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Einstein-Podolsky-Rosen steering is a kind of powerful nonlocal quantum resource in quantum
information processing such as quantum cryptography and quantum communication. Many criteria
have been proposed in the past few years to detect steerability, both analytically and numerically,
for bipartite quantum systems. We propose effective criteria for tripartite steerability and gen-
uine tripartite steerability of three-qubit quantum states by establishing connections between the
tripartite steerability (resp. genuine tripartite steerability) and the tripartite entanglement (resp.
genuine tripartite entanglement) of certain corresponding quantum states. From these connections,
tripartite steerability and genuine tripartite steerability can be detected without using any steering
inequalities. The “complex cost” of determining tripartite steering and genuine tripartite steering
can be reduced by detecting the entanglement of the newly constructed states in the experiment.
Detailed examples are given to illustrate the power of our criteria in detecting the (genuine) tripartite
steerability of tripartite states.

Keywords: tripartite steerability; genuine tripartite steerability; tripartite entanglement; genuine
tripartite entanglement

I. INTRODUCTION

Originally introduced by Schrédinger Ngl] the Einstein-Podolsky-Rosen (EPR) steering for bipartite systems was con-
sidered as a ’spooky action at distance’ |2] in the sense that one party can steer another distant party’s state instantly.
The concept of EPR steering was proposed by Wiseman, Jones, and Doherty in 2007 B] Since then the EPR steering
has been systematically studied. Many different methods were proposed to detect and quantify the steerability of
bipartite quantum states M—Iﬁ], together with many applications in quantum information processing tasks includ-
ing one-sided device-independent quantum key distribution, random generation and one-sided device-independent
quantum self-testing of pure quantum states, subchannel discrimination, quantum communication et al.

The EPR steering lies between quantum nonlocality and quantum entanglement. A bipartite state is quantum
nonlocal if it does not admit a local hidden variable model HE], while it is EPR steerable if it does not admit a hidden
state model [3).

Bipartite steering is defined as follows. Alice and Bob share a quantum state p4p. Alice performs black-box
measurements A with outcomes a, denoted by M% (M4 > 0 VA,a and > M% =1 VA, with I denoting the identity

a
operator). The set of unnormalized conditional states {0%} on Bob’s side is called an assemblage. Each element in
this assemblage is given by

6% = Tr[(M3 ®1).pas]. (1)

Alice can not steer Bob if §% admits a local hidden state model (LHS), i.e., §% admits the decomposition
64 =Y p(\plal 4, V)p3, )
A

where A denotes classical random variable which occurs with probability p(A) satisfying > p(A) = 1, p(a]4, \) is
)

the probability given by the black-box measurement on Alice’s side, pf are some local hidden states. Bob performs
measurement B with outcomes b, denoted by MY, on the assemblage. The joint probability is p(a, b| A, B) = Tr[M%54].
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pAp is said to be a steerable state from Alice to Bob if p(a, b| 4, B) does not admit a local hidden variable-local hidden
state (LHV-LHS) model of the form,

p(a,b|A, B) Zp p(alA, \)pg (b|B, pk) (3)

Different from quantum entanglement and quantum nonlocality, EPR steering is asymmetric in general, which
means that Alice can steer Bob but not vice versa for some bipartite quantum states p 45 ﬂﬂ] The bipartite quantum
nonlocality and EPR steering can be detected by detecting the EPR steering and quantum entanglement of some
newly constructed quantum states, respectively .

The multipartite steering is an important resource in quantum communication networks M] and in one-sided or
two-sided device-independent entanglement detections ﬂé, @] Some ambiguities exist in the definition of multipartite
steering. With respect to the typical spooky action at a distance ﬂﬂ—@], and the semi-device independent entangle-
ment verification scheme m, E’é], two different approaches have been introduced to define the multipartite steering
ﬂﬂ, 34, @] One approach is to define genuine multipartite steering in terms of the steering under bi-partitions. A tri-
partite state pagc is defined to be genuine tripartite steerable if the state does not admit the mixtures of bi-partitions
where in each partition (e.g., A|BC) the two-party state (e.g., BC) is allowed to be steerable. Linear inequalities have
been derived to detect this kind of genuine multipartite steering |31] and used in experimental demonstrations @]

Another approach to defining tripartite steering and genuine tripartite steering is given as follows m, . Let
p(a, b, c|A, B, C) be the joint probability that Alice, Bob and Charlie perform measurements A, B and C with outcomes
a, b and ¢, given by measurements operators M§, M]l;, and ME, respectively. A quantum state papc is said to be
tripartite steerable from Alice (untrusted party) to Bob and Charlie (trusted parties) if p(a,b,c|A, B,C) does not
admit a fully LHV-LHS model such that

pla,b,c|lA, B,C) = ZP p(alA, Npq (b|B, 7y Dpe(elC, ) (4)

where pg(b|B, Tf) = Tr[M? Tf] and po(c|C, 1)) = Tr[ME&T) ] are the distributions from the local hidden states Tf and
7\, see Equation (13) in ﬂ?,ﬁ] and Equation (2) in [36].

The genuine tripartite steering has been defined in @@] Alice measures her system so as to nonlocally influence
the state of the other two parties. The ensemble of the unnormalized states is given by

{08 = Tr[(M§ @ T@1).pascl}- (5)

If the ensemble prepared on Bob’s and Charlie’s sides cannot be reproduced by a biseparable state as Equation ({Gl),
pasc =Y _p1(NpS @ + > pa(NpST @ pl + > ps(Nps @ p37, (6)
A A A

with > p1(A) + p2(A) + p3(A) = 1, then papc is not genuine tripartite steerable from Alice to Bob and Charlie.
)

Therefore, if pape is genuine tripartite steerable from Alice to Bob and Charlie, then each member of the ensemble
() can not be expressed as m, @],

Ma —Zpl )p1(alA, )\)
+ZP2 Ma )\®pA (7)

+Zp3 (\) p/\ ®5}42)/\
A

with 5@37)\ = Tr[(M§ @ 1)p5°] and 5;(/[;,)\ = Tra[(M§ ®1)p}"]. The first term on the right-hand side of (@) stands
for that Alice cannot steer Bob and Charlie. Bob and Charlie share entanglement and a local hidden entangled state

pfﬂy. The other two terms imply that there is no entanglement between Bob and Charlie, and Alice can steer one of
the two systems but not both: the second (third) term stands for that Alice can steer Bob (Charlie) but not Charlie
(Bob).



A state is genuine tripartite steerable from Alice to Bob and Charlie if the joint probability p(a,b,c|A, B,C) =
Tr[(M% ® MC)5BC] does not admit a hybrid LHV-LHS model 35, 36],

p(a,b,c|A,B,C) = Zpl p(alA, N)pg (b, c|B, C, p B
+ sz )pQ(a,blA, B)po(clC. p3) (8)
A

+>  ps(Npg(a. |4, C)po (b|B, oY),
A

where p(alA, \) is the distribution on Alice’s side from black-box measurements performed on a quantum state,
pa(c|C, p}) and po(b|B, pf) are the distributions from measurements on quantum states p} and pf. po(b,¢|B,C, pf'y)

can be reproduced by quantum state p5” shared by Bob and Charlie. pg(a,b|A, B) = Tr[(M% @ M%)p3?] and
pqla,clA,C) = Tr[(M§ @ ME)pY"] are distributions from a quantum state with untrusted A and trusted B and C.

When M4 =1, pg(b|B) and pg(c|C') are probabilities from the local hidden states Tr 4 [pfﬁ] and Tr4[p}"], respectively,
since B and C are the trusted parties. We always use po(z,y|X,Y) (z,y =a,borcand X,Y = A, B or C) to represent
the distribution from measurements on two parties with one party trusted and the other two untrusted in this paper.

A quantum state papc is said to be tripartite steerable from (untrusted) Alice and Bob to (trusted) Charlie if the
joint probability p(a, b, ¢|A, B, C) does not admit a fully LHV-LHS model such that

p(a,b,c|A, B,C) = Zp p(alA, N)p(b|B, N)pg(c|C, 1)), 9)

where p(a|A, X) and p(b| B, \) are the probabilities from the black-box measurements, pg(c|C,7y) is the distribution
from local hidden state 7y, see also the definition given in @, @]

The genuine tripartite steering from Alice and Bob to Charlie has also been defined in M] Alice and Bob
measure their systems so as to nonlocally influence the state of Charlie’s. The ensemble prepared on Charlie’s side
cannot be reproduced by a biseparable state as Equation ([@). Each member in the ensemble of unnormalized states
can not be given by

554271\41, =Tr[(M§ @ MY ®1).pasc)

—Zpl )p1(a,blA, B, X)p3
+Zp2 p(alA, )

+Zp3 b|B A Ma A’

with 67, , = Trs[(Mp ® I)pf'y] and 6, , , = Tra[(M§ ®@1)p}”]. The first term on the right-hand side of (I0) stands
B> A

for that Alice and Bob cannot jointly steer Charlie, and the second (third) term stands for that only Bob (Alice) can
steer the state of Charlie. A state is genuine tripartite steerable from Alice and Bob to Charlie if the joint probability
p(a,b,c|A, B,C) does not admit a hybrid LHV-LHS model such that

p(a,b,c|lA, B,C) = Zm p(a,b|A, B, \)pq(c|C, py)
+Zp2 p(alA, Npq (b, ¢ B, C) (11)
+Zp3 p(b| B, \pg(a, A, C),

where > p1(A) + > p2(A) + D p3(A) = 1. p(a]4, ) and p(b|B, \) are the distributions on Alice’s and Bob’s sides,
) ) X

respectively, arising from black-box measurements performed on a quantum state. p(a,b|A, B, \) is the distribution
produced from black-box measurements performed on a quantum state. pg(c|C,p]) is the distribution from the

state p]. po(b,c|B,C) = Tr[(MB ®@ M%) p5"] and pg(a, ¢|A, C) = Tr[(M3 @ ME)p3?] are probabilities from a 2-qubit
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quantum state with untrusted A and B and trusted C. When M§ = M% =1, pg(c|C) are probabilities from the local

hidden states Trg [pfﬂy] and Tr4[p{"], respectively, since C is the trusted party.

Entropic steering inequalities and semi-definite-program have been adopted to investigate the detection of multipar-
tite steering m, @, @] In the following, we construct new quantum states with respect to given three-qubit states
and detect the tripartite steering and genuine tripartite steering analytically in terms of the tripartite entanglement
and the genuine tripartite entanglement of the newly constructed quantum states. The entanglement of the newly
constructed states can be detected by using the entanglement witness without full tomography of the states. By
detecting the entanglement of the newly constructed states, the tripartite steering and genuine tripartite steering can
be detected without using any steering inequalities. Since the “complexity cost” (the number of possible patterns of
joint detection outcomes that can occur, see ﬂ@]) for the least complex demonstration of entanglement is less than
the “complexity cost” for the least complex demonstration of EPR steering m, @], our scheme reduces the “complex
cost” in experimental steering demonstration.

II. MAIN RESULTS

A quantum state is fully separable if the joint probability p(a, b, ¢|A, B, C) satisfies the condition,

p(a, b, C|A7 B, C) = ZPAPQ(G|A7 Tg)pQ(MBv Tf)pQ(dcv T;\Y) (12)
A

Fully separable states are neither tripartite steerable states from Alice to Bob and Charlie nor from Alice and Bob
to Charlie. From () and (@) a state which is not tripartitely steerable from Alice to Bob and Charlie is not tripartitely
steerable from Alice and Bob to Charlie, i.e., tripartite steering from Alice and Bob to Charlie is stronger than that
from Alice to Bob and Charlie.

A quantum state is bi-separable if the joint probability p(a, b, c|A, B, C) satisfies the condition,

pla,b,c[A, B,C) = Zpl ()‘)pQ(av blA, B, piﬁ)pQ(dC, p})
A
+ > p2(Mpalald, p)po(b,|B,C.p5") (13)

A
+> ps(Np(b|B, o )po(a, c|A, C, p37),
A

where Y p1(A) + > p2(N) + D p3(A) = 1. A bi-separable quantum state must not be a genuine tripartite steerable
) ) X

state from Alice to Bob and Charlie or from Alice and Bob to Charlie. From (8) and (Il a state which is not genuine
tripartite steerable from Alice to Bob and Charlie is not genuine tripartite steerable from Alice and Bob to Charlie.
As a result, given in M], the noisy GHZ state demonstrates the genuine tripartite steering from Alice to Bob and
Charlie in a larger region compared to that from Alice and Bob to Charlie. For general tripartite quantum states, the
genuine tripartite steering from Alice and Bob to Charlie is also stronger than that from Alice to Bob and Charlie.

Theorem 1 Let papc be a three-qubit quantum state and

I
Tase = Hpase + (1 — M)E ® pBe (14)
with ppe = Trapanc and Is the 2 x 2 identity matrix. We have
(i) If TjBC is genuine tripartite entangled, then papc is genuine tripartite steerable from Alice to Bob and Charlie
for 0 < p <
(ii) If 7} is tripartite entangled, then papc is tripartite steerable from Alice to Bob and Charlie for 0 < p <
The statements in Theorem 1 are equivalent to the following:
(i) If pagc is not genuine tripartite steerable from Alice to Bob and Charlie, then 74 5. is bi-separable for 0 < p <

Bt ol

(ii") If pagc is not tripartite steerable from Alice to Bob and Charlie, then 7}, is fully separable for 0 < p <

Proof of Theorem 1. We prove the theorem by proving its converse negative proposition: if p4pc is not a genuine
tripartite steerable state from Alice to Bob and Charlie, then 7). is a bi-separable state; if papc is not a tripartite
steerable state from Alice to Bob and Charlie, then TjBC is a fully-separable state.
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Firstly we glve the (unnormahzed) conditional quantum state (51636 on Alice’s side after Bob and Charlie perform
measurements M and M¢ on 7}, “asc- Then the Bloch sphere representation of the conditional state can be expressed
according to the Jomt probabilities. Lastly from the condition that p4p¢ is not genuine steering or steering from Alice
to Bob and Charlie, we prove that 61636 is the convex combination of some qubit quantum states if u satisfies certain
conditions.

Step 1. From (I4) we have the (unnormalized) conditional state on Alice’s side when Bob and Charlie perform
measurements M% and M¢& on 70,

St == Trpel(lo ® My @ ME).mhpe] = #TI“BC[(Iz ® Mp ® ME&).pasc)

Iy
+ (1 = wp(b,c|B,C, pABc) yIQ —i—Znal

where o; (i = 1,2,3) are Pauli matrices o4, o, and o, respectively.
Step 2. y and r; (i = 1,2, 3) are given by the joint probabilities,
y = Te[ogd] = pTr[Trpe[(la ® MY @ ME).pascll + (1 — w)p(b, ¢| B, C, pasc)
- p(ba C|B7 Ca p.ABC);

ri = Tr[0gd.0i] = Tr[dpg. (0] — 07)] = pTr[Trge[(la ® MY @ ME).pase)-(o7 — o7 )]
= ,U(p(-'—, b7 c, |Uia Ba Ov PABC) - p(_a b7 c, |Uia Ba Ov p.ABC))7
with a;r and o; the eigenvectors of o; with respect to the eigenvalues 1 and —1 of o; (i = 1,2, 3), respectively.

Step 3. (I). If pagc is not a genuine tripartite steerable state from Alice to Bob and Charlie, the joint probabilities
admit a hybrid LHV-LHS model as follows,

p(avbaC|AaBaO Zpl pl CL|A )\)pQ(b C|B O p )

+pz(/\)PQ(07 blA, B)pq(c|C, p))
+p3 ()‘)pQ (a7 C|A7 C)pQ (b|B, Pf%

p(b,c|B,C, pasc) Zpl )po(b,c|B,C, pi7)

+ sz )po(clC, pY)pq (b|B)
A

+ " ps(Npe (BB, p)pa(clC),
A

where pg(b|B) and pg(c|C) are probabilities from qubit states pf, = Try [pfﬁ] and p:(, = Tralp{"] on Bob’s and

Charlie’s sides, respectively.

p(:l:,b,C|Ui,B,O Zpl pl :l:|017 )pQ(bvc|B507p§3’y)

+ p2(/\)pQ(:l:7 b|0i7 B)pQ(C|Ov Pz)
+ps(Npo (£, cloy, C)pq (b B, o).

Step 4. We now prove that the following conditional state 61636 is the convex combination of qubit quantum states
when p satisfies certain conditions,

o :Zpl Pa(b,elB,C. 5705 + > p2(Npo(c|C, p3)pq (b1 B) i
A

+Zp3 (Mpe(b1B, p)pe(c|C)p}
A



where
1
P = g2+ i) (p1(Hoi X) = pr(=loi, A)as),
Ly pa(+:bloi, B) — po(—.bloi, B)
9 Q ) Q ’ ?
= (I + g5 ),
1 po(+; cloi, €) — pa(=,¢loi, €)
3 ol ©
_ = + g;).
. )b O'»L,B —_ —,b O’i,B
Since |p1(+|oi, A) — p1(=loi, A <1, |pQ(+ | pQ)(b\pg)( ‘ )| <1and

|pQ(+ :l0i,C)—pg(=,cloi,C)
P (c|C)
They are quantum states when 0 < p < \/_ Therefore,

| <1, when 0 < u < % py, p3 and p3 are semi-definite positive matrices with trace one.

pla,b,c|A, B,C,mlze) = Tr[M45pd] = Zpl o (b, ¢| B, C, pi po(alA, p})
+ > p2(Npa(€|C, p2)pa (b B)pg(al4, p3)
A
+ Zps (Mpo(b1B, p)pa(clC)po(al 4, p3)
= Zpl )pq (b, ¢l B, C, p}")pq(alA, p))
+sz (Npo(elC; p)po(a,bl, A, B, p3™)
A

+ Zp3 ()\)pQ (b|-87 pf)pQ (a/u C|, A7 Cu Pi’y )7
A

with pg(b|B) = Tr[MY,. p)\ | and pQ(c|C) Tr[ME.p) |, and pA =M ® p)\ and pﬂ = pA ® p)\ From ([I3) ;¢ is
a bi-separable state. Namely, if 7} “ABC 1s genuine tripartite entangled, then p45c is genuine tripartite steerable from
Alice to Bob and Charlie for 0 < p < T

Step 3°.  (II). If pagc is not tripartite steerable from Alice to Bob and Charlie, the joint probabilites admit
LHV-LHS model,

p(a,b,c|A,B,C) = Zp p(alA, N)pq (b B, Ty Npol(dC, ),

p(b,c|B,C.pasc) = Y p(Npo (bl B, m)po(clC. 7))
A

and

p(£,b,clo;, B,C) = Zp p(£|oi, ) pQ(b|B,T§3)pQ(C|C,T;\Y). (15)

Step 4’. Therefore, 51'26 is given by the convex combination of some qubit quantum states when p satisfies certain
condition,

Tae =D p(Npa®lB. m{)polclC, )75,
A

where 7§ = 1 (I +Mz(p1(+|0i7)\) —p1(—|oi, N))oi). Since |p1(+|oi, A) —p1(—|oi, Al < 1fori=1,2,3, when 0 < pu <

% Ty is a semi- deﬁmte positive matrix when 0 <y < f Therefore, 7 is a quantum state when 0 < p < f Since

plab,clA, B,C,mhpe) = Te[MEds2] = > p(\pa(al A, 75)pa (b B, 7 pa(c|C, 7).
A



from ([2), 745 is fully separable. Hence, if 7} 5. is tripartite entangled, p4pc must be tripartite steerable from Alice

to Bob and Charlie for 0 < p < % O

Theorem 2 Let p4pc be a three-qubit state and

Tase = Hpasc + (1 — M)% ® pc, (16)
where pc = Trappasc and 1y is the 4 x 4 identity matrix. We have

a) If 735 is genuine tripartite entangled, then papc is genuine tripartite steerable from Alice and Bob to Charlie for

0<p<gy;

b) If 73 5¢ is tripartite entangled, then papc is tripartite steerable from Alice to Bob and Charlie for 0 < p < %
The proof of Theorem 2 is given in Appendix [Al The statements in Theorem 2 are also equivalent to the following:
(a”) If p apc is not genuine tripartite steerable from Alice and Bob to Charlie, then 72 5 is bi-separable for 0 < y < %;
(b”) If papc is not tripartite steerable from Alice to Bob and Charlie, then 73 is fully separable for 0 < < 1).
Next, we illustrate our theorems with detailed examples.

Example 1 Consider papc = |GHZ)(GHZ|, where |GHZ) = a|000) + v/1 — a2|111). The 7}, defined in Theorem
1 is a 8 x 8 matrix with entries 75, 7,j = 1,2,...,8. The state T}z, is genuine entangled if |7s| > \/To2777 +
\/T33T66 + \/T44Ts5 @], and 7}z is entangled if one of the following three inequalities is satisfied: |mis| > /722777,
|T18] > /733766 O |T18| > \/TaaTss HE] Therefore, from Theorem 1 we have that when 0 < a < 1 this state pagc is
tripartite steerable and also genuine tripartite steerable from Alice to Bob and Charlie. Similarly, according to the
entanglement of 734, from Theorem 2 we obtain that pagc is tripartitely steerable from Alice and Bob to Charlie
when 0 < a < 1. While in @], genuine tripartite steering from Alice to Bob and Charlie is detected only when
0.5 <a<0.85.

Example 2 Consider papc = %Ig+p|GHZ><GHZ| with |GHZ) = \%(|OOO>+ [111)). Similar to Example 1, by using

the entanglement criteria given in @, @] and Theorem 1, we have that Ti‘BC is genuine tripartite entangled when
p > 0.672, and thus papc is genuine tripartite steerable from Alice to Bob and Charlie. When p > 0.406 T}wc is an
entangled state, and p apc is tripartite steerable from Alice to Bob and Charlie. Furthermore, from the entanglement
of TiBC and Theorem 2, we have that papc is tripartitely steerable from Alice and Bob to Charlie when p > 0.6.
While in @] panc is proved to be tripartite steerable from Alice to Bob and Charlie when p > 0.74 and genuine
tripartite steerable from Alice to Bob and Charlie when p > 0.95. In M] pABc is shown to be tripartite steerable from
Alice to Bob and Charlie when p > 0.35 and genuine steerable when p > 0.71. papc is tripartite steerable from Alice
and Bob to Charlie when p > 0.5 and genuine steerable when p > 0.71. In M] panc is shown to be tripartite steering
from Alice to Bob and Charlie when p > 0.8631 for two measurement settings, and p > 0.7642 for three measurement
settings. papc is tripartite steering from Alice and Bob to Charlie when p > 0.6751 for two measurement settings,
and p > 0.5514 for three measurement settings. Hence, in the case of detecting genuine tripartite steering from Alice
to Bob and Charlie, our proposed method is stronger compared with the criteria given in @—Iﬂ], and in the case

of tripartite steering from Alice to Bob and Charlie, our proposed method is stronger with respect to the criteria in
34, é] The results are listed in Table [l

TABLE I. Critical values to white noise p for example 2 by our theorems and the criteria in @@],here S
represents tripartite steering and GMS represents genuine tripartite steering

Steering | A to B & C(S)|.A to B & C(GMS) |A & B to C(S) | A & B to C(GMS)
our result [0.406 0.672 0.6

135 0.35 0.71 0.5 0.71

136 0.74 0.95 e | ]
37 0.7642 0.5514

Next, instead of the criteria given in @, @] we first present improved separability criteria. Consider a three-
qubit state [¢). Let o;; be the entries of the matrix o = [¢)(¢|. If the state o = |¢)(3| is bi-separable, we have
lo2s| < 2(011 + 066), |o35| < (011 + 077) and |o23] < 1 (022 + 033) under the bipartition A|BC; |oa3| < $ (011 + 044),
|035| < %(0’11 +0'77) and |025| < %(0’22 +0'55) under the bi—partition BlAC, |023| < %(011 +0’44), |025| < %(011 +0'66)
and |o3s| < %(033 + 055) under the bi-partition C|.AB. Hence for any pure bi-separable quantum state o, we have
|oos| + |oas| + |oss| < %(2011 + 044 + 066 + 077) + %(022 + 033 + 055). The above inequalities are also satisfied for
bi-separable mixed states by the convex roof construction. Therefore, we have



Proposition 1. Let 745¢ be any three-qubit state and 7;; the entries of the 8 x 8 matrix 745¢c. Then T45¢ is
genuine tripartite entangled if

|To3| + |Tas| + | 735]
1 1 (17)
>§(27'11 + T44 + Tee + 7'77) + 5(7’22 + 733 + 7'55).

Example 3 Let us consider now papc = %Ig +p|W)(W| with [W) = %(|001> +1]010) +]100)). Using the inequality
(@), we have that the state TilBC defined in Theorem 1 is genuine tripartite entangled when p > 0.816, whereas from
the result |T23| + |7'25| + |T35| > \/T11T44 + \/7—117_66 + \/T11T77 + %(ng + 733 + 7'55) given in m, @], T.ilBC is genuine
tripartite entangled when p > 0.862. Hence, from Theorem 1 when p > 0.816, pagc is genuine tripartite steerable
form Alice to Bob and Charlie. Concerning the tripartite steerability, it has been shown in ﬂA_JJ] that 7} ¢ is tripartite
entangled if (P®I4)T}43C is not a positive semi-definite matrix, where I' is the transpose with respect to subsystems A,
B or C. From this criterion we have that 7',1413‘6 is tripartite entangled when p > 0.31, i.e., papc is tripartite steerable
form Alice to Bob and Charlie for p > 0.31. Similarly from the 754, given in Theorem 2 and the criteria given ],
we have that p apc is tripartite steerable form Alice and Bob to Charlie when p > 0.621. While in @], pABc is proved
to be tripartitely steerable from Alice to Bob and Charlie when p > 0.85 and no genuine tripartite steerability is
detected. In ﬂﬁﬁ: pAsc is shown to be tripartite steering from Alice to Bob and Charlie when p > 0.9814 for two
measurement settings, and p > 0.8366 for three measurement settings. papc is tripartite steering from Alice and Bob
to Charlie when p > 0.75 for two measurement settings, and p > 0.623 for three measurement settings. Hence, in
the case of detecting tripartite steering and genuine tripartite steering from Alice to Bob and Charlie, our proposed
method is stronger with respect to the criteria in @ . The results are listed in Table [Il

TABLE II. Critical values to white noise p for example 3 by our theorems and the criteria in @ﬁ],here S
represents tripartite steering and GMS represents genuine tripartite steering

Steering |A to B & C(S) | A to B & C(GMS) [A & B to C(S) | A & B to C(GMS)
our result|0.31 0.816 0.621 |
35

36 0.85

37 0.8366 ———— [0.623 |

One point to be stressed here is that, instead of the numerical results based on a semi-definite program in M],
our results are derived analytically. For the GHZ state and W state mixed white noise, our criteria are powerful in
detecting the genuine tripartite steering from Alice to Bob and Charlie. Nevertheless, the criteria can not detect any
genuine tripartite steering from Alice and Bob to Charlie, which illustrates that the genuine multipartite steering
from Alice and Bob to Charlie is a kind of stronger quantum correlation and some more powerful criteria are needed.

IIT. CONCLUSIONS

The tripartite steerability and genuine tripartite steerability can be detected by detecting the multipartite entan-
glement and genuine multipartite entanglement of the newly constructed state analytically. Some examples show that
the criteria are powerful to detect tripartite steering from Alice to Bob and Charlie, Alice and Bob to Charlie, and
genuine tripartite steering from Alice to Bob and Charlie. Besides, we give the relationship of fully separable states,
non-tripartite steerable states in a one-to-two scenario and a two-to-one scenario, bi-separable states, and non-GMS
states in two scenarios. More analytical powerful criteria will be studied to detect genuine multipartite steering from
Alice and Bob to Charlie in future research.
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Appendix A:

Proof of Theorem 2. The proof of Theorem 2 is similar to that of Theorem 1. We prove Theorem 2 also by proving
the converse negative proposition: if p4pc is not a genuine tripartite steerable state from Alice and Bob to Charlie,
then TiBC is a bi-separable state; if p4g¢ is not a tripartite steerable state from Alice and Bob to Charlie, then TiBC
is a fully-separable state.

Firstly we give the (unnormalized) conditional quantum state 62 on Alice’s and Bob’s sides after Charlie performs
measurements M§ on TiBC. Then the Bloch sphere representation of the conditional state 6} can be expressed by
the joint probabilities. Lastly from the condition that p4pc is not genuine steering or steering from Alice and Bob to
Charlie, the theorem is proved by proving that ¢} is the convex combination of some 2-qubit quantum states when g
satisfies certain condition.

Step 1. From (6 we have the (unnormalized) conditional quantum state on Alice’s and Bob’s sides after Charlie
performs measurements M¢ on 7340,

6¢ =Tre[(Ls ® M&) ]

I
=uTre[(Iy ® M&)pase] + (1 —u)p(c|C, PABC)Z4

i II4+ZCL101®12+12®Z(7 O'Z—I—ZCWUZ@O'J)
ij

Step 2. The bloch representation are given by the joint probabilities, = Tr[dc] = pTr[(Is ® ME)pasc] + (1 —
mp(e|C, pasc) = p(c|C, pasc)

Tr[((o;f — 0;) @12).02]

—MTF[(U @1y @ ME).pasc] — pTr[(o; @ 1o @ ME).pasc)
=u(p(+, cloi', C, pasc) — p(— clo’y, C, pasc))

=p(2p(+, o, C, pase) — p(c|C, pase)),

b; =Tr[(Ix ® (O';r —0;))-0¢]
=uTr[(I ® 0] ® ME).papc] — pTr[(Is ® 0] @ ME).pasc)
=u(p(+.clof,C,pasc) — p(—.clof,C.pasc))
=u(2p(+, clo?, C. panc) — p(c|C, panc))

and
cij =Tr[(0] —07) @ (0] —0;)5¢]
=uTr[((0] —0;) @ (0] — 0} ) ® ME). pABc]
=plp(+,+.clot, o, C, pasc) — p(+, —, clo, 05, C, pasc)
( + C|Uz ) _7 7C PABC)+p(_ - C| g; ] ,C pABC)]
=u(2p(+, +, clot, 08, C, pase) + 20(—, —, clot, 0, C, pasc) — p(c|C, pasc))-
Therefore,

1
o = 7P(elC, pase)la + 1y @2p(+, e, C, pase) — plclC, pase))os @1
+ 1Y (2p(+,clof, C, pase) = p(c|C, pase)la ® o
+ 1Y (2p(+,+,cot,0f, Cpase) + 2p(—, =, clof, o, C, pasc)
ij

— p(c|C, panc))oi ® oj].
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Step 3. (I) If papc is not genuine steerable from Alice and Bob to Charlie, we have that the joint probabilities
admit a hybrid LHV-LHS model as follows,

p(aabudAuBuCapABC Z[pl (I blA B )\)pQ(dC p)\)

+p2(A)p(a|A, Mpo (b, ¢|B, C) (A1)

+ D3 ()‘)p(b|Ba /\)pQ (av C|A7 C)] .
Specially,

p(c|C, pasc)
_z[pl 1(clC. p3) + p2(NPo(e|C. p} ) + pa(N) Po(elC. p} )] (A2)

with Py(c|C, p}/) and Pg(c|C, pzn) the distributions from Charlie’s measurement M¢ on p}/ = Trg[p5"] and p}n =
Tro[pY"], respectively.

p(, |, Copase) =Y [p1(Np(£lo7t, Npg(cC, p))
A

, A3
T s (p(Elo, MpolelC. o) (43)
+p3(>\)pQ(iac|UZAaO)]
Pl clof, Copase) = Y _[pr(MVp(lef, Mpa(clC, p})
A

+ p2r(\po (£, clo®. ) (A44)

+ ps(\p(0®, Npa(elC, , )]

and
p(£, £, cloft, J, Z[Pl p(£, tlof, o Ja Npq(clC, p3)

(A5)

+p2(/\)p(i|0i , Mpg (£, ¢laf, C)
+ p3()‘)p(:l:|0'367 )\)pQ(ia C|U;'Av C)]



Substituting Equations (A2)—(AZ) into the expressions of z, a;, b; and ¢;; (¢,j = 1,2,3), we have
x = Zpl pQ(clC, p}) + p2(MN)pa(c|C, p ) + ps(Npo(lC, p] ),
[201(Np(+', Mpa(elC. 73) + 202 (Wp(+or', Npa (elC 3 )
=M pl Uz y A)PQ\CIU, Py P2 p 0; 5 A)P\C|U, Py

+ 2p3()\)pQ(+,c|ag4, )
— 2w (elC, 5) = p2(Npa (e, 03 ) = ps(Wpa(elC. 7],
= uZ[pl Wa(clC, p])(2p(+lot, X) — 1) + pa(Npo (€lC, p ) (2p(+]o7") — 1)

" p +,C0'7';A,C
£ pa(NpalelC,p} ) x (22ALATLD oy,
palelC,p])

= uZ[pl Wa(clC, p])(2p(+lo?, X) — 1) + pa(Npo (€lC, p ) (2p(+]o7') — 1)

pQ(+ C| 05 ) pQ(—,C|O'{4,O)]
pQ(clC,pX)
b = NZ 2p1(Np(+|of, Npa(c|C, p}) + 2p2(Mpg (+, clof, O)

+p3(Mpa(lC, pY ) x

+2p3(\p(+o®, Npo(€lC, )
— P Npo(eC. 0}) = p2(Wpa(clC, 5} ) = ps(Npa(clC, 3 )]
= uZ[pl e (elC, pY)(2p(+0F,A) = 1) + pa(Npo(elC, p] ) (2p(+]oF, A) — 1)

pQ(+,clof, C) —po(—,clof, O)

+p2(Npo(e|C, pY) x ;
A po(clC,pY)

]

11



= NZ{ 2p1(\p(+, +lo7, 057, Mpa(€|C, p]) + 2p2(Vp(+o7', A)

XPQ(+70|% C) + 2p3(Np(+|oF  Npo(+, o, O)]
+Z[2p1()‘) - —|Ul » T 7)‘)pQ(C|C p)\)+2p2()\)p(—|UlA,)\)pQ(—,C|0§3,C)
A

+ 23(\p(— 0%, Mpa(— clot, €)]
- z[pl ) (€lC; 53) + P2 (Npa(elC. p}) + ps(MpalelC. oY N}

_IU‘Z{pl pQ C|C p)\)(Zp(+ +|U7, ) ] 7A)+2p( ;A?O'_?aA) - 1)

+p2(Npe(clC,py)
% [2p(+|0§47)‘)pQ(+76|0§370) +p(_|0§47)‘)pQ(_70|U§370) _ 1]
pa(clC.py)

+ p3s(Mpa(clC,pY )
p(+|0§3,)\)pQ(+,C|0‘iA,0) +p(—|0’§3,)\)pQ(—,C|0‘iA,C)
X [2 57 - 1]}
pq(clC.p} )

—HZ{pl )pQ(clC, pX)(2p(+, +lo7, 07, A) + 2p(—, =07, 05, A) — 1)

po(+.clo?,C) — po(+,clo?, C)
pa(clC,p})

)pQ(+aC|O’Z4=C) —PQ,(,—70|UZA=C)]}
pa(clC,p})

+p2(Npa(clC, 0} ) (2p(+]o7) — 1)

+ps(Npe(elC, o3 )[(2p(+of) 1
Step 4. Denoting Ay, Ay and Ag the terms related to p1(X), p2(A) and ps(A) in 67, respectively, we have
A1 =" pi(Npo(elC, p)p5"
A
with

o 1
P = M+ uZ(Zp(Ha;“, N =1Doi @ +p Y (2p(+of,N) — Dy @ 0

+ Y @+, +Hot of N + 2p(—, —loF, 0F ) = D)oy @ oy
ij

pQ(+7C|UJ‘Bvc) _pQ( |0 .C)
pQ(C|07 PK/)
x I + Z(2p(+|0'{4) — Doi] ® g4]

1 ,
=1 S p2(Npo(eC ) Mls+ 1D (ioi @ T+ Bila @ 03) + 1Y iy Y B0
A i

i J

1 /
Az =7 ZAij(MpQ(cla P+ 1Y _@2p(+o N) = Doy @1
+“Z
J

=" p(WpalclC, p]) @
A

12
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. o A _ _ po(tclol . 0)—pg (= cle?,C) _ 1 . _ _
with «; = 2p(+]o,\) — 1 and B; = rotelCpl) ,and Q = 3[4 + u%:(azal ® Iy + Bils ® 0;) +
/LZO&iUZ'ZﬂjUj].

i j

1 ”
=1 Zpg()\)pg(dC, Py s+ uZ(agoi @1+ I, ® Bio;) + MZ Ao @ Z B ;]
A i i J

=" ps(Npo(elC, p) Y w
A

pa(clC.pl”)
Step 5. We now prove that pf\‘ﬁ in Ay, Qin Ay and w in Ajs are quantum states when p satisfies certain conditions.
As for Aq, pi‘ can be proved to be quantum states by decomposing 1, 2p(+|o7, ) — 1, 2p(+|08 A) — 1 and

2p(+, 4+, o JB, N +2p(—, —|oA, o JB, A) — 1 into joint probabilities that Alice and Bob perform the measurements M §
and MY, respectively. Noting that

with o = 220w Pa(e0uC) 51— 9p(1 108, A)~1, and w = L4 Y (o @Ta+1a@ Bloy )+ Y afoi @ B0,
[ T J

1
1:§Z( p(+, 107, 05, A) + p(+, =07, a7, A) + p(=, o7, o7, A)

ij
+p(_7_|0;470g67)‘))7
2p(+lof,A) — 1
—p(+ +|Uz ) J 7>\)+p(+ |U{470§37)\) ( +|Uz ) J aA)_p(_a_|oﬂ'A O"B )‘)a

P05,
2p(+]o},A) — 1

=p(+, +|a“ a7, A) = p(+, o7, J,A)+p( ot 07, A) = p(=, —lof, 07, ),
2p(+, +ot, o o; BN+ 2p(—, —|az , 0 BX) -

=p(+, +lo7', 07, A) — p(+, =07, 07, ) — ( ot 0F, A) 4 p(=, —lof, 07, ),

we have
1
=7 211 (Npe(elC. p3)
A

1
h®o;+o; ®0j))

1 1
A B
X 3 o+ Hot of N (gl +ulzoi b+ 5

1 1
+p(+,—|0}, o ,A)<914 +u(30i 0T~ sh®o; — 01 @ 0y))

1 1 1
+p(—= 4o 0F N (Gl + p(—50 © o+ 2T ® 05 — 0y © 7))

9 3 3

1 1
+p(=, |0, o7, (gl + u(=30i @12 — 3 ® 0 + 0: ® 75))].

When 0 < p < %, the matrices %I4 —i—u(:l:%oi ® 1o+ %Ig ®o;,to;®0;),1=1,2,3, are semi-definite positive matrices.

Hence, pfﬁ is a quantum state shared by Alice and Bob. By direct numerical calculation pf\‘ﬁ is a quantum state when
0<p<0.23.

Q in A can be proved to be a quantum state by decomposing > «;0;, > B;0; and 14 into the eigenvectors of Y a0,

[ 7 7
and Y ;0. Since
i

Zam ol (|6 4|l — |67 alle™ )
Zﬂlaz = [Bol ()5I| = o) s (19 1)
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with |ao| = [37af, |Bo] = [3287 and Iy = (|9).a(|0] + [0 )allot]) ® ([¥)s(|v] + [¥*)s{*]), concerning Ag we

have

Ao =1 3 p2Wpa(elC: A3 )I(1 + allaofiol +lao] + |5ol))I6) 4461 © 1) (0
A

p(—laoBol + lao| — 1Bo])) 6 ald| @ ) B (|
p(=laofol = laol +180))|¢") ald™ | @ [1)5 (Y|
p(laoBol — laol = 1Bol)) ¢ ) ale™ | @ [0 ) s |]
=" p(Ng(lC, ) .

A

1+
+ (1 +
+(1+
2(

Let q1(A) = 7(1+4u(|aofol+aol+]B0]), ¢2(A) = T (1+1(—leoBol+|ao|—[Bo]), g3 (A) = T (1+1(—|eo ol —lexo| +180))
and g1(\) = 3(1+p(|aoBol = oo —|Bo])), 57 = 6).4(0] or [¢) a(d* | and p§ " = [10)s(w)] or [t*) (1. Since || < 1
and |3 <1 (i =1,2,3), |ao| < V3 and |B| < V3, the maximum value of ¢1()) is (1 + p(3 +2v/3)), the minimum
values of g2(\) and gs(\) are (1 — 3u) and the minimum value of gu(\) is $(1 — v/3p). One verifies that when
0<pu< %, the coefficients ¢;(\) (¢ = 1,---,4) are all positive, and their summation is one. The matrix Q is a
quantum state with the first subsystem determined by party A and the second subsystem determined by parties B

and C. DenoteQ—Zqz( )PV @ Py "1 with ZQZ( ) =1

Similarly, we can prove that
As = ZPB(/\)I)Q(dCa px )L+ /L;(O‘;Uz’ ®l+ 1 ® Bjoy) + uzi: Qo @ ZJ: Bio;]

= Zm WwalelC,p) ) w

A
with of = el (C)‘CPQ(; l9.C) and 87 = 2p(+|of, A) — 1. When 0 < p1 < 5 we verify that w is a quantum state
I\

determined by parties A, C and B. We denote w =y | qg()\)p?\/’i ® pf’i satisfying Y ¢j(\) = 1.
Therefore, ' '

pla, by clMa, Mg, Mc) =Tr[M§ & M} © Mg 3] = Tr[M§ @ M}.5¢)
—Zpl )po(a,blA, B, p)po(clC, p})

+Zp2 )pa(alA, p3)po(b,c|B,C, o5

+Zp3 )‘H pQ(a,C|A,C, pil’y )pQ(b|Bap§”)
>\//
with p/Q()‘I) = 132()‘)%()‘)7 pQ(b,C|§,C, P[j?) :/ po(C|C, )‘7p1 )pQ(b|B,p§ )i)v Py = pi)i and pé()‘”) = p3()‘)qg()‘)v
pala,clA,C,p%0) = polelC, A, p} IpqlalA, ps "), p5, = p5". Since EQi()‘) = 1 and Eqé(k) = 1, Zpl(/\) +

Zpg (N) + §p3 (M) = 1. Namely, if papc is not genuine tripartite steerable from Alice and Bob to Charhe then

72 “inc is bi-separable for 0 < <4 5 analytically.

Step 3’. (II) We next prove that 6} is the convex combination of some quantum states when y satisfies certain
conditions for tripartite steering from Alice and Bob to Charlie. If p4pc is not tripartite steerable from Alice and
Bob to Charlie, we have the joint probabilities admiting LHV-LHS models,

p(a,b,c|A, B,C) = Zp p(alA, Np(b|B, \)pg (c|C,77). (A6)
Specially,

p(elC) =Y p(Npa(elC, ), (A7)

A
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p(+, o, C) = p(Np(£|o, Npo(e|C, 7)), (AS)
)
p(,clof,C) =" p(Np(£[oF, Np(clC, 7)), (A9)
A
and
(:l: + C| 0; 0y 70) = Zp()‘)p(:tlafa)‘)p(:ﬂofu)‘)pQ(C|C7T1) (AlO)
)

Substituting Equations (A7)—(AI0Q) into the expressions of x, a;, b; and ¢;;(i = 1,2,3, j = 1,2,3), we have
x:Zp )pQ(cC, ),
MZ 2p(Np(+]07)po €l C. 75) — p(Npo el C. 7)),
b; —uz 2p(A\)p(+|o7 )P (c|C, 75) = p(\pe (el C, )],
Cij = MZ 2p(\p(+[o7, Np(+log, Npo(|C, )

+ 2p()\)p(—|0i ,Np(=105F, Mpg(clC, 7)) — p(MNpg (clC, p})].

Therefore,
= 2> ppalelC )L + 1 Y p(Hor) ~ Do o T
A 7
+ uZ(?p(-HUZB) ~ DIy ® oy
+1 > @p(+lop(+oF) + 2p(— |0 )p(—[0F) — 1)o; @ o).
ij
Since

221) Ho Np(+eF, A) + 2p(—[o, Ap(—|oF ) —
:Z 2p(+lo7', ) = 1) Y (2p(+]oF, A) — 1),
i J
¢ can be written as
¢ = p(MNpa (|G, 5)x, (A11)
where  x = %[14 + Za;ldi ® Iy + Zbglailg ® o + Za;’oi ® IQZb;/UjIQ X Ui] with
i i i j

a; = 2p(+|o) — 1 and b, = 2p(+|of) — 1(i = 1,2,3). With Ay and Az in Step 5 , we can prove that 6% is
a quantum state when 0 < p < %, which implies that TiBC is fully separable. Namely, if papc is not tripartite

steerable from Alice to Bob and Charlie, then 72 is fully separable for 0 < p < %) O
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