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We theoretically investigate how the Berry curvature, which arises in multi-band structures when
the electrons can be described by an effective single-band Hamiltonian, affects the superconducting
properties of two-dimensional electronic systems. Generically the Berry curvature is coupled to elec-
tric fields beyond those created by the periodic crystal potential. A potential source of such electric
fields, which vary slowly on the lattice scale, is the mutual interaction between the electrons. We
show that the Berry curvature provides additional terms in the Hamiltonian describing interacting
electrons within a single band. When these terms are taken into account in the framework of the
usual BCS weak-coupling treatment of a generic attractive interaction that allows for the formation
of Cooper pairs, the coupling constant is modified. In pure singlet and triplet superconductors,
we find that the Berry curvature generally lowers the coupling constant and thus the supercon-
ducting gap and the critical temperature as a function of doping. From an experimental point of
view, a measured deviation from the expected BCS critical temperature upon doping, e.g. in doped
two-dimensional transition-metal dichalcogenides, may unveil the strength of the Berry curvature.

I. INTRODUCTION

A large variety of superconducting materials can be
theoretically understood within the standard BCS the-
ory proposed by Bardeen, Cooper and Schrieffer [1, 2].
Within this framework, the metallic electrons of a sin-
gle, partially filled band are considered to be bound into
(Cooper) pairs by a weak attraction, while other bands
are discarded based on the premise that they are much
more remote in energy than the typical energy scale set
by the attractive interaction. Indeed, the attractive in-
teraction between electrons is, within the standard BCS
theory, mediated by phonons via the electron phonon
coupling. Within the weak-coupling limit, the typical
energy scale for superconductivity is then a fraction of
the Debye temperature kBTD that is itself in the 10...100
meV range, while the Fermi energy and the typical band
gaps are on the order of ∼ 1 eV [2]. In spite of its great
success, BCS theory is not capable of explaining all occur-
rences of superconductivity and finds severe limitations
e.g. in the case of strongly correlated materials, such as
heavy-fermion superconductivity [3, 4] or high-Tc super-
conductivity [5], where even the origin of the attractive
interaction is still debated.

While the above-mentioned energy-scale consideration
has remained unchallenged for a long time, the advent of
topological band theory [6, 7] and its success in the the-
oretical description of a plethora of materials [8], such as
topological insulators [9, 10], topological superconductors
[11, 12], Weyl and Dirac semimetals [13], has shown that
the coupling between energy bands is not only governed
by energy scales but by more subtle geometric quanti-

ties, such as the Berry curvature or the quantum met-
ric. Several recent papers have investigated the role of
the latter, namely in the presence of flat bands in which
the quantum metric can be the dominant contribution
to the superfluid weight [14–17]. The Berry curvature
has been theoretically shown to play a relevant role in a
two-body problem that is closely related to the Cooper
pair, namely in the physics of excitons. For example,
in two-dimensional (2D) semiconducting transition-metal
dichalcogenides (TMDC) [18], excitons – bound electron-
hole pairs – are formed in the vicinity of the K and K ′

points of the first Brillouin zone, where the Berry cur-
vature reaches its maximal value [19]. Experimentally,
a first hint to the relevance of band-geometric effects
came from the failure of the effective hydrogen model,
which had been extremely successful before in the the-
oretical understanding of the measured exciton spectra
[20, 21]. It was later shown that the Berry curvature
affects the exciton spectra, contrary to the one-particle
case, because it couples to the electric field that is gen-
erated by the attractive interaction between the electron
and the hole forming the bound exciton state [22–25].
This is a consequence of the intrinsic Dirac character of
the low-energy charge carriers in these materials, which
are commonly described in terms of a 2D massive Dirac
equation [26, 27]. Excitons in 2D TMDC and potentially
other bound pairs inherit then this Dirac character [28].

Based on the above-mentioned exciton example, it is
therefore natural to consider that the Berry curvature
might also affect the formation of the Cooper pair due to
the mutual interaction between the two electrons. This
is the main motivation of the present theoretical study,
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where we show that the effective electron-electron inter-
action is generically weakened when one includes energy
terms in the Hamiltonian that take into account the ef-
fect of the Berry curvature. We consider conventional
BCS-type superconductivity in 2D materials, such as the
above-mentioned 2D semiconducting TMDC for a mod-
erate doping range. We emphasize that we do not investi-
gate topological superconductivity [12] that arises when
one considers the quasiparticle bands, the mutual cou-
pling of which is at the origin of the emergent topologi-
cal properties. Here, we rather treat the role of the Berry
curvature of the normal state, which affects the forma-
tion of Cooper pairs in conventional BCS theory. Within
topological band theory, the related wave-vector (k⃗) de-
pendent Berry connection An(k⃗) modifies the electrons’
positions r⃗ when the latter are projected by the projec-
tors Pn to the n-th band, r⃗ → Pnr⃗Pn = r⃗+An(k⃗). This
yields a dipole that interacts with the electric field, and
this dipolar structure, which the Cooper pair inherits, is
at the origin of the weakened Cooper pairing. More pre-
cisely, the projection yields two extra terms which affect
the electron-electron interaction to the one-body Hamil-
tonian. One of them is reminiscent of the spin-orbit cou-
pling if one interprets the Berry curvature in terms of a
spin, and the second one corresponds to the Darwin term,
which arises within a Dirac-fermion treatment of the two
bands in the vicinity of the direct gap [29]. We show that
the latter is responsible for a reduced effective BCS cou-
pling constant that results in a smaller superconducting
BCS gap, while the former spin-orbit-type term does not
play a role in s-wave nor other types of pure singlet or
triplet pairing.

The paper is organized as follows. In Sec. II, we briefly
revisit, along the lines exposed in Ref. [25], the emer-
gence of corrective terms to the one-body Hamiltonian
of a charge projected to a single band. We present two
complementary approaches: one based on a generalized
version of the Peierls substitution in Sec. II A and one
based on a treatment within the continuum two-band
model of massive Dirac fermions in the vicinity of the
direct gap, where the role of the Berry curvature is most
prominent. This treatment is the basis of the two-body
problem, which we present in Sec. III. After some gen-
eral considerations (Sec. III A), Sec. III B shows how
the Cooper pair and its binding energy are modified by
the extra terms, while Sec. IV presents the BCS the-
ory of conventional s-wave-type superconductivity in the
presence of the corrective terms due to the Berry curva-
ture. In the calculations, we consider a Fermi level that is
extremely close to the conduction-band bottom, and we
discuss then the role of stronger doping on Cooper pair-
ing and BCS superconductivity in Sec. V. In Sec. VI,
we briefly discuss how our theoretical picture of super-
conductivity in the presence of non-zero Berry curvature
evolves in other pairing symmetries, be they singlet or
triplet. The last section (Sec. VII) is devoted to possi-
ble experimental implications of our theoretical studies.
There, we compare the superconducting gap and the crit-

ical temperature in the absence and the presence of the
weakened interaction due to the Berry curvature.

II. ONE-BODY HAMILTONIAN: CORRECTIVE
TERMS DUE TO THE BERRY CURVATURE

Before discussing the role of possible geometric terms
on the superconducting properties of a 2D material, let us
briefly revisit the emergence of these terms within a one-
particle description. More precisely, we consider a band
structure with N bands described by the Bloch Hamilto-
nian. The Berry curvature may be viewed as the action
of virtual interband transitions of electrons that are oth-
erwise restricted to a single band, while there are no true
(quantum) transitions in the adiabatic limit. Notice that
there are no geometric terms in the Hamiltonian in the
absence of a local electric potential V (r⃗) different from
the periodic one that gives rise to the Bloch bands, and
the Hamiltonian is then reduced to the bare band dis-
persion En(k⃗) of the n-th band which the electrons are
projected to.

In the presence of a local potential V (r⃗) which acts on
our single electron, the simple reduction of the Hamilto-
nian to the band dispersion is no longer valid – in the
following we consider this potential to be generated by
the second electron to which the first one is bound in a
Cooper pair, but our arguments are not restricted to this
case. Indeed, V (r⃗) couples directly the different bands
and needs thus to be taken into account prior to the adia-
batic projection to a single band. This yields extra terms
to the Hamiltonian that can be discussed within two com-
plementary approaches that we briefly review in this sec-
tion. The first one is based on a generalized Peierls sub-
stitution [24, 25, 30–33]. It yields a corrected (quantum)
Hamiltonian that reproduces the semi-classical equations
of motion. This approach has the advantage of providing
a transparent physical interpretation of the role played by
the Berry curvature, namely in the formation of a dipole-
like term that arises due to the projection to a single
band. This approach is similar to the magnetic-field case
when the electron motion is restricted to a single Landau
level [34, 35], but it does not provide all corrective terms,
even at linear order in the Berry curvature. In order to
obtain the missing term, which is analogous to the Dar-
win term in relativistic quantum mechanics, we interpret
the Berry curvature in terms of a two-band model, which
describes the band structure locally in reciprocal space
in terms of a massive Dirac Hamiltonian.

A. Generalized Peierls substitution: emergence of
the Berry dipole

Let us first recall how to incorporate the magnetic field
to describe the dynamics of an electron in the n-th band
En(k⃗) via the Peierls substitution (in the absence of a
Berry curvature). Because the wave vector k⃗ = −i∇r⃗ is
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not a gauge-invariant quantity, it needs to be replaced by
its gauge-invariant form

ℏk⃗ −→ Π⃗ = ℏk⃗ + eA⃗(r⃗), (1)

in terms of the vector potential A⃗(r⃗) which yields the
magnetic field, B⃗(r⃗) = ∇⃗r⃗ × A⃗(r⃗). We consider, here,
electrons of charge −e (e > 0). From a semi-classical
point of view, one obtains the equations of motion

˙⃗rn = v⃗n =
1

ℏ
∇k⃗En and ℏ ˙⃗k = −ev⃗n × B⃗, (2)

where r⃗n and v⃗n are the average position and velocity,
respectively, of the electron in the n-th band. One justifi-
cation of the Peierls substitution is that the Hamiltonian
thus obtained, H(Π⃗) = En(Π⃗), yields the same equations
of motion if one uses the quantum Heisenberg equations
of motion

iℏΠ̇j = [Πj , H(Π⃗)], (3)

with the help of the commutation relations [Πx,Πy] =

−iℏ2/l2B , in terms of the magnetic length lB =
√
ℏ/eB.

Indeed, one then obtains

Π̇j = − ℏ
l2B
ϵjl
∂H

∂Πl
, (4)

where ϵjl is the antisymmetric Levi-Civita tensor. The
quantum Hamiltonian H(Π⃗) yields therefore Heisenberg
equations of motion that are the same as the semi-
classical ones if we identify the (semi-classical) wave vec-
tor k⃗ with the gauge-invariant quantity Π⃗/ℏ, as it is pre-
cisely stipulated by the Peierls substitution.

The generalized Peierls substitution follows the same
spirit when considering a system with a non-zero Berry
curvature in the presence of a spatially varying potential
V (r⃗), thus starting from the band energy Hn = En(k⃗) +
V (r⃗). In this case, the semi-classical equations of motion
read [7, 36]

˙⃗rn = v⃗n =
1

ℏ
∇k⃗En +

1

ℏ
∇r⃗V (r⃗)× B⃗n(k⃗) (5)

and ℏ ˙⃗k = −∇r⃗V − ev⃗n × B⃗, (6)

where B⃗n(k⃗) = ∇k⃗ ×An(k⃗) is the Berry curvature of the
n-th band in terms of its Berry connection An(k⃗). Sim-
ilarly to the case discussed above, one can obtain these
equations of motion from a quantum Hamiltonian

H(Π⃗, R⃗) = En(Π⃗) + V (R⃗), (7)

where we have replaced not only the wave vector by its
gauge-invariant expression (1) but also the position by
its expression projected onto the n-th band [7, 36, 37]

r⃗ −→ R⃗ = r⃗ + A⃗n(k⃗), (8)

which involves the Berry connection An(k⃗). Similarly to
the Peierls substitution (1), the position r⃗ on the right-
hand-side of this expression should be interpreted as a
reciprocal-space derivative r⃗ = i∇k⃗. The replacement
(8) may be viewed as a generalized Peierls substitution
[25, 30–33]. The semi-classical equations of motion are
then retrieved as the Heisenberg equations of motion not
only for Π⃗ but also for R⃗ = (X,Y ) on the basis of the
Hamiltonian (7) and the induced commutation relations
[X,Y ] = iBn(k⃗) [25].

Let us now discard the magnetic field, which we have
only discussed in order to remind the reader of the Peierls
substitution and to justify its generalized form and ex-
pand the Hamiltonian (7) to lowest order in the Berry
connection. This expansion is legitimate as long as the
external potential V (r⃗) varies slowly on a length scale
that is set, in orders of magnitude, by the Berry con-
nection and that can be related to an effective Compton
length, as we discuss below. The Hamiltonian then be-
comes

H = En(k⃗) + V (r⃗) + A⃗n(k⃗) · ∇⃗r⃗V (r⃗). (9)

The last generated term is interesting. First, it can be
interpreted as the energy of an electric dipole −eA⃗n(k⃗)

in an electric field E⃗(r⃗) = ∇V (r⃗)/e. We therefore call
this term the Berry dipole term. Second, this term can
be understood as an effective spin-orbit coupling if we
use the symmetric gauge for the Berry connection

A⃗n(k⃗) =
1

2
B⃗n(k⃗)× k⃗, (10)

in which case the corrective term reads

A⃗n(k⃗) · ∇⃗r⃗V (r⃗) =
1

2

(
B⃗n(k⃗)× k⃗

)
· ∇⃗r⃗V (r⃗). (11)

This expression is interesting for the following reason.
The Berry curvature is often viewed as the analogue of a
magnetic field in reciprocal space, while the extra term
in Eq. (9) has the same form as the spin-orbit cou-
pling term, which arises when one projects the relativis-
tic Dirac equation onto the electron (or positron) branch
[38]. In this analogy, one would however need to identify
the Berry curvature with an emergent spin rather than
with a magnetic field.

B. Non-relativistic limit of the Dirac equation

In many situations the role of the Berry curvature in
semiconducting materials can be approached in terms
of a massive Dirac equation that describes two coupled
bands in the vicinity of a reciprocal-space point, where
the band gap is smallest and the Berry curvature has
a maximum [19, 39]. In this picture, coupling to other
bands is not per se excluded, but we consider that it
only gives rise to a negligible contribution to the respec-
tive Berry curvatures of the two bands. This situation
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Figure 1. Band structure of massive Dirac fermions, with
a priori two different gaps for the two values of ξσ, as one
typically encounters in 2D semiconducting TMDC.

arises, e.g., in 2D semi-conducting TMDC in which two
spin-orbit coupled families of band pairs form a direct
gap at the K and K ′ points. In the vicinity of these
points, the two bands are described by the generic Dirac
Hamiltonian

H =

(
∆ξσσ0 ℏvD(ξσkx − iky)

ℏvD(ξσkx + iky) −∆ξσσ0

)
+E0

ξσ+V (r⃗),

(12)
where ξ indicates the valley index (ξ = + for the K
valley and ξ = − for the K ′ valley in the case of 2D
TMDC, or generally two time-reversal-symmetry related
points ±k⃗D) and σ = ± represents the physical spin.
In the presence of spin-orbit coupling and time-reversal
symmetry, the band gaps 2∆ξσ of the two valleys are
locked and depend only on the product ξσ of the spin
and valley index, and so does the shift in energy E0

ξσ,
which does not play any topological or dynamical role.
In the absence of the external potential V (r⃗), one obtains
the four bands

ϵλ,ξσ(k⃗) = E0
ξσ + λ

√
∆2

ξσ +
(
ℏvDk)2, (13)

which is depicted in Fig. 1. The index λ refers to the
conduction (λ = +) and the valence (λ = −) bands.
Note that there are only four bands since spin and val-
ley are locked – they enter into the expressions only as
the product label ξσ – as it is required by time-reversal
symmetry. The associated Berry curvatures are given by
[36, 39]

B⃗λ,ξσ(k⃗) = −λξσ
2

λ2ξσ(
1 + λ2ξσk

2
)3/2 e⃗z λξσ =

ℏvD
∆ξσ

,

(14)
where e⃗z denotes the unit vector in the z-direction. The
last expression λξσ represent the characteristic length
scale, which we have already mentioned in the previous
subsection and that yields the order of magnitude for the
displacement and thus the dipole as a consequence of pro-
jection onto a single band. It is inversely proportional to

the band gap ∆ξσ and constitutes a lower bound for all
length scales. It is reminiscent of the Compton length
in high-energy physics [38, 40]. Indeed, if we rewrite the
gap in terms of the band masses mξσ, ∆ξσ = mξσv

2
D,

one retrieves its more familiar form λξσ = ℏ/mξσvD.
Physically it represents a limiting length below which
the Compton effect transforms erratically photons into
electron-positron pairs, so that information encoded in
the phase of the light field can no longer be used for
spectroscopic means. In condensed-matter physics, the
interpretation of this length is similar: processes of char-
acteristic length scales below λξσ inevitably yield inter-
band transitions that drive the system out of the regime
of validity of the adiabatic approximation, which pro-
vided us with the semi-classical equations of motion (5).

For transport properties, including superconductivity,
the most important electrons are those in the vicinity of
the Fermi level, which we consider here to be close to the
bottom of the conduction band, i.e. we consider a mod-
erately doped semiconductor. We can already anticipate
that the Berry curvature may play a role as long as the
Fermi wave vector kF satisfies λξσkF ≪ 1 since it van-
ishes algebraically for λξσ → ∞ [see Eq. (14)]. We there-
fore project the Hamiltonian (12) onto the conduction-
band bottom, 0 < δE = E −∆ξσ −E0

ξσ ≪ ∆ξσ (see Fig.
1), with the help of the Foldy-Wouthuysen transforma-
tion to keep track of the electric potential V (r⃗) [29]. This
yield the effective one-band Hamiltonian

H ≃ E0
ξσ +∆ξσ +

ℏ2k⃗2

2mD
+ V (r⃗)

+
ξσλ2ξσ

4

(
e⃗z × k⃗

)
· ∇⃗r⃗V +

λ2ξσ
8

∇⃗2
r⃗V, (15)

which, apart from the last term, is identical to the one (9)
which we have obtained with the help of the generalized
Peierls subsitution if we make use of the expression (14)
for the Berry curvature to lowest order in the wave vector
and if we redefine the energy with respect to the band
bottom. The last term may also be written in terms of
the Berry curvature as

λ2ξσ
8

∇⃗2
r⃗V (r⃗) =

1

4

∣∣Bλ,ξσ(0)
∣∣∇⃗2

r⃗V (r⃗) (16)

and corresponds to the Darwin term in high-energy
physics. While it does not play any role in the semi-
classical equations of motion, it is relevant namely at
very short ranges and has been shown to strongly affect
e.g. the spectra of s-state excitions in 2D TMDC [22–25].
This is best seen in the case of the 2D Coulomb potential
in which case ∇2

r⃗V = e2δ(r⃗)/ϵ, i.e. it is relevant for pair
wave functions with a non-zero amplitude at the origin
(s-wave states) such as the BCS wave functions, which
we discuss below.
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III. TWO-BODY PROBLEM: GENERAL CASE
AND COOPER PAIR

With the Cooper-pair problem in mind, we now con-
sider how the extra terms discussed within the one-
particle picture presented in the preceding section evolves
in the case of two electrons at the bottom of the conduc-
tion band λ = + at the same energy. This choice to
consider a Fermi level slightly above the bottom of the
conduction band is perfectly arbitrary, but the results ob-
tained in the following sections remain valid for Cooper
pairs formed from holes in the valence band. We con-
sider again the spin to be locked to the valley index so
that there is only one effective label ξσ, which we repre-
sent by the valley index (ξ1 for the first electron and ξ2
for the second one) to simplify the notations. Further-
more we consider a two-body potential V that depends
only on the relative position of the two electrons r⃗1 − r⃗2,
such as it is the case for the BCS potential.

A. General case

Because the two-body interaction potential only de-
pends on the relative distance ρ⃗ = r⃗1 − r⃗2 between
the electrons, we introduce relative and center-of-mass
(CoM) coordinates. Since both electrons have the same
mass, we have

Relative: ρ⃗ = r⃗1 − r⃗2 k⃗ =
k⃗1 − k⃗2

2
(17)

CoM: R⃗ =
r⃗1 + r⃗2

2
K⃗ = k⃗1 + k⃗2,

(18)

Separation of the CoM and relative coordinates yields
the Hamiltonian

H2e− = 2∆b +
ℏ2K⃗2

4mD
+

ℏ2k⃗2

mD
+ V (ρ⃗) +

1

4

(
Λ⃗ξ1,ξ2
+

(
K⃗, k⃗

)
× K⃗

)
· ∇⃗V (ρ⃗) +

1

2

(
Λ⃗ξ1,ξ2
−

(
K⃗, k⃗

)
× k⃗

)
· ∇⃗V (ρ⃗)

+
1

2

∣∣B(0)∣∣∇⃗2V (ρ⃗) with Λ⃗ξ1,ξ2
±

(
K⃗, k⃗

)
= B⃗+,ξ1

(
1

2
K⃗ + k⃗

)
± B⃗+,ξ2

(
1

2
K⃗ − k⃗

)
(19)

within the parabolic approximation, and where we have
made use of the Dirac mass mD = ∆ξσ/v

2
D. Since we no

longer consider k-space gradients, we omit the index r⃗ at
the gradient ∇r⃗ = ∇ from now on. It is interesting to
notice that, when moving to CoM/relative coordinates,
the Berry dipole term splits into two dipoles acting on the
electron pair. One is associated with its center-of-mass
motion and the sum of the two Berry curvatures and
the other is associated with its relative motion and the
difference of the two Berry curvatures. To gain further
insight into the physical meaning of these two terms, we
can calculate the Heisenberg equations of motion

.

K⃗ = 0⃗
.

R⃗ =
ℏK⃗
2mD

+
1

4ℏ
∇⃗V (ρ)× Λ⃗ξ1,ξ2

+ (K⃗, k⃗)

(20)
.

k⃗ = −1

ℏ
∇⃗H2e−

.

ρ⃗ = 2
ℏk⃗
mD

+
1

2ℏ
∇⃗V (ρ⃗)× Λ⃗ξ1,ξ2

− (K⃗, k⃗)

(21)

The CoM momentum is a conserved quantity, owing to
the fact that H2e− does not depend on R⃗. We also see
that the two dipoles induce two Karplus-Luttinger-type
velocities: Λ+, which is associated to the CoM dipole,
generates a drift velocity of the CoM coordinate, and Λ−,
which is associated to the relative dipole, yields another
drift velocity of the relative coordinate of the Cooper
pair.

Before discussing the special case of the Cooper pair,

we may already discuss here the relative role of the two
quantities Λ⃗+ and Λ⃗− as a function of the two different
valleys, i.e. in the case of intra-valley pairing as com-
pared to inter-valley pairing. Indeed, they determine the
dipolar moments

d⃗± = −e(Λ⃗± × q⃗)/2, (22)

where q⃗ = K⃗ for the CoM dipole (sign +) and q⃗ = k⃗ for
the relative dipole (sign −). In the case of intra-valley
pairing (ξ1 = ξ2), which corresponds to triplet super-
conductivity as a consequence of the spin-valley locking,
the relative dipole d⃗− is negligible to lowest order in the
wave vectors while the CoM dipole is on the order of
d⃗+ ∼ −eB+,ξ1(0)×K⃗. Their roles are inverted in the case
of singlet-type inter-valley pairing, in which case d⃗+ ≃ 0

while d⃗− ∼ −eB+,ξ1(0)× k⃗.

B. Revisiting the Cooper problem

We are now in a position to study the effect of the
Berry curvature on a Cooper pair, the building block
of superconductors. To do so, we revisit the Cooper
problem following the lines of Ref. [41] and standard
textbooks [2]. The Hamiltonian we consider here is
Hc = H2e−(K⃗ = 0⃗), i.e. our two-body Hamiltonian (19)
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in the rest frame,

Hc = 2ϵ+(k⃗) + V (ρ⃗) +
1

2

(
Λ⃗ξ1,ξ2
−

(⃗
0, k⃗
)
× k⃗

)
· ∇⃗V (ρ⃗)

+
1

2

∣∣B(0)∣∣∇⃗2V (ρ⃗), (23)

where Λ− can be rewritten as

Λ⃗ξ1,ξ2
− (⃗0, k⃗) = −(ξ1 − ξ2)

λ2ξσ

2
(
1 + λ2ξσk

2
)3/2 e⃗z = Λ⃗ξ1,ξ2

− (k⃗).

(24)
As mentioned above, one notices that, for the Berry
dipole term to be non-zero, the two electrons of the
Cooper pair need to be taken in different valleys and
thus with opposite spin, as it is usual for s-wave sin-
glet superconductivity. In contrast to this, we have
Λξ1,ξ2
+ (0, k⃗) ∝ (ξ1 + ξ2) i.e. one needs electrons in the

same valley, but even then, the intra-valley CoM dipolar
term in the Hamiltonian vanishes unless K⃗ ̸= 0. We
therefore consider henceforth only the relative dipolar
term and the case of inter-valley pairing.

Let us now take a closer look at the wave function of
the Cooper pair ψ(ρ⃗), which is a solution of Hcψ(ρ⃗) =
Eψ(ρ⃗). We then decompose ψ and V in a Fourier series

ψ(ρ⃗) =
∑
k⃗

gk⃗e
ik⃗·ρ⃗, (25)

V (ρ⃗) =
∑
k⃗k⃗′

Vk⃗k⃗′e
i(k⃗−k⃗′)·ρ⃗ . (26)

Following the steps of Ref. [2] we find the self-consistent

equation [
E − 2ϵ+(k⃗)

]
gk⃗ =

∑
k⃗′

V eff
k⃗k⃗′gk⃗′ (27)

for the coefficients gk⃗, in terms of the effective interaction

V eff
k⃗k⃗′ =

[
1+

i

2

(
Λ⃗ξ1,ξ2
− (k⃗)× k⃗

)
· k⃗′− 1

2

∣∣B(0)∣∣(k⃗− k⃗′)2]Vk⃗k⃗′ .

(28)
This equation is one of the main results of our paper.
Qualitatively, we see that the two terms appear with
opposite signs. The second term stems from the Berry
dipole term in Hamiltonian (19) and may increase or de-
crease the interaction potential and thus the strength of
the Cooper pairing depending on the sign of Λ⃗−. As
for the last (Darwin) term, it is negative irrespective of
the valley index, meaning that it tends to weaken the
electron-electron interaction and thus the superconduct-
ing phase. On a more practical level, the above expres-
sions tell us that the calculations for the energy of the
Cooper pair in the presence of a Berry curvature are the
same as in the conventional pairing case [2], but in terms
of the effective interaction (28).

In a second step we need to solve the self-consistency
equation

∑
k⃗

⟨V eff
k⃗k⃗′⟩

E − 2ϵ+(k⃗)
= 1, (29)

where we have defined the average

⟨O(k⃗′)⟩ =
∑

k⃗′ O(k⃗′)gk⃗′∑
k⃗′ gk⃗′

(30)

with respect to the weighting coefficients gk⃗. The term
⟨V eff

k⃗k⃗′⟩ may be rewritten as

⟨V eff
k⃗k⃗′⟩ =

(
1− 1

2

∣∣B(0)∣∣⃗k2)⟨Vk⃗k⃗′⟩+
(∣∣B(0)∣∣⃗k + i

2
Λ⃗ξ1,ξ2
− (k⃗)× k⃗

)
· ⟨k⃗′Vk⃗k⃗′⟩ −

1

2

∣∣B(0)∣∣⟨k⃗′2Vk⃗k⃗′⟩. (31)

To illustrate the role of the additional terms due to the
Berry curvature, let us consider the BCS potential, de-
fined as

Vk⃗k⃗′ =

{
−V < 0 if ϵF ≤ ϵ+(k⃗), ϵ+(k⃗′) ≤ ϵF + ℏωD

0 otherwise,
(32)

where ϵF is the Fermi energy and ℏωD the Debye energy.
We can compactly rewrite it as

Vk⃗k⃗′ = −V 1D(k⃗)1D(k⃗′) (33)

where 1D is the indicator function of the set

D =
{
k⃗ ∈ R2

∣∣∣ϵF ≤ ϵ+(k⃗) ≤ ϵF + ℏωD

}
. (34)

With this in mind, we write

⟨k⃗′Vk⃗k⃗′⟩ ∝
∑
k⃗′∈D

k⃗′Vk⃗k⃗′gk⃗′ (35)

From Eq. (33) we see that Vk⃗;−k⃗′ = Vk⃗k⃗′ . Moreover,
for BCS superconductivity we have g−k⃗′ = gk⃗′ so that
k⃗′Vk⃗k⃗′gk⃗′ is an odd function of k⃗′. Because summing an
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odd function over the set D gives zero, we have ⟨k⃗′Vk⃗k⃗′⟩ =
0⃗ so that the Berry dipole term does not affect the Cooper
pair, which is then solely affected by the Darwin term.
Therefore, if we remember the competition between the
dipolar and Darwin terms, this suggests that the effect
of the Berry curvature is to weaken the Cooper.

As for ⟨V eff
k⃗k⃗′⟩, we are left with

⟨V eff
k⃗k⃗′⟩ =

(
1− 1

2

∣∣B(0)∣∣⃗k2)⟨Vk⃗k⃗′⟩−
1

2
⟨
∣∣B(0)∣∣k⃗′2Vk⃗k⃗′⟩ (36)

Remember that V eff
k⃗k⃗′ is non-zero only for k⃗, k⃗′ ∈ D, and

from the definition of D we rewrite the energy as ϵ+(k⃗) =
ϵF + ηk⃗ℏωD with ηk⃗ ∈ [0, 1]. Furthermore, suppose that
ℏωD ≪ ϵF −∆ξσ so that the perturbation does the reach
the bottom of the conduction band. From this and the
expression of ϵ+(k⃗) we obtain∣∣B(0)∣∣⃗k2 =

ϵF −∆ξσ

∆ξσ
+ ηk⃗

ℏωD

∆ξσ
. (37)

Now, for many 2D materials (including any TMDC), the
band gap is in the 1eV range (see e.g. Ref. [42]) while
for most crystals ℏωD ∼ 0.01eV [43]. One therefore ob-
tains a ratio ℏωD

∆b
∼ 0.01, so that we may neglect the

corresponding term and thus make the approximation∣∣B(0)∣∣k2 ≃
∣∣B(0)∣∣k2F ∣∣B(0)∣∣k′2 ≃

∣∣B(0)∣∣k2F . (38)

With this and ⟨k⃗′Vk⃗k⃗′⟩ = 0⃗, we finally obtain

⟨V eff
k⃗k⃗′⟩ =

(
1−

∣∣B(0)∣∣k2F )⟨Vk⃗k⃗′⟩, (39)

in line with our qualitative argument of a weakening of
the electron-electron interaction induced by the Darwin
term. With the BCS potential, ⟨Vk⃗k⃗′⟩ = −V , one finds∑

k⃗

1

E − 2ϵ+(k⃗)
= − 1(

1−
∣∣B(0)∣∣k2F )V . (40)

As usual, the sum over the wave vector may be replaced
by an integral over energy with the help of the density of
states ρ(ϵ) and the BCS coupling constant λ = V ρ(ϵF ).
We finally find the binding energy of the Cooper pair

EB =
2ℏωD

e2/λeff − 1
with λeff =

(
1−

∣∣B(0)∣∣k2F )λ, (41)

which is the same as the conventional expression

EBCS
B =

2ℏωD

e2/λ − 1
, (42)

where we have replaced λ by an effective (lower) cou-
pling constant. If we set the Berry curvature to zero or if
we set the band gap to be infinity, we recover the usual
expression, as expected.

To summarize this subsection, we highlight two as-
pects. First, the effect of the Berry curvature on the

Cooper pair reveals itself through a competition between
two terms. On the one hand, the Berry dipole term, with
its dipolar/spin-orbit form, induces a drift velocity anal-
ogous to the Karplus-Luttinger veloctity on the relative
position of the electrons of the Cooper pair. It could in
principle enhance the electron-electron interaction Vk⃗k⃗′ .
On the other hand, the Darwin term yields a negative
contribution and thus weakens the effective interaction.
Second, the Berry dipole term’s contribution to Cooper
pairing turns out to be zero for s-wave superconductiv-
ity, and thus we are only left with a weakened electron-
electron interaction due to the Darwin term. This is
clearly seen in the expression of the binding energy (41)
Indeed, since the interaction V is lowered, so is the BCS
coupling λ, thereby lowering the binding energy of the
Cooper pair. In conclusion, the Berry curvature makes
the Cooper pairs less bound and thus more easily break-
able, e.g. by thermal fluctuations. This means that the
critical temperature (and the superconducting gap) are
lowered as well, as we show explicitely in the follow-
ing section, where we discuss the action of the Berry-
curvature corrective terms in the BCS many-body ap-
proach.

IV. BCS HAMILTONIAN IN THE PRESENCE
OF BERRY CURVATURE

In the previous section, we found that the calculations
in the electron pair problem with Berry curvature were
the same as in its absence, but with an effective inter-
action. We therefore consider, in this part, the BCS
Hamiltonian where we replace the interaction Vk⃗k⃗′ with
the effective one V eff

k⃗k⃗′ which is given in Eq. (28) and
that accounts for the corrective terms due to the Berry
curvature.

H =
∑
k⃗σ

ξk⃗c
†
k⃗σ
ck⃗σ +

∑
k⃗k⃗′

V eff
k⃗k⃗′c

†
k⃗′↑
c†
−k⃗′↓

ck⃗↑c−k⃗↓ (43)

where ξk⃗ = ϵ+(k⃗) − ϵF , and the bare interaction (in
the absence of Berry curvature corrections) is Vk⃗k⃗′ =

−V 1D(k⃗)1D(k⃗′) with D =
{
k⃗ ∈ R2

∣∣∣ϵF − ℏωD ≤ ϵ+(k⃗) ≤

ϵF + ℏωD

}
. We also keep the same groundstate. Since

this Hamiltonian has the same form as the original BCS
Hamiltonian, the same calculations hold as long as the
interaction is not specified. We thus find the textbook
gap equation [2]

∆k⃗ = −1

2

∑
k⃗′

V eff
k⃗k⃗′

∆k⃗′√
∆2

k⃗′ + ξ2
k⃗′

tanh

(
β

2

√
∆2

k⃗′ + ξ2
k⃗′

)
(44)

with ∆k⃗ = −
∑

k⃗′ V
eff
k⃗k⃗′⟨c

†
k⃗′↑
c†
−k⃗′↓

⟩ and β = (kBT )
−1. In

terms of the auxiliary function

fβ,⃗k(k⃗
′) =

∆k⃗′√
∆2

k⃗′ + ξ2
k⃗′

tanh

(
β

2

√
∆2

k⃗′ + ξ2
k⃗′

)
, (45)
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the self-consistent gap equation reads

∆k⃗ = −1

2

(
1−1

2

∣∣B(0)∣∣⃗k2)∑
k⃗′

Vk⃗k⃗′fβ,⃗k(k⃗
′)−1

2

(
i

2
Λ⃗ξ1,ξ2
− (k⃗)×k⃗+

∣∣B(0)∣∣⃗k)·∑
k⃗′

k⃗′Vk⃗k⃗′fβ,⃗k(k⃗
′)−1

2

∑
k⃗′

1

2

∣∣B(0)∣∣k⃗′2Vk⃗k⃗′fβ,⃗k(k⃗
′)

(46)

One can show that if the bare superconducting gap has
a definite parity, then ∆k⃗ (so defined through the effec-
tive interaction) has the same parity. Therefore for BCS
superconductivity we have ∆−k⃗ = ∆k⃗. From equation
(45), it is then clear that fβ,⃗k(−k⃗′) = fβ,⃗k(k⃗

′). And
since Vk⃗;−k⃗′ = Vk⃗;k⃗′ , the function k⃗′ −→ k⃗′Vk⃗k⃗′fβ,⃗k(k⃗

′) is
an odd function so that∑

k⃗′

k⃗′Vk⃗k⃗′fβ,⃗k(k⃗
′) = 0⃗, (47)

and thus the Berry dipole term does again not affect the
many-body result, which is consistent with the results
obtained in the previous section. We then make the same
approximate treatment [see Eqs. (38) and (39)] as for the
Cooper pair problem and we find

∆k⃗ = −1

2

∑
k⃗′

(
1−

∣∣B(0)∣∣k2F )Vk⃗k⃗′fβ,⃗k(k⃗
′), (48)

in agreement with our previous result. the Berry curva-
ture reduces the attractive electron-electron interaction
due to the Darwin term.

We are now able to calculate the zero-temperature su-
perconducting gap. At T = 0, the gap equation is

∆k⃗ = −1

2

(
1−

∣∣B(0)∣∣k2F)∑
k⃗′

Vk⃗k⃗′

∆k⃗′√
∆2

k⃗′ + ξ2
k⃗′

(49)

We then use Vk⃗k⃗′ = −V 1D(k⃗)1D(k⃗′) and have

∆k⃗ = 1D(k⃗)
1

2

(
1−

∣∣B(0)∣∣k2F)V ∑
k⃗∈D

∆k⃗′√
∆2

k⃗′ + ξ2
k⃗′

(50)

Thus ∆k⃗ = 0 for k⃗ /∈ D, and then one can show directly
that ∆k⃗ = ∆ for k⃗ ∈ D. The former case is trivially
satisfied since if k⃗ /∈ D, the corresponding electron is not
subject to the attractive interaction so it cannot condense
and participate in a SC state. The latter indicates that
the gap is then isotropic for the electrons that are con-
cerned by superconductivity. We may again follow the
conventional derivation [2] and find the T = 0 supercon-
ducting gap

∆(T = 0) =
ℏωD

sinh
(
1/λeff

) with λeff =
(
1−
∣∣B(0)∣∣k2F )λ

(51)

with the same effective coupling constant λeff as that ob-
tained in the previous section [see Eq. (41)]. Comparing
this to the bare BCS expression

∆BCS(T = 0) =
ℏωD

sinh
(
1/λ

) (52)

we see the same result as in the Cooper pair problem,
that is to say a lowering of the BCS coupling constant
driven by the Berry curvature thereby lowering the T = 0
superconducting gap. This is also consistent with what
we said about the consequences for the Cooper pairs. In-
deed, since the superconducting gap is smaller, so is the
energy of the quasiparticles in the superconductor. This
makes them more sensitive to variations of energy, e.g.
thermal fluctuations. In other words, the superconduct-
ing phase is weakened and thus more easily suppressed
upon raising temperature.

Similarly, the expression for the critical temperature
takes the form [2]

Tc = 2ℏωD
eγ

π
e−1/λeff (53)

and is identical to the standard one except for the
fact that the coupling constant needs to be replaced by
λ → λeff to take into account the extra terms due to
the Berry curvature. Here, γ ≃ 0.577 is the Euler-
Mascheroni constant, and the approximation is valid if
2Tc ≪ ℏωD/kB = TD, and it is relatively reliable when
2Tc ≲ TD. Notice finally, that the Berry curvature there-
fore does not affect the universality of the ratio between
the superconducting gap and Tc in the weak-coupling
limit,

∆(T = 0)

kBTc
=

λ≪1

π

eγ
≃ 1.76. (54)

Indeed this ratio is independent of the (effective) coupling
constant.

V. DOPING DEPENDENCE

Until now, we considered a low-doping limit, in which
the Fermi level is close to the bottom of the conduc-
tion band. This allowed us to approximate the Berry
curvature as B(k) ≃ B(0). At larger doping, we first ex-
pect a weakening of the inter-band effects since the rele-
vant physics will take place farther away from the other
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band. We should then expect to recover the usual one-
band BCS results as the Fermi energy increases. The
main thing to change would be our extra terms. The
Berry dipole term does not rely on the low-energy ex-
pansion of the Dirac Hamiltonian, and we thus do not
need to change it. The Darwin term is different: we
have obtained it by expanding the Dirac Hamiltonian in
the low-energy/non-relativistic limit. In this limit, the
Berry curvature enters as

∣∣B(0)∣∣. Since the physics is
controlled by states near the Fermi energy, we change∣∣B(0)∣∣ −→ ∣∣B(kF )∣∣, i.e. the most important contribution
of the Berry curvature is its value at the Fermi level. The
effective coupling constant λeff takes then the form

λeff =
(
1−

∣∣B(kF )∣∣k2F )λ =

(
1−

λ2ξσk
2
F

2
(
1 + λ2ξσk

2
F

)3/2
)
λ,

(55)
and we have

Low-doping limit:
λeff

λ
∼

λξσkF≪1
1−

λ2ξσk
2
F

2
(56)

High-doping limit:
λeff

λ
∼

λξσkF≫1
1− 1

2λξσkF
(57)

for the different limiting cases. As a consistency check,
we recover the previous result in the low-doping limit
(indeed, λ2ξσ/2 =

∣∣B(0)∣∣). In the high-doping limit, the
effective coupling constant approaches its bare BCS value
as the Fermi level goes to +∞. This is consistent with
our expectation of a decreased role of the corrective terms
due to the Berry curvature and thus of the inter-band ef-
fects in this limit. The doping dependence of the coupling
constant (i.e. on λξσkF ) is depicted in Fig. 2.

Figure 2. Ratio λeff
λ

as a function of λξσkF .

It is apparent that the effective coupling constant has a
minimum that can be shown to occur at λξσkF =

√
2.

Therefore the effect of the Berry curvature on conven-
tional BCS type (s-wave) superconductivity is expected
to be strongest in an intermediate doping regime in which
the Fermi wave vector is on the order of the inverse ef-
fective Compton length. We then have

min
λξσkF

λeff

λ
= 1− 1

3
√
3
≃ 81%, (58)

i.e. the maximal reduction is approximately 19%. It is
interesting to note that while the ratio goes to 1 as the
Fermi level goes to +∞, the difference does not go to
zero. Indeed,

lim
kF→+∞

[
λeff − λ

]
= − AV

4π∆b
(59)

with A the area of the Brillouin zone. Note that V rep-
resents, here, the interaction energy per unit area in re-
ciprocal space so that the quantity AV itself is an energy
and the coupling constant is dimensionless. While the
reduction of the coupling constant seems rather limited,
we must not forget that the critical temperature and the
superconducting gap both depend exponentially on this
coupling constant, so the effect could be quite substan-
tial.

The central result of this paper is Eq. (55). Indeed,
from it ensues most of the results we had so far. More-
over, it could have several uses. First, doping could offer
a way to experimentally observe the effects of a Berry
curvature on a superconducting phase discussed in this
paper. We present some possible paths for an experimen-
tal test of Berry-curvature effects on BCS superconduc-
tivity in Sec. VII. Second, while this specific deformation
of the coupling constant may not be true for other types
of band structures, these could still exhibit other types
of deformations depending on the corrective terms of the
one-body problem. If Eq. (55) is true in other types of
band structures, it can even be a way to detect the pres-
ence of a Berry curvature as well as its k-dependence.

VI. BEYOND BCS SUPERCONDUCTIVITY

Now that we have studied the conventional s-wave
case, let us see what happens with other types of su-
perconductivity. As in the case for the s-wave case (see
Sec. III B), we first revisit the modified Cooper problem
from a more general point of view following Ref. [44]. We
will then study the many-body BCS theory, this time fol-
lowing Refs. [45] and [46].

A. Cooper problem

The 2-electron potential may be decomposed in the
relative-angular momentum basis as [44]

Vk⃗k⃗′ =

+∞∑
l=0

Vl(k⃗, k⃗′) (60)

with Vl(−k⃗, k⃗′) = (−1)lVl(k⃗, k⃗′) = Vl(k⃗,−k⃗′), and the
integer l the angular momentum of the superconducting
phase. It is even for singlet pairing and odd for triplet
pairing. Let us pick a superconducting phase with fixed
l, so that the pairing is either singlet or triplet. Then
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Vk⃗k⃗′ = Vl(k⃗, k⃗′). The same is done to gk⃗ = gl(k⃗) with also
gl(−k⃗) = (−1)lgl(k⃗). Equation (29) becomes therefore

∑
k⃗

⟨V eff
l (k⃗, k⃗′)⟩l

E − 2ϵ+(k⃗)
= 1, (61)

and we then proceed in the same way as before, expand-
ing ⟨V eff

l (k⃗, k⃗′)⟩l and considering

⟨k⃗′Vl(k⃗, k⃗′)⟩l ∝
∑
k⃗′

k⃗′Vl(k⃗, k⃗′)gl(k⃗′). (62)

If we then take Vl(k⃗, k⃗′) to be non-zero only within a thin
layer of energy around the Fermi level, with the energy
cut-off ϵl, and one retrieves Eq. (34) but with Dl =

{
k⃗ ∈

R2
∣∣ϵF ≤ ϵ+(k⃗) ≤ ϵF + ϵl

}
. Because of the symmetry

Vl(k⃗,−k⃗′)gl(−k⃗′) = (−1)lVl(k⃗, k⃗′)(−1)lgl(k⃗′)

= Vl(k⃗, k⃗′)gl(k⃗′), (63)

the function k⃗′Vl(k⃗, k⃗′)gl(k⃗′) is odd in k⃗′ so that the sum
over the set Dl yields zero. Since this term carries the
Berry dipole term, we can conclude that the Berry dipole
term does not contribute to the energy of the Cooper pair
with pure singlet or triplet pairings. Notice, however,
that the Berry dipole term may nevertheless play a sig-
nificant role in exotic superconductors that mix singlet
and triplet pairing, as we sketch out in Sec. VI C.

We then proceed with the same approximation as for
the conventional s-wave case, which gives the effective
interaction

⟨V eff
l (k⃗, k⃗′)⟩l =

(
1−

∣∣B(kF )∣∣k2F )⟨Vl(k⃗, k⃗′)⟩l. (64)

We also take the approach of [44] and take Vl(k⃗, k⃗′) =

Vl(k, k
′)f(k̂, k̂′) with Vl(k, k′) = −Vl1Dl

(k⃗)1Dl
(k⃗′). This

approach gives a binding energy EB,l given by

EB,l =
2ϵl

e2/λeff − 1
(65)

with λeff =
(
1−

∣∣B(kF )∣∣k2F )λ, i.e. the result obtained for
the conventional Cooper problem extends to all singlet
and triplet pairings.

B. Many-body problem: generalized BCS theory

We now briefly address the many-body problem from
a more general point of view, using the generalized BCS
theory presented in Refs. [46] and [45]. Its Hamiltonian
is

H =
∑
k⃗

ξk⃗c
†
k⃗σ
ck⃗σ+

1

2

∑
σ1σ2
σ3σ4

∑
k⃗k⃗′

V
σ1σ2
σ3σ4

eff,⃗kk⃗′c
†
k⃗σ1

c†
−k⃗σ2

c−k⃗′σ3
ck⃗′σ4

,

(66)
with the effective interaction containing the Berry curva-
ture corrections. The mean-field theory of this Hamilto-
nian gives rise to a 2 × 2 matrix ∆̂k⃗. As in the conven-
tional case, one can prove that the dressed order param-
eter has the same parity as the bare one. Similarly to
the Cooper problem, let us investigate a pairing that is
either singlet or triplet. Then the gap equation has the
form [45]

∆σ1σ2

k⃗
= −

∑
σ3σ4

∑
k⃗′

V
σ2σ1
σ3σ4

eff,⃗kk⃗′I
σ3σ4

β (k⃗′), (67)

and the expansion of the effective interaction yields

∆σ1σ2

k⃗
= −

(
1− 1

2

∣∣B(kF )∣∣⃗k2)∑
σ3σ4

∑
k⃗′

V
σ2σ1
σ3σ4

k⃗k⃗′ I σ3σ4

β (k⃗′)−

(
i

2
Λ⃗ξ1,ξ2
− (k⃗)× k⃗ +

∣∣B(kF )∣∣⃗k) ·
∑
σ3σ4

∑
k⃗′

k⃗′V
σ2σ1
σ3σ4

k⃗k⃗′ I σ3σ4

β (k⃗′)

− 1

2

∣∣B(kF )∣∣ ∑
σ3σ4

∑
k⃗′

k⃗′
2
V

σ2σ1
σ3σ4

k⃗k⃗′ I σ3σ4

β (k⃗′), (68)

where the summand of the k⃗′-linear term is

∑
σ3σ4

k⃗′V
σ2σ1
σ3σ4

k⃗k⃗′ I σ3σ4

β (k⃗′). (69)

We study two separate cases now. First, let us consider
a unitary pairing, i.e. one for which ∆̂k⃗∆̂

†
k⃗
∝ σ0. This

entails all singlet pairings and unitary triplet pairings
(those without spin polarization). In that case, the kernel

Îβ(k⃗′) is given by [45, 46]

Îβ(k⃗′) =
∆̂k⃗′

2Ek⃗′
tanh

(
β

2
Ek⃗′

)
. (70)

Since the order parameter generally obeys ∆̂−k⃗ = −∆̂⊤
k⃗

and E−k⃗ = Ek⃗, we have

I σ3σ4

β (−k⃗′) = −I σ4σ3

β (k⃗′). (71)

Furthermore, in order to respect the anticommutation
relations of the fermionic operators, the interaction must
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obey V
σ2σ1
σ3σ4

k⃗;−k⃗′ = −V
σ2σ1
σ4σ3

k⃗k⃗′ [46]. With this, we have

∑
σ3σ4

−k⃗′V
σ2σ1
σ3σ4

k⃗;−k⃗′I
σ3σ4

β (−k⃗′) = −
∑
σ3σ4

k⃗′V
σ2σ1
σ4σ3

k⃗k⃗′ I σ4σ3

β (k⃗′)

= −
∑
σ3σ4

k⃗′V
σ2σ1
σ3σ4

k⃗k⃗′ I σ3σ4

β (k⃗′)

(72)

i.e. the latter is odd in k⃗′. If one takes the interaction to
be non-zero in a thin layer of energy around the Fermi
level with energy cutoff ϵc, the sum over the term that
is linear in k⃗′ in Eq. (68) vanishes again, a situation en-
countered several times in this paper. So the Berry dipole
term does not change the gap and critical temperature
for unitary pairings. As pointed out in the appendix,
the latter is also valid for non-unitary triplet pairings.
Therefore, the Berry dipole term does not change the gap
equation for pure singlet and triplet pairings.

C. Possible situations in which the Berry dipole
term may become relevant

In view of the above results, one may then wonder if
there is any possible effect of the Berry dipole term on
superconductivity. What we proved so far is that it does
not change the SC gap or Tc if the parity of the pairing
is well defined. So a necessary condition for the Berry
dipole term to actually contribute would be a supercon-
ducting phase without a fixed parity. We saw in the
Cooper problem that the Berry dipole term drops out
because the following sum is zero∑

k⃗′

k⃗′Vk⃗k⃗′gk⃗′ . (73)

If we decompose the two functions Vk⃗k⃗′ and gk⃗′ in the
sum of an even and an odd function

Vk⃗k⃗′ = V e
k⃗k⃗′ + V o

k⃗k⃗′ (74)

gk⃗′ = ge
k⃗′ + go

k⃗′ (75)

and interpret the e and o parts respectively as the singlet
and triplet parts, we then have

Vk⃗k⃗′gk⃗′ = V e
k⃗k⃗′g

e
k⃗′ + V o

k⃗k⃗′g
o
k⃗′ + V o

k⃗k⃗′g
e
k⃗′ + V e

k⃗k⃗′g
o
k⃗′ . (76)

While the first two terms disappear in Eq. (73) as they
are even functions of k⃗′, the other two terms do a pri-
ori not disappear as they are odd functions of k⃗′. V oge

may be interpreted as the interactions between triplet
pairs in the presence of singlet pairs while V ego is the
opposite. These two terms may then be an opportu-
nity for the Berry dipole term to have a non-zero con-
tribution in the superconducting phase, i.e. if the latter
shows coexistence between singlet and triplet pairs. We
would then need a superconducting phase where none

of the two dominates. Some materials have been pro-
posed to exhibit two superconducting phases, each with
a different parity, such as CeRh2As2 and bilayer-NbSe2
[47, 48]. Notice furthermore that a very recent theoretical
study argues that the observed superconducting phase in
twisted bilayer graphene [49] might be due to an admix-
ture of singlet and triplet pairs [50], and the Berry dipole
term might then be a relevant parameter in the stabi-
lization of this type of superconductivity. Note that for
both CeRh2As2 and bilayer-NbSe2, and generally in non-
centrosymmetric superconductors [51], a magnetic field
is necessary to obtain a parity-mixed superconducting
phase. To circumvent this issue, one could first imple-
ment the magnetic field in a BCS formalism for these
systems, thereby absorbing it in an effective supercon-
ducting order parameter/interaction, which could then
be used to our discussion here. This approach seems
plausible since the coupling between the Berry curvature
and the magnetic field appears in the equations of motion
as the product of the two, so as a second term term that
could be neglected as long as the magnetic field necessary
is not too high.

VII. POSSIBLE EXPERIMENTAL
IMPLICATIONS OF THE BERRY CURVATURE

ON 2D BCS SUPERCONDUCTIVITY

Figure 3. Ratio Tc/T
BCS
c as a function of λξσkF ∝ √

n2D.
Here, we have used AV/2π∆ξσ ≃ 0.2 for illustration.

.

As shown in Sec. V, the Berry curvature has its
strongest effect at Fermi wave vectors that are on the or-
der of the inverse effective (Compton) length λξσ. Even
if the relative reduction of the coupling constant is on the
order of 19%, one needs to keep in mind that the exper-
imentally measurable superconducting gap and critical
temperature depend exponentially on the coupling con-
stant. Indeed, the former is accessible by spectroscopic
means, e.g. in scanning-tunneling spectroscopy, and the
latter within resistive temperature-dependent measure-
ments. Experimentally, it is likely impossible to change
the Berry curvature in situ because this would require
experimental access to the band parameters, such as the
direct band gap in 2D TMDC. While one could hope to
change it e.g under strain, also the phonon spectrum and
the electron-phonon coupling would then change, possi-
bly in an uncontrolled manner, thus excluding a direct
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measurement of the Berry-curvature effect in supercon-
ductivity.

However, one may compare the evolution of the Berry-
curvature dependent superconducting gap or critical tem-
perature, measured as a function of doping, to the ex-
pected behavior of these quantities. Direct comparison of
the critical temperature Tc in Eq. (53), in terms of the
effective coupling constant (41), yields the ratio

Tc
TBCS
c

= exp

(
− 2π∆ξσ

AV

∣∣B(kF )∣∣k2F(
1−

∣∣B(kF )∣∣k2F)√1 + λ2ξσk
2
F

)
,

(77)
where TBCS

c is the BCS critical temperature in the ab-
sence of Berry-curvature terms. We notice here the clear
competition between the Berry curvature (through the
gap) and superconductivity (through the attractive in-
teraction V .). The ratio (77) is plotted in Fig. 3 as
a function of the doping-dependent Fermi wave vector,
kF =

√
(4π/g)n2D, in terms of the induced 2D electronic

density n2D. The factor g takes into account the degener-
acy due to internal degrees of freedom, such as the valley
and the spin. Notice that, in 2D TMDC with a promi-
nent spin-orbit coupling, the valley and spin degrees of
freedom are generically locked, as mentioned above. One
would therefore expect g = 2 in these materials. This
is likely the case in the valence band, with a spin-orbit
splitting on the order of ∼ 100 meV, while it is only in
the ∼ 1...10 meV range in the conduction band. The
reduction of the critical temperature is strongest at the
minimum, which occurs at λξσkF ≃ 1.05. This corre-
sponds to an electronic density of

n2D =
g

4π
k2F ≃ 1.1

g

4π
λ−2
ξσ . (78)

We can then give an approximation of the minimum of
the ratio as

min
kF

Tc
TBCS
c

≃ exp

(
− 0.15

2π∆ξσ

AV

)
. (79)

VIII. CONCLUSIONS

In conclusion, we have studied the effect of the Berry
curvature on BCS-type superconductors in 2D electronic
systems. We have shown that the two-body Hamilto-
nian for interacting electrons inherits terms that are lin-
ear in the Berry curvature and that are inherited from
the single-electron band structure. In this case, the Berry
curvature, which arises in the adiabatic limit when the
electrons are restricted to a single band due to purely
virtual transitions to the other bands, is coupled to elec-
tric potentials beyond the periodic one, which gives rise
to the Bloch bands. While such potentials may arise

due to external electric fields, they naturally arise when
interactions between the electrons (or holes) are taken
into account. Generically, the Berry curvature provides
a dipolar structure to the charged pairs, and one of the
terms emerging in the two-body Hamiltonian can indeed
be interpreted as a dipole in an electric field. A second
term emerges in the form of a Darwin term, in which the
Berry curvature couples to the Laplacian of the electric
potential. This term is best understood within a rel-
ativistic treatment of the (massive) Dirac Hamiltonian
that mimics the two adjacent bands in a direct-gap semi-
conductor.

Following the lines of the usual BCS treatment of
superconductivity in the weak-coupling limit, we have
shown that the latter Darwin term generally lowers the
BCS coupling constant. As a consequence, this lowers
also the stability of the Cooper pair so that the super-
conducting gap and critical temperature are decreased.
On the contrary, the dipolar term, which potentially has
the power to increase superconductivity, does not affect
the superconducting properties in an s-wave or any pure
singlet or triplet superconductor because of their fixed
parity. The dipolar term might then play a role in sys-
tems where superconducting phases of different parity co-
exist or where the superconducting order parameter does
not have a fixed parity. This path might be explored in
future work, but it is beyond the scope of our present
paper.

Interestingly, the gap-to-Tc ratio remains the same as
in the conventional BCS theory in the weak-coupling
limit, that we have considered here. Upon doping, the re-
duction of BCS superconductivity is strongest when the
Fermi wave vector is on the order of the inverse effective
Compton length, kF ∼ λ−1

ξσ , where the BCS coupling con-
stant is lowered by 19%. Indeed, for stronger doping, the
Fermi level is situated at wave vectors, where the Berry
curvature rapidly tends to zero. Since the superconduct-
ing gap and the critical temperature both depend expo-
nentially on the BCS coupling constant, the relatively
weak reduction of the coupling constant is more promi-
nent there. Our calculations show that the reduction of
the doping-dependent superconducting gap and critical
temperature depends then both on the band gap, which
determines the value of the Berry curvature, as well as
on the effective electron-electron interaction. The exper-
imental measurement of these quantities in 2D materials
upon doping might then provide a test of our theoret-
ical studies if compared to the expected evolution pre-
dicted by the usual BCS theory in the absence of Berry-
curvature corrections.

ACKNOWLEDGEMENTS

We thank J. Meyer and A. Mesaros for valuable dis-
cussions.



13

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

[2] M. Tinkham, Introduction to Superconductivity, 2nd ed.
(Dover Publications, 2004).

[3] G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
[4] B. White, J. Thompson, and M. Maple, Physica C: Su-

perconductivity and its Applications 514, 246 (2015), su-
perconducting Materials: Conventional, Unconventional
and Undetermined.

[5] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida,
and J. Zaanen, Nature 518, 179 (2015).

[6] A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88,
021004 (2016).

[7] J. Cayssol and J. N. Fuchs, Journal of Physics: Materials
4, 034007 (2021).

[8] M. G. Vergniory, B. J. Wieder, L. Elcoro, S. S. P.
Parkin, C. Felser, B. A. Bernevig, and N. Regnault, All
topological bands of all stoichiometric materials (2021),
arXiv:2105.09954 [cond-mat.mtrl-sci].

[9] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[10] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[11] B. Bernevig and T. Hughes, Topological Insulators and
Topological Superconductors (Princeton University Press,
2013).

[12] M. Sato and Y. Ando, Reports on Progress in Physics
80, 076501 (2017).

[13] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev.
Mod. Phys. 90, 015001 (2018).

[14] S. Peotta and P. Törmä, Nature Communications 6, 8944
(2015).

[15] E. Rossi, Quantum metric and correlated states in
two-dimensional systems (2021), arXiv:2108.11478 [cond-
mat.supr-con].

[16] P. Törmä, S. Peotta, and B. A. Bernevig, Superfluid-
ity and quantum geometry in twisted multilayer systems
(2021), arXiv:2111.00807 [cond-mat.supr-con].

[17] H. Tian, S. Che, T. Xu, P. Cheung, K. Watanabe,
T. Taniguchi, M. Randeria, F. Zhang, C. N. Lau, and
M. W. Bockrath, Evidence for flat band dirac super-
conductor originating from quantum geometry (2021),
arXiv:2112.13401 [cond-mat.supr-con].

[18] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev,
and A. Kis, Nature Reviews Materials 2, 17033 (2017).

[19] J. N. Fuchs, F. Piéchon, M. O. Goerbig, and G. Montam-
baux, The European Physical Journal B 77, 351 (2010).

[20] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao,
and J. Shan, Phys. Rev. Lett. 113, 026803 (2014).

[21] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi,
Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen,
and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).

[22] A. Srivastava and A. m. c. Imamoğlu, Phys. Rev. Lett.
115, 166802 (2015).

[23] J. Zhou, W.-Y. Shan, W. Yao, and D. Xiao, Phys. Rev.
Lett. 115, 166803 (2015).

[24] M. Trushin, M. O. Goerbig, and W. Belzig, Phys. Rev.
Lett. 120, 187401 (2018).

[25] A. Hichri, S. Jaziri, and M. O. Goerbig, Physical Review
B 100, 10.1103/physrevb.100.115426 (2019).

[26] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys.
Rev. Lett. 108, 196802 (2012).

[27] M. O. Goerbig, G. Montambaux, and F. Piéchon, EPL
(Europhysics Letters) 105, 57005 (2014).

[28] M. Trushin, M. O. Goerbig, and W. Belzig, Phys. Rev.
B 94, 041301 (2016).

[29] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29
(1950).

[30] P. Gosselin, F. Ménas, A. Bérard, and H. Mohrbach, Eu-
rophysics Letters (EPL) 76, 651 (2006).

[31] J. Zhou, W.-Y. Shan, W. Yao, and D. Xiao, Phys. Rev.
Lett. 115, 166803 (2015).

[32] M. C. Chang and Q. Niu, Journal of Physics: Condensed
Matter 20, 193202 (2008).

[33] P. Gosselin, H. Boumrar, and H. Mohrbach, EPL (Euro-
physics Letters) 84, 50002 (2008).

[34] R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437
(1997).

[35] D.-H. Lee, Phys. Rev. Lett. 80, 4745 (1998).
[36] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,

1959 (2010).
[37] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[38] W. Greiner and D. Bromley, Relativistic Quantum Me-

chanics. Wave Equations (Springer, 2000).
[39] D. Culcer, A. MacDonald, and Q. Niu, Phys. Rev. B 68,

045327 (2003).
[40] A. H. Compton, Phys. Rev. 21, 483 (1923).
[41] L. N. Cooper, Physical Review 104 (1956).
[42] A. Castellanos-Gomez, The Journal of Physical Chem-

istry Letters 6, 4280 (2015), pMID: 26600394.
[43] C. Li and Z. Wang, in Advances in Science and Technol-

ogy of Mn+1AXn Phases, edited by I. Low (Woodhead
Publishing, 2012) pp. 197–222.

[44] V. P. Mineev and K. V. Samokhin, Introduction to uncon-
ventional superconductivity (Gordon and Breach Science
Publishers, 1999).

[45] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[46] M. Sigrist, AIP Conference Proceedings

10.1063/1.2080350 (2005).
[47] D. Möckli, Journal of Physics: Conference Series 2164,

012009 (2022).
[48] S. Khim, J. F. Landaeta, J. Banda, N. Ban-

nor, M. Brando, P. M. R. Brydon, D. Hafner,
R. Küchler, R. Cardoso-Gil, U. Stockert,
A. P. Mackenzie, D. F. Agterberg, C. Geibel,
and E. Hassinger, Science 373, 1012 (2021),
https://www.science.org/doi/pdf/10.1126/science.abe7518.

[49] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43
(2018).

[50] E. Lake, A. S. Patri, and T. Senthil, Phys. Rev. B 106,
104506 (2022).

[51] P. A. Frigeri, D. F. Agterberg, I. Milat, and M. Sigrist,
The European Physical Journal B - Condensed Matter
and Complex Systems 54, 435 (2006).

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/RevModPhys.56.755
https://doi.org/https://doi.org/10.1016/j.physc.2015.02.044
https://doi.org/https://doi.org/10.1016/j.physc.2015.02.044
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1088/2515-7639/abf0b5
https://doi.org/10.1088/2515-7639/abf0b5
https://arxiv.org/abs/2105.09954
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://books.google.fr/books?id=wOn7JHSSxrsC
https://books.google.fr/books?id=wOn7JHSSxrsC
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://arxiv.org/abs/2108.11478
https://arxiv.org/abs/2108.11478
https://arxiv.org/abs/2111.00807
https://arxiv.org/abs/2112.13401
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1140/epjb/e2010-00259-2
https://doi.org/10.1103/PhysRevLett.113.026803
https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1103/PhysRevLett.115.166802
https://doi.org/10.1103/PhysRevLett.115.166802
https://doi.org/10.1103/PhysRevLett.115.166803
https://doi.org/10.1103/PhysRevLett.115.166803
https://doi.org/10.1103/PhysRevLett.120.187401
https://doi.org/10.1103/PhysRevLett.120.187401
https://doi.org/10.1103/physrevb.100.115426
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1209/0295-5075/105/57005
https://doi.org/10.1209/0295-5075/105/57005
https://doi.org/10.1103/PhysRevB.94.041301
https://doi.org/10.1103/PhysRevB.94.041301
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1209/epl/i2006-10321-4
https://doi.org/10.1209/epl/i2006-10321-4
https://doi.org/10.1103/PhysRevLett.115.166803
https://doi.org/10.1103/PhysRevLett.115.166803
https://doi.org/10.1209/0295-5075/84/50002
https://doi.org/10.1209/0295-5075/84/50002
https://doi.org/10.1103/PhysRevLett.79.4437
https://doi.org/10.1103/PhysRevLett.79.4437
https://doi.org/10.1103/PhysRevLett.80.4745
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevB.59.14915
https://books.google.fr/books?id=2DAInxwvlHYC
https://books.google.fr/books?id=2DAInxwvlHYC
https://doi.org/10.1103/PhysRevB.68.045327
https://doi.org/10.1103/PhysRevB.68.045327
https://doi.org/10.1103/PhysRev.21.483
https://doi.org/10.1021/acs.jpclett.5b01686
https://doi.org/10.1021/acs.jpclett.5b01686
https://doi.org/https://doi.org/10.1533/9780857096012.197
https://doi.org/https://doi.org/10.1533/9780857096012.197
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1063/1.2080350
https://doi.org/10.1088/1742-6596/2164/1/012009
https://doi.org/10.1088/1742-6596/2164/1/012009
https://doi.org/10.1126/science.abe7518
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abe7518
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1103/PhysRevB.106.104506
https://doi.org/10.1103/PhysRevB.106.104506
https://doi.org/10.1140/epjb/e2007-00019-5
https://doi.org/10.1140/epjb/e2007-00019-5


14

Appendix A: Gap equation for non-unitary pairings

We take the gap equation

∆σ1σ2

k⃗
= −

∑
σ3σ4

∑
k⃗′

V
σ2σ1
σ3σ4

eff,⃗kk⃗′I
σ3σ4

β (k⃗′). (A1)

and pick a non-unitary triplet pairing. In that case, the kernel is given by [45]

Îβ(k⃗) = iα⃗β(k⃗) · σ⃗σy (A2)

with

α⃗β(k⃗) =
1

2Ek⃗,+

(
d⃗(k⃗)+

1

|q⃗(k⃗)|
d⃗(k⃗)× q⃗(k⃗)

)
tanh

(
β

2
Ek⃗,+

)
+

1

2Ek⃗,−

(
d⃗(k⃗)− 1

|q⃗(k⃗)|
d⃗(k⃗)× q⃗(k⃗)

)
tanh

(
β

2
Ek⃗,−

)
. (A3)

Moreover, q⃗ = id⃗× d⃗∗ and Ek⃗,± =
√
ξ2
k⃗
+ |d⃗(k⃗)|2 ± |q⃗(k⃗)|. Since d⃗ is an odd function of k⃗ and Ek⃗,± an even one, α⃗β is

an odd function of k⃗ and therefore the kernel Î as well. Another thing to notice is that expliciting the matrix form
of the kernel yields

Îβ(k⃗) =

(
−αβ,x(k⃗) + iαβ,y(k⃗) αβ,z(k⃗)

αβ,z(k⃗) αβ,x(k⃗) + iαβ,y(k⃗)

)
(A4)

which is obviously a symmetric matrix. Putting the two together, we have

I σ3σ4

β (−k⃗) = −I σ3σ4

β (k⃗) = I σ4σ3

β (k⃗) (A5)

which is what we used to show that the Berry dipole term does not change the gap or the critical temperature. So
the latter also extends to non-unitary triplet pairings.
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