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We consider finite ribbons of graphene with armchair orientation of their edges to study in detail
impurity effects on specific Dirac-like modes. In the framework of Anderson hybrid model of impurity
perturbation, a possibility for Mott localization and for opening of a mobility gap under local
impurity perturbations is found and analyzed in function of this model parameters: the impurity
energy level, its hybridization with the host Dirac modes, and the impurity concentration. Possible
electronic phase states in such disordered system and subsequent phase transitions between them
are discussed.
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I. INTRODUCTION

Between electronic properties of two-dimensional (2D)
graphene layer, the presence of linear gapless quasiparti-
cle modes, or 2D Dirac modes, is especially notable by
defining unusual physical effects in graphene [1–3]. These
modes are also a source for even finer, 1D Dirac modes,
in graphene nanoribbons [4–6] with special orientation of
their edges and special adjustment of their atomic width
[7].

A broad family of Dirac semi-metals is of great inter-
est for modern electronics, in particular, their behavior
under doping by different impurities and the resulting re-
structuring of quasiparticle spectrum. Comparing with
the known impurity effects in common semiconductors
and in 2D graphene, the doped graphene nanoribbons
can be expected to permit even higher sensitivity to var-
ious external controls and their study may deepen our
general knowledge of disorder physics.

This work continues the recent study of impurity ef-
fects in graphene nanoribbons [8], focusing on their arm-
chair edge orientation and their width adjusted for pres-
ence of Dirac-like modes in the electronic spectrum. In
this course, we study various regimes of spectrum restruc-
turing under impurity perturbation in function of pertur-
bation parameters and compare the obtained results with
the known such effects in other electronic materials.

The following consideration begins from the descrip-
tion of an armchair graphene nanoribbon (AGNR) and
its spectral structure in terms of the second quantization
Hamiltonian (Sec. II) and the related Green functions
(GFs, Sec. III). The perturbation of Hamiltonian by
impurity adatoms within the Anderson hybrid model is
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introduced in Sec. IV, giving the solutions for perturbed
GFs in the T-matrix form and checking for Mott localiza-
tion of perturbed quasiparticles. The analysis of possible
electronic phase states in doped AGNR in function of
perturbation parameters is developed in Secs. V, VI and
compared with the known behaviors of analogous elec-
tronic materials. The final discussion of the obtained
results with suggestions for their possible practical use is
presented in Sec. VII. An additional check of the solu-
tions for 1D modes, beyond the T-matrix framework, is
done in Appendix.

It is our honour to dedicate this paper to 95th birth-
day of a prominent solid state theorist Emmanuel Iosi-
fovich Rashba. His brilliant scientific career began in
his native city Kyiv, Ukraine’s capital, where he studied,
worked for a long time and formed as a physicist under
an outstanding supervise by S.I. Pecar. Rashba’s results
in non-ideal molecular crystal optics, in semiconductors
theory, and, especially, in spintronics the very emergence
of which was mostly due to his discovery of a new type
spin-orbit coupling, essentially promoted the understand-
ing of processes and phenomena in electronic systems of
various dimensionalities.

II. HAMILTONIAN AND GREEN FUNCTIONS

Graphene armchair nanoribbon can be seen as a pe-
riodic sequence of N segments where each segment is a
slant stack of M layers (collinear between the segments)
and each layer consists of two atomic sites (of graphene a-
and b-types, see Fig. 1). The respective local electronic
states in mth layer of nth segment are generated by the
local operators a†n,m and b†n,m. Longitudinal translational
invariance is imposed through the Born-von Karman clo-
sure of the Nth to the 1st segment. For an AGNR with
M layers (M -AGNR) and the nearest neighbor hopping
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FIG. 1: Graphene nanoribbon with armchair orientation of its
edges. Blue dashed lines delimit slant segments n = 1, . . . , N .
Each segment extends along the graphene elementary trans-
lation vector a1 and includes m = 1, . . . ,M layers (red
dashed lines) with a-type (white) and b-type (black) atomic
sites. The sequence of segments has its longitudinal period
a = |a1 + a2|. The carbon dangling bonds at the edges are
passivated by hydrogens (small circles).

t, the related tight-binding Hamiltonian reads:

Htb = t

{
N∑
n=1

[
M∑
m=2

a†n,m (bn,m + bn−1,m+1

+ bn,m−1) + a†n,1 (bn,1 + bn−1,2)
]

+

M−1∑
m=1

a†1,mbN,m+1 + h.c.

}
. (1)

The last sum in Eq. 1 just generates the longitudinal
translation invariance and suggests the Fourier-transform
to 1D-wave operators. The longitudinal coordinates of a-
and b-sites in units of the longitudinal period a = |a1+a2|
define this transform as:

αk,m =
1√
N

N∑
n=1

ei(2πk/N)(ξn,m−1/6)an,m,

βk,m =
1√
N

N∑
n=1

ei(2πk/N)(ξn,m+1/6)bn,m, (2)

where ξn,m = n + (m + 1)/2 is the longitudinal coordi-
nate of the center of mth layer from nth segment (see
an example in Fig. 1). This readily diagonalizes the
Hamiltonian, Eq. 1, in the k numbers. If the AGNR is
macroscopically long, N → ∞, one can pass to a quasi-
continuous momentum variable: 2πk/N → k (measured
in a−1 units). Also, for simplicity, the energy ε will be
measured in units of t.

Then the system dynamics in the transversal m-index
can be considered at a fixed longitudinal k-momentum,
and the overall spectrum structure results qualitatively
defined by the AGNR width M . In the known analytic
approach by Wakabayashi et al [7, 9, 10], 2M eigen-states

at given k are taken as running k-waves superposed by
standing waves in the transversal q-momentum, subject
to the open edge condition (reaching a node when con-
tinued by a half-period beyond an AGNR edge). Namely,
they are pairs of standing waves with discrete momentum
values:

qj =
πj

M + 1
, j = 1, . . . ,M, (3)

being just the combinations (symmetric and antisymmet-
ric in a- and b-sites) of 1D-projected graphene states.

The related eigen-energies are simple uniform 1D-
projections of the 2D graphene spectrum for transversal
momentum values qj by Eq. 3:

εj,k =
√

1 + 4 cos k2 cos qj + 4 cos2 qj , (4)

for conduction sub-bands (and −εj,k for valence sub-
bands). The 1D Brillouin zone (BZ) for all the 2M sub-
bands is defined within the 0 ≤ k ≤ 2π range and the
respective secular determinant reads:

det(ε− Ĥ) =

M∏
j=1

(
ε2 − εj,k2

)
. (5)

The eigen-state associated to the (j, k)-mode is a com-
bination of the running k-wave and the standing qj-wave
[10] with its amplitudes on a- and b-sites in m-layer:

A(j,k)
m = − e−iϕj,k

√
M + 1

sinmqj ,

B(j,k)
m =

eiϕj,k

√
M + 1

sinmqj , (6)

where the phase is defined by the relation:

ϕj,k =
1

2
arctan

sin k
2

cos k2 + 2 cos qj
+
k

6
. (7)

The standing waves are orthonormalized through the re-
lations:

M∑
j=1

sinmqj sinm′qj =
M + 1

2
δm,m′ ,

M∑
m=1

sinmqj sinmqj′ =
M + 1

2
δj,j′ . (8)

Then we construct the eigen-mode operators ψ±j,k from
the wave operators αm,k and βm,k by Eq. 2 in order to
reproduce the mode amplitudes by Eq. 6:

ψ±j,k =
1√

M + 1

M∑
m=1

sinmqj
(
eiϕj,kβm,k

∓ e−iϕj,kαm,k
)
. (9)
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In their basis, the Hamiltonian, Eq. 1, turns fully diago-
nal:

Htb =
∑
j,k

εj,k

(
ψ†j,kψj,k − ψ

†
−j,kψ−j,k

)
. (10)

By inversion of Eqs. 2, 9, the local operators are ex-
panded in the eigen-mode operators:

an,m =
1√

(M + 1)N

∑
j,k

ei(kξn,m−ϕj,k) sinmqj

× (ψ−j,k − ψj,k) ,

bn,m =
1√

(M + 1)N

∑
j,k

ei(kξn,m+ϕj,k) sinmqj

× (ψ−j,k + ψj,k) , (11)

which is helpful for the next treatment of AGNR pertur-
bations by local impurity centers.

The notable feature of the spectrum by Eq. 4 is that
it contains gapless modes if the AGNR width satisfies a
special condition [7]:

M + 1 = 3ν, ν = 1, 2, . . . . (12)

For such M = 3ν− 1, the mode with j = 2ν reaches zero
energy at the BZ edge k = 0 as:

ε2ν,k = 2

∣∣∣∣sin k4
∣∣∣∣ ≈ |k|2 (13)

(see Fig. 2), and the mode with j = ν reaches zero energy
at the opposite BZ edge k = 2π as:

εν,k = 2

∣∣∣∣cos
k

4

∣∣∣∣ ≈ |k − 2π|
2

. (14)

The dispersion laws by Eqs. 13, 14 formally coincide

ϵ / t
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FIG. 2: Energy bands dispersion in 5-AGNR (ν = 2 by Eq.
12), showing the Dirac-like modes with j = 2, 4.

with the standard linear dispersion near the Dirac points
of 2D graphene, hence they can be seen as definitions
of effective 1D Dirac points in (3ν − 1)-AGNR spectra.
All other modes there (with j 6= ν, 2ν) have finite energy
gaps.

III. GREEN FUNCTIONS AND OBSERVABLES

The following consideration goes in the framework of
two-time GFs [11, 12] defined by their Fourier transforms:

〈〈A|B〉〉ε =
i

π

∫ ∞
0

dteit(ε+i0) 〈{A(t), B(0)}〉 (15)

where A(t) = eiHtAe−iHt is a Heisenberg picture op-
erator for the system Hamiltonian H, {., .} is the anti-
commutator and 〈. . . 〉 is the quantum-statistical average.
In what follows, the GF’s energy subindex is mostly omit-
ted.

Practical calculation of GFs is done through the gen-
eral equation of motion:

ε〈〈A|B〉〉 = 〈{A(0), B(0)}〉+ 〈〈[A,H] |B〉〉, (16)

involving the commutator [., .]. So found GFs generate
the physical observable quantities (the averages of oper-
ator products) through the spectral relation:

〈AB〉 =
1

π
Im

∫ ∞
0

〈〈B|A〉〉εdε. (17)

In the present case, the system electronic properties can
be obtained from the 2M×2M GFmatrix Ĝ(k, k′) with its
matrix elements Gj,j′(k, k′) ≡ 〈〈ψj,k|ψ†j′,k′〉〉 built from
the eigen-mode operators by Eq. 9 where the j-indices
count the transversal momenta as by Eq. 3 and also their
opposites −j (2M altogether).

For the unperturbed AGNR system with its diagonal
Hamiltonian, Eq. 10, the above defined GF matrix re-
sults also diagonal: G(0)

j,j′(k, k
′) = δj,j′δk,k′G

(0)
j,k(ε), with

its diagonal elements called propagators:

G
(0)
j,k(ε) =

1

ε− εj,k
. (18)

They define an important observable, the density of
quasiparticle states (DOS), as a sum ρ(ε) =

∑M
j=1 ρj(ε)

where a partial contribution from (j,−j) subbands is:

ρj(ε) =
2

π

∑
k

Im
[
G

(0)
j,k(ε) +G

(0)
−j,k(ε)

]
(19)

(including the implicit factor 2 for electron spins). Using
Eqs. 4, 18 and passing from sum in k to integral:

1

N

∑
k

f(k) =
1

2π

∫ 2π

0

f(k)dk, (20)

gives this contribution as:

ρj(ε) =
8|ε|

π(M + 1)
√

(ε2 − ε2−,j)(ε2+,j − ε2)
, (21)

where ε±,j = 1 ± 2 cos qj are the jth subband energy
limits.
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FIG. 3: Density of states in 5-AGNR. Almost constant value
≈ 4/(3π) within the low energy range, |ε| ≤

√
3 − 1, comes

from the Dirac-like (j = 2, 4) subbands.

In particular, for the most relevant here Dirac-like
modes with ε+,ν = ε−,2ν = 2, ε+,2ν = ε−,ν = 0, we
have:

ρν(ε) = ρ2ν(ε) =
4

3πν
√

1− (ε/2)2
, (22)

so DOS results almost constant at low energies: ρ(ε) ≈
ρ(0) ≡ ρ0 = 8/(3πν) at |ε| � 1, as seen in the case of
5-AGNR presented in Fig. 3.

IV. IMPURITY PERTURBATIONS

The local impurity perturbations in graphene nanorib-
bons of both zigzag and armchair types were recently
considered within two basic impurity models: the one-
parameter Lifshitz model (LM) [13], more adequate for
substitutional impurities, and the two-parameter An-
derson hybrid model (AM) [14], for impurity adatoms
[8]. For zigzag structures, the overall conclusion was
about their eigen-modes stability (topological protection)
against quasiparticles localization by the impurity disor-
der, both in LM and AM models.

However such localization was found in AGNRs with
LM impurities, though reduced in that case to a narrow
vicinity of the Dirac point (zero energy). But this already
opens a possibility for Mott’s metal/insulator phase tran-
sitions in a nanosystem and generates the next interest
for studying AGNR behavior under more diversified AM
perturbations. In the latter case, a more complicated in-
termittence of conducting and localized states in other
ranges of energy spectrum and a broader variety of re-
lated phase states for this 1D system can be expected.
Then it would be also of interest to compare such effects
with the known analogs for 3D and 2D electronic systems
under impurity disorder.

The following consideration is focused on special (3ν−
1)-AGNRs and restricted to only their Dirac-like modes.
Since these modes with j = ν and 2ν give identical and

independent contributions to the spectrum, one can next
focus on a single Dirac-like mode, say j = 2ν, then de-
noting ψ2ν,k ≡ ψ+,k and ψ−2ν,k ≡ ψ−,k. Consequently,
the above introduced Ĝ(k, k′) matrix gets reduced to the
2×2 form in the basis of ψ±,k operators. In particu-
lar, the non-perturbed solution, Eq. 18, presents here as
Ĝ(0)(k, k′) = δk,k′(ε− εkσ̂3)−1 with εk ≡ ε2ν,k by Eq. 13
and the Pauli matrix σ̂3 in ± indices.
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FIG. 4: Position p of a top impurity adatom over an a-site in
mp-layer from np-segment of 5-AGNR.

Then we consider the impurity adatoms location re-
stricted to the simplest top-positions: pa over an a-type
host atom in mp layer from np segment (see Fig. 4) or
pb over a b-type host atom.

In these notations, the AM perturbation Hamiltonian
reads:

HAM =
∑
p

{
εresc

†
pcp +

ω√
3νN

∑
k

[
sin

πmp

3

× ei(kξp∓φk)c†p(ψ−,k ∓ ψ+,k) + h.c.
]}

, (23)

where a local impurity operator cp with its resonance
level εres is coupled to the Dirac-like modes ±εk through
the hybridization ω with the neighbor host atom at the
longitudinal position ξnp,mp

−1/6 for its a-type as in Fig.
4 (or ξnp,mp

+ 1/6 for its b-type).
Then the complete HamiltonianHtb+HAM generates a

perturbation of the GF matrix: Ĝ(0) → Ĝ. In its simplest
form, this is given by the T-matrix approximation:

Ĝ =
(
ε− cT̂ (ε)− εkσ̂3

)−1
, (24)

where c = (2MN)−1
∑
p 1 is the impurity concentration

and the T-matrix in this case results diagonal:

T̂ (ε) ≡ T (ε) =
ω2

2

(
ε− εres −

iω2

4f
√

1− (ε/2)2

)−1
.

(25)

Then the modified dispersion law ε̃k follows from the
standard GF secular equation Re [det(Ĝ)−1] = 0 [15] as:

ε̃k =
√
ε2k + (c ImT (ε))2 + cReT (ε), (26)
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FIG. 5: Dispersion law for the Dirac-like modes in 5-AGNR
having AM impurities with their parameters εres = 0.03,
ω = 0.3, and concentration c = 0.02. For comparison, the
unperturbed Dirac-like modes are shown by the red dashed
lines.

and its solution for 5-AGNR at the choice of AM impurity
parameters ε0 = 0.03 and ω = 0.3, corresponding to Cu
adatoms in top position [16], is presented in Fig. 5. Here
the characteristic impurity effects are seen as:

1) the shift of the Dirac point from its initial zero en-
ergy position down to

εD ≡ ε̃k=0 ≈
εres −

√
ε2res + 2cω2

2
, (27)

2) the resonance splitting between the initial linear εk
law and the impurity resonance level εres until its vicinity
of width

γres ≈ ω
√
c− c0

2
. (28)

where c0 ∼ ω2/(8ν2) is the critical concentration value
for this splitting to appear.

Also an anomalous negative dispersion formally ap-
pears inside this vicinity, at |ε − εres| . γres, but this
range occurs unphysical when validity of the modified dis-
persion law is checked with the Ioffe-Regel-Mott (IRM)
criterion for conducting states [17, 18]:

k
∂ε̃k
∂k

& c ImT (ε̃k). (29)

This simply means that the quasiparticle lifetime (in-
verse of the r.h.s) is longer than its oscillation period (in-
verse of the l.h.s) and such quasiparticles are conductive
indeed, otherwise they are localized near impurity sites.
The explicit form of the IRM criterion for the dispersion
law by Eq. 26 and the T-matrix by Eq. 25 reads:

2

∂ ln Re [ε− cT (ε)]
2
/∂ε

& c ImT, (30)

All the energy ranges where this inequality does not hold
are attributed to localized states so the dispersion law
by Eq. 26 for conducting states does not apply there.

The mobility edges between conducting and localized
states can be qualitatively estimated as the ε values that
make the relation of Eq. 30 an equality. The results
of such numerical estimation at the choice of AM pa-
rameters as for Cu top impurities are shown in Fig. 6a.
They illustrate formation of two mobility gaps (ranges
of localization), one around εres and another around εD.
Their width grows with the impurity concentration c:
the first as ∼ 2γres(c) (by Eq. 28) and the second as
γD ≈ cω4/[8ν(εD − εres)2].

ϵ

ϵres

ϵF
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c1 c2

c

ϵD

a

0.01 0.02 0.03 0.04

-0.02

0.02

0.04

0.06

ϵF
ϵres

c0
c1

c

ϵ
b

0.01 0.02 0.03 0.04

-0.04

-0.02

0.02

0.04

0.06

0.08

FIG. 6: a) Mobility gaps (in meV scale) in function of im-
purity concentration c at the choice of AM parameters as in
Fig. 5. Special concentration values refer respectively: c0
to opening of mobility gap near the resonance level εres, c1
to metal/insulator, and c2 to insulator/metal transitions (see
below). b) Analogous developments for the same impurities
in 2D graphene, note here opening of a spectrum quasi-gap
inside the mobility gap at c1, absent in AGNR.

Validity of the above T-matrix description is confirmed
with an additional check beyond the frame of this sim-
plest approximation (see in Appendix).

An important issue for such disordered AGNRs is how
the positions of mobility edges compare with that of the
Fermi level vs impurity concentration, εF(c). The lat-
ter results from an extra amount of c charge carriers by
impurities (per host atom) being filled into the relevant
subbands: ∫ εF(c)

0

ρ(ε)dε = c. (31)

Notably, the above indicated low energy DOS, ρ(ε) ≈ ρ0,
holds its constancy even under impurity disorder, as seen



6

from stability of Eq. 22 at the passing ε→ ε−cT (ε) since
|ε− cT (ε)| � 1 for all |ε| � 1, one of the main specifics
of this 1D-like system.

Then from Eq. 31 we come to a simple linear relation
εF(c) ≈ c/ρ0. Such behavior superposed onto the dia-
gram of mobility gaps in Fig. 6a shows a possibility for
εF to cross the mobility edges near εres, both into and
out of this mobility gap. Then an intermittency of the re-
lated metal/insulator transitions (MIT) can be expected.

It is of interest to compare these AGNR results with
their analogs for the same impurities in 2D graphene (Fig.
6b). Besides a general similarity of two pictures, they
also present substantial differences. First of all, the es-
timated critical concentration for localization on Cu im-
purities in 5-AGNR, c0 ≈ 7 · 10−3, is more than an or-
der of magnitude higher than its analog for the 2D case,
c
(2D)
0 ≈ 4 ·10−4 [16]. This can be explained by the higher
and almost constant low-energy DOS for the 1D Dirac-
like modes: ρ0 ∼ 1, compared to its linear in ε smallness
for the 2D Dirac modes: ρ2D(ε) ≈ 4ε/(π

√
3)� 1.

Another difference is in behaviors of εF(c) for each
system, also caused by that of DOS. From Eq. 31, its
almost linear growth in AGNR: εF(c) ≈ c/ρ0 is much
slower than the very fast, square root initial growth of

ε
(2D)
F (c) ≈

√
cπ
√

3/2 in 2D graphene. This defines a
much higher threshold in c for occurrence of MIT in
AGNR: c1 ∼ εresρ0, than in 2D graphene: ∼ c

(2D)
0 . But

the constancy of AGNR DOS, even in presence of impu-
rities, permits the linear εF(c) growth to persist also for
c > c1 and then an inverse MIT to occur at its emergence
from the mobility gap at c = c2 ∼ εresρ0+(ωρ0)2. In con-
trary, the 2D graphene DOS presents a sharp resonance
peak near εres and the Fermi level, when approaching
this peak at c → c

(2D)
0 , gets fixed here, defining insulat-

ing phase for all c > c
(2D)
0 .

At least, the critical concentration c0 by Eq. 28 that
defines the onset of localization near εres, indicates it to
occur earlier for weaker impurity-host coupling ω.

V. ELECTRONIC PHASE STATES AND THEIR
TUNING

An important physical issue is to determine the system
electronic phase states. For the considered nanoribbons,
this refers first of all to their electric conductivity.

In the limit of zero temperature, it is fully defined by
the Fermi level position with respect to the spectrum
mobility edges: implying the metallic state for εF out of
the mobility gaps and the insulating state for εF inside
them. Thus, from the diagram in Fig. 6, the system
of 5-AGNR with given concentration c of Cu impurities
is expected to be metallic if 0 < c < c1 or c > c2 and
insulating if c1 < c < c2.

But a practical interest arises in an effective tuning
of possible MIT’s at a given impurity composition (in
analogy with the common gate controls in doped semi-

conductors). First of all, the initial composition can be
chosen to set the Fermi level close enough to a mobility
edge, for instance, εF < εg < εres and εF − εg � εres.
Then several factors can be considered for MIT tuning:
1) temperature (in terms of its inverse β), 2) magnetic
field, h, and 3) electric field, E.

The temperature control will result from the interplay
between the metallic conductivity σmet(β), due to ex-
tended states, and the hopping conductivity σhop(β), due
to localized states.

The first type refers to the Kubo-Greenwood formula
written here as:

σmet(β) ≈ ρ0
∫ εg

0

[1− (ε/2)2]τ(ε)
∂n(ε, β)

∂ε
dε, (32)

where n(ε, β) = [eβ(ε−εF) + 1]−1 is the standard Fermi
function and the lifetime τ(ε) = [τ−1imp(ε) + τ−1ph (ε)]−1 in-
volves:
τ−1imp(ε) = c|ImT (ε)| (β-independent) due to impuri-

ties, and
τ−1ph (ε) ∼ 1/βΘD, due to 1D phonons (with the Debye

temperature ΘD).
The second type refers to the Mott formula written for

an 1D system:

σhop(β) ∝ e−
√
βT0 , (33)

where T0 ∼ τ−1(εF)/ρ(εF). Interplay of this decreasing
σhop(β) and the growing σmet(β) by Eq. 32 results in
an overall conductivity maximum at β ∼ 1/|εF − εg|,
but having a comparable temperature width. So, this
crossover between the types of conductivity is not yet a
canonical phase transition.

But a true electronic phase transition at zero temper-
ature can be realized, for instance, applying a uniform
static magnetic field h to AGNR. This will produce a
spin splitting of the Dirac-like subbands defined in Sec.
III and also of the impurity levels, implying respective
splitting of IRM critical points for spin subbands.

At the same time, the position of overall Fermi level
for a given impurity concentration c will stay the same
as it was for h = 0, due to the persisting constancy of
the overall DOS. Then, in the situation of several over-
lapping subbands, the overall mobility edges are deter-
mined by the Mott principle: if, at a given energy, there
is at least one state extended, all other states at this en-
ergy are also extended. Then the overall mobility gap
is formed by the intersection of partial (formal) gaps for
each spin projection and it gets reduced with growing
splitting µBh. In this way, the overall mobility edges are
tuned by the applied field and MIT is realized at its crit-
ical value hcr ∼ |εF − εg|/µB (see Fig. 7a). But for the
relevant energy scales of several meV, this may require
high enough h values of several tens Tesla.

An alternative way may be sought in applying a static
electric field Ey ≡ E across the nanoribbon (along the
y-axis in Figs. 1, 4) to produce linearly growing local po-
tentials Vm = meE on m-layers. This can be shown not
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FIG. 7: Realization of MIT in AGNR with Cu top impurities
by tuning of the composed mobility edges: a) with an applied
magnetic field or b) with an applied electric field (here for
M = 5).

to influence the relevant Dirac-like subbands, however
to produce an M -fold splitting between the local energy
levels for impurities on different m-layers and so between
the respective mobility gaps, with a subsequent decrease
of the resulting mobility gap (as in Fig. 7b). The critical
fields to achieve MIT in this case, Ecr ∼ |εF − εg|/(eM)
of some mV/nm, could be reached with no experimental
difficulties.

VI. SPIN-ORBIT EFFECTS ON ELECTRONIC
PHASE STATES

Yet one more tuning mechanism can result from the
spin-orbit (SO) effect, including the Rashba spin-orbit
coupling [19]. The latter is generally known to lift the
spin degeneracy in the systems with broken mirror sym-
metry, for instance, under electric field Ez, applied nor-
mally to the crystal surface [20] or to the 2D graphene
plane (along the z-axis in Fig. 4) [21, 22]. A similar ef-
fect can be achieved in graphene nanotubes [23, 24] and
also in AGNRs [25].

For the AGNR case, we note that the relevant Dirac-
like ψ±,k modes (from Eq. 23) have their amplitudes
sinmπ

3 equal zero at each third m-layer, so the interlayer

 

𝑎𝑛,1 𝑏𝑛,1 

𝑎𝑛,2 𝑏𝑛,2 𝑏𝑛−1,2 

FIG. 8: Coupled pair of m = 1, 2 layers in AGNR.

couplings through these modes are restricted to the m-
pairs: (1, 2), (4, 5), . . . (M−1,M), and their overall effect
on AGNR can be represented by a single pair, for in-
stance, with m = 1, 2 (see Fig. 8). All the couplings in
such a pair of layers are suitably presented in terms of lo-
cal operators, now equipped with explicit ↑↓ spin indices
and then composed into 4-spinors:

fn,m =

 an,m,↑
an,m,↓
bn,m,↑
bn,m,↓

 . (34)

In the basis of these local spinors, the SO Hamiltonian
reads:

HSO =
∑
n

[
f†n,1ĤSO (fn,1 + fn,2 + fn−1,2)

+ f†n,2ĤSO (fn,2 + fn,1 + fn+1,1)
]
, (35)

where the 4×4 matrix:

ĤSO = ∆σ̂z + λ (σ̂xτ̂y − σ̂y τ̂x) .

includes the Pauli matrices σ̂j in spin ↑, ↓-indices and τ̂j
in sublattice a, b-indices and also the parameters ∆ for
standard SO and λ for Rashba SO (the latter being Ez-
dependent). The estimates for these local SO couplings
in 2D graphene (also plausible for nanoribbons) show the
standard ∆ ∼ 10−4 [21], fixed and much smaller of the
relevant energy scales for MIT crossing. Otherwise, the
Rashba λ can be strongly enhanced [26] and yet tunable
[21], so it is taken as an effective SO variable below.

Next, we pass to the basis of chain-wave 4-spinors:

ψk =

 ψ+,k,↑
ψ+,k,↓
ψ−,k,↑
ψ−,k↓

 , (36)

which are related to the local spinors by Eq. 34 (with
m = 1, 2) through a τ̂ -rotation:

fn,m =
(−1)m−1

2
√
νN

∑
k

eikξn,mÛkψk. (37)

Here the rotation matrix:

Ûk = cosφk (τ̂x − τ̂z) + sinφk (τ̂y + iτ̂0) , (38)
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results from Eq. 11 (restricted to single j = 2ν) for
the components of fn,m. At relevant |k| � 1, the phase
φk ≡ φ2f,k is approximated as φk ≈ φ0 = −π/4. Then
the Dirac-like part of SO Hamiltonian reads:

HSO =
∑
k

ψ†k [−∆σ̂z τ̂x + λ (σ̂xτ̂z + σ̂y τ̂y)]ψk, (39)

and, together with the Dirac-like part of Htb by Eq. 10,
it defines the SO-split dispersion laws (in neglect of im-
purity disorder):

ε±,k =
√
ε2k + ∆2

±. (40)

Here the non-zero bandgaps:

ϵ-,k

ϵ+,k

ϵ
k k

Δ+

ϵ

Δ-

-0.02 -0.01 0.00 0.01 0.02

0.005

0.010

0.015

0.020

0.025

FIG. 9: SO splitting of the Dirac-like mode εk (dashed lines)
into ε±,k at the choice of λ = 5 · 10−3 and ∆ = 2.5 · 10−4.

∆± =

√
∆2 + λ2

(
2±
√

3
)
, (41)

are due to both SO types but their splitting is only due
to the Rashba SO as shown in Fig. 9 for the choice of
SO parameters ∆ = 2.5 · 10−4 [21] and λ = 5 · 10−3 [26],
and they create the low-energy DOS singularities:

ρso(ϵ)

ρ(ϵ)

ϵΔ+Δ-
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.2

0.4

0.6

0.8

FIG. 10: Singularities of the low-energy DOS of 5-AGNR with
split subbands at the same choice of SO parameters as in Fig.
9.

ρso(ε) =
ερ0
2

 θ(ε−∆+)√
ε2 −∆2

+

+
θ(ε−∆−)√
ε2 −∆2

−

 , (42)

as shown in Fig. 10.
Such DOS behavior, instead of its almost constancy

at no account of SO (by Eq. 22), when used in Eq. 31
leads to the λ-dependence of the Fermi level given by the
equation: √

ε2F −∆2
+ +

√
ε2F −∆2

− ≈ 2c/ρ0. (43)

Its numerical solution defines MIT to occur when λ
reaches a certain critical value λcr as shown in Fig. 11 .

Noting that for all relevant impurity concentrations
c > c0 we have c/ρ0 � ∆, the approximate solution
of Eq. 43 for λ� c/ρ(0) reads:

εF(λ) ≈ c

ρ0
+
ρ0
c

(
∆2 + 2λ2

)
. (44)

ϵ

ϵg

λcr λbr λ
0.01 0.02 0.03 0.04

0.02

0.04

0.06

0.08

FIG. 11: Dependence of the Fermi level on Rashba SO cou-
pling for 5-AGNR with Cu top impurities concentration fixed
at c = 0.011, its crossing with the mobility edge εg at
λ = λcr ≈ 0.0078 indicates an SO-tuned MIT to occur.

This quadratic λ-dependence relates to filling of both
ε±,k subbands by c charge carriers, it follows the lowest
part of the numerical solution in Fig. 11. With further
growing λ, a break of εF(λ) occurs when it gets inter-
cepted by the faster growing upper bandgap ε+ at the
break value λbr = c/(

√
2
√

3ρ0). The next slower εF(λ)
growth at λ > λbr relates to filling of only the lower
subband which is expressed as:

εF(λ) =

√
(c/ρ0)2 + ∆2 + (2−

√
3)λ2. (45)

Notably, for the considered case of Cu top impurities,
both the impurity resonance εres and the mobility edge
εg lie in the energy range ε � ε± where ρSO(ε) already
reaches its asymptote ≈ ρ(0), so the mobility gap struc-
ture stays practically insensitive to Rashba SO. Hence a
possibility arises here for MIT to be realized by SO tun-
ing of εF at fixed εg, unlike the above considered regimes
with tuning of mobility edges at fixed Fermi level.

Notably, this tuning process can be realized in a com-
bined way: a rough "tuning" of εF closeness to εg by a
proper choice of impurity parameters εres, ω, c and also
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by a strong structural contribution to the Rashba param-
eter λ, say, from a gold substrate atomic field [26], and
then its fine tuning by an applied external field. Evi-
dently, the expected MIT at such sub-meV energy scales
would require a range of liquid He temperatures for its
sufficient resolution.

VII. DISCUSSION

The obtained results demonstrate how the difference
of electronic states in graphene nanoribbons defined
by their edge orientations is reflected in their stability
against impurity disorder. Physically, this opens the pos-
sibility for specific electronic phase transitions and for
their controls by combining the disorder and external bias
effects.

It is of interest to compare the above picture of 1D
spectrum reconstruction under AM impurity disorder
with the known such effects in 3D and 2D systems. This
comparison can be done between the corresponding cor-
relators, defined by the system dimensionality and low
energy quasiparticles dispersion. For instance, such a cor-
relator in 3D semiconductors (quadratic dispersion) [34],
decays with distance r as: ∝ (sin

√
εr)/(

√
εr), a simi-

lar behavior for 3D acoustic phonons (linear dispersion)
[35] is found as: ∝ (sin εr)/(εr), and it is modified to
∝ (sin εr)/

√
εr in 2D graphene with linear Dirac disper-

sion [16]. All these systems admit both extended and lo-
calized quasiparticles based on impurity states [32]. But,
unlike all those, a constancy or only a weak exponential
decay of correlators are found for the present AGNR case

(see Eqs. A2, A6 below) which defines the complete local-
ization of all the states near εres (as in Fig. 6a, unlike the
2D graphene case in Fig. 6b). Another AGNR specifics,
the low-energy DOS constancy, defines a higher sensitiv-
ity of Fermi level to doping and so more possibilities for
tuning of the system electronic properties.

The present study was limited to the simplest frame-
work of tight-binding model for pure nanoribbons and
simplest models for impurity perturbations on them. In
principle, it can be extended to account for many other
physical factors, as electron-electron Hubbard correla-
tions, spin-ordering effects, phonon and spinon excita-
tions, etc.

Also, the effects from passivating hydrogens, known
to be commonly present at the edges of experimental
nanoribbon samples [27–30], may influence the dynamics
of host nanoribbon carriers. This factor can be naturally
included into the above developed Hamiltonians and re-
sulting GFs, to be possibly an object of future study. At
least, an experimental check for the suggested effects, for
instance, on carriers mobility and its collapse under def-
inite external factors should be of considerable interest.
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Appendix A: Beyond the T-matrix

Validity of the above T-matrix solution should be yet
verified in view of the effective 1D character of the rel-
evant Dirac-like quasiparticles. It is known that generic
1D systems are unstable against any disorder, up to a
full localization of all their eigen-states [31], and the IRM
check with use of the simplest (single-impurity) T-matrix
is not sufficient to detect this. Therefore the IRM results
from Sec. III need a support by some T-matrix exten-
sions known for many other disordered systems. There
are two such possible extensions:

1) group expansions (GEs) in clusters of correlated im-
purity centers [32] and

2) self-consistent T-matrix approximation [33].
For GEs, their basic elements are the correlators, de-

fined for different GE forms. The simplest form is that
of non-renormalized GE, known to better apply for the
energy ranges of localized states. Here the correlator for
the considered Dirac-like quasiparticles is written as:

Ar(ε) =
2T (ε)

3νN

∑
k

eikr
(

1

ε− εk
+

1

ε+ εk

)
(A1)

(taking into account equal contributions from j = ν and
j = 2ν modes). Then, after integration in k by Eq. 20,
the related integral has its long distance asymptotics at
r � 1 as:

Ar(ε) =
2T (ε)ε

3πν

∫ π

−π

eikrdk

ε2 − 4 sin2 k/2
≈ 2T (ε)ε

3ν
sin εr,

(A2)

 

 

 

 

 

 

 

k 

ik' 

−𝜋

π 
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𝐶− 

𝐶+ 

FIG. 12: Integration contours for calculation of the renormal-
ized correlator Ãr(ε), Eq. A3: C+ (blue lines) for r > 0 and
C− (red lines) for r < 0.

that is non-decaying. This contrasts with the decaying
correlators in 3D and 2D systems and makes all the GE
terms for the 1D-like system formally divergent. To avoid
that problem, some alternative, renormalized GE forms
(more adequate for conductive states) could be employed.

For instance, the first order renormalization for GE
is obtained with the simple change, ε → ε − cT (ε) in
the denominators of Eq. A1. Then the renormalized
correlator Ãr(ε) = 2T (ε)[ε − cT (ε)]Ĩr(ε)/(3ν), involves
the integral:

Ĩr(ε) =
1

2π

∫ π

−π

eikrdk

[ε− cT (ε)]2 − 4 sin2 k/2
. (A3)

This can be found analytically, passing to complex mo-
mentum: k → ζ = k + ik′ and extending integration
to one of the closed contours shown in Fig. 8, depend-
ing on the 1D correlator direction. The forward direc-
tion, r > 0, relates to C+ (blue lines) with the pole
ζε = 2 arcsin[ε − cT (ε)]/2, and the backward direction,
r < 0, does to C− (red lines) with the pole −ζε.

The contour integral for the forward case:

1

2π

∮
C+

eiζr

ε− cT (ε)− 2 sin ζ/2
dξ, (A4)

presents a zero sum of three terms: 0 = Ir(ε) + Rr(ε) +
Vr(ε). Here the residue term, Rr(ε) = eiζεr/ cos(ζε/2),
and the term from the semi-infinite vertical segments,
Vr(ε) ≈ (2i sinπr)/[(1−ε)r], define the sought correlator
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as:

Ãr(ε) =
2T (ε)[ε− cT (ε)]

3f

×
[

eiζεr

cos(ζε/2)
+ 2i

sinπr

(1− ε)r

)
. (A5)

For the low energy range, |ε|, c|T (ε)| � 1 and ζε ≈ ε −
cT (ε), Eq. A5 simplifies to:

Ãr(ε) ≈
2T (ε)[ε− cT (ε)]

3ν

×
[
ei[ε−cReT (ε)]re−c|ImT (ε)r| + 2i

sinπr

r

]
. (A6)

Here, unlike Eq. A2 both terms in the brackets are al-
ready decaying with r. For the backward case, integra-
tion over C− gives the same result.

The relevant criterion for GE convergence, the small-
ness of the dominating contribution by impurity pair
clusters into the quasiparticle self-energy compared to
that by single impurities [32], is presented here in the
form:

B2(ε) ≈ c
∣∣∣∣∫ ∞

0

Ã−r(ε)Ãr(ε)
2e−i(ε−cReT (ε))rdr

∣∣∣∣� 1.

(A7)
Then the residue term in Eq. A6 with its slower expo-

B2 (ϵ

ϵres ϵ-0.02 0.02 0.04 0.06

0.0005

0.0010

0.0015

FIG. 13: Smallness of the relative contribution to GE by im-
purity pairs, B2(ε) by Eq. A8 (for Cu impurities with con-
centration c = 0.05 in 5-AGNR), assuring GE convergence for
this system.

nential decay ∝ e−c|ImT (ε)r| dominates in the r-integral
and converts the above criterion into:

B2(ε) ≈ 8

81ν3

∣∣∣∣T 3(ε)[ε− cT (ε)]3

ImT (ε)

∣∣∣∣� 1. (A8)

The straightforward numerical check shows this criterion
to surely hold for all the above considered impurity pa-
rameters (see an example in Fig. 13).

Also, the self-consistent extension of the T-matrix
function:

Tsc(ε) =
ω2

2

ε− εres −
iω2

4ν

√
1−

[
ε−cTsc(ε)

2

]2
 , (A9)

practically coincides with its non-renormalized version
T (ε) by Eq. 25, due to the above noted smallness of
|ε− cT (ε)| � 1, assured for all |ε| � 1.

Hence, the discussed T-matrix results for the quasi-
particle spectra in disordered AGNRs and the related
estimates for their mobility edges can be considered
valid. We conclude that the inverse lifetime by the non-
renormalized T-matrix in r.h.s. of Eq. 30 is the main
factor for quasiparticle localization in AGNRs. So the
results of Sec. III correctly determine the system observ-
able characteristics.


