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We find an exact closed-form expression for the magnetostatic interaction energy between a point
magnet and a ring magnet in terms of complete elliptic integrals. The exact expression for the energy
exhibits an equilibrium point close to the axis of symmetry of the ring magnet. Our methodology
will be useful in investigations concerning magnetic levitation, and in the study of Casimir levitation.

I. INTRODUCTION

Configurations with cylindrical symmetry often admit
relatively simple solutions on the axis of symmetry, even
when the general solution off the axis is given in terms
of special functions or has no exact solution. A classic
example is that of the magnetic field due to a circular wire
carrying a uniform current, where the expression for the
magnetic field on the axis is given in terms of rational
functions and is usually derived in an introductory level
physics course [1], while the solution off the axis is given
in terms of complete elliptic integrals and is typically only
introduced in a graduate level course [1].
We show that the magnetostatic interaction energy be-

tween a point magnet and a ring magnet also admits ex-
act solutions in terms of complete elliptic integrals when
the point magnet is off the axis of symmetry of the ring
magnet and has a simple solution in terms of rational
functions when the point dipole is on the axis of the ring
magnet. The interaction energy in general exhibits an
equilibrium point close to the axis of symmetry with a
saddle point instability. The expression for energy pre-
sented here seems to have not been, to our surprise, re-
ported before. However, the corresponding expression
for the magnetic field has been discussed in the litera-
ture recently [2, 3]. The magnetic dipoles in their work
are constructed by assuming the existence of magnetic
monopoles, which in the static case being considered al-
lows the use of the methodologies developed in electro-
statics. The methodology presented here is a useful aca-
demic exercise, even though it presumes infinitely thin
magnets.
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We put forward two applications of the investigation
presented here. First is in the study of Casimir levita-
tion. The Casimir effect involves interactions between
materials with no net electric charge and no perma-
nent polarizations mediated by the electric and magnetic
fields induced from the quantum vacuum fluctuations.
Even though repulsion between anisotropically polariz-
able atoms were well known [4–8], perfectly conducting
nanoparticles were not expected to show repulsion from
interactions with the quantum electromagnetic vacuum
fluctuations. Thus, it was a surprise when in Ref. [9]
it was shown that the interaction between an anisotropi-
cally shaped conducting nanoparticle and a perfectly con-
ducting metal sheet with a circular aperture could lead
to repulsion. Even though an analytic derivation of the
result in Ref. [9] remains unsolved [10–12], a partial un-
derstanding of the repulsion has been made plausible by
deriving analogous results in the non-retarded van der
Waals regime [13] and in the retarded Casimir-Polder
regime [14–18]. A drawback of all of the above investiga-
tions has been the confinement of the nanoparticle to the
axis of symmetry in the configuration. Even though it is
clear that the nanoparticle is unstable in the transverse
directions to the axis in the above considerations, the lim-
itation of being on the axis practically does not allow any
stability analysis. Before we embark on evaluating the
Casimir-Polder interaction energy between an anisotrop-
ically polarizable nanoparticle and an anisotropically po-
larizable circular ring without restricting the nanoparti-
cle to being on the axis, we here explore the analogous
configuration of a permanent magnetic dipole moment
interacting with a circular ring with permanent polar-
ization. The methodology we use here can be immedi-
ately used to study the corresponding Casimir interac-
tion, which will be presented elsewhere.

The second application is in the study of the magnetic
levitation of a LevitronTM [19]. In particular, we would
like to investigate if the stability of the LevitronTM re-
quires the presence of gravity. That is, can a spinning
point magnet be stabilized above a ring magnet in the ab-
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sence of gravity? The interaction energy presented here
serves as the starting point for this stability analysis.
In the next section we describe our configuration of a

point magnet and a ring magnet and derive the expres-
sion for the interaction energy as an integral over the az-
imuth angle. In Section III we give a brief description of
complete elliptic integrals. After introducing complete
elliptic integral of the first kind K(k) and second kind
E(k) we define elliptic integrals π3(k) and π5(k), which
is not the traditional approach. It should be possible
to express the elliptic integrals π3(k) and π5(k) in terms
of the traditional elliptic integral of the third kind. In
Section IV we derive the expression for the interaction
energy between a point magnet and a ring magnet in
terms of the elliptic integrals introduced in Section III.
In the final section we present our outlook concerning the
investigation of Casimir levitation.

II. MAGNETOSTATIC ENERGY

Magnetostatics is governed by the Maxwell equations
stating that the magnetic field B(r) is divergence free,

∇ ·B = 0, (2.1)

and that current densities j(r) are sources for the curl of
the magnetic field,

∇×B = µ0j. (2.2)

The conservation of charge in the static scenario requires
the current densities to be divergence free,

∇ · j = 0. (2.3)

The constraint of a divergenceless magnetic field in
Eq. (2.1) allows the construction

B = ∇×A (2.4)

in terms of the magnetic vector potential A(r). In con-
junction with the Coulomb gauge,

∇ ·A = 0, (2.5)

this allows the solution for the vector potential

A(r) =
µ0

4π

∫

d3r′
j(r′)

|r− r′| . (2.6)

The magnetic dipole moment of a given current density
is defined using the expression

m =
1

2

∫

d3r′r′ × j(r′). (2.7)

For a circular current carrying loop of wire we have
m = IA, where I is the current in the wire and A is
the area of the circular loop. A point magnetic dipole is

an idealized construction with I → ∞ and A→ 0, keep-
ing the product m = IA fixed. We shall be interested
in the interaction between a point magnetic dipole m1

and a ring magnet constructed out of a uniform circular
distribution of point dipoles m2.
The magnetic vector potential at position r due to a

point magnetic dipole moment m2 placed at position r′

is

A2(R) =
µ0

4π

m2 ×R

R3
, (2.8)

where

R = r− r′. (2.9)

The associated magnetic field due to the point magnet is
obtained using

B2 = ∇×A2 (2.10)

and leads to the expression

B2(R) =
µ0

4π

[

3R̂R̂− 1
]

·m2

R3
, r 6= r′, (2.11)

where R̂ = R/R. This expression for the magnetic field
in Eq. (2.11) is missing a term µ0m2δ

(3)(r − r′) which
contributes only at r = r′ and is necessary to satisfy the
constraint

∇ ·B2 = 0. (2.12)

The magnetostatic interaction energy between another
point magnetic dipole m1 and the dipole m2 is given by

U(r) = −m1 ·B2(r), (2.13)

where r now is the position of the point magnet m1.
A ring magnet is described by its magnetic moment

per unit length

λ2 =
dm2

adφ
, (2.14)

where a is the radius of the ring and adφ is the differential
arc length. Let us choose the magnetic moment of the
ring to be uniform and along the axis of symmetry of the
ring, say ẑ, such that

λ2 = λ2ẑ. (2.15)

We further choose the ring to be in the z = 0 plane
centered at the origin. Refer Fig. 1. Let us keep the
orientation of the point magnet arbitrary relative to the
ring magnet and describe it as

m1 = m1n̂, (2.16)

where

n̂ = sin θ1 cosφ1x̂+ sin θ1 sinφ1ŷ + cos θ1ẑ, (2.17)
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FIG. 1. A point magnet of magnetic dipole moment
m1 = m1n̂ at height z above a ring magnet of radius a with
uniform magnetic dipole moment per unit length λ2. The
point magnet is a distance ρ away from the axis of symmetry
of the ring magnet. The dipole moment subtends an angle θ1
with respect to the axis of symmetry, that is, n̂ · ẑ = cos θ1.

such that

n̂ · ẑ = cos θ1 (2.18)

with its position

r = ρ cosφx̂+ ρ sinφŷ + zẑ. (2.19)

Note that

n̂ · r = ρ sin θ1 cos(φ− φ1), (2.20)

which illustrates that the vectorsm1 and λ2 representing
the orientation of the dipoles and r are not in the same
plane.
Differential contribution to the interaction energy from

the interaction between the point magnet and a differen-
tial section of the ring magnet is given by

dU = −m1 · dB2, (2.21)

where using Eq. (2.11)

dB2(R) =
µ0

4π

[

3R̂R̂− 1
]

· dm2

R3
(2.22)

with r′ now constrained to be on the ring by z′ = 0 and
|r′| = a such that

r′ = a cosφ′x̂+ a sinφ′ŷ + 0ẑ. (2.23)

Using Eq. (2.14) the differential interaction energy takes
the form

dU =
µ0

4π

m1 ·
[

1− 3R̂R̂
]

· λ2

R3
adφ′ (2.24)

from which the total interaction energy can be calculated
by integrating over angle φ′ and is given by

U =
µ0

4π
m1λ2

∫ 2π

0

adφ′
[

(n̂ · ẑ)
R3

− (n̂ ·R)(R · ẑ
R5

]

,

(2.25)

where

R =
√

z2 + a2 + ρ2 − 2aρ cos(φ′ − φ). (2.26)

We have (n̂ · ẑ) using Eq. (2.18),

R · ẑ = z, (2.27)

and

n̂ ·R = ρ sin θ1 cos(φ−φ1)−a sin θ1 cos(φ′−φ1)+z cos θ1.
(2.28)

Using these expressions the magnetostatic interaction en-
ergy between the point magnet and the ring magnet is
given by

U(z, ρ, φ− φ1, θ1) =
µ0

4π

m1(2πλ2)

a2

∫ 2π

0

dφ′

2π

×
[

a3 cos θ1
R3

− 3a3z2 cos θ1
R5

− 3a3zρ sin θ1 cos(φ− φ1)

R5

+
3a4z sin θ1 cos(φ

′ − φ1)

R5

]

. (2.29)

In the special circumstance when the point magnet is
positioned on the axis of the ring we have ρ = 0. This
allows the integrals on φ′ in Eq. (2.29) to be completed
and yields an exact expression for the interaction energy
for this scenario as

U(z, 0, φ− φ1, θ1) =
µ0

4π

m1(2πλ2)

a2
a3(a2 − 2z2)

(a2 + z2)
5

2

cos θ1,

(2.30)
which has an extremum at

z = h = ±a
√

3

2
. (2.31)

When the point magnet is positioned at this extremum
point z = h on the axis we have

U(h, 0, φ− φ1, θ1) = −µ0

4π

m1(2πλ2)

a2
8

25

√

2

5
cos θ1.

(2.32)
In general, for ρ 6= 0, the integrals on φ′ can not be com-
pleted in terms of elementary functions. However, they
can be expressed in terms of complete elliptic integrals.
In the following section, we shall evaluate the exact and
approximate form for the elliptic integrals required to
express Eq. (2.29) for ρ 6= 0 off the axis.

III. COMPLETE ELLIPTIC INTEGRALS

Complete elliptic integrals of the first and second kind
can be defined using the integral representations [20, 21]

K(k) =

∫ π

2

0

dψ
1

√

1− k2 sin2 ψ
, (3.1a)

E(k) =

∫ π

2

0

dψ

√

1− k2 sin2 ψ, (3.1b)
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respectively. We will be interested in the domain 0 ≤ k <
1. These integrals can not be completed and expressed
in terms of elementary functions. However, for special
values they can be evaluated easily. For example, we can
verify that

K(0) =
π

2
, (3.2a)

E(0) =
π

2
. (3.2b)

Further, we can verify that

E(1) = 1. (3.3)

Note that

K(1) =

∫ π

2

0

dψ

cosψ
(3.4)

is divergent. To see the nature of this divergence we can
introduce a cutoff parameter δ > 0 and write

K(1) = lim
δ→0

∫ π

2
−δ

0

dψ

cosψ
, (3.5)

which when evaluated using the identity d(secψ +
tanψ) = secψ(secψ + tanψ)dψ yields

K(1) ∼ ln 2− ln δ − δ2

12
+O(δ)4 (3.6)

and reveals that K(1) has a logarithmic divergence. The
plots of K(k) and E(k) as functions of k for 0 ≤ k < 1
are shown in Fig. 2. The complete elliptic integrals in
Eqs. (3.1) have the power series expansions

K(k) =
π

2

∞
∑

n=0

[

(2n)!

22n(n!)2

]2

k2n (3.7a)

=
π

2

[

1 +
1

4
k2 +

9

64
k4 + . . .

]

, (3.7b)

E(k) =
π

2

∞
∑

n=0

[

(2n)!

22n(n!)2

]2
k2n

(1− 2n)
(3.7c)

=
π

2

[

1− 1

4
k2 − 3

64
k4 − . . .

]

. (3.7d)

The leading order contribution in the power series expan-
sions are from K(0) and E(0). The next-to-leading order
contributions in the above series expansions are evaluated
by expanding the radical in Eqs.(3.1) as a series using

1√
1− x

= 1 +
1

2
x+ . . . , (3.8a)

√
1− x = 1− 1

2
x+ . . . . (3.8b)

Either the integral representations or the series expan-
sions are sufficient to investigate the properties of the
complete elliptic integrals. Here we shall primarily use

0.5 1

1

π
2

π
K(k)

E(k)

k

FIG. 2. Complete elliptic integrals of the first kind K(k) and
of the second kind E(k), plotted as a function of k. Both the
functions evaluate to π/2 for k = 0. For k → 1 the ellip-
tic integral of the second kind approaches 1 and the elliptic
integral of the first kind grows logarithmically.

the integral representations, and depend on the series ex-
pansions occasionally.
To get some insight for complete elliptic integrals we

mention three physical situations where one encounters
these functions. Firstly, if we had sought to evaluate the
perimeter of an ellipse during our exposure to geometry,
we would have encountered the complete elliptic integral
of the second kind. The perimeter C of an ellipse, de-
scribed by the equation

x2

a2
+
y2

b2
= 1 (3.9)

and characterized by the eccentricity

e =

√

1− b2

a2
(3.10)

in terms of the semi-major axis a and semi-minor axis
b, is given in terms of complete elliptic integral of the
second kind as

C = 4aE(e). (3.11)

A circle is an ellipse of zero eccentricity (a = b) and has
the circumference

C → 4aE(0) = 2πa (3.12)

using E(0) = π/2. Secondly, the period of oscillations T
of the simple pendulum as a function of the amplitude of
oscillations φ0 is given in terms of the complete elliptic
integral of the first kind as

T = 2π

√

l

g

2

π
K

(

sin
φ0
2

)

. (3.13)

For small amplitudes (φ0 ≪ 1) this reproduces the classic
result

T → 2π

√

l

g

2

π
K (0) = 2π

√

l

g
(3.14)

using K(0) = π/2. Thirdly, one encounters elliptic in-
tegrals while finding the magnetic field due to a circular
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wire carrying a steady current, at points away from the
axis of symmetry of the circular wire [1].
Derivatives of the elliptic integrals with respect to their

arguments are calculated by evaluating the derivatives of
the corresponding integrands and then rewriting the re-
sultant integrals in terms of elliptic integrals. This pro-
cess is simplified by introducing new elliptic integrals.
The derivative of the complete elliptic integral of the sec-
ond kind leads to the integral

dE

dk
= −k

∫ π

2

0

dψ
sin2 ψ

√

1− k2 sin2 ψ
, (3.15)

which can be rewritten in the form

dE

dk
=

1

k

∫ π

2

0

dψ

[

− 1 + 1− k2 sin2 ψ
]

√

1− k2 sin2 ψ
(3.16)

to recognize the identity

dE

dk
= −K(k)

k
+
E(k)

k
. (3.17)

Following the same steps for K(k) yields

dK

dk
=
π3(k)

k
− K(k)

k
, (3.18)

where we introduced a new elliptic integral

π3(k) =

∫ π

2

0

dψ
1

(1 − k2 sin2 ψ)
3

2

. (3.19)

The new elliptic integral π3(k) can be written in terms
of K(k) and E(k). To obtain this result, we rewrite the
integral in Eq. (3.15) in the form

dE

dk
= k

∫ π

2

0

dψ
sinψ

√

1− k2 sin2 ψ

d

dψ
cosψ (3.20)

and integrate by parts to write

dE

dk
= k

∫ π

2

0

dψ
d

dψ

[

sinψ cosψ
√

1− k2 sin2 ψ

]

−k
∫ π

2

0

dψ cosψ
d

dψ

[

sinψ
√

1− k2 sin2 ψ

]

. (3.21)

The first integrand is a total derivative and thus con-
tributes only at the boundary, and yields zero in this
case at both ends. The second integral, after evaluating
the derivative in the integrand, takes the form

dE

dk
=

∫ π

2

0

dψ
−k cos2 ψ

(1− k2 sin2 ψ)
3

2

. (3.22)

Rewriting the numerator of the integrand as

− k cos2 φ =
(1− k2)

k
− (1− k2 sin2 ψ)

k
(3.23)

allows us to recognize the integrals as

dE

dk
= π3(k)

(1 − k2)

k
− K(k)

k
. (3.24)

Thus, we have derived two separate expressions for
dE/dk in Eqs. (3.17) and (3.24). Equating the right hand
sides of these equations allows us to find an identity for
π3(k) in terms of E(k),

π3(k) =
E(k)

(1− k2)
. (3.25)

Using the power series expansion for E(k) together with
the power series expansion of 1/(1 − k2) we obtain the
power series expansion for π3(k) as

π3(k) =
π

2

[

1 +
3

4
k2 +

45

64
k4 + . . .

]

. (3.26)

When we follow the steps leading to Eq. (3.17) for π3(k)
we obtain

dπ3
dk

=
3

k

[

π5(k)− π3(k)
]

, (3.27)

where

π5(k) =

∫ π

2

0

dψ
1

(1 − k2 sin2 ψ)
5

2

. (3.28)

Starting from the definition of K(k) we have the deriva-
tive

dK

dk
= k

∫ π

2

0

dψ
sin2 ψ

(1 − k2 sin2 ψ)
3

2

. (3.29)

Using the identity sin2 ψdψ = − sinψd cosψ, like earlier
in Eq. (3.20), we integrate by parts to obtain

dK

dk
=

∫ π

2

0

dψ
k cos2 ψ(1 + 2k2 sin2 ψ)

(1− k2 sin2 ψ)
5

2

. (3.30)

Again, rewriting the numerator as

cos2 ψ(1 + 2k2 sin2 ψ) = −3(1− k2)

k2

+
(5− 2k2)

k2
(1 − k2 sin2 ψ)− 2

k2
(1 − k2 sin2 ψ)2 (3.31)

leads to the identity

dK

dk
= −3(1− k2)

k2
π5(k) +

(5− 2k2)

k2
π3(k)−

2

k2
K(k).

(3.32)
Using Eqs. (3.18) and (3.32) we have

π5(k) =
2(2− k2)

3(1− k2)
π3(k)−

K(k)

3(1− k2)
. (3.33)

We can further replace π3(k) Eq. (3.25) to write

π5(k) =
2(2− k2)

3(1− k2)2
E(k)− K(k)

3(1− k2)
. (3.34)
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The power series expansion for π5(k) yields

π5(k) =
π

2

[

1 +
5

4
k2 +

105

64
k4 + . . .

]

. (3.35)

For the present discussion it is also handy to have the
series expansion

(

π5(k)−
2

k2

{

π5(k)− π3(k)
}

)

=
π

2

[

0− 5

8
k2 − 35

32
k4 + . . .

]

. (3.36)

IV. MAGNETOSTATIC ENERGY IN TERMS

OF COMPLETE ELLIPTIC INTEGRALS

To express the magnetostatic interaction energy in
Eq. (2.29) in terms of elliptic integrals, we start by substi-
tuting φ′′ = φ′ − φ, which takes the limit of integrations
from −φ to 2π−φ. Since the integration is a sum, it does
not care for the order as long as it completes a period.
Thus, we can switch the limits of integration to go from
−π to +π. This leads to

U =
µ0

4π

m1(2πλ2)

a2

∫ π

−π

dφ′′

2π

[

a3 cos θ1
R3

− 3a3z2 cos θ1
R5

−3a3zρ sin θ1 cos(φ− φ1)

R5

+
3a4z sin θ1 cos(φ

′′ + φ− φ1)

R5

]

, (4.1)

where, now, R2 = z2 + a2 + ρ2 − 2aρ cosφ′′. The inte-
gral associated with the fourth term evaluates partly to
zero, after using cos(φ′′ + φ− φ1) = cosφ′′ cos(φ− φ1)−
sinφ′′ sin(φ−φ1), because the integrand containing sinφ′′

is odd, and the rest being even are twice the value when
integrating from 0 to π. Thus,

U =
µ0

4π

m1(2πλ2)

a2

∫ π

0

dφ′′

2π

[

2a3 cos θ1
R3

− 6a3z2 cos θ1
R5

−6a3z sin θ1 cos(φ− φ1)(ρ− a cosφ′′)

R5

]

. (4.2)

To prepare the denominator for the elliptic integrals we
substitute φ′′ = π − φ′, which amounts to integrating in
the reverse order. This amounts to replacing cosφ′ →
cos(π − φ′) = − cosφ′. That is,

U =
µ0

4π

m1(2πλ2)

a2

∫ π

0

dφ′

2π

[

2a3 cos θ1

(a2 + z2 + ρ2 + 2aρ cosφ′)
3

2

− 6a3z2 cos θ1

(a2 + z2 + ρ2 + 2aρ cosφ′)
5

2

−6a3z sin θ1 cos(φ − φ1)(ρ+ a cosφ′)

(a2 + z2 + ρ2 + 2aρ cosφ′)
5

2

]

. (4.3)

Using the trigonometric identity cosφ′ = 1− 2 sin2(φ′/2)
and substituting φ′/2 → φ′ afterwards, we obtain

U =
µ0

4π

m1(2πλ2)

a2

√

a

ρ

∫ π

2

0

dψ

2π

[

ak3 cos θ1

2ρ(1− k2 sin2 ψ)
3

2

− 3z2k5 cos θ1

8ρ2(1 − k2 sin2 ψ)
5

2

− 3zak5 sin θ1 cos(φ− φ1)

8ρ2(1− k2 sin2 ψ)
5

2

×
{ρ

a
+ (1− 2 sin2 ψ)

}

]

. (4.4)

We can recognize the elliptic integrals π3(k) and π5(k)
introduced in Eqs. (3.19) and (3.28), respectively, in the
first two integrals and in the first term of the third inte-
gral. The elliptic integrals here are written in terms of
the argument k defined using

k2 =
4aρ

z2 + (a+ ρ)2
. (4.5)

The second term in the third integral can be expressed
in terms of elliptic integrals as

∫ π

2

0

dψ
(1− 2 sin2 ψ)

(1− k2 sin2 ψ)
5

2

=

(

π5(k)−
2

k2

{

π5(k)− π3(k)
}

)

. (4.6)

Then, in terms of elliptic integrals, we obtain an exact
analytic expression for the magnetostatic interaction en-
ergy between the point dipole and the ring magnet as

U(z, ρ, φ− φ1, θ1) =
µ0

4π

m1(2πλ2)

a2

√

a

ρ

1

4

2

π

[

1

2

a

ρ
cos θ1k

3π3(k)−
3

8

(

z2

ρ2
cos θ1 +

z

ρ
sin θ1 cos(φ − φ1)

)

k5π5(k)

−3

8

a

ρ

z

ρ
sin θ1 cos(φ− φ1)k

5

(

π5(k)−
2

k2

{

π5(k)− π3(k)
}

)

]

. (4.7)

The expression for the interaction energy in Eq. (4.7) is
valid for arbitrary position and orientation of the point
magnet. We shall proceed to list some special cases of

positions and orientations, which are expected to give
insight into the structure of the interaction energy.

In the special case when the point magnet is positioned
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0 a 2a 3a 4aa2a3a4a
−4a

−3a

−2a

−a

0

a

2a

3a

4a

ρ

z

0.0 0.5 1.0
k

FIG. 3. Contour plot of the parameter k defined in Eq. (4.5)
as a function of ρ and z. In the figure, k = 0 corresponds
to the z axis where ρ = 0, and k = 1 corresponds to the
ring described by ρ = a. The region corresponding to k ≪ 1
consists of points very close to the z axis.

on the axis of symmetry of the ring magnet we have
ρ = 0, which sets k = 0. We keep the orientation of
the point magnet arbitrary. The parameter 0 ≤ k < 1
spans the complete region around the ring magnet. k = 1
corresponding to the ring magnet itself, given by ρ = a
and z = 0, which can not be occupied by the point mag-
net. The region of space around the ring magnet, as
described by the parameter k in terms of ρ and z is illus-
trated in Fig. 3. Using the leading order contributions in
Eqs.(3.26) and (3.35),

π3(k) =
π

2

[

1 +O(k2)
]

, (4.8a)

π5(k) =
π

2

[

1 +O(k2)
]

, (4.8b)

and Eq.(3.36),

(

π5(k)−
2

k2

{

π5(k)− π3(k)
}

)

=
π

2

[

0 +O(k2)
]

, (4.9)

and limρ→0 k
2/ρ = 4a/(z2 + a2), in Eq. (4.7), we repro-

duce the interaction energy in Eq. (2.30) successfully, for
this particular case. This serves as a partial check for the
exact expression in Eq. (4.7).

For the special case when the orientation of the point

magnet is parallel to the axis of the ring magnet we have

U(z, ρ, φ− φ1, 0) =
µ0

4π

m1(2πλ2)

a2

(

a

ρ

)
3

2 k3

8

× 2

π

[

π3(k)−
3z2k2

4aρ
π5(k)

]

(4.10)

for arbitrary position of the point magnet. Observe that
it is independent of the variable φ representing the az-
imuth angle of the position of the point magnet leading to
axial symmetry, in addition to the trivial independence
in orientation variable φ1 because of θ1 = 0. Further, we
have

U
(

z, ρ,
π

2
, θ1

)

= cos θ1 U(z, ρ, φ− φ1, 0). (4.11)

The interpretation is that, when the azimuthal plane of
position of the point dipole is perpendicular to the az-
imuthal plane of its orientation, the energy is simply a
scaled version of an axially oriented point magnet. As a
consequence of Eq. (4.11) we have the interaction energy
to be zero when the orientation of the point magnet is
perpendicular to the position vector of the point magnet,
θ1 = π/2. That is,

U
(

z, ρ,
π

2
,
π

2

)

= 0. (4.12)

Next, if we have θ1 = π/2 with arbitrary φ− φ1 we have

U
(

z, ρ, φ− φ1,
π

2

)

=
µ0

4π

m1(2πλ2)

a2

√

a

ρ

3zk5

32ρ
cos(φ− φ1)

× 2

π

[

π5(k) +
a

ρ

(

π5(k)−
2

k2

{

π5(k)− π3(k)
}

)

]

.(4.13)

V. CONCLUSION AND OUTLOOK

In Eq. (4.7) we have presented an exact expression
for the magnetostatic interaction energy between a point
magnet and a ring magnet in terms of complete elliptic
integrals. Starting from this energy expression we can an-
alyze the stability of the point magnet. Our configuration
is essentially that of a massless point-like LevitronTM, the
stability analysis of which has been discussed in Ref. [19].
However, the investigation in Ref. [19] is assumed to be
on the axis of symmetry. Our expression for energy de-
rived here allows an accurate analytical derivation of the
stability. This requires us to find the force on the point
dipole, which is given in terms of the derivatives of the
elliptic integrals in the energy. However, to find the sta-
bility points this would amount to finding the zeros of
an expression involving elliptic integrals. This will in-
evitably force us to depend on numerics. However, since
the stability points are expected to be close to the axis
we will be able to depend on the series expansions and
obtain analytic perturbative expressions. This will be
explored in another discussion elsewhere.
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Our primary long-term goal is to discuss Casimir lev-
itation, as proposed in and around FIG. 16 of Ref. [18].
Here we outline how the methodology presented here
can be immediately used to derive the corresponding
Casimir-Polder interaction energy between a polarizable
atom of polarizability

α = α1n̂n̂ (5.1)

and a polarizable ring of radius a with electric suscepti-
bility

χ = σ2ẑẑδ(z
′ − 0)δ(ρ′ − a). (5.2)

Here n̂ is the principal axis of polarization and is chosen
to be given using Eq. (2.17). Similarly, ẑ is the direction
of polarization of the ring. The position of the atom is r
and chosen to be given using Eq. (2.19), and a point on
the ring is described by r′ given using Eq. (2.23), Thus,
the parameters in the problem are equivalent to those of
the magnetic configuration presented in this article. The
Casimir-Polder interaction energy between the atom and
the ring is given using Eq. (41) in Ref. [18], which can
rewritten in terms of the parameters in this article as

U = − ~c

32π2

∫

d3x

[

13
tr(α · χ)
R7

− 56
(R · α · χ ·R)

R9

+63
(R · α ·R)(R · χ ·R)

R11

]

, (5.3)

where the vector R is given by Eq. (2.9) and the magni-
tude R is given by Eq. (2.26). In Ref. [18] the atom was
confined on the symmetry axis and it led to the signifi-
cantly simplified expression for energy in Eq. (103) there.
When we do not restrict the atom to be on the axis of
symmetry we have the expression for energy

U(z, ρ, φ− φ1, θ1) = −~c α1σ2a

32π2

∫ 2π

0

dφ′
[

13
(n̂ · ẑ)2
R7

−56
(R · n̂)(n̂ · ẑ)(ẑ ·R)

R9
+ 63

(R · n̂)2(ẑ ·R)2

R11

]

,(5.4)

where (n̂ · ẑ), (R · ẑ), and (R · n̂), are given using
Eqs. (2.18), (2.27), and (2.28), respectively. The expres-
sion for energy in Eq. (5.4) is the analog of our expression
for magnetostatic energy in Eq. (2.29). Using the meth-
ods used in this article we believe that the three inte-
grals in φ′ can be completed in terms of elliptic integrals.
The results will be reported in a separate discussion else-
where.
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