth noting the following: In
the quantum computing community, certain algorithms
such as Grover’s algorithm have often been character-
ized as offering merely a “modest” polynomial speedup
as opposed to an exponential speedup. In contrast, in
the EM community people say “every Angstrom counts”
with respect to resolution. Hence here is an opportunity
for those modest algorithms to make a significant differ-
ence. A closely related point is that quantum advantage
in our setting is free from subtleties that degrades practi-
cality of those modest quantum algorithms in the purely
computational setting [3].

An EM capable of querying the specimen in the above
general sense has hardly been considered [4, 5]. On the
other hand, the use of quantum enhancement in EM, in
order to image beam-sensitive specimens, has been dis-
cussed for more than a decade [6–8] and also experimen-
tal results have begun to be reported [9, 10]. Quantum-
enhanced forms of EM are often referred to as quantum
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electron microscopy (QEM). Many, though not all, pro-
posals of QEM aim at imaging weak phase objects be-
yond the shot noise limit to approach the Heisenberg
limit [11, 12]. Note that biological specimens are usu-
ally regarded as weak phase objects in EM.

In this Letter, we present a universal QEM design,
which is able to perform anything programmable quan-
tum mechanically. Universal QEM would make most
sense when we perform tasks other than standard phase
contrast imaging. We will find that those other tasks
may include efficiently finding a known structure. Such
measurements could indeed make sense in structural biol-
ogy: Due to the recent developments in electron cryomi-
croscopy (cryoEM), now we are largely able to determine
the atomic structure of a biological molecule by classi-
cal averaging methods such as single particle analysis,
provided that a large number of the molecule of interest
are available [13]. In contrast, quantum enhancement is
required when only a single copy of the specimen is avail-
able. Tasks such as comprehensively identifying known
species of molecules in the crowded cellular environment,
perhaps in the context of electron cryotomography [14],
may be a suitable arena for quantum technologies.

From the fundamental physics perspective, universal
QEM definitely is possible. One could, in principle, con-
nect an EM to a QC via suitable quantum interfaces
[4, 15] placed at both the illumination and detection sides
of the EM. In this way, one could transfer, or teleport,
a quantum state from the QC to the illuminating elec-
tron wave to the specimen and also transfer the state of
the exit electron wave back to the QC. Let this be the
definition of what a universal QEM can do. The real
question, on the other hand, is whether there exists a
sufficiently simple and feasible scheme to do so. We an-
swer this question in the affirmative, on the condition
that the specimen is a pure phase object. In what fol-
lows, the symbol e denotes the positron charge. Let the
z-axis be the electron-optical axis. Let λ be the wave-
length of imaging electrons. A diffraction plane is any
plane conjugate to the back focal plane of the objective
lens. An image plane refers to any plane conjugate to
the plane where the specimen is placed. We generally do
not normalize a quantum state.

Figure 1 shows our universal QEM scheme at the con-
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FIG. 1: Schematic drawing of a universal QEM at the con-
ceptual level. It comprises a pulsed electron gun (e-gun),
condenser lens (CL), quantum beam deflector (QBD), objec-
tive pre-field lens (OL1), specimen (SP), objective post-field
lens (OL2), and a pixelated area detector (AD). Additional
lenses, such as a projector lens, are not shown. To fully com-
bat inelastic scattering events, energy of the scattered electron
should be measured. In principle, this can be done with time-
of-flight.

ceptual level. We defer discussions of physical realiza-
tions to later parts of this paper. At first glance, it is
rather similar to the 4-dimensional (4D) scanning trans-
mission EM (STEM) [16]. Following the electron gun
and the condenser lens, there are two beam deflectors for
bending the electron beam in the x and y directions at a
diffraction plane. Below the pre- and post-field objective
lenses and a specimen in between, a pixelated electron
detector is placed at a diffraction plane. The crucial dif-
ference from the conventional STEM, however, is that the
beam deflectors are quantum. Consider the beam deflec-
tor along the x-direction. This deflector is a qudit, i.e., a
d-level quantum system, with d distinct quantum states
|0⟩, |1⟩, · · · , |d− 1⟩. These states are associated with, for
example, a set of correspondingly equally-spaced amount
of magnetic flux, which bends the electron beam. A su-
perconducting flux qubit [17], for example, is a d = 2
version of it. The same applies to the deflector in the
y-direction. These two qudits, which we call qudit x and
qudit y, are part of a larger QC, equipped with as many
additional qubits as necessary, that controls the QEM.
Entanglement-assisted QEM [11] may be regarded as the
simplest version of the present scheme, with a single-axis
deflector and a single-qubit QC. In EM, unlike standard
quantum computation, a small-scale QC or even a single-
qubit QC helps.

The effect of the quantum beam deflectors is the fol-
lowing. Reflecting the d × d distinct quantum states of
the combined system of qudits x and y, there correspond
d × d points on the specimen, where the electron beam
is focused. Hence one may raster-scan the electron beam
by properly setting each qudit at proper times. What is
newly enabled, however, is that one could also make a
quantum superposition of various positions of the elec-
tron beam. Indeed, an arbitrary 2D structure of the
electron beam may be generated, although it is not ex-
actly an arbitrary structure of the electron wave front,

because the electron state is heavily entangled with the
two qudits. Nonetheless, it is rather remarkable that an
arbitrary 2D structure can be generated by only two de-
flectors along the x and y directions. The ability of the
two qudits to have entanglement between them enables
this, and shows that a quantum instrument could, in a
sense, occasionally be simpler than the classical counter-
part.
Next, we show that our scheme is universal. We want

to probe the phase shift of the phase object at the d× d
locations quantum mechanically. Let these locations be
indexed by two integers p and q, where 0 ≤ p < d and
0 ≤ q < d. Let the phase shift of the specimen at the
location (p, q) be θp,q. For the universality defined earlier
in this paper, the availability of the following operation,
which we call an “oracle call”, is sufficient:

|p, q⟩ ⇒ eiθp,q |p, q⟩, (1)

where |p, q⟩ is a quantum register in our QC, with d2

states. (Here we somewhat enlarge the notion of the or-
acle from the one used in computer science, wherein θp,q
is restricted to be either 0 or π. Note that the latter can
simulate the more widely used oracle that flips an an-
cilla qubit if and only if θp,q = π.) The quantum register
|p, q⟩ turns out to be the combined qudits x and y: We let
|p, q⟩ = |p⟩⊗|q⟩, where |p⟩ and |q⟩ are the states of qudits
x and y, respectively. To realize the transform of Eq. (1),
we first produce an electron from the electron gun in the
state |0⟩, so that the initial state of the combined system
of the electron and the beam deflector is |0⟩ ⊗ |p, q⟩. Let
the electron state |n,m⟩ be the one that is to be focused
on the location (n,m) of the specimen. The action of the
beam deflector is, by definition, |0⟩⊗|p, q⟩ ⇒ |p, q⟩⊗|p, q⟩.
Next, we let the electron pass the specimen. By defini-
tion, we obtain |p, q⟩⊗|p, q⟩ ⇒ eiθp,q |p, q⟩⊗|p, q⟩. Finally,
we detect the electron in the far field. Since the electron
wave from the point (p, q) evolves into a plane wave in
the far field, schematically we have

|p, q⟩ =
∫

dk

2π

∫
dl

2π
ei(kp+lq)|k, l⟩. (2)

where k and l are real numbers that represents a point
on the diffraction plane. Suppose that we detected the
electron at the point (k, l). This leaves the two qudits in
the state

eiθp,q |p, q⟩ ⊗ |p, q⟩ ⇒ eiθp,q · ei(kp+lq)|p, q⟩. (3)

Since we know k and l from our measurement, we can
perform a phase shift operation to the qudits x, y to ob-
tain the state eiθp,q |p, q⟩, which is the right-hand side of
Eq. (1).

We proceed to discuss physical realizations of our
scheme. The only nonstandard part in the scheme is
the quantum beam deflector, and we focus on the part
for the x-axis, i.e., the qudit x. While there may be
other choices, below we consider superconducting quan-
tum circuit as a physical platform because of its ability
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(a)

(b)

FIG. 2: Designs of some parts of the universal QEM. (a) An
electron with a velocity v flies nearby a qubit with a trajec-
tory parallel to the plane, on which the qubit is placed. The
qubit, with the dimension l×w, holds a magnetic flux ϕ. (b)
A qud it comprising multiple qubits. Two qubits (Q1, Q2)
placed on diffraction planes deflect the electron beam mini-
mally. The lens (L1) separates the deflected electron waves on
the image plane, where a negatively biased electron biprism
(EB) enlarges the separation between the two waves b and c.
Q1 deflects the incoming wave a into waves b and c depending
on its state, and Q2 deflects the waves b and c further into
waves f, g and d, e, respectively.

to produce a quantum-mechanically superposed electro-
magnetic field around it. In particular, the flux qubit can
produce a superposition of two distinct amount of mag-
netic flux ϕA and ϕB . As shown below, the magnetic
flux difference ∆ϕ = ϕA − ϕB has to be about the mag-
netic flux quantum ϕ0 = h/2e [18] or greater. Figure 2
(a) shows an electron with a velocity v passing by a flux
qubit, with the dimensions shown in the figure. The tra-
jectory is bent depending on the qubit state. Since the
electron wave has an angular spread ≈ λ/w after passing
over the qubit due to diffraction, the angular deflection
∆p/p should satisfy

∆p

p
=
evB∆t

p
=
evϕ

plw
· l
v
=
eϕ

pw
>
λ

w
=

h

pw
, (4)

where p, ϕ,B,∆t are, respectively, the momentum of the
electron, the magnetic flux held by the qubit, the mag-
netic flux density and the time the electron takes to fly
by the qubit. Hence we obtain the condition ϕ ≳ ϕ0 to
produce a quantum-mechanically distinct electron wave.
Unfortunately, the magnetic flux held by a flux qubit is
usually smaller than ϕ0 [19]. A conceptually simple way
to work around this problem is to make a row of multi-
ple flux qubits, each with states |0⟩ and |1⟩, and entangle
all of them so that, as a whole, the entire set of qubits
operates in the space spanned by the states |00 · · · 0⟩ and
|11 · · · 1⟩. This entire set of qubits may then be regarded
as a single qubit with ∆ϕ ≈ ϕ0, which we call a full-
vortex qubit (FVQ). They could be realized either by
brute-force applications of quantum gates to entangle all
the constituent qubits, or by designing certain interac-
tion among the constituent qubits [20]. One could then
combine d FVQs to realize the qudit, although we will

describe another way with ln d scaling shortly.

Another possible way for realizing a FVQ is the use
of the so-called bosonic qubit [21]. A bosonic qubit can
store, in its microwave cavity, microwave photons in a
quantum-mechanically controlled fashion. It was esti-
mated [22] that about α−1 photons, where α is the fine-
structure constant, are needed to generate magnetic flux
≈ ϕ0 in an instant when the photon energy is stored in
the magnetic field. Since controlling ≈ 100 photons in
a 3D cavity has been experimentally demonstrated [21],
we envision doing the same with a coplanar microwave
cavity, above which an electron flies. On the other hand,
back action to the qubit is estimated to be small [23].

Figure 2 (b) shows a way to form a qudit using log2 d
qubits. These qubits form a quantum register to repre-
sent an integer 0 ≤ p < d in the binary form. Assuming
that each qubit can only bend the electron trajectory by
the angle δθ ≈ λ/w, we need to artificially enlarge the
deflection angle except for the least significant qubit. To
do so, we separate the waves b, c from the qubit Q1 by
letting them go through the lens L1 to arrive at an image
plane. There we artificially enlarge the physical distance
between the two waves by a classical means, for exam-
ple by a negatively biased electron biprism. Other highly
versatile methods for electron wave manipulation are also
known [24, 25]. After going through L2 to go to the next
diffraction plane, the angle between the waves b, c is en-
larged to be 2δθ, and hence Q2 can split these waves into
four waves d, e, f and g. A similar argument applies to
a system comprising more than two qubits. Finally, we
note that the deflection angle is as small as δθ ≈ 10−7

for 300 keV electrons and a typical dimension of micro-
fabrication is w ≈ 10µm. Hence the enlargement of the
deflection angle does not derail the electron wave off the
qubit.

The electron beam at each location (p, q) on the spec-
imen should be sufficiently focused. For our scheme to
work, the diffracted beams from these locations should
have similar intensity profiles, or otherwise the phase
factor ei(kp+lq) in Eq. (3) would be multiplied with an
unwanted amplitude factor. However, high-angle elastic
scattering up to ≈ 10mrad results from addition of scat-
tered waves from relevant atoms with essentially random
phase values. This entails rapidly fluctuating intensity
in the diffraction plane [26]. To minimize detection of
electrons in such a region, we enlarge the transmitted
beam in the diffraction plane by sufficiently focusing the
incident beam on the specimen. We estimate that this
measure suffices to solve the problem [27].

Having discussed hardware designs, we proceed to con-
sider software. In principle, any measurement method
physically possible should be implementable, because of
the universality of our scheme. In particular, multipass
TEM [12] is realized simply by repeated applications of
Eq. (1), followed by a phase-contrast imaging steps in-
volving a quantum Fourier transform, its inverse and a
“phase plate” operation in between. In what follows, we
discuss applications of Grover’s algorithm to show more
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involved uses of universal QEM. We define two words to
avoid confusion in the following discussions. We call the
process described in Eq. (1) an oracle call. We refer
to a call from “off-the-shelf” Grover’s algorithm, which
expects a zero or π-phase shift, as a subroutine call.
The simplest, although artificial, application of

Grover’s algorithm is search for an object, or rather a
single pixel A. Suppose that pixel A has phase shift π,
while all other pixels have zero phase shift. In this case,
Grover’s algorithm enables us to find pixel A with d
queries, when there are d2 pixels in total. If the phase
shift is π/k instead of π, then we can let k electrons pass
the specimen for each subroutine call from Grover’s al-
gorithm. This search makes sense if radiation damage to
the specimen is delocalized and the entire specimen is de-
stroyed after n subroutine calls that satisfies d≪ n≪ d2.
On the other hand, this search does not make sense if the
specimen damage is localized to each pixel and we care
about damage to the pixel A. Since the quantum ampli-
tude at pixel A grows as ≈ sin

(
πs
2d

)
at s-th iteration, the

sum of the quantum probability at pixel A through d it-

erations is approximately
∫ d

0
sin2

(
πs
2d

)
ds = d

2 . However,
the sum of the probability at pixel A is 1 if one “classi-
cally” measures the phase shift pixel by pixel against a
reference.

To go beyond the above contrived example, consider
Grover search to find the right structure among N can-
didate structures. Sequential testing would cost ∝ N
queries, which we want to cut down to ∝

√
N . Let the

α-th candidate structure be associated with a phase map

θ̂αp,q. We let all these phase maps satisfy
∑

p,q θ̂
α
p,q = 0

without loss of generality. Let Pα be a set consisting of
pixels (p, q) such that its size |Pα| = d2/2 is half of all

the pixels and it maximizes
∑

(p,q)∈Pα
θ̂αp,q. This tends

to, but does not necessarily, make θ̂αp,q positive, where
(p, q) ∈ Pα. Assume that the standard deviation of the
phase map of the actual specimen θp,q is known to be of
the order π/k.

Our procedure to find the true structure is as follows.

We begin with a superposition
∑N

α=1 |α⟩ on a register of

the QC and then produce
∑N

α=1

[
|α⟩ ⊗

∑
(p,q)∈Pα

|p, q⟩
]
.

After an oracle call, we obtain

N∑
α=1

[
|α⟩ ⊗

∑
(p,q)∈Pα

eiθp,q |p, q⟩
]
. (5)

Since we use a QC, we may freely rearrange the points
(p, q) ∈ Pα to obtain a linear configuration. Note that
the gate count in the algorithm is not a primary concern
to us. Specifically, we provide a bijection fα from Pα to
L = {1, 2, · · · , d2/2}. Note that we have much freedom
in choosing fα. Writing β = fα(p, q) in each branch of
the entire quantum state involving |α⟩, we obtain a state
after the rearrangement

N∑
α=1

d2/2∑
β=1

eiΘα,β |α⟩ ⊗ |β⟩, (6)

where Θα,β represents permutated values of θp,q asso-
ciated with Pα. To extract the mean value Θα =
2
d2

∑
β Θα,β , note that biological specimens are weak

phase object and we may write eiΘα,β ≈ 1+iΘα,β . Hence
application of quantum Fourier transform (QFT) to Eq.
(6) with respect to β yields an amplitude ∝ 1 + iΘα at
the zero-frequency state. Then we multiply i to all the
nonzero frequency states. This step, albeit for a different
purpose, is reminiscent of the use of a π/2 phase plate in
EM. We then apply inverse-QFT. These steps converts
all the phase variation to amplitude variation. The re-
sultant state is of the form

N∑
α=1

d2/2∑
β=1

eiΘα(1 + ηα,β)|α⟩ ⊗ |β⟩, (7)

Finally, assuming |ηα,β | ≪ 1, we measure β to obtain

≈
∑N

α=1 e
iΘα |α⟩. We expect Θα ≈ π/k for the correct

hypothesis α because it should be about the standard
deviation of the phase map. We expect much smaller Θα

for other α. Hence we can compose a Grover subroutine
call by repeating the process for ≈ k times. We have not
analyzed the effect of various errors and our argument
here should be regarded only as evidence that useful al-
gorithms exist.

Inelastic scattering “mildly collapses” the wavefunc-
tion in the real space to a finite area [5, 26]. To be
resistant to inelastic scattering, one may try to ensure
the followings. Firstly, for any given point (p, q) on the
specimen, most Pα should be designed to include a point
that is close to (p, q). Those Pα that do not include such
a point will lose the associated quantum amplitude upon
inelastic scattering at (p, q). Secondly, each fα should
be chosen, taking advantage of the large number of ways
to do so, in such a way that measurement of β after the
inverse-QFT step does not eliminate surviving candidate
structures. This roughly means that physically closer
points (p, q) should be converted to similar values of β
by the set of fα.
Final comments are in order. Firstly, there are quan-

tum algorithms [28, 29] that are able to efficiently find
a user-specified structure and report its place. Although
these algorithms work only for phase objects with phase
shift values 0 or π, they suggest the existence of use-
ful quantum algorithms for QEM. Secondly, exponential
quantum advantage of universal quantum measurement
has been shown for some cases [30], although its relevance
to QEM is not yet clear at present.

In summary, we have shown a simple universal QEM
scheme. Also shown is evidence that useful quantum al-
gorithms exist for QEM. Further study remains to be
done. Useful algorithms should tolerate imprecise “ora-
cles”, inelastic scattering events, and preferably be exe-
cutable on a noisy small-scale quantum computer.

The author thanks Professor Robert M. Glaeser for
discussions on the future of cryoEM. This research was
supported in part by the JSPS “Kakenhi” Grant (Grant
No. 19K05285).
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Supplemental Material for “Universal Quantum Electron Microscopy:
A Small-Scale Quantum Computing Application with Provable Advantage”

In what follows, we use symbols defined in the main text unless noted otherwise.

I. ESTIMATION OF BACK ACTION TO SUPERCONDUCTING QUBITS

Here we roughly estimate the effect of flying electron on a superconducting qubit. We find that such “back action”
is small from the purely fundamental physics perspective: The qubit is “protected” by the factor of fine structure
constant α ≈ 1/137 in a sense described below. However, proper engineering would be needed to ensure that the
back action is indeed small. Henceforth we often ignore numerical factors of order 1. We write Klitzing constant
RK = h/e2 = 25.8 kΩ and the impedance of the vacuum Z0 =

√
µ0/ε0 = 377 Ω. Note the fact Z0/RK = 2α, where

α is the fine structure constant α ≈ 1/137.
Before proceeding, few remarks are in order. First, interaction of an electron and a superconducting qubit is

analogous to that of a controlled-not (CNOT) gate. Since CNOT gate is essentially symmetric, i.e. the control and
target qubits swap their roles in the Hadamard-transformed basis, the “back action” in this a sense is unavoidable.
What we are attempting to show in this section is the “control qubit”, which is the superconducting qubit in the
present case, in the original basis is unaffected by the interaction process to a good approximation. Second, the use
of the Aharonov-Bohm (AB) effect would allow us to construct a superconducting qubit that is essentially free from
back action in the above sense [S1]. However, the engineering challenge associated with fabrication of such a qubit is
rather significant. Third, some relevant calculation is presented in Ref. [S2].

We model the “qubit” as a lumped-circuit LC resonator, neglecting the effect of a Josephson junction. We have
primarily the bosonic qubit in our mind, but the following argument is rather general and the essence of it should be
valid more broadly. Our semiclassical analysis considers a classical electron that flies by the qubit. The Hamiltonian
of the “qubit” is

H =
q2

2C
+
ϕ2

2L
, (S1)

where C, L, q, ϕ are the capacitance, inductance, the stored charge in the capacitor and the trapped magnetic flux in
the inductor, respectively. Canonical quantization requires [ϕ, q] = iℏ. Following the standard procedure, we obtain

a dimensionless Hamiltonian h = H/ℏω = Q2/2 + Φ2/2, where ω = 1/
√
LC, Q = q/

√
ℏωC and Φ = (

√
ωC/ℏ)ϕ.

The dynamical variables Φ and Q satisfy the commutation relation [Φ, Q] = i, leading to the ladder operators

a = (Φ + iQ)/
√
2 and a† = (Φ− iQ)/

√
2.

Quantum charge fluctuation δq in the circuit is as follows. The condition δq2/2C ≈ ℏω gives δq ≈ e
√
RK/Z0 ≈ e/

√
α

if Z0 ≈
√
L/C. A formal calculation yields essentially the same, but weaker, result δq = e

√
RK/4πZ0, again if we

let Z0 =
√
L/C. Nonetheless, this already gives us an indication that the effect of a flying electron to the circuit

would be rather small, because the maximum charge an electron can induce on a capacitor plate is e, which is smaller
than the quantum-mechanical charge fluctuation. Moreover, a symmetric capacitor design would reduce the induced
charge significantly.

Next, consider quantum fluctuation δϕ of the trapped magnetic flux. The condition δϕ2/2L ≈ ℏω gives δϕ ≈
ϕ0

√
Z0/RK ≈ ϕ0

√
α, where ϕ0 = h/e2 is the magnetic flux quantum. Hence in the magnetic case the quantum

fluctuation is smaller than the natural unit of the quantity ϕ0 by the factor ≈
√
α. On the other hand, the flying

electron produces a magnetic flux density B ≈ µ0I/l, where I is the current produced by the flying electron and l
is the distance between the electron and the LC resonator. For rough estimation purposes, we introduce precisely
one characteristic length l that describes the length scale of the circuit and electron-circuit interaction. Moreover,
we simplify our analysis by regarding the velocity of the flying electron as c = 1/

√
µ0ε0, which indeed is not a bad

approximation in TEM. Hence the current is I ≈ ec/l, the associated magnetic flux density is B ≈ eZ0/l
2, and hence

the magnetic flux produced by the electron, which is applied on the circuit, is ϕ ≈ eZ0 ≈ ϕ0α. Thus, despite the fact
that quantum fluctuation is smaller than ϕ0 by the factor ≈

√
α, the magnetic flux generated by the flying electron

is smaller still by another factor ≈
√
α. This suggests that the back action is insignificant in the magnetic case too.

Moreover, again we should be able to further reduce the magnetic flux induced by the electron with a careful, perhaps
symmetric, qubit design.

Next, we estimate the excitation probability of the LC resonator upon passing of the flying electron. Note that the
bosonic qubit in particular uses basis states that do not have a definite number of photons and hence a single-photon
excitation would not be fully destructive. We begin with the magnetic case. We regard passing of the flying electron
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as a small momentary external magnetic flux source and treat it as time-dependent perturbation. The perturbation
potential to be added to the Hamiltonian of Eq. (S1) is

V (t) = −ϕϕa
L

= −ϕa
L

√
ℏZ0

2
(a+ a†), (S2)

which lasts for a short time τ ≈ l/c and makes the minimum point of the magnetic flux potential to be at the applied
magnetic flux by the flying electron ϕa ≈ αϕ0. Time-dependent perturbation theory tells us that, at the first order,
the excitation probability from the ground state |0⟩ to the first excited state |1⟩ is

pex =
1

ℏ2
|⟨1|V (t)|0⟩|2

∣∣∣∣∫ τ

0

eiωtdt

∣∣∣∣2 . (S3)

Recalling ϕa ≈ αϕ0, we obtain

1

ℏ2
|⟨1|V (t)|0⟩|2 =

ϕ2aZ0

2ℏL2
≈ Z3

0

RKL2
(S4)

The absolute square of the integration in Eq. (S3) is∣∣∣∣∫ τ

0

eiωtdt

∣∣∣∣2 =
2

ω2
(1− cosωt) ≈ t2, (S5)

where the last approximation is valid when ωt≪ 1, which is not quite true in the present case, but the left hand side
of the equation is smaller than t2. Using the characteristic length l, we regard t ≈ l/c and L ≈ µ0l, which gives

pex ≈ Z0

RK
≈ α ≈ 0.01. (S6)

Our analysis is crude but rather robust, in the sense that Fermi’s golden rule also gives basically the same result if
we assume the density of state to be ρ(E) ≈ 1/(ℏω) and regard

1

ω
≈

√
LC ≈

√
µ0lε0l ≈

l

c
. (S7)

The analysis of the case of electrostatic excitation is similar to the magnetic case. The charge operator q is expressed
as

q =
√
ℏωCQ =

√
ℏ
Z0
Q = −i

√
ℏ

2Z0
(a− a†). (S8)

The perturbation potential is V (q) = −qaq/C, where qa ≈ e is the induced charge by the flying electron. Following a
similar analysis, we again obtain the excitation probability of the order of α.

II. UNIFORMITY OF ELECTRON WAVE AMPLITUDE ON THE DIFFRACTION PLANE

Diffracted beams from each point (p, q) on the specimen should have an approximately identical intensity distribution
on the diffraction plane for our scheme to work, as mentioned in the main text. What makes them vary is distinct
atomic configurations associated with each “point” (p, q), which result in various diffraction patterns. Our strategy
is to use a sufficiently focused incident beam on the specimen, so that the smooth transmitted wave covers a large
area of the diffraction plane to dominate the irregular diffraction pattern due to the scattered waves. However, the
scattered waves would also be enlarged, hence the necessity for a quantitative investigation. Below we exclusively
consider 300 keV probe electrons. We will often consider a coordinate system on the unit sphere, with the polar angle
θ and the azimuthal angle φ inherited from the spherical coordinate system.

First, we compute the elastic scattering probability for a typical biological specimen. We employ the expected
number densities of biologically important elements (hydrogen, carbon, nitrogen, oxygen and sulfur) in a “typical”
specimen, which have been computed in Appendix B of Ref. [S3]. Let these number densities be nH, nC, nN, nO and
nS, respectively. These data are combined with the total scattering cross sections of the relevant atoms given in the
NIST database [S4]. Hence we obtain the probability of elastic scattering for unit thickness of the specimen, which
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turns out to be 1.8 × 10−3/nm. For example, the probability of elastic scattering is pS = 5.4 % for a 30 nm-thick
specimen, while it is pS = 9.0 % for a 50 nm-thick specimen. We will consider pS = 5 % and 10 % probabilities below.
We assume that the angular intensity profile of the incident electron beam is gaussian. We write

I(θ) =
1

2πσ2
e−

θ2

2σ2 , (S9)

where θ is the convergence angle and σ is a characteristic angle. We consider a typical value of σ = 10 mrad and a
highly focused 50 mrad. The prefactor is set to satisfy∫ ∞

0

I(θ)2πθdθ = 1, (S10)

where we approximated sin θ as θ, and the upper limit of integration π is replaced with an infinity. Define intensity
of the transmitted wave T (θ) = (1− pS)I(θ).
Next, we consider the intensity S(θ) of scattered waves at a diffraction plane, generated by a plane incident wave.

The intensity S(θ) is directly related to differential scattering cross sections. We consider the function S(θ) that
is averaged in the sense that interference fringes, caused by scattered waves from different atoms, are ignored. Put
another way, we regard the phase values of the scattered waves to be random and take the average intensity. Differential
scattering cross sections for the relevant elements are documented in the NIST database [S4]. The weighted average
of these differential scattering cross sections, with nH, nC, nN, nO and nS as weights, directly gives S(θ) up to the
overall normalization factor. We normalize S(θ) to satisfy∫ π

0

S(θ)2π sin θdθ = pS . (S11)

Before the main analysis, we note a property of the scattered wave originated from a plane incident wave. We
consider weak phase objects, which is a valid assumption for real biological specimens. In this case the exit wave is
described as ψ(r) = eiξ(r) ≈ 1 + iξ(r), where r is a position vector on the xy plane in the real space and ξ(r) is the
phase map of the specimen. To get the wave function on the diffraction plane, we Fourier transform it to obtain∫

ψ(r)e−ik·rdr2 = (2π)2δ2(k) + i

∫
ξ(r)e−ik·rdr2 = (2π)2δ2(k) + iΞ(k). (S12)

Notice Ξ(−k) = Ξ(k)∗, since ξ(r) is real. Equivalently, the probability amplitudes on the diffraction plane at k
and −k are the negative of the complex conjugate of each other. For later purposes, henceforth we consider Ξ as a
function of the scattering angle θ and the azimuthal angle φ rather than of the wave vector k. The analogous relation
Ξ(θ, φ + π) = Ξ(θ, φ)∗ should hold to a good approximation. Except for this rule, the scattered wave has a random

phase value at each point. The absolute square |Ξ(θ, φ)|2, when adequately averaged to remove the “interference
fringes”, loses φ dependence and equals S(θ) mentioned above.
Consider a focused incident beam with the intensity described in Eq.(S9) instead of a plane incident wave. Let

the wave function of the incident wave simply be a real function ψi(θ) =
√
I(θ) without any phase factor. The

focused incident wave is nothing but a superposition of plane waves, with the “weight” ψi(θ). Thus, when an electron
is detected at a point on the diffraction plane, the associated probability amplitude is a superposition of scattered
waves, each originating from a plane wave, at various scattering angles with a gaussian weight ψi(θ). In other words,
the probability amplitude of detecting a scattered electron is described by a convolution of a gaussian function ψi and
the scattered wave function Ξ from a plane wave.

Figure S1 (a) shows exactly how the above-mentioned convolution is performed. Since our description is in terms
of scattering angles, not the wave vector in the xy plane, the diagram is on a unit sphere with the north pole O. The
scattered wave amplitude distribution Ξ(θ, φ) is centered at O, while the gaussian function ψi(θ) is centered at the
point G for the purpose of performing the convolution. Let the probability amplitude of detecting a scattered electron
at the polar angle θ be ψS(θ). To perform convolution, we introduce a point P in Fig. S1 (a) that is specified by

integration variables θ̂ and φ̂. The convolution is given by

ψS(θ) =
i√
∆Ω

∫ π

0

sin θ̂dθ̂

∫ 2π

0

dφ̂Ξ(θ̂, φ̂)ψi(d1), (S13)

where ∆Ω is a constant and d1 is the distance between the points P and G on the unit sphere. The constant ∆Ω
is necessary for the following reason: Since |Ξ(θ, φ)|2 gives a probability when integrated over a solid angle, Ξ(θ, φ)
has the “dimension” of the inverse of the square root of solid angle. Hence without the factor (∆Ω)−1/2, where
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(a) (b)

FIG. S1: (a) Two-dimensional convolution on a unit sphere. The scattered wave distribution Ξ is centered at the point O,

while the gaussian incident wave ψi is centered at the point G. The gray circle has the radius θ̂, on which the point P moves
for integration. The variable θ̂ itself is also an integration variable. The distances d1 and d2, which are lengths PG and
QG respectively, is computed using the spherical law of cosines. See the main text. (b) Specially designed lens for avoiding
amplitude errors. Since the specimen (SP) is a phase object, the phase of the electron wave shifts upon transmission through
the specimen (rays a and b). There may be scattered waves with large scattering angles (rays c and d) with non-smooth wave
intensity on the diffraction plane (DP) after going through the lens (L1). This would adversely affect the measurement in our
QEM scheme. We could employ a special lens L1 to merge rays c, d with rays a, b to avoid the adverse effect.

∆Ω is a solid angle, the above integration would not be dimensionally consistent. More informally, while |Ξ(θ, φ)|2

is well-defined, Ξ(θ, φ) has random phase at each point (θ, φ) and its magnitude depends on ∆Ω as
√
∆Ω, where

∆Ω is the “resolution” of the solid angle that we are considering. This is because of a random-walk-like addition of
probability amplitude within the small region ∆Ω. The necessity for this factor manifests also in later arguments.
The distance d1 is given by the spherical law of cosines as

d1 = cos−1
(
cos θ cos θ̂ + sin θ sin θ̂ cos φ̂

)
, (S14)

where the range of the inverse cosine function is [0, π]. Since we know that Ξ(θ, φ + π) = Ξ(θ, φ)∗, we may rewrite
the convolution as

ψS(θ) =
i√
∆Ω

∫ π

0

sin θ̂dθ̂

∫ π

0

dφ̂
{
Ξ(θ̂, φ̂)ψi(d1) + Ξ(θ̂, φ̂)∗ψi(d2)

}
, (S15)

where d2 is the distance between the points Q and G in Fig. S1 (a), which is given as

d2 = cos−1
(
cos θ cos θ̂ + sin θ sin θ̂ cos (φ̂+ π)

)
. (S16)

To further simplify Eq.(S15), we write Ξ(θ̂, φ̂) = a(θ̂, φ̂) + ib(θ̂, φ̂). This allows us to separate the real and imaginary
part as ψS(θ) = i(A+ iB) = −B + iA, where

B(θ) =
1√
∆Ω

∫ π

0

sin θ̂dθ̂

∫ π

0

dφ̂ b(θ̂, φ̂) [ψi(d1)− ψi(d2)] (S17)

and

A(θ) =
1√
∆Ω

∫ π

0

sin θ̂dθ̂

∫ π

0

dφ̂ a(θ̂, φ̂) [ψi(d1) + ψi(d2)] . (S18)

The quantity A(θ) is the phase shift due to the specimen at around the focal point of the incident electron beam, and
hence this represents what we want to measure. On the other hand, B(θ) is an undesirable amplitude to be added to
the transmitted wave.

We are interested in the expected magnitude of the amplitude B(θ) when b(θ̂, φ̂) is regarded as random. Let a(θ̂),

b(θ̂), A(θ) and B(θ) be random variables. It is natural to assume that a(θ̂) and b(θ̂) no longer have φ̂ dependence. We

assume that the collection of random variables a(θ̂) and b(θ̂) for each value of θ̂ are independent of each other. We put

a(θ̂) and b(θ̂) on equal footing, and we also note that |Ξ(θ, φ)|2 ≈ S(θ). Hence we may reasonably assume that b(θ̂)

has the expected value b(θ̂) = 0 because of the random phase of Ξ(θ, φ), and its variance is Var(b(θ̂)) = S(θ̂)/2. Since

variance adds, Var (B(θ)) can in principle be obtained simply as a linear combination of Var(b(θ̂)). Then, the square
root of Var (B(θ)) should capture the notion of expected magnitude of amplitude B(θ). This undesirable amplitude
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is added to the transmitted wave, whose intensity is T (θ). Hence the relative amplitude error E(θ) when the electron
is detected at the angle θ, which is important in the QEM measurement scheme, may be expressed as

E(θ) =

√
Var (B(θ))

Var (B(θ)) + T (θ)
. (S19)

The expected amplitude error eA averaged over all electron scattering angles is thus

eA =

∫ π

0

2π sin θdθE(θ) {T (θ) + S(θ)} . (S20)

There is a subtlety associated with continuous integration when adding the variances. Recall that the variance

of a random variable Y =
∑N

k=1 ckXk, which is a linear combination of a set of random variables Xk, is Var(Y ) =∑N
k=1

∑N
l=1 ckclXkXl. If all the random variables Xk are independent to each other, then XkXl = X2

kδk,l. Hence we

obtain Var(Y ) =
∑N

k=1 c
2
k Var(X

2
k). We translate this discrete case to the case of continuous integration of random

variables in Eq. (S17). For brevity, we rewrite Eq. (S17) as

B(θ) =
1√
∆Ω

∫
H

dΩ b(Ω) [ψi(d1)− ψi(d2)] , (S21)

where H is the unit hemisphere. The variance of B(θ) is

Var (B(θ)) =
1

∆Ω

∫
H

dΩ

∫
H

dΩ′ b(Ω)b(Ω′) [ψi(d1)− ψi(d2)] [ψi(d
′
1)− ψi(d

′
2)] . (S22)

Let us discretize this integration to obtain a sum. As the discretized small solid angle, we take ∆Ω introduced
previously, a choice that will be justified shortly. Then we can replace the first integration by a sum as (1/∆Ω)

∫
H
dΩ ⇒

Σ, where the sum goes over all the small elements on the hemisphere. Next, we discretize the second integration as∫
H
dΩ′ ⇒ ∆ΩΣ. Then the correlation function ∆Ω′ b(Ω)b(Ω′) has the dimension of the probability amplitude squared

and we write

∆Ω′ b(Ω)b(Ω′) = b(Ω)2 ∆Ω δΩ,Ω′ , (S23)

where δΩ,Ω′ is the Kronecker delta that is 1 when Ω and Ω′ are the same small solid angle element, and 0 otherwise.
Hence Eq.(S22) is discretized as

Var (B(θ)) =
∑

b(Ω)2∆Ω [ψi(d1)− ψi(d2)]
2
=

∑ S(Ω)

2
∆Ω [ψi(d1)− ψi(d2)]

2
, (S24)

or back in the continuous and more explicit form

Var (B(θ)) =

∫ π

0

sin θ̂dθ̂

∫ π

0

dφ̂
S(θ̂)

2
[ψi(d1)− ψi(d2)]

2
. (S25)

The amplitude error eA is obtained from this result, Eq. (S19) and Eq. (S20).
It remains to justify the identification of ∆Ω in Eq. (S13) and the solid angle resolution used in the above

discretization. By definition, we have

|ψS(Ω)|2 = Var (A(Ω)) + Var (B(Ω)) =

∫
H

dΩ̂
{
Var(b(Ω̂)) [ψi(d1)− ψi(d2)]

2
+Var(a(Ω̂)) [ψi(d1) + ψi(d2)]

2
}
. (S26)

Noting the relation Var(b(Ω̂)) = Var(a(Ω̂)) = S(Ω̂)/2, we obtain

|ψS(Ω)|2 =

∫
H

S(Ω̂)
[
ψi(d1)

2 + ψi(d2)
2
]
dΩ̂ =

∫
S

S(Ω̂)ψi(d1)
2dΩ̂ =

∫
S

S(Ω̂)I(d(Ω, Ω̂))dΩ̂, (S27)

where d(Ω, Ω̂) is the distance between the two solid angle elements Ω and Ω̂ on the sphere. Note the change of the
domain of integral from a hemisphere H to the entire sphere S in Eq. (S27). Equation (S27) says that convolution of
the incident gaussian beam intensity, and the scattered wave intensity from a plane wave, equals the scattered wave
intensity from the gaussian beam. Note that∫

S

|ψS(Ω)|2 dΩ =

∫
S

I(Ω)dΩ

∫
S

S(Ω)dΩ = pS , (S28)
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as it should be. Thus, the disappearance of ∆Ω in our final result is justified.
We numerically performed the above computation. About ≈ 600 values of θ between 0 and π were used, which are

identical to the θ values in the NIST database, wherein the density of data points is increasingly large near the origin
θ = 0. The angular resolution with respect to φ was π/100 when the convolution was evaluated.

Our results are as follows. Firstly, for pS = 0.05 representing a thin specimen, the expected amplitude error is
eA = 3.7 % for the highly focused incident beam with σ = 50 mrad. The figure worsens to eA = 8.8 % for a less focused
beam with σ = 10 mrad. Secondly, for a thick specimen with pS = 0.1, we obtained eA = 5.4 % for σ = 50 mrad
and eA = 13 % for σ = 10 mrad. For a QEM measurement scheme using k electrons before measuring the qudits,
these amplitude errors accumulate in the random-walk manner and are multiplied by a factor ≈

√
k. In the case of

entanglement-enhanced electron microscopy scheme, which is the simplest QEM measurement procedure of the kind
that we are discussing, a typical value of k is about a few tens. Hence we may have to use a highly focused incident

beam with σ = 50 mrad, not to degrade the contrast by a factor ≈ cos
(
eA

√
8k

)
in the qubit measurement [S5].

A hardware solution may be needed in unusual experimental conditions. For example, we may have to use an
electron beam with a small angular divergence because a highly focused electron beam would spread too much within
a specimen if the thickness of the specimen is large. In this case, the above method may not work because the
transmitted wave does not cover a large area in the diffraction plane. In such a case, dedicated electron optics could
merge the nonuniform diffracted waves in the high scattering angle region with the relatively narrow transmitted
wave, as shown in Fig S1 (b). Known versatile electron optical methods could be employed to realize it [S6, S7]. This
solution fully obscures the fact that high-angle elastic scattering even happened. Note that, however, the merged waves
coming from high-angle scattering still cause small amplitude and phase errors in the QEM measurement scheme.
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