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Real eigenvalues of pseudo-Hermitian matrices, such as real matrices and PT −symmetric matri-
ces, frequently split into complex conjugate pairs. This is accompanied by the breaking of certain
symmetries of the eigenvectors and, typically, also a drastic change in the behavior of the system.
In this paper, we classify the eigenspace of pseudo-Hermitian matrices and show that such sym-
metry breaking occurs if and only if eigenvalues of opposite kinds collide on the real axis of the
complex eigenvalue plane. This enables a classification of the disconnected regions in parameter
space where all eigenvalues are real—which correspond, physically, to the stable phases of the sys-
tem. These disconnected regions are surrounded by exceptional surfaces which comprise all the
real-valued exceptional points of pseudo-Hermitian matrices. The exceptional surfaces, together
with the diabolic points created by their intersections, comprise all points of pseudo-Hermiticity
breaking. In particular, this clarifies that the degeneracy involved in symmetry breaking is not
necessarily an exceptional point. We also discuss how our study relates to conserved quantities
and derive the conditions for when degeneracies caused by external symmetries are susceptible to
thresholdless pseudo-Hermiticity breaking. We illustrate our results with examples from photonics,
condensed matter physics, and mechanics.

I. INTRODUCTION

Linear operators, such as those representable by matri-
ces, are ubiquitous in physics forming many exact mod-
els of nature. They also occur as effective models when
a more fundamental model is linearized around a point
of interest. While Hermitian matrices are common in
canonical quantum mechanics, the richer behavior of non-
Hermitian matrices is being increasingly used to model
gain/loss in open systems [1, 2], phase transitions [3–
5], sensitivity to boundary conditions [6, 7], and various
other phenomena excluded by assumptions of Hermitic-
ity.

Pseudo-Hermitian matrices [8] are non-Hermitian ma-
trices that can be similarity-transformed to their ad-
joints, H = G−1H†G. They are ubiquitous in clas-
sical physics [2, 3, 9–11] since all real-valued matri-
ces are pseudo-Hermitian. Matrices with time-reversal
symmetry [12] or with parity-time symmetry (PT -
symmetry) [13] are also pseudo-Hermitian (see Sec. II)—
the latter being one of the earliest classes of non-
Hermitian matrices to be analyzed in terms of symme-
tries [14, 15].

Upon tuning some parameter, degenerate real eigenval-
ues of a pseudo-Hermitian matrix can turn into complex
conjugate pairs. This phenomenon is known as spon-
taneous pseudo-Hermiticity breaking (henceforth simply
called symmetry breaking) since it is accompanied by
a change in the symmetries of the corresponding eigen-
vectors. Typically, the parameter quantifies an external
source of bias, amplification, or dissipation [1, 3]. Upon
symmetry breaking the system exhibits qualitatively dif-
ferent behavior usually signifying the emergence of am-
plified/dissipated modes [1] or even different thermody-
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namic phases [4, 5, 16]. Systematically analyzing the con-
ditions for pseudo-Hermiticity breaking is then crucial to
understanding the physical properties and potential ap-
plications of pseudo-Hermitian systems.

In this paper, we provide the necessary and sufficient
conditions for symmetry breaking to occur in a pseudo-
Hermitian matrix, H. We use the intertwining oper-
ator G, whose expectation value is a conserved quan-
tity [17], to classify the eigenspace of H. We demon-
strate that symmetry breaking occurs when and only
when eigenvalues associated with opposite signs of the
conserved quantity collide on the real axis. This allows
one to predict which real-valued degeneracies of a pseudo-
Hermitian matrix can lead to symmetry breaking, and
hence are “unstable degeneracies”.

By characterizing the degeneracies we also determine
the sets of pseudo-Hermitian matrices with real eigen-
values that can be continuously connected to each other
without ever encountering symmetry breaking. These in
turn correspond to all the disconnected stable phases (re-
gions in parameter space where all eigenvalues are real)
of a physical system.

Non-Hermitian matrices exhibit two types of eigen-
value degeneracies—diabolic points (DPs), where the
number of independent eigenvectors equals the number
of times an eigenvalue is repeated, and exceptional points
(EPs) [18–20], where the matrix cannot be diagonalized
and its eigenvectors fail to span the complete space. We
find that these disconnected regions in parameter space,
where all eigenvalues are real, are surrounded by excep-
tional surfaces, which comprise all the real-valued EPs
of pseudo-Hermitian matrices. Exceptional surfaces that
are boundaries to two different regions may meet, anni-
hilating each other and giving rise to DPs. These ex-
ceptional surfaces, together with the diabolic points cre-
ated by their intersections, comprise all points of pseudo-
Hermiticity breaking.
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Furthermore, degeneracies in Hamiltonian matrices are
either accidental or caused by symmetries. In this pa-
per, we also use the intertwining operator to derive
the conditions for when degeneracies caused by exter-
nal symmetries are susceptible to thresholdless pseudo-
Hermiticity breaking (i.e., symmetry breaking at in-
finitesimal amounts of non-Hermiticity).

Much of our paper builds on the insight by Refs. [21–
23] that pseudo-Hermitian matrices can be mapped to
G−Hamiltonian matrices, a class of matrices studied
by Krein, Gel’fand, Lidskii, and others in the context
of stability of mechanical systems [24–27]. This map-
ping is being increasingly used in works on quadratic
Bosonic systems [28, 29] that can be described by an ef-
fective Bogoliubov-de Gennes (BdG) Hamiltonian that is
pseudo-Hermitian. (See Ref. [30] for a detailed analysis.)

This article is structured as follows. We define pseudo-
Hermitian matrices and intertwining operators in Sec. II
and review the phenomenon of pseudo-Hermiticity break-
ing. In Sec. III we use the intertwining operator to clas-
sify the eigenspace. In Sec. IV we provide the main re-
sults of the paper including the conditions for pseudo-
Hermiticity breaking to occur and the classification of
stable phases of a pseudo-Hermitian matrix. These re-
sults are illustrated via a schematic example in Sec. V.
In Sec. VI we characterize the boundaries of the sta-
ble phases, i.e., the points of symmetry breaking. We
then discuss conserved quantities in pseudo-Hermitian
systems and the interplay of pseudo-Hermiticity with de-
generacies caused by external symmetries in Sec. VII.
In Sec. VIII, we provide illustrative examples of well-
known pseudo-Hermitian Hamiltonians from photonics,
condensed matter physics, and mechanics.

II. PSEUDO-HERMITIAN MATRICES AND
SYMMETRY BREAKING

A matrix H is called pseudo-Hermitian if it is similar
to its conjugatectranspose. That is

H = G−1H†G (1)

for some invertible matrix G called the intertwining oper-
ator [17, 31]. G is not unique and can always be chosen
to be Hermitian [21], which we will assume is the case
from here on. Since every matrix is similar to its trans-
pose, an equivalent definition is that H is similar to its
complex conjugate,

H = SH∗S−1 (2)

for some invertible matrix S. A real matrix is then triv-
ially pseudo-Hermitian. The equation above can also
be written as [H,ST ] = 0 where T is the antilinear
complex-conjugation operator, which acts as the time-
reversal operator. For this reason, H is also said to be
ST symmetric—a familiar case is when S is the parity
operator P.

Non-Hermitian matrices with the K or Q internal sym-
metries (in the Bernard-LeClair notation [32–34]) are all
special cases of pseudo-Hermitian matrices. Matrices sat-
isfying H = −G−1H†G with an additional minus sign
(or indeed any phase factor) can be transformed, via
H → iH, to also satisfy Eq. (1).

Pseudo-Hermiticity breaking occurs when a (degen-
erate) real eigenvalue splits into a complex conjugate
pair on the variation of a parameter, such as the Bloch
wave vector for a periodic system. If λ is a complex-
valued eigenvalue with associated eigenvector |R〉 then,
by Eq. (2), S|R〉∗ = ST |R〉 is an eigenvector of H asso-
ciated with λ∗ and is, thus, linearly independent of |R〉.
Conversely, if λ were real and nondegenerate, then ST |R〉
and |R〉 would be linearly dependent, i.e., |R〉 would be
an eigenvector of ST . In general, eigenvectors of H with
real eigenvalues can be chosen to also be eigenvectors
of the “symmetry operator” ST . On the variation of a
parameter, when a degenerate real eigenvalue splits into
complex conjugate pairs, this symmetry of the eigenvec-
tors gets spontaneously broken: ST |R〉 and |R〉 become
linearly independent.

While the above formulation in terms of S and T is fa-
miliar [14, 15], in the following we formulate this behavior
in terms of G. This will enable us to uncover additional
features including the conditions for symmetry breaking
to occur.

III. STRUCTURE OF THE EIGENSPACE

We denote a column vector by the ket |v〉 and its con-
jugate transpose (|v〉)† by the bra 〈v|. The right and
left eigenvectors of H are defined by H|Ri〉 = λi|Ri〉 and
〈Li|H = λi〈Li|. They share the same eigenvalues. Tak-
ing conjugate transpose of the latter equation we get

H†|Li〉 = λ∗i |Li〉. (3)

Operating Eq. (1) on G−1|Li〉 shows that G−1|Li〉 is a
(right) eigenvector of H with eigenvalue λ∗i .

First let us assume that there are no degeneracies in the
eigenvalues of H. In that case we can define a biorthonor-
mal eigenbasis for H [15],

H =
∑
i

λi|Ri〉〈Li|, 〈Li|Rj〉 = δij . (4)

Now if |Ri〉 is the eigenvector of H with Imλi 6= 0 then
the eigenvector corresponding to the eigenvalue λj = λ∗i
is ηG−1|Li〉 where η is some constant. Furthermore,

〈Rj |G|Rj〉 = η〈Rj |GG−1|Li〉 = 0. (5)

On the other hand if λi is real we should have |Ri〉 =
µG−1|Li〉 (µ being some non-zero constant). In this case,

〈Ri|G|Ri〉 = µ〈Rj |GG−1|Li〉 = µ. (6)

Since G is invertible and Hermitian, µ has to be a nonzero
real constant.
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On relaxing our assumption of no degeneracies, these
statements generalize as follows (see Appendix A for de-
tails):

If λ is complex valued, Imλ 6= 0, then 〈R|G|R〉 = 0 for
all associated eigenvectors |R〉.

If λ is real valued, there are three possibilities. If
〈R|G|R〉 is positive for all vectors, |R〉, in the eigenspace,
we say the eigenvalue λ is of positive kind (the first kind in
Krein’s formulation [24]). Similarly, if 〈R|G|R〉 is always
negative, the eigenvalue λ is of negative kind. The third
possibility is that one is able to find two eigenvectors,
|Rj〉 and |Rk〉 in the eigenspace, such that 〈Rj |G|Rj〉 and
〈Rk|G|Rk〉 are of opposite signs. In this case the eigen-
value is said to be of indefinite kind and it is possible to
find an eigenvector |Rm〉, say, such that 〈Rm|G|Rm〉 = 0.
Exceptional point degeneracies are always of indefinite
kind while non-degenerate real eigenvalues are never in-
definite.

We are now ready to state the main result of the paper,
which connects symmetry breaking to the expectation
value of the intertwining operator G.

IV. CONDITIONS FOR SYMMETRY
BREAKING

Suppose G(k) is a (continuously) parameterized ma-
trix that is Hermitian and invertible for all values of
the parameter(s) k; and suppose H(k) is a (continu-
ously) parameterized pseudo-Hermitian matrix obeying
H(k) = G(k)−1H(k)†G(k). Let k = k0 + εq where ε
is small, q is an arbitrary direction in parameter space,
and k0 is some reference point such that H(k0) has all
its eigenvalues real.
H(k0) is said to be protected from pseudo-Hermiticity

breaking (strongly stable in Krein’s formulation) if for
any q, H(k = k0 + εq) also has all real eigenvalues. For
example, ifH(k0) has no degeneracies then it is protected
from symmetry breaking. The necessary and sufficient
conditions for symmetry breaking to occur in a pseudo-
Hermitian matrix are provided by the Krein-Gel’fand-
Lidskii (KGL) Theorem.

Krein-Gel’fand-Lidskii Theorem. H(k0) is protected
from pseudo-Hermiticity breaking if and only if the eigen-
values of H(k0) are definite, i.e., 〈v|G(k0)|v〉 6= 0 for all
eigenvectors |v〉 of H(k0). The proof of this statement
can be found in Appendix B and in Refs. [24, 25].

In particular, this implies that while an exceptional
point at a real eigenvalue is sufficient for symmetry break-
ing to occur (since 〈v|G|v〉 = 0 at an EP), it is not neces-
sary. (We provide explicit examples of pseudo-Hermitian
matrices with symmetry breaking at diabolic points in
the sections below.)

Eigenvalues of positive and negative kind retain their
kind on the variation of a parameter (see Appendix C).
This provides predictive power for the purposes of engi-
neering (or avoiding) exceptional points and symmetry-
breaking points. For example, suppose that on the vari-

ation of a parameter, two definite real eigenvalues are
about to meet on the real axis. If the eigenvalues are of
the same kind (〈v|G|v〉 is of the same sign) then even af-
ter colliding they are forbidden from moving off the real
axis or giving rise to an exceptional point degeneracy.

The matrixH has as many eigenvalues of positive (neg-
ative) kind as the number of positive (negative) eigenval-
ues of the intertwining operator G (see Appendix C).
In particular, if G were positive-definite (or negative-
definite) then all eigenvalues of H would always be real
and all degeneracies diabolic. H would then be equiva-
lent to a Hermitian matrix, a condition known as exact
pseudo-Hermiticity [35] or quasi-Hermiticity [15].

Suppose an N × N pseudo-Hermitian matrix, pro-
tected from symmetry breaking, has eigenvalues, λ1 ≤
· · · ≤ λN . We can characterize it by a signature—an
ordered list of N signs, such as (+,+,−,+, . . . ), where
the nth sign signifies the kind of the nth eigenvalue. Two
strongly stable pseudo-Hermitian matrices can be contin-
uously connected to each other, without every encounter-
ing pseudo-Hermiticity breaking, if and only if they have
the same signature [24]. If G has p positive eigenvalues
(and hence N−p negative eigenvalues), then the number
of possible distinct signatures is N !

p!(N−p)! (or N choose p).

These characterize all the disconnected regions of param-
eter space where the eigenvalues of a pseudo-Hermitian
matrix are all real. In many physical systems these cor-
respond to distinct phases characterized by localization,
absence of dissipation, etc. (see Sec. VIII).

The matrices at the boundaries enclosing these regions
protected from symmetry breaking (i.e., at the points at
which symmetry breaking occurs) have eigenvalues of in-
definite kind. In Sec. VI we show that if two strongly
stable regions share a point on the boundary, the point
is diabolic. All other points on the boundaries are ex-
ceptional degeneracies and can be uniquely associated
with a single strongly stable region and its signature. It
is known that parametrized pseudo-Hermitian matrices
have EPs with codimension 1 and DPs with codimension
3 [4, 36, 37]. The large codimensionality of DPs com-
pared to that of EPs explains why symmetry breaking is
observed usually at EPs.

It is useful to compare this characterization with the
classification of symmetry-protected topological (SPT)
phases in non-Hermitian matrices [32–34, 38] (which gen-
eralizes the classification of Hermitian matrices [39]).
Matrices belonging to the same symmetry class/phase
are topologically equivalent—they are characterized by
the same topological invariants and they can be con-
tinuously deformed into each other without encounter-
ing any degeneracy (the spectral gap is always open).
For such a classification all degeneracies are considered
equivalent. Here, we are considering properties of the
individual eigenspaces of a matrix that too remain in-
variant unless there are degeneracies and the eigenspaces
merge. Moreover, we distinguish between two kinds of
degeneracies on physical grounds—stable ones that pro-
hibit symmetry breaking and unstable ones that allow
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symmetry breaking.
The KGL theorem was originally formulated with the

assumption that the intertwining operator G is constant
and does not depend on the parameter(s) k [24]. Many
systems, especially real-valued systems, however, have
intertwining operators that are continuous functions of
the parameters. Our proof of the KGL theorem in Ap-
pendix B and Appendix C generalizes to the case where
G(k) is a continuous function of the parameter(s) k as
long as it is Hermitian and invertible for all values of k.

Since the intertwining operator G is not unique, we
provide an exhaustive method to find all intertwining op-
erators for a pseudo-Hermitian matrix H in Appendix D
and show that they form a vector space. Our results will
apply to each Hermitian intertwining operator that one
can find. Finally, since pseudo-Hermiticity is equivalent
to commutation with a generalized PT operator, in Ap-
pendix E we provide an attempt to formulate the results
of this section in terms of P and T .

V. A SCHEMATIC EXAMPLE

Let us illustrate these results with an example. Sup-
pose H is a 3× 3 pseudo-Hermitian matrix with respect
to the conveniently diagonalized,

G =

1 0 0
0 1 0
0 0 −1

 . (7)

The general form of H can be written as,

H =

 r1 a b
a∗ r2 c
−b∗ −c∗ r3

 , (8)

where ri are real numbers and a, b, c are complex num-
bers. When a = b = c = 0, the three eigenvalues are real
and located at λi = ri. The eigenvectors are the per-
mutations of (1, 0, 0)T and it is straightforward to check
that λ3 is of opposite kind to the other two eigenvalues.

On increasing |a|, λ3 remains fixed while λ1 and λ2

move away from each other on the real axis due to level
repulsion. (The matrix is Hermitian when b = c = 0.)
If |c| were increased with a = b = 0, then λ2 and λ3

move, first towards each other along the real axis and
then since they are of opposite kinds, away from each
other in the complex plane after colliding. Similarly, if
|b| were increased then λ1 and λ3 move towards each
other.

Let us constrain H to a two-dimensional parameter
space with the parametrization,

H(x, y) =

 1 y ix
y 3

2
i
2 sin(πy8 )

ix i
2 sin(πy8 ) 9

 . (9)

In Fig. 1, we show the parameter space of this matrix.
The region around the origin, (0, 0), is protected from

FIG. 1. Parameter space of the matrix H(x, y) in Eq. (9)
which obeys H = G−1H†G where G = diag(1, 1,−1). In the
blue region of parameter space, pseudo-Hermiticity is broken
and the eigenvalues of H are no longer all real. The yellow re-
gion is protected from symmetry breaking and has signature
(+,+,−), i.e., the eigenvalue of negative kind is the largest.
Similarly, the green region has signature (+,−,+). Regions
of different signatures are topologically disconnected. The
boundaries between these regions have exceptional point de-
generacies (pink curves), except where the curves meet and
annihilate to form a diabolic point (purple points). The cen-
tral region also contains two disconnected diabolic curves
(purple curves) involving two eigenvalues of positive kind.
Since they are of the same kind these degeneracies cannot
lead to symmetry breaking.

symmetry breaking and has the signature (+,+,−). As
we move from the origin along the positive x axis, the
eigenvalue at r2 = 3

2 remains fixed while the other two

eigenvalues move towards each other. At x =
√

15
2 ≈ 1.94

a diabolic degeneracy is encountered but since it involves
eigenvalues of the same kind, it cannot give rise to sym-
metry breaking even in a higher dimensional parameter
space. On increasing x further, two eigenvalues of oppo-
site kind meet at an EP at x = 4 beyond which pseudo-
Hermiticity gets broken.

Figure 1 shows that the boundary between symmetry
broken regions of the 2D parameter space and regions
protected from symmetry breaking are given by excep-
tional curves. When the exceptional curves meet, they
annihilate each other to form diabolic points [37]. These
are examples of symmetry breaking at DPs—perturbing
the value of x at the DP at (x, y) ≈ (−0.05, 7.75), for ex-
ample, will cause the eigenvalues to become complex val-
ued. While it seems from the figure that the region with
signature (+,−,+) consists of disconnected areas, this is
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just an artifice of being constrained to a two-dimensional
parameter space.

VI. CHARACTERIZING THE POINTS OF
SYMMETRY BREAKING

The points of symmetry breaking of an N × N
pseudo-Hermitian matrix form the boundaries separating
strongly stable regions of parameter space from the re-
gions where at least one eigenvalue is complex valued. To
characterize these points we will only focus on the most
relevant case of boundaries formed when two eigenvalues
of opposite kind meet each other. (Higher order degen-
eracies are rare in the absence of additional symmetries.)
In the subspace corresponding to these two eigenvalues
of opposite kind, a general intertwining operator (after
diagonalization) is given by

G0 =

(
η1 0
0 −η2

)
(10)

where η1 and η2 are positive real numbers. The relation

H0 = G−1
0 H†0G0 eliminates 4 out of 8 real parameters of a

generic complex-valued 2×2 matrix. We can parametrize
such a pseudo-Hermitian matrix as

H0 =

(
λ+ a η2be

iθ

−η1be
−iθ λ− a

)
(11)

where a, b, θ, λ are real. Since θ does not enter the char-
acteristic equation and λ only shifts the eigenvalues by
the same amount, the physics of a generic 2× 2 pseudo-
Hermitian matrix is controlled by the gain-loss factor (a)
and the coupling factor (b) (see Sec. VIII A). The matrix
has degenerate eigenvalues (at λ) when we set b = a√

η1η2
,

H0 = a

 1
√

η2
η1
eiθ

−
√

η1
η2
e−iθ −1

+

(
λ 0
0 λ

)
. (12)

The behavior of the degeneracy is controlled by the pa-
rameter a — the degeneracy is diabolic when a = 0 and
is exceptional at all other values.

In Appendix F 1, we consider pseudo-Hermitian ma-
trices arbitrarily close to H0. That is, we consider
G(ε), H(ε) such that H(ε) = G(ε)−1H(ε)†G(ε) and
G(0) = G0, H(0) = H0. In the limit of 0 < ε �< 1, we
find that strongly stable matrices close to H0 with a > 0
can only be from the region (−,+) while those close to
H0 with a < 0 can only be from the region (+,−). In
contrast, one can always find strongly stable matrices
from both the regions (−,+) as well as (+,−) arbitrarily
close to H0 with a = 0 (the DP) (see Fig. 2).

Thus, the EPs on the boundaries can be identified with
the topological index, i.e., the signature, of the strongly
stable region they enclose. In fact, EPs can be charac-
terized by several independent topological indices [19].

FIG. 2. Strongly stable regions in parameter space (where
all eigenvalues are real) are surrounded by exceptional sur-
faces that meet and annihilate at diabolic points (purple
line). These EPs and DPs together make up all possible
points where pseudo-Hermiticity breaking occurs. Two such
strongly stable regions with signature (. . . ,+,−, . . . ) and
(. . . ,−,+, . . . ) are shown (labelled I and II respectively). The
exceptional surfaces (green with horizontal mesh and pink
with vertical mesh respectively) can be identified uniquely
with the strongly stable region they enclose and the corre-
sponding signature. Their topological charges can also be
written in terms of the zeroth Chern number (C = 1 and C = 0
respectively). Pseudo-Hermiticity is broken in the region out-
side these surfaces. In the neighbourhood of a symmetry-
breaking point, the Hamiltonian can be reduced to the two

parameter matrix

(
a b
−b −a

)
where a ∈ R is a gain-loss pa-

rameter and b ∈ R is a coupling parameter [see Eq. (11)].

For example, they can also be characterized by the topo-
logical indices associated with symmetry protected ex-
ceptional surfaces/rings that arise in systems with chiral
symmetry [2, 40]. This relies on the fact that iH has the
non-Hermitian chiral symmetry, (iH)G + G(iH)† = 0
and thus one can follow the procedure first laid out in
Ref. [2]. The relevant topological index is the zeroth
Chern number number associated with an extended Her-
mitian matrix created from H (see Appendix F 2). We
find that the exceptional line a > 0 carries a Chern num-
ber of 0 while the line a < 0 has Chern number 1 (see
Fig. 2).

VII. RELATION WITH SYMMETRIES

Degeneracies in Hamiltonian matrices are either acci-
dental or caused by symmetries. In Hermitian Hamilto-
nians, the latter case is more common due to level repul-
sion. It is natural to ask whether degeneracies caused by
symmetries are susceptible to pseudo-Hermiticity break-
ing? Indeed if this were the case we would observe thresh-
oldless pseudo-Hermiticity breaking — even a small non-
Hermitian perturbation of a spatially symmetric Hermi-
tian Hamiltonian would cause complex-valued eigenval-
ues (see Ref. [41] and Sec. VIII B for examples). We
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show that the intertwining operator provides the right
language to address this question.

We recall that H has a symmetry described by a group
G if H commutes with the matrix representations of
the elements of G. We assume that the representations
are unitary—a standard assumption in canonical quan-
tum mechanics since it keeps the inner product invari-
ant. Additionally, we recall that any representation η
can be generically broken into irreps (irreducible repre-
sentations), η = π1⊕ π2⊕ . . . , and that the Hamiltonian
H becomes degenerate in each subspace on which an ir-
rep acts [42]. This is the reason why symmetries typ-
ically give rise to degeneracies unless, for example, the
underlying group is Abelian, in which case the irreps are
one-dimensional.

Let us start below the threshold for symmetry break-
ing such that a pseudo-Hermitian matrix H has all real
eigenvalues and can be diagonalized. Now on tuning a
parameter suppose the spatial symmetry of the Hamilto-
nian is explicitly broken, which allows for the previously
degenerate eigenvalues to move away from each other.
Would they stay on the real axis or would they move off
in the complex plane?

To answer this question we need to classify the sub-
space Ω on which an irreducible representation π acts.
Before spatial symmetry is explicitly broken, Ω was also
one of the degenerate eigenspaces of H. Now, since π is
an irrep, for any non-zero vector |v〉 ∈ Ω one can operate
the group elements, π(gi)π(gj) . . . |v〉 to span the whole
space Ω. Computing the expectation value of the inter-
twining operator G for each of these spanning vectors we
get terms like

〈v| . . . π(gj)
†π(gi)

†Gπ(gi)π(gj) . . . |v〉. (13)

The relative sign of these terms capture whether or not
we would see thresholdless symmetry breaking. We see
that if G were to commute with the elements of G, all
these terms would equal 〈v|G|v〉 implying that the sub-
space is either of positive or negative kind (as long as
〈v|G|v〉 is non-zero). The commutation of the intertwin-
ing operator, G, with the group elements thus ensures
that the degeneracy is stable such that on loss of spatial
symmetry even though the degeneracy of eigenvalues is
broken, they still stay on the real axis.

We note here that the intertwining operator G has an-
other property associated with symmetries —it provides
a conserved quantity for pseudo-Hermitian systems [17].
To show this, we first define the time propagation matrix
U(t) = e−iHt, which is the solution to the Schrödinger
equation, idUdt = HU . Since H is not Hermitian, U(t) is
not unitary; instead it satisfies [43]

U−1(t) = G−1U†(t)G. (14)

The expectation value of G with respect to a time-
evolving vector |v(t)〉 = U(t)|v(0)〉 is independent of

time.

〈v(t)|G|v(t)〉 = 〈v(0)|U†(t)GU(t)|v(0)〉
= 〈v(0)|G|v(0)〉. (15)

〈v(t)|G|v(t)〉 is then a conserved quantity of the system
[17].

VIII. EXAMPLES

In the following, we provide some examples of phys-
ical Hamiltonians exhibiting pseudo-Hermiticity break-
ing. We study a minimal example of a two-level system
from photonics in Sec. VIII A, in particular noting the
role of the conserved quantity for a system with gain and
loss. In Sec. VIII B, we study a lattice in which non-
Hermiticity arises from asymmetric couplings and show
how pseudo-Hermiticity breaking can be analyzed in the
submatrices of the Hamiltonian. Finally, in Sec. VIII C,
we examine coupled dissipative oscillators and find an
interplay of two simultaneous intertwining operators.

These examples demonstrate how various physical sys-
tems that were previously considered to exhibit unique
rich behavior can be analyzed from the unified perspec-
tive of pseudo-Hermiticity.

A. Gain and loss in a qubit

One of the simplest pseudo-Hermitian system is a two-
level system describing the physics of two coupled sites,
one experiencing gain and the other suffering loss. The
Hamiltonian

H =

(
−ig1 κ
κ ig2

)
, (16)

where g1, g2 describe the amplification/dissipation at
each site and κ is the coupling constant describes such
a system. See the review articles Refs. [1, 13] for exam-
ples of physical setups described by such a Hamiltonian.
When g1 = g2 = g, the gain and loss are balanced and
H becomes pseudo-Hermitian, H = G−1H†G, with

G =

(
0 1
1 0

)
. (17)

If

(
a(t)
b(t)

)
=

(
|a(t)|eiθ1(t)

|b(t)|eiθ2(t)

)
is a solution to the

Schrödinger equation, then the conserved quantity is

C =
(
a∗ b∗

)(0 1
1 0

)(
a
b

)
= 2|a(t)b(t)| cos(θ1(t)− θ2(t)).

(18)
Furthermore, G has eigenvalues +1 and −1 so the two

modes of H are of opposite kinds and we can expect
symmetry breaking. (Indeed for a two-level system we
either have this case or the trivial case of both modes
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FIG. 3. Real part of the eigenvalues of H =

(
−ig κ
κ +ig

)
which describes two coupled modes with equal and opposite
gain/loss. When g < κ, the two eigenvalues, which are of
opposite kind, are real. They meet each other at an excep-
tional point when g/κ reaches the threshold value of 1 and
on further increasing g/κ, the eigenvalues become complex
valued.

being of the same kind for which the dynamics is similar
to Hermitian dynamics.)

The eigenvalues of H are ±
√
κ2 − g2. When κ > g,

the coupling dominates the amplification/dissipation, the
eigenvalues are real, and pseudo-Hermiticity symmetry is
unbroken. Symmetry breaking occurs when g reaches its
critical value, gc = κ, after which the eigenvalues of H
become complex (see Fig. 3).

Symmetry unbroken phase (g < κ). The eigenvalues

are real and can be written as ±η, where η =
√
κ2 − g2 is

real and positive. The eigenvectors are |v±〉 =

(
1

±e±iθ
)

where θ = arcsin(g/κ). We have 〈vs|G|vs〉 = 2s cos(θ)
so the eigenvalue +η is of positive kind while −η is of
negative kind.

The general solution to the Schrödinger equation is

|v(t)〉 =

(
c1 cos(θ − ηt) + ic2 sin(ηt)
c2 cos(θ + ηt) + ic1 sin(ηt)

)
(19)

where c1, c2 specify the initial conditions. If we start
with a π

2 phase shift, c1 = eiα|c1|, c2 = ieiα|c2|, then the
two sites remain phase locked due to the conservation of
〈v|G|v〉.

Symmetry broken phase (g > κ). The eigenvalues
are now complex conjugates and can be written as ±iµ,

where µ =
√
g2 − κ2 is real and positive. The eigenvec-

tors of H are |v±〉 =

(
κ

i(g ± µ)

)
and 〈vs|G|vs〉 = 0.

The general solution to the Schrödinger equation is

|v(t)〉 =

(
c1κe

µt + c2κe
−µt

ic1(g + µ)eµt + ic2(g − µ)e−µt

)
. (20)

For nonzero c1, since the amplitudes of both the sites
increase exponentially for large t, asymptotically the sites
develop a phase difference of π

2 . Again this is predicted

directly from the conservation of 〈v|G|v〉 since as |v1v2|
increases, cos(θ1 − θ2) should diminish.

Symmetry breaking point (g = κ). At exactly g = κ,
the system exhibits an exceptional point. The eigenval-
ues equal zero, and the eigenvectors coalesce to a single

eigenvector, |v〉 =

(
1
i

)
with 〈v|G|v〉 = 0 as expected

from an exceptional point.
While this two-level Hamiltonian is well known, the

fact that it has a conserved quantity, which leads to
a π

2 phase-locking, was never noted. Furthermore, the
physics of many finite-dimensional systems experiencing
gain and loss cannot be captured in terms of effective two-
level Hamiltonians [44, 45]. These systems exhibit richer
behavior with phase diagrams of pseudo-Hermiticity bro-
ken regions separated by exceptional lines and higher or-
der exceptional points [44, 45]. For these systems exact
solutions are difficult, and using the intertwining oper-
ator to predict the phase diagram and the stability of
degeneracies may be the only tractable method to lead
to any physical insights.

B. Lattice with asymmetric hopping

FIG. 4. A lattice with asymmetric hopping described by the
Hamiltonian in Eq. (21). Each supercell consists of M sites
with onsite potential Vα. The particle hops to the site on
its right with amplitude e+h and to the site on its left with
amplitude e−h.

We consider a one-dimensional real lattice of N super-
cells, each with M sites, connected by nearest-neighbor
coupling (see Fig. 4). The Hamiltonian is [46]

H =

N∑
n=1

Hn (21)

where,

Hn =

M∑
α=1

Vα|n, α〉〈n, α|

+

M−1∑
α=1

(
e−h|n, α〉〈n, α+ 1|+ eh|n, α+ 1〉〈n, α|

)
+ e−h|n,M〉〈n+ 1, 1|+ eh|n+ 1, 1〉〈n,M |. (22)

Here, Vα is the potential energy at each site, eh is the
amplitude for the particle to hop rightwards, and e−h
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the amplitude to hop leftwards. Periodic boundary con-
ditions are assumed.

Such a Hamiltonian has been used to model vortex
lines in type II superconductors [47] (where h > 0 sig-
nifies a transverse component of the applied magnetic
field), polymers chains on periodic substrates [3] (where
h > 0 signifies an externally applied shear force), and a
variety of other physical systems [48, 49]. The source of
non-Hermiticity in these models is asymmetric coupling
instead of gain/loss as in the previous example.

In the Hermitian limit, h → 0, the eigenvalues of H
are real and form M bands. As h increases, it is known
that the bands expand into ovals in the complex plane
[see Fig. 5(a)] [3, 46]. As the bands expand, two bands
may meet each other at a critical value of h closing the
bandgap and leading to an insulator-conductor transi-
tion. This corresponds to a localization-delocalization
transition in the physical system [3, 47, 49] and we show
below that such a transition is equivalent to pseudo-
Hermiticity breaking.

Due to the discrete translation symmetry of the lattice,
H can be block diagonalized as H = ⊕kH(k) where

H(k) =

M∑
α=1

Vα|k, α〉〈k, α|

+

M−1∑
α=1

(
e−h|k, α〉〈k, α+ 1|+ eh|k, α+ 1〉〈k, α|

)
+ e−h−ik|k,M〉〈k, 1|+ eh+ik|k, 1〉〈k,M |, (23)

and k = πm
N with m ∈ {−N + 2,−N + 4, . . . , N − 2, N}.

In matrix form this is (where blanks denote zeros)

H(k) =



V1 e−h eh+ik

eh V2 e−h

eh V3 e−h

. . .
. . .

. . .

eh VM−1 e−h

e−h−ik eh VM


. (24)

The eigenvalues ε(k) of H(k) correspond to the projec-
tions of the M Bloch bands at wave-vector k. We will
assume that the potential is inversion symmetric, such
that V1 = VM , V2 = VM−1,..., which will simplify the
form of the intertwining operator, and restrict ourselves
to a lattice that is a band insulator at h → 0 (all bands
are separated). For concreteness we will also assume that
M is an odd number.

We note that H(k) = H(−k)∗ (due to the lattice being
real valued) and H(k) = G−1H(k)TG (due to the left-
right symmetry of the lattice). Here, G is an M ×M
antidiagonal matrix with each entry on the antidiagonal

FIG. 5. (a) The eigenvalues of the Hamiltonian in Eq. (21)
form M separate oval-shaped bands in the complex plane.
Here, we have set M = 5 and V1 = V5 = 1.4, V2 = V3 =
1.2, V3 = 2. At h = 0 (eh = 1), the Hamiltonian is Hermitian
and the ovals collapse to line segments on the real axis [dark
gray continuous lines in (a)]. As the non-Hermiticity factor
h increases, the ovals grow in size and merge with each other
(we show the bands at eh = 1.01, 1.07, 1.11). The eigenvalues
associated with k 6= 0, π move off the real axis at arbitrar-
ily small h while those with k = 0 or k = π move along
the real axis until a degeneracy of indefinite kind is formed.
The trajectories of the eigenvalues of H(0) [Eq. (24)] on in-
creasing h are depicted by the continuous curves (real eigen-
values of positive and negative kind are shown in blue and
yellow respectively, complex-valued eigenvalues are shown in
red). These are also shown in (b) where the attraction be-
tween eigenvalues of opposite kinds is more apparent. The
two symmetry-breaking points shown in pink are both excep-
tional degeneracies.

being 1, i.e.,

G =


0 0 . . . 0 1
0 0 . . . 1 0
...
... . .

. ...
...

0 1 . . . 0 0
1 0 . . . 0 0

 . (25)

G has +1 as an eigenvalue, repeated M+1
2 times,

with any symmetric vector, {a1, a2, . . . , a2, a1}T as
an eigenvector. The other eigenvalue is −1, re-
peated M−1

2 times, with antisymmetric vectors,
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{a1, a2, . . . , aM−1
2
, 0,−aM−1

2
, . . . ,−a2,−a1}T spanning

the eigenspace. We use the pseudo-Hermiticity structure
arising from these two symmetries to explain the key
characteristics of this system.

The swelling of bands into ovals is captured by the
matrix H(+k) ⊕H(−k) where k is neither 0 nor π. For

these matrices, one can show that G̃[H(+k)⊕H(−k)] =

[H(+k)⊕H(−k)]†G̃ where G̃ is a 2M ×2M antidiagonal
matrix with each entry on the antidiagonal being 1. That
is,(

0 G
G 0

)(
H(+k) 0

0 H(−k)

)
=

(
H(+k) 0

0 H(−k)

)†(
0 G
G 0

)
.

(26)

G̃ has +1 as an M -fold eigenvalue and −1 as the other
M -fold eigenvalue.

In the Hermitian limit, h→ 0, the eigenvalues of H(k)
are real for all values of k. The time-reversal symmetry,
H(+k) = H(−k)∗, implies (by Kramers’ theorem [34])
that the eigenvalues of H(+k) ⊕ H(−k) come in degen-
erate pairs. At nonzero h, Kramers’ degeneracy theorem
breaks down [50] and we may expect a case of threshold-
less symmetry breaking [41] as in Sec. VII if the degen-
erate eigenvalues were of opposite kind.

Returning to the Hermitian limit, suppose |vi(+k)〉
and |vi(−k)〉 are the eigenvectors of H(+k) and H(−k),
respectively, for a common eigenvalue λi. The superposi-
tion α|vi(+k)〉+β|vi(−k)〉 is then the general eigenvector
of [H(+k)⊕H(−k)] corresponding to λi. One can check
that the eigenvector with (α, β) = (1, 1) is of opposite
kind to the one with (α, β) = (1,−1). Thus, all the de-
generacies of [H(+k) ⊕ H(−k)] are of indefinite kind at
h→ 0 enabling the eigenvalues to move off the real axis
when non-Hermiticity is introduced at arbitrarily small h
leading to the swelling of bands into ovals [see Fig. 5(a)].

Now, for k = 0, π, we get H(0) = G−1H(0)†G and
H(π) = G−1H(π)†G. Thus, these two matrices have
M+1

2 eigenvalues of positive kind and the rest of negative
kind. In the Hermitian limit, h→ 0, the eigenvalues are
all real and since H(0) [as well as H(π)] commutes with
G, its eigenvectors are either symmetric vectors (and of
positive kind), or antisymmetric vectors (and of negative
kind). Upon turning on the bias, by increasing the value
of h, while the eigenvectors are no longer constrained
to be either symmetric or anti-symmetric, the eigenval-
ues remain restricted to the real axis in the absence of
degeneracies. Numerical investigations suggest that on
increasing h, the eigenvalues of opposite kinds attract
each other and when they meet, and two bands merge at
k = 0, they generically produce exceptional point degen-
eracies [see Fig. 5(b) where we show the eigenvalues of
H(0)].

Whether or not the bands have merged is then cap-
tured by whether or not pseudo-Hermiticity breaking has
occurred in the matrixH(0)⊕H(π). When the symmetry
breaking does occur, it leads to a localization to delocal-
ization transition (or insulator to metal transition) in the
physical system.

In summary, we showed that the two key characteris-
tics of a lattice with asymmetric coupling—namely, the
swelling of bands into ovals at infinitesimal asymmetry
and the localization-delocalization transition at a critical
value of asymmetry—are captured by pseudo-Hermiticity
breaking in the relevant submatrices of the system. We
expect these key insights to be valuable in the study of
higher dimensional systems [51], dimerized systems, and
systems with disorder [46].

C. Coupled dissipative oscillators

Harmonic oscillators are ubiquitous in classical physics
since they model small fluctuations of a many-body sys-
tem about its equilibrium configuration. In recent years,
a detailed study of the matrix structure of mechanical
oscillators revealed rich behavior such as internal sym-
metries [9], topologically protected boundary modes [52],
exceptional rings [2], etc. Here we consider a system of
identical masses subject to an arbitrary harmonic poten-
tial and show that the system exhibits two intertwining
operators that govern the behavior of the modes.

Consider n coupled classical mechanical oscillators
with equal masses (set to 1). We denote the positions
of the oscillators by ~x = {x1, x2, . . . , xn}T such that the
potential energy of the system is ~xT .K.~x where K is the
stiffness matrix. K is real and symmetric with real eigen-
values Ω2

i , and corresponding eigenvectors ~qi satisfying

K~qi = Ω2
i ~qi. (27)

We are interested in the first-order equation

i
d

dt

(
~x(t)
~p(t)

)
= −i

(
0 −In
K γIn

)(
~x(t)
~p(t)

)
, (28)

where γ is the viscous damping coefficient. The equation
above also defines the quantum Hamiltonian

H = −i
(
0 −In
K γIn

)
. (29)

Since the Hamiltonian is time-independent the equation

can be solved by substituting

(
~x(t)
~p(t)

)
= e−iωt|v〉, where

|v〉 is a time-independent column vector, to get

ω|v〉 = −i
(
0 −In
K γIn

)
|v〉, (30)

an eigenvalue equation. The eigenvectors are

|v±i 〉 =

(
~qi

−iω±i ~qi

)
(31)

with eigenvalues

ω±i = − iγ
2
±
√

4Ω2
i − γ2

2
. (32)
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We first consider the case of no dissipation, γ = 0, such
that the eigenvalues are guaranteed to be real, ω±i = ±Ωi.
The pseudo-Hermitian symmetries of H(γ = 0) are as
following.

First, since this is a classical mechanical system the
underlying matrix is real-valued. By our choice of nota-
tion this implies H(γ = 0)∗ = −H(γ = 0) such that its
eigenvalues are either purely imaginary or come in pairs
with oppositely signed real parts. Recalling that such
a condition is equivalent to (anti-)pseudo-Hermiticity we
find that we can write this as G′1H = −H†G′1, where

G′1 =

(
−τK In
In τIn

)
(33)

is Hermitian and invertible. Here, τ is an arbitrary real
number.

Second, H(γ = 0) is also pseudo-Hermitian, G2H(γ =
0)G−1

2 = H(γ = 0)† with

G2 = iJ = i

(
0 In
−In 0

)
, (34)

which is Hermitian as well as unitary. This additional
pseudo-Hermiticity comes from the equations of motion
being derived from Hamilton’s equations of motion [23]
(J is the symplectic form). Pseudo-Hermiticity implies
that eigenvalues are either real or come in complex con-
jugate pairs.

Taking the two symmetries together, H(γ = 0) either
has pairs of oppositely signed eigenvalues that are purely
real or purely imaginary, or it has quadruplets of eigenval-
ues with nonzero real as well as imaginary parts forming
the set, {λ,−λ, λ∗,−λ∗}. These symmetries were noted
in Ref. [9] where they were connected to the time-reversal
symmetry and the chiral symmetry respectively.

With dissipation present, it is useful to work with the
traceless matrix,

H̃ = H +
iγ

2
I2n = −i

(
−γ2 In −In
K γ

2 In

)
, (35)

which has the same eigenvectors as in Eq. (31) but eigen-

values shifted to ω̃±i = ±
√

4Ω2
i−γ2

2 . Essentially we have
separated away the term governing the total loss of en-
ergy of the system and are now working with a matrix
with balanced gain and loss. The symmetry due to iH
being real generalizes to G1H̃ = −H̃†G1 with

G1 =

(
γIn − τK In

In τIn

)
. (36)

G1 is invertible as long as ω±i τ 6= −i for any ω±i . Since
G1 depends explicitly on the parameters of the system,
its usefulness is limited as its number of positive and
negative eigenvalues change whenever it passes through
a noninvertible point. The other symmetry remains the
same, G2H̃G

−1
2 = H̃† with G2 as in Eq. (34) [2].

Since we have two independent intertwining operators
(or indeed a continuous family of intertwining operators),

symmetry breaking can only occur when the modes meet-
ing each other are of opposite kind with respect to all in-
tertwining operators. To find the kind of each eigenspace,
first let us compute

〈v±i |G2|v±i 〉 =
(
~q∗i +iω±∗i ~q∗i

)
G2

(
~qi

−iω±i ~qi

)
= 2|~qi|2 Reω±i .

(37)
This evaluates to 0 for the overdamped case, 4Ω2

i ≤ γ2.
For the underdamped case, 4Ω2

i > γ2, we see that
〈v+
i |G2|v+

i 〉 is of positive kind while 〈v−i |G2|v−i 〉 is of neg-
ative kind. Physically, the modes are distinguished by
whether the momenta are lagging behind the positions
or are ahead of them.

Meanwhile,

〈v±i |G1|v±i 〉 =
(
~q∗i +iω±∗i ~q∗i

)
G1

(
~qi

−iω±i ~qi

)
=
(
|ω±i |

2τ − Ω2
i τ + 2 Imω±i + γ

)
|~qi|2. (38)

For the underdamped case, 4Ω2
i > γ2, this evaluates to

0. For the overdamped case, 4Ω2
i ≤ γ2, it evaluates to

〈v±i |G1|v±i 〉 =

(
γ2 − 4Ω2

i

2
±
√
γ2 − 4Ω2

i

2
(2− γτ)

)
|~qi|2.

(39)
To yield the strongest conditions we choose τ = 2/γ such
that both the modes are of positive kind as long as 4Ω2

i <
γ2.

Let us see what the combination of symmetries im-
plies. If we start from γ = 0 (when ω±i = ±Ωi), the
conditions due to G1 yield that all modes are of indefi-
nite kind and are not very useful. G2, on the other hand,
shows that that the positive and negative frequencies are
of opposite kind. They can become complex valued only
if they meet at zero modes. Indeed these zero modes (or
floppy modes) govern the instability of mechanical sys-
tems [52]. These modes have been a subject of interest
since for certain lattices they arise from a topological ori-
gin and are localized at the boundary and insensitive to
local perturbations [52].

On increasing γ, eigenvalues of opposite kind (oppo-
site according to G2) meet each other if Ωi = γ/2, a
condition known as critical damping. The exact solution
for the eigenvalues in Eq. (32) shows that this pseudo-
Hermiticity breaking occurs at an exceptional point. For
mechanical lattices, these exceptional points can form
exceptional rings due to rotational symmetry [2]. On
increasing γ further, the eigenvalues are now of positive
kind with respect to G1 and thus cannot wander freely
in the complex plane, i.e., ω±i + iγ2 is constrained to be
on the imaginary axis.

In summary, many properties of coupled oscillators
are captured by pseudo-Hermiticity and these ideas may
be useful in lattices and time-dependent systems and
even nonlinear systems [53] where exact solutions are in-
tractable.
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IX. CONCLUSIONS AND DISCUSSION

In summary, we showed that each eigen-
value/eigenspace of a pseudo-Hermitian matrix, H
such that H = G−1H†G, can be classified into three
kinds according to the sign of 〈v|G|v〉: positive, nega-
tive, or indefinite. Real nondegenerate eigenvalues of a
parametrized matrix H(x) are either of positive kind or
of negative kind, and as they wander along the real axis,
on the variation of the parameter, x, these eigenvalues
can turn into exceptional point degeneracies and/or split
into complex conjugate pairs if and only if they meet
a real eigenvalue of opposite kind. This then enables
one to predict the occurrence of exceptional points and
points of pseudo-Hermiticity breaking.

On the basis of this classification, we also showed that
the parameter space of a pseudo-Hermitian matrix ex-
hibits topologically disconnected regions where all the
eigenvalues of the matrix are real — which in many
cases correspond to distinct stable phases in physical
systems. These regions are surrounded by exceptional
surfaces which comprise all possible real-valued EPs of
pseudo-Hermitian matrices. Exceptional surfaces that
are boundaries to two different regions may meet anni-
hilating each other and giving rise to DPs. These excep-
tional surfaces together with the DPs created by their
intersections comprise all points of pseudo-Hermiticity
breaking.

We also showed how the intertwining operator, G, gives
rise to a conserved quantity and derived the conditions

for when degeneracies caused by external symmetries are
susceptible to thresholdless pseudo-Hermiticity breaking.
We illustrated our results with examples from different
branches of physics.

The topological ideas in this paper contribute to the
broader study of non-Hermitian topological phenomena
such as symmetry-protected topological phases, nodal
phases [54, 55], the graph topology of spectra [56], etc.
It would be interesting to investigate if the results of
this paper can be generalized and applied to other sym-
metry classes of non-Hermitian matrices. A comprehen-
sive study of the interplay of external symmetries and
pseudo-Hermiticity, and the application of this work to
the study of random non-Hermitian matrices [57, 58] and
to time-dependent systems [26] are all interesting direc-
tions. Investigating the response strength of DPs and
EPs at pseudo-Hermiticity breaking points is also an in-
teresting direction [59]. We leave these questions to fu-
ture work.
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Appendix A: Proofs for statements in Sec. III

In this section, U = e−iH such that G = U†GU [see
Eq. (14)].

Lemma 1. Let λ be an eigenvalue of H such that Imλ 6=
0 and |v〉 a corresponding eigenvector. Then, 〈v|G|v〉 =
0.

Proof. We have

〈v|G|v〉 = 〈v|U†GU |v〉
= 〈v|e+iλ∗

Ge−iλ|v〉
= e2Imλ〈v|G|v〉. (A1)

Since, e2Imλ 6= 1 we have 〈v|G|v〉 = 0.

Lemma 2. Let λ be a real eigenvalue of H with geomet-
ric multiplicity less than algebraic multiplicity (an excep-
tional point). Then, 〈v|G|v〉 = 0 for some corresponding
eigenvector |v〉.
Proof. Since the algebraic multiplicity of λ is greater than
its geometric multiplicity, we can define at least two lin-
early independent vectors |v〉 and say |w〉 such that

H|v〉 = λ|v〉 or U |v〉 = e−iλ|v〉, and (A2)

H|w〉 = λ|w〉+ |v〉 or U |w〉 = e−iλ|w〉 − ie−iλ|v〉.
(A3)

|w〉 is called a generalized eigenvector and satisfies (H−
λI)k|w〉 = 0 with k > 1. [The second part of Eq. (A3)
follows from Hn|w〉 = λn|w〉 + nλn−1|v〉, which can be
proven by mathematical induction.] Then,

〈v|G|w〉 = (〈v|U†)G(U |w〉)
= e+iλ∗

〈v|G(e−iλ|w〉 − ie−iλ|v〉)
= 〈v|G|w〉 − i〈v|G|v〉, (A4)

implying 〈v|G|v〉 is zero.

Appendix B: Proof of Krein-Gel’fand-Lidskii
Theorem

Let H(k) be a parameterized pseudo-Hermitian matrix
such that G(k)H(k) = H†(k)G(k). H(k) and G(k) are
continuous functions of the parameter(s) k, and G(k) is
Hermitian and invertible for all values of k. Note that
the case of G(k) = G being constant is automatically
covered as a special case.

1. Proof of sufficiency

To show that if 〈v|G(k = k0)|v〉 6= 0 for all eigenvectors
associated with λ0, a real eigenvalue of H(k = k0), then
λ0 stays real and diabolic upon small perturbations of k.

Proof. Suppose the contrary. Then there exists a se-
quence of matrices, H1, H2, · · · → H0 = H(k0) and
G1, G2, · · · → G0 = G(k0) such that an eigenvalue λm
of Hm has either non-zero imaginary part or algebraic
multiplicity strictly more than geometric multiplicity. In
either case, 〈vm|Gm|vm〉 = 0 where Hm|vm〉 = λm|vm〉
and GmHm = H†mGm.

While the sequence |v1〉, |v2〉, · · · → |v0〉 may not
be convergent, we can select a subsequence such that
|vmj
〉 → |v〉 as mj →∞. By suitably changing the nota-

tion, we have |vm〉 → |v〉 as m→∞. Letting m→∞ in
the above equalities, we obtain

H0|v〉 = λ0|v〉 with 〈v|G0|v〉 = 0. (B1)

But we assumed 〈v|G0|v〉 6= 0 for all eigenvectors asso-
ciated with λ0.

This proof closely follows the one given in Chapter III
of Ref. [24]. An alternate proof can be found in Ref. [25].

2. Proof of necessity

To show that if H(k = k0) has real eigenvalues and
〈v|G(k = k0)|v〉 = 0 for some eigenvector associated to
an eigenvalue λ, then it is possible to perturb k in such
a way that λ splits into complex conjugate eigenvalues.

Proof. We write H(k = k0) := H(0) in its Jordan normal
form, H(0) = PJP−1. The columns of the matrix P
are the generalized right eigenvectors of H(0) which we
denote by |Ri〉. The rows of the matrix P−1 are the
generalized left eigenvectors of H(0), which we denote by
〈Li|. Evidently, 〈Li|Rj〉 = δij since P−1P is the identity.
We will work with this biorthonormal basis.

Case of diabolic point. We consider the case of a dia-
bolic point at λ such that H(0) is diagonalizable at least
in the associated root subspace. This case will, in partic-
ular, also prove that an exceptional point is not necessary
for symmetry breaking to occur.
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http://dx.doi.org/10.48550/ARXIV.2202.03462
http://dx.doi.org/10.48550/ARXIV.2202.03462
http://arxiv.org/abs/2202.03462
http://dx.doi.org/10.1103/PhysRevResearch.4.043196
http://dx.doi.org/ 10.1088/1751-8121/ab1ce0
http://dx.doi.org/ 10.1088/1751-8121/ab1ce0
http://dx.doi.org/ 10.1088/1751-8121/ab1ce0
http://dx.doi.org/ 10.1103/PhysRevResearch.4.033179
http://dx.doi.org/ 10.1103/PhysRevResearch.4.033179
http://dx.doi.org/10.1007/978-3-662-12678-3_2
http://dx.doi.org/10.1007/s11433-015-5777-1
http://dx.doi.org/10.1007/s11433-015-5777-1


14

For simplicity we will assume that the degeneracy in λ
is twofold,

H(0) = (λ|R1〉〈L1|+ λ|R2〉〈L2|)⊕ H̃, (B2)

where H̃ is the projection of the matrix in the rest
of the space. A general Hermitian matrix can be ex-
pressed in terms of the left eigenvectors of H as M =∑
i,jmij |Li〉〈Lj |. We claim that G can be written as

G = (η1|L1〉〈L1|+ η2|L2〉〈L2|)⊕ G̃ (B3)

: = Gλ ⊕ G̃, (B4)

where G̃ is the projection of G in the subspace spanned
by {|L3〉, |L4〉, . . . }.

To show that there are no cross terms such as |Li〉〈L1|
or |Li〉〈L2|, with i > 2, in the expression above, we need
to show that 〈Ri|G|R1〉 = 〈Ri|G|R2〉 = 0 for i > 2. If
|Ri〉 is an eigenvector, we have

〈Ri|G|R1〉 = 〈Ri|U(t)†GU(t)|R1〉
= 〈Ri|e+iλ∗

i tGe−iλt|R1〉
= ei(λ

∗
i−λ)t〈Ri|G|R1〉. (B5)

Since λi 6= λ, ei(λ
∗
i−λ)t 6= 1 at all times t, and thus

〈Ri|G|R1〉 = 0. Similarly, 〈Ri|G|R2〉 = 0. If on the
other hand, |Ri〉 is a generalized eigenvector we proceed
similar to Lemma 2.

We can now choose |L1〉 and |L2〉 appropriately to
diagonalize G in this subspace. Since G is Hermitian
and invertible and 〈R|G|R〉 = 0 for some eigenvector
associated with λ, we must have η1 = 〈R1|G|R1〉 and
η2 = 〈R2|G|R2〉 being real, nonzero, and of opposite
signs.

The proof is now simply done by construction. A
Hamiltonian which is pseudo-Hermitian with respect to
Gλ, H†Gλ = GλH, is

H = a|R1〉〈L1|+ η2(b+ ic)|R1〉〈L2|
+ η1(b− ic)|R2〉〈L1|+ d|R2〉〈L2| (B6)

with a, b, c, d being arbitrary real constants. We now set

a = d = λ cos(x), b = λ sin(x)√
|η1η2|

, c = 0 to get

H(x) = λ

(
cos(x)|R1〉〈L1|+ η2

sin(x)√
|η1η2|

|R1〉〈L2|

+ η1
sin(x)√
|η1η2|

|R2〉〈L1|+ cos(x)|R2〉〈L2|
)
⊕ H̃,

(B7)

which has eigenvalues λe±ix in the relevant subspace.
These eigenvalues are complex-valued for real x and at
x = 0 we recover the original Hamiltonian, H(0).

Case of exceptional point. The proof is similar when
there is an exceptional point at λ, a real eigenvalue of

H(0). For simplicity we will again assume that the de-
generacy in λ is twofold,

H(0) = (λ|R1〉〈L1|+ λ|R2〉〈L2|+ |R1〉〈L2|)⊕ H̃. (B8)

Here, |R1〉 is a right eigenvector of H(0) and |R2〉 a gen-
eralized right eigenvector.
G can again be made block-diagonal in the left eigen-

vector basis (see the diabolic case). We now use Eqs.
(A2) and (A3) to show that 〈R1|G|R2〉 = 〈R2|G|R1〉,

〈R2|G|R2〉 = 〈R2|U†GU |R2〉
=
(
eiλ〈R2|+ ieiλ〈R1|

)
G
(
e−iλ|R2〉 − ie−iλ|R1〉

)
= 〈R2|G|R2〉+ i〈R1|G|R2〉 − i〈R2|G|R1〉.

(B9)

Since Gλ is Hermitian and invertible, and 〈R1|G|R1〉 =
0 by Lemma 2, we must have

Gλ = η1|L2〉〈L1|+ η1|L1〉〈L2|+ η2|L2〉〈L2|, (B10)

where η1 = 〈R1|G|R2〉 and η2 = 〈R2|G|R2〉 are real and
η1 is nonzero. A Hamiltonian which is pseudo-Hermitian
with respect to Gλ, H†Gλ = GλH, is

H = ((a− ib)η1 − cη2) |R1〉〈L1|+ (dη1 − ibη2)|R1〉〈L2|
+ cη1|R2〉〈L1|+ (a+ ib)η1|R2〉〈L2|, (B11)

with a, b, c, d being arbitrary real constants. We now set

a = λ cos(x)
η1

, b = λ sin(x)
η1

, c = 0, d = cos(x)
η1

to get

H(x) = λe−ix|R1〉〈L1|+
(

cos(x)− iλη2 sin(x)

η1

)
|R1〉〈L2|

+ λe+ix|R2〉〈L2|, (B12)

which has eigenvalues λe±ix in the relevant subspace.

The complete proof covering r-fold degeneracies is sim-
ilar and can be found in Chapter III of Ref. [24] and in
Ref. [25].

Appendix C: Continuity of the kind of eigenvalues

Let H(x) be a parameterized pseudo-Hermitian matrix
such that G(x)H(x) = H†(x)G(x), where H(x) and G(x)
are continuous functions of x, and G(x) is Hermitian and
invertible. Here we show that eigenvalues of H(x), which
are of positive (or negative) kind, retain their kind on the
variation of the parameter x. For accounting purposes,
an eigenvalue λ with Imλ > 0 will be considered of posi-
tive kind, and if Imλ < 0, it is of negative kind. We will
assume the following Lemma the proof of which can be
found in Ref. [24].

Lemma 3. If G(x) has p positive eigenvalues and q neg-
ative eigenvalues then H(x) has p eigenvalues of positive
kind and q eigenvalues of negative kind (after counting
multiplicities). The converse is also true.
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A corollary of this is the following (with the proof in
Ref. [24]).

Lemma 4. Let p eigenvalues of H(x) of positive kind
and q eigenvalues of negative kind meet at λ. Let P
be the eigenprojection operator associated with λ (which
projects any vector to the root subspace of λ) [15]. Then
G(x)P has p positive eigenvalues and q negative eigen-
values. The converse is also true.

We are now ready to prove the continuity of the kind
of eigenvalues.

Proof. Let γj describe small non-intersecting disks of ra-
dius ε around every distinct eigenvalue, λj , of H(0). We
must show that for arbitrarily small ε > 0 we can find a
δ = δ(ε) such that H(δ) has the same number of eigenval-
ues of the first kind and the same number of eigenvalues
of the second kind inside each γj as H(0) does.

Let λ be a k-fold eigenvalue of H(0). If Imλ > 0
we keep ε small enough that the corresponding disk γ
does not touch the real axis. Now, by the continuity of
eigenvalues one can choose a δ small enough that H(δ)
also has k eigenvalues inside γ. A similar procedure works
when Imλ < 0.

Now we consider the case where λ is a real k-fold
eigenvalue of H(0) where p eigenvalues of first kind and
q = k− p eigenvalues of second kind meet. Let Ω(0) and
Ω(δ) denote the sum of the root subspaces corresponding
to the eigenvalues of H(0) and H(δ), respectively, which
lie inside γ. Let P (0) and P (δ) denote the projection
matrices corresponding to Ω(0) and Ω(δ) respectively.

To define the projection matrices explicitly we make
use of the resolvent R(z) = (M − zIn)−1 of a matrix,
M . The resolvent is analytic in a region that does not
contain any eigenvalues of M [15]. Since λ is an isolated
eigenvalue the projection matrices above can be related
to the resolvent through [15, 60]

P (0) =
i

2π

∫
τ

dz (H(0)− zIn)
−1

(C1)

and

P (δ) =
i

2π

∫
τ

dz (H(δ)− zIn)
−1
, (C2)

where τ is the circumference of γ. We see that P (0) can
be made as close as desired to P (δ) provided H(0) is suf-
ficiently close to H(δ). By Lemma 4, G(0)P (0) has p
positive and q negative eigenvalues. By the continuity of
eigenvalues, G(δ)P (δ) also has p positive and q negative
eigenvalues. Thus, by Lemma 4 again, H(δ) has p eigen-
values of positive kind and q eigenvalues of negative kind
inside γ.

This proof closely follows the one given in Chapter III
of Ref. [24].

Appendix D: Finding the intertwining operator

For any pseudo-Hermitian matrix, H, the intertwin-
ing operator G is not unique. Given a Hermitian matrix
Gn such that H = G−1

n H†Gn we can construct another
intertwining operator, Gn+1 = GnH which is also Her-
mitian [17].

An exhaustive method to find all possible solutions G
for the equation AG = GB is,

AG = GB,

(I ⊗A) vecG = (BT ⊗ I) vecG,

(I ⊗A−BT ⊗ I) vecG = 0. (D1)

Here ⊗ is the Kronecker product and vecG is created
by arranging the entries of the matrix G in a column,
(g11, g12, . . . , g21, . . . )

T . Evidently the solutions for G
form a vector space since vecG forms the null space of a
matrix.

Our results apply to every Hermitian intertwining op-
erator that one can find for a pseudo-Hermitian matrix
H.

Appendix E: Formulation in terms of generalized PT
symmetry

Pseudo-Hermitian matrices commute with the gen-
eralized PT symmetry operator, H = SH∗S−1 =
ST HT −1S−1 [see Eq. (2)]. Formulating the results of
this paper in terms of S and T is, however, not straight-
forward, partly due to the complications of T being an
antilinear operator [61].

Since we are concerned with symmetry breaking, let
us assume H starts off with all real eigenvalues and no
exceptional point degeneracies. We can then diagonalize
H as

H =
∑
i

λi|Ri〉〈Li|. (E1)

The transpose of H is HT =
∑
i λi|Li〉

∗〈Ri|∗. Every
matrix is similar to its transpose and in this case the
similarity transformation is given by,

H = KHTK−1 where (E2)

K =
∑
i

eiφi |Ri〉〈Ri|∗ and (E3)

K−1 =
∑
i

e−iφi |Li〉∗〈Li|. (E4)

Here, each eiφi is an arbitrary phase factor. Note that
Eq.(E3) is not invariant under a change in absolute phase
of any eigenvector, |Ri〉 → eiθ|Ri〉. Now

H = G−1H†G = G−1(K−1)∗H∗K∗G, (E5)

implying S = G−1(K−1)∗. Now that we have expressed
S in terms of G all that remains is to translate results in
terms of G to S.
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We note that H̃ = H† is pseudo-Hermitian with re-
spect to the Hermitian matrix G−1. Symmetry break-
ing of H† is characterized by the sign of 〈R̃i|G−1|R̃i〉 =
〈Li|G−1|Li〉 = 〈Li|SK∗|Li〉 since the right eigenvector
of H† is the left eigenvector of H. In fact, symmetry
breaking in H† is equivalent to it occurring in H imply-
ing that the sign of 〈Li|SK∗|Li〉 characterizes the kind of
any eigenvector |Ri〉 of H. We can simplify this further,

〈Li|SK∗|Li〉 = e−iφi〈Li|S|Ri〉∗ (E6)

= e−iφi〈Li|ST |Ri〉. (E7)

The arbitrary phase e−iφi in the first equation above is
problematic. Eq. (E7) also generates additional phase
factors on the transformation |Ri〉 → eiθ|Ri〉 since T is
antilinear and T eiθ|Ri〉 = e−iθ|Ri〉∗ 6= eiθ|Ri〉∗. These
complications suggest that a possible formulation in
terms of S and T may require phase fixing (gauge fix-
ing) of the eigenvectors and we leave this to future work.

Appendix F: Details for characterizing the points of
symmetry breaking

1. Neighborhood of a point of symmetry breaking

We start from the matrices in Eq. (10) and Eq. (11) and
make an infinitesimal displacement in parameter space
such that the intertwining operator changes to

G(ε) =

(
η1 + εη̃1 0

0 −η2 − εη̃2

)
= G0 + ε

(
η̃1 0
0 −η̃2

)
,

(F1)
where η̃1 and η̃2 are arbitrary real numbers and ε > 0
is arbitrarily small. A general pseudo-Hermitian matrix
with respect to G(ε) and which reduces to H0 when ε = 0
is given by H(ε) =(

λ+ a+ ε(λ̃+ ã) (η2 + εη̃2)(b+ εb̃)ei(θ+εθ̃)

−(η1 + εη̃1)(b+ εb̃)e−i(θ+εθ̃) λ− a+ ε(λ̃− ã)

)
(F2)

where b = a√
η1η2

and ã, b̃, θ̃, λ̃ are real. Again we see that

the eigenvalues do not depend on θ+ εθ̃, and are trivially
shifted by λ + ελ̃ which controls the overall trace of the
matrix. We therefore set these terms to zero without loss
of generality to get H(ε) = a+ εã (η2 + εη̃2)

(
a√
η1η2

+ εb̃
)

−(η1 + εη̃1)
(

a√
η1η2

+ εb̃
)

−a− εã

 .

(F3)
We first consider the case where a = 0 and H0 had a

diabolic degeneracy. In this case H(ε) is given by

H(ε) = ε

(
ã (η2 + εη̃2)b̃

−(η1 + εη̃1)b̃ −ã

)
. (F4)

This has the same form as a general pseudo-Hermitian
matrix in Eq. (11) (with the overall trace and phase fac-
tor removed) and can therefore admit all permitted eigen-
values including from the strongly stable regions (+,−)
and (−,+).

Now we consider the case where a 6= 0 and H0 had
an exceptional degeneracy. In order to prove our state-
ment we only need to consider perturbations which create
real eigenvalues. Our strategy would be to show that the
larger of these eigenvalues cannot change its kind regard-
less of the kind of perturbation applied.

Now for any matrix, M =

(
x y
z w

)
, with real eigen-

values, the larger eigenvalue is given by x−w+
√
D

2 where

the discriminant, D = (x − w)2 + 4yz, is positive by
the assumption of real eigenvalues. The corresponding

eigenvector is |v〉 =

(
x− w +

√
D

2z

)
. The kind of this

eigenspace with respect to G(ε) is given by the sign of

〈v|G(ε)|v〉 = |x− w +
√
D|2(η1 + εη̃1)− 4|z|2(η2 + εη̃2).

(F5)
On evaluating this quantity for the matrix in Eq. (F3)

and expanding in orders of ε, we find that the O(ε0)
is zero since we started with a degeneracy of indefinite
kind at ε = 0. The next term is order O(ε

1
2 ) given by

4aη1

√
D (one can check that D is O(ε)). Since η1 > 0 by

assumption of invertibility of G(ε), a 6= 0 by assumption
of exceptional point, and D > 0 by assumption of real
eigenvalues, this is indeed the leading term with its sign
being the same as the sign of a.

2. Topological characterization of exceptional
points in the boundaries

For the purposes of this section we will consider a con-
stant intertwining operator

G =

(
+1 0
0 −1

)
= σ3, (F6)

which is Hermitian as well as unitary and follow the pro-
cedure first laid out in Ref. [2]. The pseudo-Hermitian
matrix (upto overall trace) is given by

H =

(
a beiθ

−be−iθ −a

)
, (F7)

where a and b are real. We define the Hermitian matrix

H =

(
0 iH
−iH† 0

)
, (F8)

which satisfies two Hermitian chiral symmetries, HU1 +
U1H = 0 and HU2 + U2H = 0. Here,

U1 =

(
I2 0
0 −I2

)
and U2 =

(
0 G
G 0

)
(F9)
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are both unitary. We can block diagonalize the Hamilto-
nian H with plus and minus sectors of U := iU1U2. That
is, we find a unitary transformation so that in the new
basis,

U =

(
I2 0
0 −I2

)
and H :=

(
H+ 0
0 H−

)
. (F10)

This gives H+ = −iσ2Hσ1 and H− = iσ2Hσ1. The
number of eigenvectors corresponding to negative eigen-
values of H+ gives the relevant topological index—the

zeroth Chern number. The eigenvalues of H+ are a± b.
Thus when b2 = a2 (at the exceptional point) the Chern
number is 0 when a > 0 and 1 when a < 0.

The proof here relies on the unitary of G. When G
is not unitary we may use the results from Ref. [34],
which provide a method to continuously deform (in a
symmetry-respecting way) any invertible Hamiltonian H
into a unitary matrix U , where U is given by the uni-
tary matrix in the polar decomposition of H = UP and
P = H†H is positive-definite. Thus, we expect these re-
sults to hold even when G was originally only Hermitian
and not unitary.
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