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Individually addressed Er3+ ions in solid-state hosts are promising resources for quantum re-
peaters, because of their direct emission in the telecom band and compatibility with silicon pho-
tonic devices. While the Er3+ electron spin provides a spin-photon interface, ancilla nuclear spins
could enable multi-qubit registers with longer storage times. In this work, we demonstrate coherent
coupling between the electron spin of a single Er3+ ion and a single I = 1/2 nuclear spin in the
solid-state host crystal, which is a fortuitously located proton (1H). We control the nuclear spin us-
ing dynamical decoupling sequences applied to the electron spin, implementing one- and two-qubit
gate operations. Crucially, the nuclear spin coherence time exceeds the electron coherence time by
several orders of magnitude, because of its smaller magnetic moment. These results provide a path
towards combining long-lived nuclear spin quantum registers with telecom-wavelength emitters for
long-distance quantum repeaters.

Optically interfaced solid-state atomic defects are
promising for realizing quantum technologies, in partic-
ular quantum networks [1] and sensors [2]. In this ap-
proach, the optical transition of the defect provides a
direct interface to the electronic spin [3]. However, en-
hanced functionality can be realized by coupling the elec-
tronic spin to one or more ancillary nuclear spins in the
surrounding environment [4, 5]. For example, in NV cen-
ters in diamond, this approach has been used to realize
long-lived nuclear spin quantum registers [6, 7], distribute
entangled states across a quantum network [8], and im-
plement multi-qubit operations such as quantum error
correction protocols [9–12].

Individually addressed rare-earth ions (REIs) are an
emerging platform [14–19] with several attractive fea-
tures, including demonstrated single-shot spin readout
[20, 21], and sub-wavelength addressing and control of
many defects [22]. They can also be incorporated into
a range of materials [23–25], which allows engineering of
their environment to improve coherence and integration
with devices [17, 18, 26]. Among REIs, Er3+ is particu-
larly promising because its telecom-wavelength (1.5 µm)
optical transition may enable long-distance quantum re-
peaters without frequency conversion.

REIs are most commonly doped into yttrium-based
host materials [27] [e.g., Y2SiO5 (YSO), YVO4 or
Y3Al5O12], which are magnetically noisy, harboring nu-
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clear spins from Y (89Y, with 100% abundance) and other
elements (e.g., 29Si in YSO with 4.7% abundance). These
form a bath that decoheres the electron spin. Recently,
coupling between an REI electron spin (Ce3+) and indi-
vidual nuclear spins in the bath (89Y, 29Si) was observed
in Ce:YSO [28]. Additionally, coherent coupling and
quantum gate operations were demonstrated between a
single 171Yb3+ electron spin and collective states of a
small 51V nuclear spin ensemble in Yb:YVO4 [29]. How-
ever, the operation of an ancilla nuclear spin qubit with
a coherence time longer than the electron spin has not
yet been demonstrated in REIs.

In this work, we demonstrate coherent coupling be-
tween the electron spin of a single Er3+ ion in YSO to
a single nearby nuclear spin. The nuclear spin is con-
trolled via microwave-driven, dynamical decoupling (DD)
sequences on the electronic spin, realizing one-qubit and
two-qubit gate operations that let us probe the coupling
strength and coherent dynamics of the nuclear spin. We
observe a nuclear spin T2 time (with a Hahn echo) of
1.9 ms, about three orders of magnitude longer than the
same quantity in the Er3+ electron spin alone. With a
SWAP operation, we also demonstrate that the state of
the nuclear spin in the computational basis survives elec-
tron spin readout and re-initialization. The properties of
the nuclear spin suggest that it is a fortuitously located
proton (1H), whose location we determine by measuring
the coupling strength for several magnetic field configu-
rations. This work adds a key component to the toolkit
of individually-addressed REIs, and also demonstrates a
potentially powerful approach to engineering nuclear spin
ancillae using non-native atomic species.

Our experimental platform consists of a silicon
nanophotonic cavity (PC) bonded to a single crystal
sample of YSO with a trace concentration of Er3+ ions
(Fig. 1a). The cavity serves to enhance the emission rate
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FIG. 1. Detection and coherent control of a weakly-coupled nuclear spin using an Er3+ electronic spin. (a)
Measurement scheme. A single Er3+ spin, which is initialized, controlled, and readout via a combination of optical and
microwave excitations, probes a nearby nuclear spin. (b) (top) Er3+ level structure; (bottom) Pulse scheme for initialization
and single-shot readout of Er3+ spin state, interleaved with microwave pulses resonant with the ground state splitting for spin
manipulation. Spin-conserving transitions (labeled A,B) are highly cyclic. (c) Evolution of an Er3+ spin under an XY-16
sequence as the separation between consecutive π-pulses (2τ) is varied (solid blue curve). Arrows indicate resonances at π/ω0

and 3π/ω0, based on the simulated signal (dashed red line) for the extracted interaction parameters and decay envelope with
T2,XY16 = 16.1 ± 0.2µs. Inset: ω0 as a function of field strength fits to a line with slope 4.3 ± 0.1 kHz/G and offset −12 ± 9
kHz. Experiments were performed at field angles (θ, φ) = (90◦, 110◦) and (90◦, 120◦) in a coordinate system defined by the
YSO crystal structure: (x, y, z) = (D1, D2, b) [13]. (d) The Er3+ spin population is plotted as a function of 2τ and number of
π-pulses (N) in the XY-N sequence near the resonance centered at 2τ0 = 0.875µs. The “chevron” interference pattern originates
from coherent interaction between the Er3+ spin and a nuclear spin (e) Coherent controlled rotation of the nuclear spin as a
function of N at the 2τ resonance position. The data fits to a decaying sinusoidal (solid red line) with α = 10.2◦ rotation per
π-pulse. (f) Conditional evolution of a nuclear spin based on the Er3+ electronic spin state for one unit (τ − πx − 2τ − πy − τ)
of our decoupling sequence. Repeating this unit leads to a conditional x-rotation of the nuclear spin, around the effective axes
q± = ±x̂. All experiments were performed at the magnetic field configuration (B, θ, φ) = (130 G, 95◦, 110◦), corresponding to
(fMW,gs, fMW,ex) = (2.02, 1.32) GHz, unless indicated otherwise.

[17] and the cyclicity of the Er3+ optical transitions, en-
abling single-shot spin readout [20]. Additionally, mi-
crowave fields from a nearby antenna are used to drive
spin rotations with a π pulse duration of approximately
31 ns. Additional details about the experimental geome-
try can be found in Ref. [30].

In a magnetic field, the spin-1/2 ground and excited
states of the Er3+ ion become non-degenerate, giving rise
to four distinct optical transitions (A-D) that can be used
to control and measure the electron spin (Fig. 1b). We
initialize the spin by alternately exciting the ion on the A
transition and applying microwave π-pulses to the excited
state, which polarizes the spin into |↓〉 [22]. Spin readout
is accomplished by repeatedly exciting the B transition,
with a typical single-shot fidelity of 81%.

We probe the local magnetic environment of the
Er3+ ion by performing microwave-driven DD sequences
[XY-N := (τ − πx/y − τ)N ] on the Er3+ spin with vary-

ing inter-pulse separation 2τ [31–33]. On top of an over-
all coherence decay arising from the nuclear spin bath
(T2,XY16 = 16.1±0.2µs), the particular Er3+ ion studied
in this work exhibits a sharp resonance at 2τ0 = 0.875µs
(Fig. 1c). At the resonance, varying the number of π
pulses N in the XY-N sequence yields coherent oscilla-
tions of the Er3+ spin population (Fig. 1d,e). We at-
tribute these features to a coherent interaction between
the Er3+ electronic spin and a nearby nuclear spin.

To understand this phenomenon, we consider the in-
teraction Hamiltonian between the electronic and nuclear
spins in the rotating frame of the electronic spin under
the secular approximation:

H/~ = 2Sz(A||Iz +A⊥Ix) + ωLIz. (1)

Here, S is the pseudo spin-1/2 operator for the lowest
Kramers’ doublet electronic state, I is nuclear spin oper-
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FIG. 2. Probing coherence of the nuclear spin. (a) Ramsey spectroscopy of the nuclear spin is performed by changing the
delay τc between two CnNOTe operations and applying a π pulse on the electron at the halfway-point. (b) The spectroscopy
reveals oscillations at ω0 in the short time scale (solid black line) and a beating envelope over a millisecond. (c) FFT of the
Ramsey signal reveals four distinct frequency components that are symmetric around ω0. (d) Hahn and CPMG sequences on
the nuclear spin are performed by applying unconditional Rx(π) operations. (e) The sequence yields T2,Hahn = 1.9 ± 0.1 ms
and can be extended to T2,CPMG = 3.9± 0.2 ms (inset).

ator, A|| and A⊥ are parallel and perpendicular hyper-
fine coupling parameters, and ωL = γNB/~ is the (bare)
Larmor frequency of the nuclear spin. In the spin Hamil-
tonian, we define the ẑ-axis to be the direction of the
external magnetic field, while the x̂ axis is fixed by A⊥.
The orientation of the field in the reference frame of the
YSO crystal axes is specified in Fig. 1. Rearranging terms
in Eq. (1), the Hamiltonian simplifies to:

H/~ = |↑〉 〈↑| ⊗ ω+I ·m+ + |↓〉 〈↓| ⊗ ω−I ·m−, (2)

where ω± =
√
(ωL ±A||)2 +A2

⊥ is the effective Larmor
frequency and m± = (±A⊥, 0,±A||+ωL)/ω± is the pre-
cession axis of the nuclear spin. From Eq. (2), it is evident
that the nuclear spin rotation is conditional on the Er3+
electronic spin state: it precesses around the m+ (m−)
axis at the frequency ω+ (ω−) when the electron is in the
state |↑〉 (|↓〉).

In the strong magnetic field regime, ωL�
√
A2
|| +A2

⊥,
m± are both nearly parallel to the magnetic field axis, ẑ.
However, the small perpendicular component can be used
to generate a conditional rotation of the nuclear spin.
Specifically, toggling the electron spin using an XY-N
sequence satisfying the resonance condition 2τ0 = π/ω0

[ω0 = (ω++ω−)/2 ∼ ωL] leads to a rotation of the nuclear
spin around the effective precession axes q±, conditional
on the initial electronic state (Fig. 1f). After N periods,
the evolution of the nuclear spin is described by:

UXY-N = |↑〉 〈↑| ⊗Rx(Nα) + |↓〉 〈↓| ⊗Rx(−Nα), (3)

where α ∼ 2A⊥/ωL is the rotation angle per π pulse
(Fig. 1e). In Fig. 1c (inset), we plot the observed reso-
nance frequency of the XY-16 sequence as a function of

the magnetic field strength. It exhibits a slope of 4.3± 0.1
kHz/G, which is consistent with the gyromagnetic ratio
of a proton (4.258 kHz/G) within the experimental un-
certainty. Using measurement techniques described in
the Supplemental Material [34], we can extract the full
set of parameters (|A|||, A⊥, ωL) = (19.4, 50.5, 567.4) kHz
for the magnetic field orientation used in Fig. 1c-e. With
these parameters, α = 10.2◦, such that XY-8 approxi-
mately implements a maximally entangling conditional-
Rx(±π/2) rotation on the nuclear spin.

We now study the coherence properties of the nu-
clear spin. Using additional rotations on the electronic
spin, the conditional-Rx(±π/2) operation is adapted to
a CnNOTe operation, where the nuclear spin acts as a
control (Fig. 2a). The operation is controlled by the
nuclear spin state along the x̂-axis, which is roughly
perpendicular to the precession axes m±, which are
nearly parallel to the ẑ-axis. Therefore, the sequence in
Fig. 2a measures the precession of the nuclear spin states
|±x〉 = (|↑〉 ± |↓〉)/

√
2, equivalent to a standard Ramsey

measurement of the nuclear spin coherence. The addi-
tional π-pulse on the electronic spin decouples the pre-
cession frequency from the (random) initial state of the
nuclear spin, so that the average precession frequency ω0

is observed at short times (Fig. 2b). However, at longer
times, the precession shows a complex beating at sev-
eral frequencies. A fast Fourier transform (FFT) of the
Ramsey measurement reveals four symmetrically spaced
peaks, where two subgroups of peaks are separated by 14
kHz and each subgroup is split by 4 kHz (Fig. 2c). This
suggests the presence of additional spins in the nuclear
spin environment, which we discuss below.

We measure the nuclear spin T2 with a Hahn echo se-



4

Init.

in

Ry(-π)

Rz(–)π2 Rz(–)π2Rx(±–)π2 Rx(±–)π2

Init.

m0ie

0

0.5

1

m1 exp
sim×

×

× ×

××

(a) (b)

|iein

|m0m1

FIG. 3. SWAP operation. (a) Demonstration of SWAP
operations between the electronic and nuclear spin using the
indicated circuit, where the initialization |ie〉 , |in〉 ∈ {|↑〉 , |↓〉}
correspond to nuclear spin and electron spin initialization due
to the action of SWAP. This is followed by readout of |m0〉 and
|m1〉 also interleaved with SWAP. (b) Measurements |m0m1〉
are plotted for each initialization |iein〉. The SWAP pattern
is observed as |in〉 (|ie〉) determines |m0〉 (|m1〉), after two
SWAP operations. The corresponding SWAP fidelity in the
computational basis is 87% (91%) for the experiment (simu-
lation), where the simulation takes into account known error
sources [34].

quence, by inserting a π-pulse on the nuclear spin dur-
ing its precession (Fig. 2d). We perform the π pulse by
applying the conditional-Rx(±π/2) twice so that the nu-
clear spin rotates by π around the x̂-axis regardless of
the electronic spin state. This cancels the discrete fre-
quency shifts observed in the Ramsey experiment and
yields a T2 time of 1.9 ms, which can be extended to
3.9 ms with repeated applications of the nuclear spin π-
pulse in a Carr-Purcell-Meiboom-Gill (CPMG) sequence
(Fig. 2e). Crucially, this value is three orders of mag-
nitude longer than the bare electronic spin coherence
(T2,e = 2µs [22]), demonstrating that the smaller nu-
clear magnetic moment leads to extended coherence even
in the magnetically noisy environment of YSO.

Next, we implement a SWAP operation to store the
electronic state in the nuclear spin. The SWAP consists
of conditional-Rx(±π/2) rotations interleaved with sin-
gle qubit rotations of the electronic spin and ẑ-rotations
of the nuclear spin, realized via its free precession for du-
ration τ0 (Fig. 3a) [34]. We apply the SWAP operation
within a sequence that repeatedly initializes and mea-
sures the electronic spin in the ẑ-basis. The first initial-
ization |in〉 is swapped to the nuclear spin. After complet-
ing the second initialization |ie〉, we obtain the two qubit
state |iein〉 ∈ {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}. Performing another
SWAP operation before the first readout measures the
state of the nuclear spin |m0〉, followed by the state of
the electronic spin |m1〉. The populations measured for
each two qubit readout outcome |m0m1〉, for a given ini-
tialization |iein〉, yield a SWAP operation fidelity in the
computational basis of 87% (Fig. 3b). This fidelity is con-
sistent with a theoretical estimate incorporating the vari-
ation of the nuclear spin precession frequency (Fig. 2c),
optical excitations of the Er3+ ion and a finite lifetime for
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FIG. 4. Locating the nuclear spin. A||/A⊥ contour plots,
where each contour line (black, red, blue, orange) corresponds
to nuclear spin positions (θH,φH) that satisfy measurements
at magnetic field orientations (θ, φ) = (95,110), (95,140),
(85,140), (100,90) respectively. The intersection of the con-
tour lines, marked by a green triangle, represents a solution.
Asserting A|| > 0 (A|| < 0), indicated by solid (dashed) con-
tours, leads to a solution at rH,θH,φH = 20.0 Å, 66.7◦, 49.6◦

(rH,θH,φH = 19.0 Å, 19.0◦, 323.6◦). Inset: Calculated dis-
tances given A|| > 0 (A|| < 0) marked by upward (downward)
triangles for each orientation at the indicated solution along
with error bars obtained from a Monte-Carlo simulation of
measurement uncertainty.

the nuclear spin [34]. This estimate lets us place a lower
bound on the intrinsic nuclear spin lifetime of T1 > 0.6
s. However, the changes in the magnetic moment of the
electron spin due to excitations during readout generate
significant dephasing of the nuclear spin, which precludes
storage of arbitrary nuclear spin states during readout in
the current configuration.

Finally, we probe the location and gyromagnetic ra-
tio of the nuclear spin in the lattice by measuring the
hyperfine parameters (A||,A⊥,ωL) at four angles of the
external magnetic field. The average value of ωL yields
a gyromagnetic ratio γN/~ = 4.26 ± 0.04 kHz/G, which
is consistent with a 1H nuclear spin (4.258 kHz/G). The
extracted hyperfine parameters at each field orientation
constrain the nuclear spin position to lie on a 1D man-
ifold. The intersection of these curves (Fig. 4) yields
two possible positions of the nuclear spins, which could
be further disambiguated by determining the sign of A||,
which we do not do in this work. For both possible lo-
cations, the distance between the electron and nuclear
spin is around 1.9 – 2 nm. We are not able to confi-
dently assign a position in the YSO crystal structure to
the nuclear spin, because of uncertainties in the relative
alignment of the magnetic axes of the Er3+ site with the
crystallographic axes [13], which are not aligned because
of the low C1 symmetry of the Er3+ site in YSO.

We now turn to a discussion of several aspects of these
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results. While hydrogen is not part of the YSO chem-
ical formula, it is a ubiquitous impurity that is present
during the growth and post-processing and able to unin-
tentionally incorporate in to materials [35–37]. The Er3+
center studied in this work is one of six ions that we have
probed in the same sample, and the only one to show a
strong hydrogen nuclear spin coupling, which is consis-
tent with a hydrogen concentration in the range of 0.3
– 3.9 ×1018 cm−3[34], a plausible value [38]. Given that
hydrogen is quite mobile in oxides, H atoms are also ex-
pected to diffuse easily and form defect complexes with
large binding energies [39]. It is also noteworthy that the
nuclear spin precession spectrum (Fig. 2a) shows four dis-
crete frequency components. In the Supplemental Mate-
rial, we extend our Ramsey measurements to show that
the transitions between these frequencies occur as sud-
den jumps that can be observed with single-shot mea-
surements, with a correlation time of seconds to minutes
[34].

We rule out global magnetic field fluctuations and
interactions with other nearby electronic spins because
these would have a much larger impact on the Er3+ elec-
tron, which we do not observe. However, the jumps could
be explained by coupling between the H and additional
I = 1/2 nuclei, with Ising interaction strengths of 2 and
7 kHz. In contrast to the distinctively large gyromag-
netic ratio of the hydrogen nuclear spin, nuclear spins
with smaller gyromagnetic ratios may not be directly ob-
served via the electronic spin within its finite coherence
time.

Using comprehensive density functional theory calcu-
lations, we conclude that these coupling strengths cannot
be explained by the native nuclei alone (89Y and 29Si).
However, glow discharge mass spectroscopy (GDMS)
analysis of a related YSO sample reveals the presence of
several chemical impurities with I = 1/2 and ppm con-
centrations, including Cd and P. Typically, both intersti-
tial hydrogen (Hi) and substitutional hydrogen (HO) tend
to act as donors in oxides, and are hence attracted to CdY
and PO, which act as acceptors, which may favor the for-
mation of complexes of these impurities despite their low
concentration. This hypothesis is further supported by
comprehensive density functional theory calculations: a
CdY-HO complex and a PO-Hi complex, together with a
nearby 29Si, yield coupling strengths to H that are similar
to the experimental values (structures and computational
details are included in [34]). Although the observation of
such a nuclear spin defect complex is not conclusive at
this point, the possibility of engineering nuclear spin reg-
isters using this approach is potentially attractive and
could be investigated further.

Lastly, we consider the prospects for several extensions
to this work. First, driving both the electron and nuclear
spins directly would allow the extension of these tech-
niques to multiple nuclear spins [40, 41]. Second, to use
the nuclear spin as an ancilla in a quantum network, it is
necessary to preserve an arbitrary quantum state during
a measurement of the electronic spin [42]. This can be
achieved by minimizing the frequency shift of the nuclear
spin when the electron is excited to the excited state, ei-
ther through alignment of the magnetic field, using more
weakly coupled nuclear spins, or encoding information
in a decoherence-protected subspace of a pair of nuclear
spins[43].

In conclusion, we demonstrate coherent interaction be-
tween a single Er3+ electronic spin and a nuclear spin.
Using single and two-qubit operations based on DD se-
quences, we measure the coherence of this nuclear spin
to be several orders of magnitude longer than that of
the electronic spin. We further show that the nuclear
spin state survives the initialization and readout of the
electron in the computational basis by implementing a
SWAP operation, and finally, determine its location with
respect to the Er3+ ion. Combining the current work
with our previous work on parallel measurement and con-
trol of multiple Er3+ ions coupled to the same nanopho-
tonic cavity [22], we can ultimately envision a hybrid
quantum register that is comprised of many telecom-
compatible optically-interfaced solid-state spins with sin-
gle particle control at each node, where each spin is in-
dividually coupled to long-lived nuclear spin registers.
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1 Device parameters

The silicon nanophotonic cavity used in this work has a measured quality factor Q = 4.4 × 104 and a
one-way coupling efficiency ηcav = κwg/(κwg + κint) = 0.19, where κwg and κint are waveguide and internal
loss channels from the cavity, respectively. The particular Er3+ ion studied in this work has an optical
excited state lifetime of around 60 µs (corresponding to a Purcell factor of about 190). Further details
about the experimental setup and device fabrication can be found in Refs. [1, 2].

2 Electron-nucleus hyperfine interaction

2.1 Theoretical background

As stated in the main text, the two-body system of an electron spin and a nuclear spin is described by the
secular hyperfine interaction Hamiltonian in the rotating frame of the electronic spin, H = 2Sz(A||+A⊥)+
ωLIz (where we set ~ = 1 in the supplementary text). We can also express the interaction Hamiltonian in
terms of nuclear spin Hamiltonians H±, which are conditioned on the electronic spin state as:

H = |↑〉 〈↑| ⊗H+ + |↓〉 〈↓| ⊗H−
H± = ω±I ·m± = (±A|| + ωL)Iz ±A⊥Ix,

(1)

where m± = (±A⊥, 0,±A|| + ωL)/ω± and ω± =
√

(ωL ±A||)2 +A2
⊥. A dynamical decoupling (DD) se-

quence can then be described by periods of free evolution under this Hamiltonian (Eq. 1) interleaved
with periodically spaced π-pulses. A free evolution propagator for duration τ is given by U = e−iHτ =
exp(−i |↑〉 〈↑|⊗H+τ) · exp(−i |↓〉 〈↓|⊗H−τ). Expanding each exponential yields an intuitive simplification,
expressing the nuclear spin evolution in terms of the Hamiltonians H± conditional on the electronic spin
state:

U = |↑〉 〈↑| ⊗ e−iH+τ + |↓〉 〈↓| ⊗ e−iH−τ = |↑〉 〈↑| ⊗ U+ + |↓〉 〈↓| ⊗ U−
= |↑〉 〈↑| ⊗ e−iφ+m+·I + |↓〉 〈↓| ⊗ e−iφ−m−·I

(2)
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As noted above, it is convenient to write the conditional free evolution of the nuclear spin, U± = e−iH±τ ,
as a rotation around the axes m± by an angle φ± = ω±τ and express the DD sequence in terms of nuclear
spin rotations. Evolution under the basic building block (τ - π - τ) of the DD sequence can be obtained
from the free evolution propagator and the π-pulse X ⊗ I, which acts only on the electronic spin, as:

V = U(X ⊗ I)U = |↑〉 〈↓| ⊗ U+U− + |↓〉 〈↑| ⊗ U−U+ = |↑〉 〈↓| ⊗ V+ + |↓〉 〈↑| ⊗ V−
= |↑〉 〈↓| ⊗ e−iφn+·I + |↓〉 〈↑| ⊗ e−iφn−·I.

(3)

Similar to the free propagation operators, U±, we can express the product of rotations V± = U±U∓ of the
nuclear spin as a rotation around an axis n± by an angle φ. However, it is more convenient to work with
a repetition of this block, (τ - π - 2τ - π - τ), which is composed of two π-pulses and diagonalized in the
electronic spin basis:

W = V 2 = |↑〉 〈↑| ⊗ V+V− + |↓〉 〈↓| ⊗ V−V+ = |↑〉 〈↑| ⊗W+ + |↓〉 〈↓| ⊗W−
= |↑〉 〈↑| ⊗ e−i(2α)q+·I + |↓〉 〈↓| ⊗ e−i(2α)q−·I

(4)

Continuing the pattern of effective rotation, we express W± = V±V∓ as a rotation around the axes q± by
an angle 2α. This form has the advantage that any DD sequence (τ - π - 2τ - π - τ)N/2 with an even
number of π-pulses, N , can be easily expressed as follows:

V N = |↑〉 〈↑| ⊗ e−i(Nα)q+·I + |↓〉 〈↓| ⊗ e−i(Nα)q−·I. (5)

The aforementioned effective rotation axes and angles can be calculated using the following identity,
e−ia1(p1·σ)e−ia2(p2·σ) = e−ia(p·σ) [σ=(σx, σy, σz) is the Pauli vector], where p and a is expressed as:

cos a = cos a1 cos a2 − sin a1 sin a2(p1 · p2)

p sin a = sin a1 sin a2(p1 × p2) + sin a1 cos a2p1 + sin a2 cos a1p2.
(6)

In order to obtain a maximally entangling operation, the effective rotation axes q± must be antiparallel,
such that q+ · q− = −1. Based on Eq. 6, it can be shown that this condition implies cos φ+2 cos φ−2 −
sin φ+

2 sin φ−
2 cos γ = 0, where cos γ = m+ ·m− is the angle between the free-precession axes m±. When

the equality holds, we obtain the following precession axes and angles:

cosα = 1− 2(sin
φ+
2

sin
φ−
2

sin γ)2

q± sinα = ±2(sin
φ+
2

sin
φ−
2

sin γ)ŷ × (sin
φ+
2

cos
φ−
2
m+ + sin

φ−
2

cos
φ+
2
m−)

(7)

In the strong magnetic field regime, (ω2
L � A2

||+A
2
⊥), the free precession axes m± are almost parallel to each

other such that cos γ ∼ 1. This leads to a simpler resonant condition cos φ++φ−
2 = 0 or 2τ = (π+m2π)/ω0,

where ω0 = (ω+ + ω−)/2. With further simplifications, we obtain the following:

α ' γ =
2A⊥ωL

ω+ω−
∼ 2A⊥

ωL

q± ' ±
(
x̂ +

A⊥A||
ω2

L
ẑ
) (8)

For a geometrical description of the operation, it is worth noting that the amount of rotation per π-pulse, α,
is simply equal to the angle γ between the free precession axes m± in the strong magnetic field regime under
the resonant conditions. The deviation of the effective rotation axes q± from the x̂-direction is on the order
of A||A⊥/ω2

L ∼ 10−3 for our parameter regime, so we simply label the effective axes q± = x̂±. With this
understanding in place, we express the final form of a DD sequence with N pulses as (Rx(θ) = e−iθσx/2):

V N = |↑〉 〈↑| ⊗Rx(Nα) + |↓〉 〈↓| ⊗Rx(−Nα) (9)
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2.2 Measuring hyperfine interaction parameters

We can use the above description of effective precession axes to obtain the conditional free precession
frequencies ω+ and ω− of the nuclear spin. When combined with the knowledge of α, these three parameters
are sufficient to solve for the Hamiltonian parameters (A||, A⊥, ωL).

However, rather than measuring ω± directly, we measure ω0 = (ω+ +ω−)/2 and ωδ = (ω+−ω−)/2. For
the former, we perform the experiment described in Fig. 2a of the main text, where a free-precession of the
nuclear spin occurs in between two CnNOTe operations, subject to one extra π-pulse on the electron spin
during the free evolution, such that the effective precession frequency of the nuclear spin is an average of
ω+ and ω−. To see this analytically, we first consider the free evolution during the experiment in Fig. 2a
as:

Uπe(τc) = U(τc/2)(X ⊗ I)U(τc/2) (10)

Noting that this is equivalent to the unitary operator V for τ = τc/2 in Eq. 3, we can express it as an
effective precession conditional on the electron spin state:

Uπe(τc) = |↑〉 〈↓| ⊗ e−iφn+·I + |↓〉 〈↑| ⊗ e−iφn−·I; e−iφn±·I = e−iφ±m±·Ie−iφ∓m∓·I, (11)

where the rotation around each free-precession axes, m± = (±A⊥, 0, ωL±A||)/ω±, is given by φ± = ω±τc/2.
By defining U0 = CnNOTeUπe(τc)CnNOTe and considering its action on the two-qubit initial state, ρi =
|↓〉 〈↓| ⊗ I/2, we can compute the signal, s0(τc), for population measurement on the electron spin to first
order in A||:

s0(τc) = Tr[U0ρiU
†
0P↓] ' 1− cos

φ

2

2

−
( A⊥
ω+ω−

(ω0 sin
φ+ − φ−

2
+ 2A|| sin

φ+ + φ−
2

)
)2

(12)

In the strong magnetic field regime, where the free-precession axes m± are approximately parallel such that
cos γ ∼ 1, Eq. 6 leads to cos φ2 = cos φ+2 cos φ−2 − sin φ+

2 sin φ−
2 = cos(φ+ + φ−)/2. This implies that, in

this regime, the net rotation will simply be φ = φ+ + φ− = ω0τc. Although the second term in Eq. 12 also
includes frequencies ω±/2 and ωδ, their magnitude is lower by (A⊥/ωL)2 ∼ 10−2. Neglecting this second
term, the signal (Eq. 12) reduces to s0(τc) ' 1− 1

2 cosω0τc.
In order to obtain ωδ, we insert an additional π-pulse on the nuclear spin by using XY-16 operation as

described in the main text:
Uπe,πn(τc) = U(τc/2)(X ⊗X)U(τc/2) (13)

In a similar fashion to Eq. 11, we can express this operation as a consecutive rotation of the nuclear spin
around two axes, one of which is inverted due to the additional π-pulse on the nuclear spin:

Uπeπn(τc) = |↑〉 〈↓| ⊗ e−iφ′n′+·IX + |↓〉 〈↑| ⊗ e−iφ′n′−·IX; e−iφ
′n′±·I = e−iφ±m±·Ie−iφ∓m

′
∓·I, (14)

where m′± = (±A⊥, 0,−(ωL±A||)/ω±) are the inverted axes for the nuclear spin. Defining Uδ = CnNOTe ·
Uπeπn(τc) · CnNOTe acting on the same initial state, we also compute the expected signal, sδ(τc):

sδ(τc) = Tr[UδρiU
†
δP↓] ' cos

φ′

2

2

+
( A⊥
ω+ω−

(ω0 sin
φ+ − φ−

2
+ 2A|| sin

φ+ + φ−
2

)
)2

(15)

Due to the additional π-pulse on the nuclear spin, the two precession axes are approximately anti-parallel
such that m± · m′∓ = cos γ′ ∼ −1. Again based on Eq. 6, this yields cosφ′/2 = cos φ+2 cos φ−2 +

sin φ+
2 sin φ−

2 = cos(φ+ − φ−)/2, which implies that φ′ = φ+ − φ− = ωδτc. Neglecting the second term,
Eq. 15 reduces to sδ(τc) ' 1 + 1

2 cosωδτc.
Measuring α (Eq. 8), in addition to ω0 and ωδ, is sufficient to solve for the parameters (A||, A⊥, ωL).

Although the above analysis assumes perfect CnNOTe and Rx(π) operations on the nuclear spin, we use
the exact unitary operators obtained from the Hyperfine parameters for XY-8 and XY-16 sequences in
simulation (Fig. S1). However, the decoherence mechanisms to be discussed for the SWAP operation are
not included in these simulations. Finally, note that the signal sδ(τc) is agnostic to the sign of ωδ, so that
the sign of A|| is undetermined.
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FIG. S1: Observing ω0 and ωδ. (a) Simulated s0(τc) signal overlaid with experimental data and the FFT
of the simulation, displaying the peak at ω0 (b) Similarly plotting sδ(τc) and its FFT with a peak at ωδ. The
earliest data point in the top panel starts around 15 µs due to the finite length of the unconditional-Rx(π)
on the nuclear spin.

3 SWAP operation and nuclear spin memory

3.1 Description of SWAP

We can investigate error sources for the SWAP operation by looking into its constituents. From here on, we
use the convention that |↑〉 = |0〉 and |↓〉 = |1〉 for both the electronic and nuclear spin bases. As noted in
Fig. 3 of the main text, a SWAP operation can be constructed using a combination of CnNOTe and single
qubit rotations, where CnNOTe is sketched in Fig. 2c. Analytically, the SWAP operation can be expressed
as:

USWAP = UXY-8 ·Ry(−π/2)⊗Rz(π/2) · UXY-8 ·Rx(π/2)⊗Rz(π/2) · UXY-8

= −eiπ/4(|00〉 〈00| − i |01〉 〈10| − |10〉 〈01| − i |11〉 〈11|)
(16)

Here, UXY-8 = |0〉 〈0| ⊗ Rx(π/2) + |1〉 〈1| ⊗ Rx(−π/2), is the conditional-Rx(±π/2) unitary resulting from
the XY-8 sequence (Eq. 9). This can be transformed into an iSWAP gate by using single qubit ẑ-rotations
before and after USWAP:

iSWAP = Rz(5π/4)⊗Rz(0) · USWAP ·Rz(π)⊗Rz(π/4)

= |00〉 〈00|+ i |01〉 〈10|+ i |10〉 〈01|+ |11〉 〈11| (17)

As the Rz(π/2) rotation on the nuclear spin is realized via its free-precession, the fidelity of USWAP is limited
primarily by the T ∗2 of the nuclear spin. In particular, the presence of four distinct nuclear spin precession
frequencies, as shown in Fig. 2c, should be considered when estimating the fidelity of the operation.

3.2 Description of error channels during the SWAP experiment

The primary sources of error are: (1) modulation of the nuclear spin precession frequency; and (2) variation
in the hyperfine interaction strength when the electron is in the excited state (during initialization and
readout). These can be represented as trace-preserving quantum channels acting on the two-qubit density
matrix, ρ. Accounting for these errors in the SWAP experiment (Fig. 3), we can calculate a lower bound
for the nuclear spin T1.

First, let’s incorporate the effects of precession frequency modulation using a quantum channel descrip-
tion. The basic building block of the SWAP operation is the free evolution of our two-body system for

4



the duration τ0, realizing both the XY-8 sequence and the ẑ-rotation of the nuclear spin. We label the
corresponding quantum channel as Siτ0(ρ), where the superscript i indicates that the nuclear spin precesses
at one of the four frequencies, ωL,i = ωL + ∆i (∆i ∈ {±5,±9} kHz), as identified in Fig. 2c. This basic
channel is calculated by evolving ρ under the hyperfine Hamiltonian (Eq. 1) and electron spin dephasing
(Fig. 1c) for duration τ0 under the Linblad master equation. Corresponding SWAP channels, SiSWAP(ρ), can
be obtained by interleaving Siτ0(ρ) with unitary channels to apply single-qubit rotations on the electron spin
as described in Sec. 3.1. The final SWAP channel, SSWAP(ρ), averages over the four precession frequencies
for the nuclear spin:

SSWAP(ρ) =
1

4

4∑

i=1

SiSWAP(ρ) (18)

On the other hand, errors due to variation in hyperfine interaction strength can also be accounted
for using a similar quantum channel description. The action of a spin-selective excitation pulse can be
understood as an infinitesimal sum over unitary operations, corresponding to the variable decay time of
the electron from the excited state back to the ground state. First, we give a quantum channel description
of the readout scheme sketched in Fig. 1b. An optical excitation pulse projects the electron spin to the
states |1〉 and |0〉, via the projectors P1 and P0, respectively. If the electron is in the |1〉 state, it is excited
and undergoes a unitary evolution under the excited state Hamiltonian H i

e for time t and the ground state
Hamiltonian H i

g for the remainder of the photon collection window tW (120 µs), where i stands for the
index of ωL,i in each Hamiltonian. If the electron is in the |0〉 state, it remains unaffected by the optical
excitation and simply evolves under H i

g for duration tW. Finally, if the electron has not decayed within this
time, it will evolve under H i

e for duration tW. As with the SWAP channel (Eq. 18), we also consider the
variation in the nuclear spin Larmor frequency, but here, we ignore electron spin dephasing as the electron is
projected to its computational basis after readout. We provide below a definition of the excitation channel,
S1excite(ρ), for the |1〉 transition used in the readout:

S1excite(ρ) = S(0, P0ρP0) + pRS(tW, P1ρP1) +

∫ tW

0
dt p(t)S(t, P1ρP1)

S(t, ρ) =
1

4

4∑

i

U i(t)ρU i†(t); U i(t) = e−iH
i
g(tW−t)e−iH

i
et

p(t) =
1

T1,op
e−t/T1,op ; pR = 1−

∫ tW

0
p(t)dt

(19)

Note that the excitation channel description for initialization, S0excite(ρ), can be obtained similarly by
swapping the projectors P0 and P1. We measure the optical lifetime T1,op (60 µs) in an independent
measurement and calculate H i

e based on the reported g-tensor [3] and estimated position for the nuclear
spin relative to the Er3+ ion (Fig. 4). As discussed in Sec. 3.4 with a simple example, in the strong magnetic
field regime, the effect of the excitation channel is primarily a dephasing of the nuclear spin due to the
uncertainty in phase accumulated by the nuclear spin during the excitation and decay of the electron spin.

Using Eq. 19 as the basic block, we can also construct the full quantum channel description of the readout
and initialization processes, consisting of 450 and 40 optical pulses, respectively (Fig. 1c). Importantly, we
take into account the finite cyclicity of the optical transition to induce spin-flips, pf = 0.2% and the excited
state MW π-pulse during the initialization. This means that the electron spin will only be excited until it
is optically pumped to the other spin state.

3.3 Estimate of nuclear spin T 1

With the channels described above, we can simulate the SWAP experiment (Fig. 3), consisting of multiple
rounds of initialization, SWAP, and readout. To estimate the nuclear spin T1, we extract the fidelity of the
SWAP from the experiment and compute the same quantity based on our theoretical model. The difference
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between the two lets us put a lower bound on the nuclear spin T1. To extract the fidelity, we consider the
initialization in and readout m0, shown in Fig. 3, where the SWAP operation is applied twice for storage
and retrieval of the computational basis states |0〉 (|↑〉) and |1〉 (|↓〉). An important implementation detail
is that the steps for initialization, SWAP, and readout are looped multiple times during the experiment.
Therefore, Fig. 3 can be equivalently sketched as Fig. S2. The Fig. 3 histogram indices can then be re-labeled
as (ie, in) ≡ (ik+1, ik) and (m0,m1) ≡ (mk+1,mk+2), keeping in mind the modular structure.

After accounting for all known sources of errors described in Sec. 3.2, we attribute the remaining
difference in simulation and experiment fidelity to the nuclear spin T1, as in Fexp = e−Tstore/T1Fsim, where
Tstore = 59.2 ms is the time between the initialization ik and readout mk+1, while Fexp = 0.76 and
Fsim = 0.84 are the experiment and simulation fidelities for retrieval of the initialization ik at mk+1.
Attributing this remaining difference, to the nuclear spin lifetime allows us to put a lower bound on the
T1 of 0.63 seconds. However, the difference could also originate from other sources of error that is not
included in the simulations. Finally, considering that the SWAP acts twice during the computation of the
fidelities (Fexp, Fsim), we can extract a SWAP fidelity in the computational basis of FSWAP,exp = 87% and
FSWAP,sim = 91% for the experiment and simulation, respectively.
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FIG. S2: SWAP experiment. (a) Implementation of the SWAP experiment, where a SWAP op-
eration is interleaved between each initialization ik and subsequent readout mk. A sequence of ini-
tialization (i0, i1, i2, i3) = (0, 0, 1, 1) is repeated NL = 1500 times in a loop such that all instances
(ik, ik+1) = {00, 01, 10, 11} are realized. This allows for all initialization combinations of the electron-nuclear
spin pair in the computational basis to be generated. (b) The histogram verifies that the initialization ik is
readout at mk+1, while being uncorrelated with mk. The average success rate for retrieving the information
in experiment (simulation) is 76% (84%). (c) A control experiment, where the SWAP operation is replaced
by an identity, shows that ik is fully correlated with mk and uncorrelated with mk+1 as expected.

3.4 Discussion on storing arbitrary states

Although we demonstrate information storage and retrieval in the computational basis, it is of greater
interest to store an arbitrary state in the nuclear spin memory. To consider this plausibility, we discuss
a simple problem of nuclear spin dephasing under optical excitation of the electron. To obtain a simple
analytical expression, we only consider changes in the parallel hyperfine term A||, which largely accounts
for the dephasing in the strong field regime, using the ground and excited state Hamiltonians, Hg =
2AgSzIz + ωLIz and He = 2AeSzIz + ωLIz, respectively. Limiting ourselves to the subspace where the
electron is in the |1〉 state and moving to a rotating frame of the nuclear spin at ωL − Ag, we have the
nuclear spin Hamiltonians conditional on the electron excitation state:

Hg = 0, He = δAIz, δA = Ag −Ae (20)

Starting with the nuclear spin state in an equal superposition, |ψn〉 = 1/
√

2(|0〉 + |1〉) (which is most
sensitive to dephasing), we can time evolve the state as:
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ρ(t) = |ψn(t)〉 〈ψn(t)| = 1

2
(|0〉 〈0|+ |1〉 〈1|+ eiδAt

′ |0〉 〈1|+ e−iδAt
′ |1〉 〈0|), (21)

where the electron was excited at t = 0 and decayed at t = t′. Assuming a standard probability distribution
for the excited state decay, P (t) = γe−γt, we can calculate the density matrix for the nuclear spin after one
decay of the electron as:

ρ(1)n =

∫ ∞

0
dt′ P (t′)ρ(t′) =

1

2
(|0〉 〈0|+ |1〉 〈1|+ c |0〉 〈1|+ c∗ |1〉 〈0|) c =

1/τ

1/τ − iδA
(22)

The nuclear spin density matrix after N excitations will simply result from propagating the density matrix
through repeated decays in the same manner:

ρ(N)
n =

1

2
(|0〉 〈0|+ |1〉 〈1|+ cN |0〉 〈1|+ c∗N |1〉 〈0|) (23)

Therefore, the purity of the density matrix can be expressed as the length of the Bloch vector magnitude,
where δf = δA/(2π):

F =

√
2Tr[ρ(N)2

n ]− 1 =
( 1√

1 + 4π2δ2f/γ
2

)N
(24)

Based on our parameters, δf/γ = 0.56, the Bloch vector length for a superposition state reduces to
F = 0.3 after a single excitation. In order to achieve F = 0.9 after 450 excitations (typically used in
single shot readout), we need δf/γ = 0.0034. The required factor of ∼150 improvement in the ratio can be
plausibly obtained by a combination of using more weakly coupled nuclear spins and choosing a magnetic
field direction to minimize δf or increasing the decay rate, γ, via stronger Purcell enhancement of the optical
transition. As commented on Ref. [3], the Er3+ :YSO g-tensors for the ground state (4I15/2) and excited
state (4I13/2) allows for choosing magnetic field directions such that the interaction of the electronic spin
with the bath is unperturbed by an excitation. This can then allow information to remain protected in the
nuclear spin during a spin-photon entanglement generation attempt that requires repeated excitations of
the electron spin.

4 Nuclear spin search

4.1 Obtaining hyperfine parameters from magnetic dipole Hamiltonian

In order to locate the nuclear spin with respect to the electron, we can study the position dependence of
the hyperfine parameters (A||, A⊥, ωL). The hyperfine Hamiltonian (Eq. 1), expressed in terms of these
parameters, can be obtained from the magnetic dipole Hamiltonian between the Er3+ spin and the nuclear
spin:

Hdip = − µ0
4πr3

µBµNgn

(
↔
gS · I− 3(

↔
gS · r̂)(I · r̂)

)
, (25)

where µB is the Bohr magneton, µN is the nuclear magneton, µ0 is the magnetic permeability, gn is the
nuclear spin g-factor, ↔g is the electron spin g-tensor in the solid state host, r is the distance between the
electron and nuclear spin and r̂ is the direction. Under a static magnetic field, each spin also obtains a
Zeeman Hamiltonian:

HZ = µBB
↔
gS′ − µNgnB · I′, (26)

where the magnetic field vector B and electron (nuclear) spin vector S′ (I′) are in the lab-frame. The Sz
and Iz operators are defined using these terms:

Sz = B
↔
gS′/|B↔g |, Iz = B · I′/|B| (27)
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This yields the electron and nuclear spin Larmor frequencies as ωL,e = µB|B
↔
g | and ωL,n = µNgn|B| = γN|B|

(γN being the gyromagnetic ratio), yielding HZ = ωL,eSz + ωL,nIz.
As described in the main text, we work in the frame rotating with ωL,eSz and under the secular ap-

proximation such that terms that do not commute with Sz are discarded. The Hamiltonian in Eq. 25 then
reduces to Hdip,RWA =

∑
i 2AiSzIi, where Ai = Tr[{Hdip, SzIi}] can be extracted via anti-commutation

relations. We can further simplify the interaction terms Ai into A|| = Az and A⊥ =
√
A2
x +A2

y, since Ix
and Iy operators can always be rotated such that Ay is set to 0 and Ax ≥ 0. This reduces Hdip,RWA to a
simple form of H = 2Sz(A||Iz + A⊥Ix) + ωLIz, which is provided in the main text and is defined in terms
of only three parameters.

Then, the only unknown variables in determining the parameters (A||, A⊥, ωL) are γN, r, and r̂, which
tell us the species and location of the nuclear spin. The problem is made simpler by observing that the ratio
A||/A⊥ only depends on r̂ since both the numerator and denominator of the ratio varies proportionately
with γN/r

3. γN can also be determined independently from the Larmor frequency ωL. The remaining
unknown, r, can then be determined from

√
A2
|| +A2

⊥ values, given r̂ and γN. We use this approach to

roughly determine the location and constrain the volume considered in the χ2 calculation to report the
most likely position.

4.2 Determining location

We parameterize the χ2 calculation in terms of the nuclear spin location r(≡ rr̂) with respect to the Er3+

ion. We directly compare the experimental measurements of (ω0, ωδ, α), discussed in Sec. 2.2, to model
estimates of the same measurements as a function of r:

χ2(r) =
∑

i

(xobs,i − xmod,i(r))2

σ2obs,i + σ2mod,i(r)
(28)

Here, xobs,i and xmod,i correspond to the observed and estimated values of ω0, ωδ and α at four different
magnetic field orientations as indicated in Fig. 4 of the main text, such that there are twelve data points
that are compared in total and three parameters, (rH, θH, φH), to optimize. σobs,i and σmod,i correspond to
the errors in each data point, where the former arises due to experimental uncertainties and the latter is
obtained from Monte-Carlo simulations as explained below.

Uncertainty in the model estimates originates from errors in the static magnetic field orientation. We
estimate the orientation uncertainty by allowing a shift of the intended field to first order, as in (B+∆B, θ+
∆θ, φ + ∆φ), where B is the field magnitude, and (θ, φ) is the magnetic field orientation with respect to
the (D1, D2, b) axes of the crystal [3] (Fig. 1a). We choose (∆B,∆θ,∆φ) such that the measured spliting
for the ground and excited state spin levels using optically detected magnetic resonance (ODMR) are
minimized with respect to the predicted values at the field settings used. This yields ∆B = 3.99± 0.76 G,
∆θ = 0.89◦ ± 0.34◦ and ∆φ = 0.79◦ ± 0.44◦. The correction yields a field strength of B = 134 G for
the four measurements indicated in Fig. 4 of the main text. Based on the ωL values obtained at each
orientation, we estimate a gyromagnetic ratio γN of 42.6 ± 0.4 MHz/T. Since this value is consistent with
the Hydrogen gyromagnetic ratio, 42.58 MHz/T, we set the Hydrogen g-factor as a constant in the χ2

calculations. To calculate the uncertainty in the model estimates, we propagate the uncertainty in the
magnetic field, via a Monte Carlo simulation, for the model estimates xobs,i corresponding to ω0, ωδ and α.
Minimizing χ2 as a function of r near the expected locations leads us to the final estimates of the nuclear
spin position, indicated in Fig. 4. At these locations, we find a reduced chi-square of minr(χ

2)/ν = 2.7 for
both signs of A||, where the degree of freedom ν = 12 − 3 = 9 is based on the number of measurement
variables (12) and fit parameters (3). The obtained value is not far from a reduced chi-square of 1 and
the remaining inconsistency may be due two reasons: first, the correction to the magnetic field is only a
first order correction, which does not entirely resolve the discrepancy between the expected and measured
splitting values; and second, uncertainties in the reported g-tensor itself [3] are not taken into account in
our calculations.
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4.3 Hydrogen concentration estimate

To consider the plausibility of the presence of hydrogen (H) in the YSO crystal, we provide an estimate of
H concentration. A confidence interval on the H concentration can be calculated based on our observation
of H in the vicinity of one out of six total Er3+ ions studied in this sample. The purpose of this calculation
is to provide a rough estimate of the concentration given available information.

The probability to observe some number k of hydrogen atoms within a given volume V and concentration
ρ is described by the Poisson distribution: P (k;λ) = (λke−λ)/k!, where λ = ρV is the expected number
of H atoms in a given volume. Then, the probability of not observing hydrogen within the same volume
is P0(ρ) = e−ρV and observing at least one H is P1(ρ) = 1 − P0(ρ). Therefore, the probability to observe
an H atom in the vicinity of n out of m Er3+ ions is: P (O|ρ) =

(
n
m

)
P0(ρ)m−nP1(ρ)n. The probability

distribution for the Hydrogen concentration, constrained only by our observation, is then given by:

p(ρ|O) =
P (O|ρ)∫∞

0 dρ′P (O|ρ′) , (29)

where we assume that prior probability for the hydrogen concentration is uniform, i.e. P (ρ) = P (ρ′). The
probability for the concentration to lie within a given range, (ρ1, ρ2), is then obtained by integrating the
above expression: P (ρ1 ≤ ρ ≤ ρ2|O) =

∫ ρ2
ρ1
p(ρ|O)dρ.

With 1 observation out of 6 trials (n = 1, m = 6), we obtain the probability distribution: p(ρ|O) =
30V (e−5ρV − e−6ρV ). We define the observable volume, V = 4/3πr3obs, to be a sphere around the Er3+ ion.
The observation of an H nuclear spin ∼2 nm away from the Er3+ ion resulted in a near full contrast peak
in the XY-16 sequence. However, farther H with weaker signals could also be observed provided that they
are above the noise floor by a margin. To be 5σ above the noise floor at the resonant time, τ0, we find
that a conditional rotation of Nα ' π/4 is sufficient, in contrast to Nα ' π for the observed interaction at
N = 16 pulses for XY-16. The corresponding reduction in interaction strength, by a factor of ∼4, allows for
a hydrogen located farther by a factor of ∼ 1.5 or about 3 nm away from the Er3+ ion. Therefore, we set
robs = 3 nm for the observable volume. Based on the probability distribution, we find that the Hydrogen
concentration is in the range 0.3 – 3.9 ×1018 cm−3 with 68% confidence, with the likeliest concentration at
1.6×1018 cm−3 (Fig. S3).
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FIG. S3: Estimating Hydrogen concentration. The probability distribution for the Hydrogen concen-
tration, p(ρ|O) (red), and the cumulative probability function P (ρ|O) =

∫ ρ
0 p(ρ

′|O)dρ′ (blue), as a function
of concentration in cm−3 units. The dashed lines indicate the 68% confidence range from 0.3×1018 cm−3

to 3.9×1018 cm−3. The probability distribution has a maximum at 1.6×1018 cm−3.

5 Nuclear spin environment

5.1 Shifts in precession frequency

When measuring the free precession of the nuclear spin (Fig. 2b,c of the main text), we observe discrete
shifts in the precession frequency of the nuclear spin. To explore this further, let’s look at an example

9



τc (μs)

00
01
10
11P (

|  
  )

P (
|  

  ) 0
1
mes.

it. 1
it. 2P (

|  
  )

(a)

(b)

(c)

60 65 70 75 80 85 90
0

1

0

1

0

1

FIG. S4: Observing frequency shifts. (a) The free precession signal s0(τc), which is expected to oscillate
at ω0, displays discrete shifts in frequency. This is manifested as a phase difference at the time scale above
for two different iterations of the experiment. (b) Simulated precession signal s0(τc)ij for each scenario of
the dark-spin pair initialization. (c) Simulated precession signal corresponding only to the d1 state, after
averaging over the d2 states. Both readout locations (dashed lines) allow for distinguishing between d1
states but with opposite populations.

provided in Fig. S4a of the same experiment, where two different iterations of the experiment are out of
phase with respect to each other, for the same precession times.

The frequencies are resolved in the FFT of the precession signal (Fig. 2c) and can be summarized as
ω = {ω0 + (−1)iA1 + (−1)jA2 : i, j ∈ (0, 1)} where ω0 is the mean precession frequency, A1 = 2.25 kHz
and A2 = 7.18 kHz are shifts in frequency. This motivates a simple model, where the nuclear spin interacts
with two ‘dark spins’, in the form Hdark = 2Iz(A1Iz,d1 + A2Iz,d2), where the precession frequency of the
nuclear spin is shifted by ±A1 and ±A2 depending on the state of dark spins d1 and d2. Adding Hdark
terms to the hyperfine interaction Hamiltonian, we get the following four-body Hamiltonian:

H̃ = 2Sz(A||Iz +A⊥Ix) + (ωL + 2A1Iz,d1 + 2A2Iz,d2)Iz (30)

Using the above Hamiltonian, we can simulate the expected signal s0(τc)ij for a Ramsey experiment (Eq. 12),
where the indices (i, j) corresponds to the dark spin states which shift the precession frequency. In particu-
lar, we observe that curves with opposite d2 states are roughly in phase with each other, while the d1 state
translates to a large phase offset, at the beginning of the time window in Fig. S4b. This can be understood
in terms of the phase difference accumulated due to d1 and d2 as a function of τc, φi(τc) = 2Ai(τc + 2Nτ0),
(N = 8) where the second term is a correction due to the finite duration of the CnNOTe operation, during
which the frequency of the nuclear spin is still shifted. This tells us that φ2(τc) = 2π at τc = 62.6 µs, such
that the any population readout near this time window will be insensitive to the state of d2.

Furthermore, the phase accumulated due to d1 at τc,1 = 72.19 µs and τc,2 = 73.14 µs is as large as
φ1(τc) ∼ 0.7π, such that the population is very sensitive to the d1 state. Although larger phases can be
accumulated for d1 at later times, the d2 state also becomes significant. Based on this model, we perform
readout of d1 by repeatedly measuring s0(τc) at τc,1 and τc,2. In Fig. S5a, we repeatedly perform the
Ramsey experiment at times τc,1 and τc,2. At these times, we observe anti-correlated jumps in the signal
that we attribute to quantum jumps of the d1 state, as expected from Fig. S4c. By thresholding based on
a histogram of Fig. S5b, we extract 98% readout fidelity for d1 and extract its lifetime by looking at the
frequency of jump events (Fig. S5c). The measurement time (29 seconds) between consecutive data points
in the Fig. S5a was small enough to observe d1 jumps occurring with a lifetime of 5 mins.

In order to observe d2, we work at a value of τc that accumulates a phase for d2 of φ2(τc) ∼ 1.2π, which
is also uncorrelated with the d1 state. Although d1 already contributes an appreciable phase here, there still
exist points in time where oscillations with a phase-offset will intersect such that the population is insensitive
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FIG. S5: Dark spin readout. (a) Repeated Ramsey measurements at two different τc reveal quantum
jumps of d1. (b) Distribution of the measured populations in (a) are unequally weighted bi-modal and
anti-correlated at the two τc. (c) Duration of the quantum jumps shown in (a) is consistent with a lifetime
of 5.19 ± 0.55 mins (black line is the fitted exponential decay). Inset: A representative jump event from
(a). (d) Cross-correlation measurement comparing time traces equivalent to (a) at τc with the same at
τc,1 (where we observe d1 jumps) in order to find a time point that is not correlated with the d1 state.
The vertical line indicates the point of no-correlation with the d1 state τc = 34.07 µs. (e) Repetitive
Ramsey measurements for d2 performed at τc = 34.07, displaying weaker amplitude jumps. (f) Population
histogram of d2 extracted from (d). (g) Measured spin relaxation times at varying repetition rates of
the CnNOTe operation. At low repetition rates, the spin relaxation time approaches an intrinsic value
T1,dark = 5.12± 0.13 mins for d1.

to the d1 state. The cross-correlation of time-traces s(τc) and s(τc,1), yields a point of no correlation with
the d1 state, which we use to readout d2 (Fig. S5d). By performing faster measurements (every 5.9 seconds),
we were able to observe quantum jumps associated with d2, revealing a bi-modal distribution (Fig. S5e,f).
The lifetime associated with d1 and d2 reveal a dependency on the rate of CnNOTe operations applied
(Fig. S5g), which suggests that d1 and d2 are perturbed by the probing of the nuclear spin.

As discussed in the main text, a direct interaction between the electron spin and the dark spins was
investigated using a DEER sequence [4] under the assumption that these were electron spins with 2 < g <
14, but the spectroscopy did not reveal such interactions. We can verify that the shift in frequency is not
due to a global effect, such as static magnetic field fluctuations, given the stable ground and excited spin
resonance frequency of the Er3+ ion. Here, we propose two mechanisms to explain the frequency shift.
d1 and d2 can be spin-1/2 nuclear spins in the YSO lattice: the hyrogen atom interacts with two nearby
nuclear spins with interaction strengths of 2 kHz and 7 kHz, respectively. Alternatively, d1 and d2 could
be represented by a single nuclear spin coupled to a tunneling hydrogen atom, such that the interaction
strength modulates between 5 kHz and 9 kHz, due to relative changes in their position. In order to explore
the origin of the local environment factor that cause the coupling of H with nearby nuclear spins, we perform
density functional theory (DFT) computation of H-related defect complexes in YSO and propose possible
defects that can explain the frequency shift.
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5.2 Density functional theory study of the origin of frequency shifts

Hydrogen is a ubiquitous impurity in semiconductors and insulators, as many growth and post-growth
processes introduce H. Here we perform a systematic study of the structure and formation energies of
hydrogen-related centers in YSO. Hydrogen can be present as hydrogen interstitials or as substitutional H
(HO), and can also form complexes with impurities or with vacancies. We consider impurities that have
nonzero nuclear spin and that based on chemical analysis are expected to be present in the sample: applying
these criteria, we focus on CdY and PO, which act as acceptors and can form complexes with H.

Our density functional theory (DFT) calculations are performed using the projector augmented wave
method implemented in the Vienna Ab-initio Simulation Package (VASP) [5, 6]. The plane-wave cutoff
energy is 500 eV. The hybrid exchange-correlation functional of Heyd, Scuseria, and Ernzerhof (HSE) [7] is
used with 25% mixing of Hartree-Fock exchange, which yields the direct band gap of 6.49 eV, in reasonable
agreement with the experimental band gap (6.14 eV) [8]. The computed lattice constants of YSO are a =
14.40 Å, b = 6.75 Å, c = 10.44 Å, β = 122.1◦, in very good agreement with the experimental values (a =
14.37 Å, b = 6.71 Å, c = 10.40 Å, β = 122.2◦) [9].
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FIG. S6: (a) Structure of Y2SiO5 (YSO). The unit cell is indicated and contains 64 atoms. (b) Coordination
of Y, Si, and O atoms in Y2SiO5

.

The crystal structure of YSO (with C/2m space group symmetry) is sketched in Fig. S6a. YSO has
two types of Y atoms (YI and YII), one type of Si atom, and five types of O atoms (OI, OII, OIII, OIV,
and OV). Fig. S6b summarizes the coordination of Y, Si, and O atoms. To calculate defect structures, we
construct a supercell with dimensions a × 2b × c, containing 128 atoms. We consider the following defect
structures that could involve H interacting with cations that have nuclear spin 1/2: H interstitials (Hi),
substitutional hydrogen (which can also be viewed as an oxygen vacancy–H complex) (HO), Si vacancy–H
complex (VSi–H), Y vacancy–H complex (VY–H), substitutional Cd–substitutional H complex (CdY–HO),
and substitutional P–H complex (PO–H).

The formation energy Ef(Dq) of a point defect D in charge state q is calculated as:

Ef(Dq) = E(Dq)− Ebulk +
∑

µini + qEF + ∆corr . (31)

Ef(Dq) is the total energy of the supercell containing defect D in the charge state q. Ebulk is the total
energy of the perfect supercell. |ni| is the number of atoms added (ni < 0) or removed (ni > 0) from the
system. µi is the chemical potential of species i and EF is the Fermi level, which is referenced to the valence
band maximum (VBM). ∆corr is a term that corrects for the finite size of charged supercells.

We define ∆µi as the deviation of the chemical potential from the reference states: µi = µi,ref + ∆µi.
For Y (Si), µi,ref is the energy of bulk Y (Si), and for oxygen, the reference is an O2 molecule. Assuming
thermodynamic equilibrium, the ∆µi are related by

2∆µY + ∆µSi + 5∆µO = ∆H f(Y2SiO5) (32)
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∆H f(Y2SiO5) is the formation enthalpy of YSO. The ∆µi are also limited by the formation of other
compounds: 2∆µY + 3∆µO < ∆H f(Y2O3), ∆µSi + 2∆µO < ∆H f(SiO2), and 2∆µH + ∆µO < ∆H f(H2O).
∆H f(Y2O3) = −19.23 eV, ∆H f(SiO2) = −8.97 eV, ∆H f(H2O) = −2.65 eV and are the formation enthalpy
of Y2O3, SiO2, and H2O. The constraints imposed by Y2O3, SiO2, and H2O define a stability region for
YSO, which is shown in Fig. S7a. We chose to use the O-rich, Si-rich (Fig. S7b) and O-poor, Si-rich
(Fig. S7c) conditions to present the formation energies.

Hi

O-rich, Si-rich 

HO

O-poor, Si-rich 

Hi HO

CdY_II-HO

CdY_II-HO

CdY_II

CdY_II

PO-H

PO-H

PO

PO

+1/-1

0/-1
+1/-1

(a) (b)

SiO2

Y2O3 Si-rich
O-poor

Y-rich
O-poor

Y-rich
O-rich

(c)

Si-rich
O-rich

FIG. S7: (a) Stability region for Y2SiO5 shaded in grey. The red (O-rich, Si-rich) and black (O-poor,
Si-rich) dots represent the choice of chemical potentials in this study. (b)-(c) Formation energy diagram of
defects under (b) O-rich, Si-rich and (c) O-poor, Si-rich (c) conditions

We then focused on identifying hydrogen positions that would be consistent with the observed frequency
shifts of 2 kHz and 7 kHz resulting from interaction with a spin-1/2 nucleus. From the two-body magnetic
dipole interaction Hamiltonian, we calculate the frequency shift as

A =
1

2

µ0µ
2
Ng1g2

4πr3
(
1− 3cos2θ

)
(33)

µN is the nuclear magneton, µ0 is the magnetic constant, g1 and g2 are the nuclear spin g-factors, r is the
distance between the two nuclei, and θ is the angle between the bond and the magnetic field. The maximum
shift is obtained when the magnetic field is aligned with the bond direction.

First, we examined whether interstitial or substitutional hydrogen interacting with host atoms (Y or
Si) could be responsible for the observed frequency shifts. The bottleneck, caused by the small nuclear spin
g-factor of Y, is identifying a location where H can be close enough to an Y atom to yield a 2 kHz frequency
shift. After examining many configurations, we found that the shortest H–Y distance is found in HO in a
+1 charge state (H+

O) (Fig. S8a). The corresponding H–Si distance is 1.5 Å. The H–Si distance of 1.5 Å can
lead to a 7 KHz frequency shift; but even the short H–Y distance (2.4 Å) leads to a frequency shift of only
0.4 kHz. Hydrogen interacting with Y and Si atoms thus cannot explain the observed frequency shifts.

We therefore consider interactions of hydrogen with unintentional impurities, for which Cd and P are
prime candidates. After extensive exploration of possible configurations, we propose the following two defect
complexes that yield magnetic coupling strengths in the vicinity of observed values: CdY-HO (Fig. S8b)
and PO-Hi (Fig. S8c).

CdY-HO (Fig. S8b) with a YII atom substituted by a Cd atom and an OIV atom substituted by a H
atom is stable in the neutral charge state over a wide range of the Fermi level. The formation energy is
2.12 eV under (O-rich, Si-rich) conditions, and 3.05 eV under (O-poor, Si-rich) conditions. The binding
energy, calculated as Ebind =Ef(CdYII

) + Ef(HOIV
) − Ef(CdY-HO) is positive (0.76 eV), which indicates

that the defect complex is more stable than spatially separated Cd−YII
and H+

O. The H–Cd distance is 2.4 Å
and the H–Si distance is 1.5 Å. The largest frequency shifts that these distances allow, assuming that the
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Si Si Si
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FIG. S8: Structures of defect complexes (a) HOIV
at q = +1, (b) CdY-HO, and (c) PO-Hi.

field is aligned with the bonds, is 2 kHz for H-111Cd coupling and 7 kHz for H-29Si coupling. However, the
Cd–H–Si bond angle of 120◦ implies that the magnetic field cannot be simultaneously aligned with each
bond, yielding smaller interaction strengths for a given field direction. For instance, if we assume that the
angle between the magnetic field and the H–Cd bond is 35◦ and 155◦ for the H–Si bond, then the H–Cd
coupling is 1.7 kHz and the H–Si coupling is 4.9 kHz.

PO-Hi (Fig. S8c) is also stable in the neutral charge state over a wide range of the Fermi level. The
formation energy is 2.45 eV under (O-poor, Si-rich) conditions. The defect complex is also more stable
than separated P−OIV

and H+
i , with Ebind = 0.85 eV. The H–Si distance is 2.2 Å, leading to a maximum

coupling strength of 2 kHz when the field is aligned with the bond. The H–P distance is 1.4 Å and due
to the g-factor of P being much larger than that of Si, this leads to a maximum coupling strength of 17
kHz. Since the P–H–Si angle is 69◦, taking the alignment of the magnetic field into account similarly lowers
H–P coupling. For instance, assuming that the angle between the magnetic field and bond is 10◦ for the
H–Si bond and 79◦ for the H–P bond, the H–Si coupling is still 2 kHz but the H–P coupling is 7 kHz.
Therefore, a field direction exists such that the PO-Hi complex yields the coupling strengths observed in
the experiment. However, the required magnetic field direction does not match the field direction set in
the experiment within error. At our field direction, we expect this complex to yield an H–Si coupling of 0.5
kHz and H–P coupling of 7.5 kHz.

We note that hydrogen can often occupy several inequivalent positions in the vicinity of the impurity
with similar energies; some of these positions could lead to alignments or distances that yield coupling
strengths with even closer agreement. Our calculations for the CdY-HO and PO-Hi complexes show that
the observed frequency shifts can be plausibly due to interactions within such defect complexes.
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