
Quantum simulation of spin-1/2 XYZ model using solid-state spin centers

Troy Losey1, Denis R. Candido2, Jin Zhang3,∗ Y. Meurice2, M. E. Flatté2, and S.-W. Tsai1
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In this work we propose a novel solid-state platform for creating quantum simulators based on
implanted spin centers in semiconductors. We show that under the presence of an external magnetic
field, an array of S = 1 spin centers interacting through magnetic dipole-dipole interaction can be
mapped into an effective spin-half system equivalent to the XYZ model in an external magnetic field.
Interestingly, this system presents a wide range of quantum phases and critical behaviors that can
be controlled via magnetic field and orientational arrangement of the spin centers. We demonstrate
our interacting spin chain can be tuned to both isotropic Heisenberg model and transverse-field
Ising universality class. Notably, our model contains a line where the system is in a critical floating
phase that terminates at Berezinskii–Kosterlitz–Thouless and Pokrovsky-Talapov transition points.
We propose this system as the first solid-state quantum simulator for the floating phase based on
spin centers.

I. INTRODUCTION

Quantum simulators designed for handling complex
problems not solvable with classical computers have been
a rapidly expanding field of quantum information sci-
ence [1–3]. Critical behaviors of complex systems may be
investigated and tested with specially designed quantum
simulators that contain the essential physics, and can
be created and probed in the laboratory in a controlled
way. Critical phenomena are universal across distinct
systems within the same universality classes, as they de-
pend only on the symmetries and dimensionality of the
system, and accordingly provide unifying principles that
apply across very different fields of physics [4]. Quantum
spin chains have been extensively studied due to their
relative simplicity and rich critical behaviors [5], and can
be exploited as quantum simulators. The physics of spin-
half chains is particularly interesting and can be directly
mapped to systems of fermions [6], and moreover, effec-
tive spin models with spin-S were proposed as quantum
simulators for lattice field theories [7–11], with special
interest in the S = 1 truncation [12, 13]. While neutral
atoms, trapped ions, cavity arrays, quantum dots, su-
perconducting circuits, photons, and nuclear spins have
been been further studied as quantum simulators, issues
with scalability or controlling and measuring individual
qubits remain [1, 2]. Our proposed spin chain quantum
simulator is able to engineer numerous special Hamilto-
nian terms in order to simulate a wide variety of critical
behavior in a single system and has pursuable avenues to
address the issues faced by other quantum simulators.

Recently, defects with spin in solids (spin centers)
have been demonstrated to be a promising platform for
quantum information science due to their many applica-
tions [1, 14–18]. These spin-S centers are qudits that can
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be optically initialized with laser and optically read via
the photoluminescence (PL) [Fig. 1(a)], and present long
spin coherence time even at room temperature. Due to
the sensitivity of their energy levels to both magnetic and
electric fields, they are also great candidates for quantum
sensing and metrology [19–37]. Examples of solid-state
spin centers are the negatively-charged nitrogen-vacancy
(NV−) [16, 17, 38] and neutral silicon-vacancy (SiV0)
[39–42] spin centers in diamond; and divacancy spin cen-
ters in silicon carbide (SiC) [43–46]. Recent advances on
the spatial implantation precision of spin centers [47–49]
allow for the corresponding creation of room-temperature
coherent spin arrays [50–53]. Interestingly, the interac-
tion between these spins can be set by the relative po-
sition of the spin centers within the crystal, and further
tuned by applied external magnetic and electric fields.
Moreover, as crystal hosts are much larger than the typi-
cal spin-spin implantation separation, scalability of these
spin arrays appears encouraging. In addition, new av-
enues for work with interacting spin centers have been
opened by studies and realizations of many-body phe-
nomena in crystals containing an ensemble of interacting
spin centers, e.g., discrete time-crystals [54, 55], criti-
cal thermalization [34], Floquet prethermalization in a
long-range spin interacting system [56], emergent hydro-
dynamics [57], quantum metrology with strongly inter-
acting spins [58] and Hamiltonian engineering via peri-
odic pulse sequences [59]. Therefore, spin arrays made of
spin centers are a promising solid-state candidate for the
implementation of quantum simulators.

In this paper we exploit the remarkable recent ad-
vances in the creation and control of spin defects, and
propose a solid-state quantum simulator for a spin-half
system composed of an one-dimensional (1d) array of spin
defects [See Fig. 1(a)]. We show that this system presents
various quantum phases and critical behaviors, which can
be achieved using different spatial arrangements of spin
centers and different values of the applied magnetic field
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FIG. 1. (a) Schematic representation of Silicon-Vacancy in Diamond and the corresponding spin array of SiV’s coupled through
dipole-dipole interaction. The spin centers are initialized by a laser, and optically read through the photoluminescence (PL).
Also depicts the energy levels and z-axis from Eq. (1), as well as the angle θ between the z-axis and the displacement vector
between spin centers. (b) The phase diagram of the effective spin-1/2 SiV chain Hamiltonian in Eq. (7), demonstrated by the
filled contour plot of von Neumann entanglement entropy SvN. The phase boundaries are indicated by the peaks of SvN. The
two white X’s and the two white stars show the locations of BKT and PT points, respectively. The ring is an Ising critical line,
and the bright yellow curve connecting the PT point on the ring and the PT point at θ = 0 and hz = 2 is demonstrated to be
the Γx = 0 (red dashed) line, given by Eq. (10), which stays in a critical floating phase near the PT points and transitions via
BKT points to a gapped phase for 0.06π ≲ θ ≲ π/4. The insets on the Γx = 0 line show the spin density profiles for the AFM
phase inside the ring at θ = 0.41π and the floating phase at θ = 0.4π. The θ = 0 line shows the critical partially magnetized
phase with a high entanglement plateau for hz < 2.

[See Fig. 1(b)]. More specifically, we consider an exter-
nal magnetic field is applied to a 1d chain of anisotropic
S = 1 spin centers interacting via the magnetic dipole-
dipole interaction. We show this creates an effective
S = 1/2 system with various spin-spin interaction terms.
The corresponding phase diagram is characterized by cal-
culation of the von Neumann entanglement entropy, and
contains gapped magnetic orders and critical lines that
correspond to the isotropic Heisenberg model, floating
phases [60–64] ending at Berezinskii-Kosterlitz-Thouless
(BKT) [65, 66] and Pokrovsky-Talapov (PT) [67] points,
and transverse-field Ising transitions. The presence of the
floating phase makes our quantum simulator a promis-
ing potential candidate to study emerging incommensu-
rate order and associated critical behavior described by
Tomonaga-Luttinger liquid (TLL) theory [68].

The paper is organized as follows. In Section II,
we start by introducing the general Hamiltonian that
describes spin centers, followed by a discussion of the
dipole-dipole coupling, and of the projection of the
Hamiltonian onto an effective spin-half subspace. We
then consider material candidates where this quantum
simulator can be realized. In Section III, we present our
results and discuss the most interesting regions of the
phase diagram. We analyze the critical lines of the phase
diagram in Sec. III A for isotropic Heisenberg chain with
an external field in the z direction, Sec. III B for Ising
transitions, and Sec. III C for the critical floating phase.
We summarize our results and discuss future work in
Sec. IV.

II. SOLID-STATE SPIN CENTER
IMPLEMENTATION FOR QUANTUM

SIMULATORS

In this section we establish a novel way for implement-
ing quantum simulators in solid-state platforms. Our
new proposal relies on the use of the spin center in semi-
conductors for creating interacting spin chain models in
solid-state systems. Accordingly, we first provide the
Hamiltonian for the spin centers and the dipole-dipole
interaction between them. We then show that the total
Hamiltonian can be mapped into a spin–1/2 XYZ chain
with an applied magnetic field in the x–z plane. Finally,
we discuss different challenges for experimental imple-
mentation with some solutions.

A. Spin center Hamiltonian

The Hamiltonian for the ground state of S = 1 spin
centers in solids can be generally described by a zero-
field splitting term, plus the Zeeman interaction. For
highly-symmetric spin centers, e.g., NV− and SiV0 cen-
ters in diamond, and (hh) and (kk) di-vacancies in SiC,
the low-energy effective Hamiltonian is described as aris-
ing primarily from two interacting electrons forming a
triplet manifold {|0⟩, |−1⟩, |1⟩} with ground state Hamil-
tonian [16, 39, 44–46, 69]

HS = hD (Sz)
2
+

hγ

2π
B(r) · S, (1)
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where D is the zero-field splitting between the triplet
statesm = 0 (|0⟩) andm = ±1 (|±1⟩); Sx, Sy, and Sz are
the triplet spin–1 matrices, γ is the gyromagnetic ratio
(or g-factor), and B(r) the magnetic field at the position
of the spin center, r. Although spin centers also possess
excited states, those are separated by relatively higher
energy (∼100 THz) compared to the energy scale associ-
ated to the ground state (∼1 GHz), and therefore, will
be neglected in this work. Accordingly, in the presence
of an external magnetic field along the defect main sym-
metry axis, defined here as the z-direction (B(r) = Bẑ),

the triplet energy levels read Em=±1 = hD ± hγ
2πB and

Em=0 = 0, and are illustrated in Fig. 1(a). For the ma-
jority of spin centers, D ∼ 1 GHz and γ/2π ∼ 28 GHz/T,
thus showing that spin centers can be easily manipulated
with microwave frequency, and also respond sensitively to
an external magnetic field.

B. Magnetic dipole-dipole coupling between spin
centers

If we now consider an array of spin centers sepa-
rated by inter-atomic distances, different spin centers
will be coupled to each other through both magnetic
dipole-dipole coupling, and exchange interaction. While
the exchange interaction dominates for inter-atomic dis-
tances d ≲ 1 nm [70, 71], the dipole-dipole dominates for
d ≳ 5 nm. Assuming a chain with spin centers separated
by distances ≳ 10 nm, we can disregard the exchange in-
teraction, yielding the effective interacting Hamiltonian
between spin centers i and j,

Hij
int =

µ0(hγ/2π)
2

4π|rij |3
[3(Sj · r̂ij)(Si · r̂ij)− (Sj · Si)], (2)

where µ0 is the vacuum permeability, rij = ri − rj is the
displacement vector between spins i and j located at ri
and rj respectively, and r̂ij = rij/|rij |.
In this paper, the z-axis is defined by the orientation

of each spin center, predefined by the zero-field splitting
term proportional to (Sz)2 within Eq. (1). Here, we ex-
press rij in spherical coordinates with corresponding an-
gles θ and ϕ. Since the z-axes of each spin center are
aligned, our system possesses azimuthal symmetry and
we set ϕ = 0. With these assumptions, we can con-
veniently rewrite the magnetic dipole-dipole interaction
between spin centers i and j [Eq. (2)] as

Hij
int =

µ0(hγ/2π)
2

4π|rij |3
[
Sx
i Sy

i Sz
i

]
·T ·

Sx
j

Sy
j

Sz
j

 , (3)

with dipole-dipole tensor

T =

3 sin2(θ)− 1 0 3
2 sin(2θ)

0 −1 0
3
2 sin(2θ) 0 3 cos2(θ)− 1

 . (4)

Assuming typical electronic gyromagnetic ratio
(γ/2π ∼ 28 GHz/T) and |rij | ∼ 10 nm, we obtain

Hij
int/h ∼ 50 kHz, which is shown to be much stronger

than the dephasing and relaxation rates of spin centers
(100 µs to seconds) [15, 72].

Considering a spin chain of equally spaced (|rij | = |r|)
N spin centers oriented along a straight line with a po-
lar angle θ [See Fig. 1(a)], and assuming only nearest-
neighbor (NN) interactions due to the short-range char-
acter of the dipole-dipole interaction, we obtain the total
Hamiltonian

Htot =
∑
i

HSi
+
∑
i,j

Hij
intδi,j±1. (5)

We thus have an interacting spin chain that can simulate
nontrivial physics of strongly correlated systems. Notice
that if the dipole-dipole coupling is strong, long-range
interaction should be kept and novel quantum phenom-
ena like spontaneous breaking of continuous symmetries
in low dimensions can be observed [73, 74].

C. Effective spin-half Hamiltonian

Despite the spin–1 character of our spin centers, we can
effectively map the total spin–1 interacting Hamiltonian
[Eq. (5)] into a spin–1/2 interacting Hamiltonian. To
do so, we first apply a magnetic field B = Bcẑ with
Bc ∼ D/(γ/2π), such that the levels | − 1⟩ and |0⟩ are
nearly degenerate. Under this condition, the state |1⟩
is separated from both | − 1⟩ and |0⟩ by ∼ 1 GHz. As
the coupling between different spin centers is ∼ 50 kHz,
non-degenerate perturbation theory guarantees that the
effect of level |1⟩ within the manifold spanned by | − 1⟩
and |0⟩ can be neglected. Accordingly, by projecting the
total spin–1 interacting Hamiltonian [Eq. (5)] onto the
low energy {|− 1⟩, |0⟩} subspace, we obtain the spin–1/2
interacting Hamiltonian [See Appendix A]
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H = J

N−1∑
i=1

{[
3 sin2(θ)− 1

]
σx
i σ

x
i+1 − σy

i σ
y
i+1 +

3 cos2(θ)− 1

2
σz
i σ

z
i+1 +

3 sin(2θ)

2
√
2

(
σx
i σ

z
i+1 + σz

i σ
x
i+1

)}

− J

N∑
i=1

{[
hz + 3 cos2(θ)− 1

]
σz
i +

3 sin(2θ)√
2

σx
i

}
, (6)

with J = µ0(hγ/2π)
2/8π|r|3, hz = (Em=−1 − Em=0)/J

and Pauli matrices σx,y,z defined as σ+ = (σx+ iσy)/2 =
|0⟩⟨−1|. From now on, we will set J = 1.
The Hamiltonian in Eq. (6) is invariant under the

transformations θ → θ+π, or θ → π−θ combined with a
π-rotation of all spins around the z-axis, thus we restrict
our analysis to θ ∈ [0, π/2] in the following calculations.
We set A = 3 sin2(θ) − 1, B = [3 cos2(θ) − 1]/2, and

C = 3 sin(2θ)/(2
√
2); then rotate the spins around the

y-axis by an angle α [See Appendix B]. Choosing proper
values of α, we eliminate the σx

i σ
z
i+1 + σz

i σ
x
i+1 terms,

yielding the following XYZ model with an effective ex-
ternal field in the x–z plane

H̃ =

N−1∑
i=1

(
Jxσ

x
i σ

x
i+1 + Jzσ

z
i σ

z
i+1 − σy

i σ
y
i+1

)
−

N∑
i=1

(Γzσ
z
i + Γxσ

x
i ) , (7)

and parameters

Jx(z) = ∓
√

(A−B)2

4
+ C2 +

A+B

2
, (8)

Γz = (hz + 2B) cos(α) + 2C sin(α), (9)

Γx = − (hz + 2B) sin(α) + 2C cos(α), (10)

α =


1
2 arctan

(
2C

B−A

)
, if 0 ≤ θ < arcsin( 23 )

π
4 , if θ = arcsin( 23 )
1
2 arctan

(
2C

B−A

)
+ π

2 . if arcsin( 23 ) < θ ≤ π
2

(11)

It is noticed that the same model can also be engineered
using p-orbital bosons in optical lattices [75] and the long-
range dipolar XYZ model in one or two dimensions can
be built in artificial arrays of Rydberg atoms in optical
tweezers [76].

Without Γx(z) fields, the XYZ model is integrable [77]
and can be exactly solved using the Bethe ansatz [78].
However, the Hamiltonian [Eq. (7)] is more complex due
to the presence of external fields. As Jx(z) and Γx(z) de-
pend on θ and hz, analyzing the corresponding parameter
space shows what quantum phases and critical phenom-
ena our quantum simulator can explore. Figure 2 shows
the effective Hamiltonian parameters [Eqs. (8)-(11)] as
functions of θ. Notice that the interaction strengths
Jx and Jz only depend on θ, while the effective field
components, Γx and Γz depend on both θ and hz. At
θ = 0, we have Jx = −1, Jz = 1, Γx = 0 for arbitrary
hz, and Γz linear in hz. After a π-rotation around the

FIG. 2. The dependence of the coupling constants of the
rotated Hamiltonian on θ. The NN interaction strengths Jx(z)

only depend on θ, while the rotated fields Γx(z) depend on
both θ and hz. The values of Γx(z) as a function of θ for fixed
hz = 0 and fixed Γz(x) = 0 are depicted here, respectively.

z-axis for even or odd sites, the Hamiltonian [Eq. (7)]
becomes a Heisenberg model in an external field along
the z-direction. Conversely, near θ = π/2, α ≈ π/2,
Γz ≈ 0 and depends little on hz, the Jz coupling domi-
nates the interactions, and the Γx field can drive a contin-
uous quantum phase transition between disordered and
antiferromagnetic (AFM) phases as the transverse-field
Ising model does [79]. As θ increases from 0 to π/2, Jx
changes from −1 to −0.5, and Jz changes from 1 to 2,
while |Jz| ≥ 1 ≥ |Jx| is always true. The interactions of
the system favor ferromagnetic (FM) order in x–y plane
and AFM order in z-direction. Due to noncommutative
properties of spin operators, the competitions between
tendencies toward FM and AFM orders in different di-
rections can result in nontrivial quantum criticalities [80–
82].

Without Γx(z) fields, the Hamiltonian has a set of Z2

symmetries and is invariant under a π rotation about any
of the x, y, or z axes. The uniform fields Γx(z) will orient
all spins in the same direction and explicitly break the
Z2 symmetry about the other two axes. There are two
special lines corresponding to Γx = 0 and Γz = 0 respec-
tively, where the Hamiltonian [Eq. (7)] depends only on
θ. The rotated fields along the two lines read

Γz = 2C/ sin(α) for Γx = 0, (12)

Γx = 2C/ cos(α) for Γz = 0. (13)

While increasing θ along the Γz = 0 line, the Hamilto-
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nian [Eq. (7)] begins at θ = 0 at an SU(2) symmetric
Heisenberg point where Γx = 0, then immediately be-
comes Ising-like, and ends at θ = π/2 with Γx = 5. As a
result, only Ising transitions are possible on the Γz = 0
line, and the positive increasing Γx field will simply en-
hance FM order in the x–direction. We have explored
this line numerically and found no critical behaviors be-
yond those at θ = 0.

Along the Γx = 0 line, the Hamiltonian [Eq. (7)] be-
gins at θ = 0 as a Heisenberg model with an external
field Γz = 4 [See Eq. (16)], which is a commensurate-
incommensurate transition point [See Sec. III C], and
ends at θ = π/2 as an AFM phase with Γz = 0, where
Jz = 2 dominates the interaction strength. Throughout
the Γx = 0 line, the field Γz will attempt to align all spins,
while the AFM coupling Jz > 0 will attempt to anti-align
NN spins in the z direction. This competition may cause
the proliferation of domain walls in the presence of Jx(y)
terms and nontrivial incommensurate order can appear
[61, 62]. In summary, based on analysing the parameter
space of the Hamiltonian [Eq. (7)], we have discovered
our quantum simulator can probe the Heisenberg model
in an external field, Ising transition lines, and novel quan-
tum criticalities associated with incommensurate orders.
These rich features are confirmed and extensively studied
in Sec. III via large-scale numerical calculations.

D. Experimental feasibility

Here we explore and discuss the best spin center can-
didates for realizing our proposal, in addition to assess-
ing the feasibility of it. As already mentioned, there
are many examples for spin–1 spin centers in solid-state
systems that are relevant for our proposal, including
the different di-vacancies in SiC, and both NV− and
SiV0 centers in diamonds. Within these candidates, the
one that is more established in terms of understanding,
knowledge, control, implantation precision and manip-
ulation is the NV− center in diamonds. However, the
majority of the Nitrogen isotopes, 14N and 15N, have
a nuclear spin. Since the spin of the NV− centers
are close to the N atoms, the hyperfine interaction be-
tween them is substantial, with corresponding strength
≳ 2 MHz [38, 83, 84]. As the magnetic dipole-dipole in-
teraction produces NV-NV coupling around ∼ 50 kHz,
this interaction would be suppressed by the coupling of
the NV− to the N nuclear spin. Due to this reason, the
realization of our proposal will be optimal for solid-state
systems that do not present strong hyperfine interaction
between spin centers and non-zero spin nuclei. Accord-
ingly, both di-vacancies in SiC, and SiV0 centers in dia-
mond are shown to be better candidates for our proposal
as the majority of their atoms (Si and C) do not have nu-
clear spin. We emphasize that although 12C has zero nu-
clear spin and 13C does not, 13C only represents ∼ 1% of
the whole Carbon atoms of the crystal, and accordingly,
is not expected to suppress the dipole-dipole interaction.

Despite the rich theoretical predictions for the differ-
ent phases of our system, it presents few experimen-
tal challenges. The spin center chain must be compact
enough for the magnetic dipole-dipole interaction to be
measurable. NV− centers have been implanted with a
separation of 16 ± 5 nm [85]. This is nearing the pre-
viously mentioned ∼ 10 nm minimum spin center sep-
aration where the magnetic dipole-dipole interaction is
maximized, while still dominating the exchange interac-
tion. Additionally, the variation in the relative placement
of the spin centers must be small enough to ensure that
the couplings do not significantly change between differ-
ent pairs of NN spin centers, since we assume the spin
centers are equally spaced and in a straight line.
Another challenge is that the spin center couplings

are proportional to J , which in temperature units reads
J/kB ≈ 2 µK (considering spin centers separated by
10 nm). This very low temperature regime is currently
unachievable in experimental setups, thus setting practi-
cal limitations to our proposal. To overcome this, we
propose to engineer stronger spin-spin coupling J by
taking advantage of interactions mediated by bosonic
modes, e.g., photonic [86–88], polaritonic [89], phononic
[90, 91] and magnonic [18, 92–97]. In particular, hybrid
schemes with magnon-mediated spin-spin coupling were
proposed [18, 96], and yield both easy scalability and
strong coupling J/h ≈ 1 MHz between NV’s distanced
by ∼ 1 µm. As a consequence, these schemes also relax
the requirements for a compact chain of precisely placed
spin centers mentioned above. In short, hybrid quantum
systems offer an alternative solution for pushing the crit-
ical temperatures for realizing different floating phases
using spin centers.

III. RESULTS

In order to understand the phase diagram in the
whole parameter space, we perform finite-size density-
matrix renormalization group (DMRG) calculations [98–
100] [See Appendix C]. Our DMRG calculations typically
use an odd number of sites to avoid domain walls form-
ing in the center of the chain due to finite-size boundary
effects [See Appendix D]. We utilize the von Neumann
entanglement entropy as the universal phase-transition
indicator and graph the phase diagram of our Hamilto-
nian [Eq. (7)]. The von Neumann entanglement entropy
SvN is a measure of entanglement between the subsystem
A of a quantum many-body system and its complement
B

SvN = −Tr[ρ̂A ln(ρ̂A)], (14)

where ρ̂A = TrBρ̂ is the reduced density matrix for the
subsystem A, and ρ̂ is the density matrix of the whole
system, which is equal to |Ψ0⟩⟨Ψ0| if the system is in
the ground state |Ψ0⟩. Here, we only consider the case
where A is half of the system. At a critical point on phase
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transition lines or in gapless phases, conformal field the-
ory (CFT) predicts that the entanglement entropy of a
system with open boundary conditions diverges logarith-
mically with the system size as [101–105]

SvN = s0 +
c

6
ln(N), (15)

where c is the central charge referred to as the confor-
mal anomaly, and s0 is a non-universal constant. This
universal scaling behavior of SvN can be used to detect
critical points or lines, and calculate the central charge
to determine the system’s universality class.

Figure 1(b) shows the phase diagram of the model in
the θ–hz plane using von Neumann entanglement entropy
[Eq. (14)]. As mentioned above in Sec. II C, the rotated
Hamiltonian [Eq. (7)] at θ = 0 is a Heisenberg model in
an external field along the z-direction Γz = 2 + hz. At
Γz = 0 or hz = −2, our solid-state system will simu-
late the SU(2) Heisenberg model. According to the re-
sults in Refs. [80, 106], the model is in the critical par-
tially magnetized phase for Γz ∈ (0, 4) or hz ∈ (−2, 2),
and goes to the fully magnetized phase for Γz > 4 via a
commensurate-incommensurate PT transition at Γz = 4
or hz = 2. These behaviors are confirmed by the high-
entanglement segment ending at hz = 2 on the bottom
line of the phase diagram.

Close to θ = π/2, the interaction strength between
NN spin projections along the z-direction dominates, so
the transverse field can drive an Ising transition with
ν = 1 and c = 1/2. In the phase diagram Fig. 1(b),
there is an Ising critical ring centered at θ = π/2 and
hz = 1. Inside this ring, our system is in an AFM phase
manifesting non-zero staggered magnetization per site in
the z-direction mz

stag = [
∑

i(−1)i⟨Sz
i ⟩]/N [See inset of

Fig. 1(b)]. The system is in the disordered phase out-
side the ring, except for one bright yellow line where the
entanglement entropy is large. This line coincides with
the special line defined by Γx = 0 in Eq. (10) [See red
dashed line in Fig. 1(b)]. Large entanglement on the line
indicates the existence of a critical phase that is demon-
strated to be the floating phase [See Sec. III C]. The ends
of this line are indicated by the asterisk symbol and cor-
respond to PT transition points that are on the boundary
of the critical floating phase [See inset Fig. 1(b)]. Along
this line, the floating phase emerges from the upper PT
point down to θ ≈ π/4 (top X marker) and from the bot-
tom PT point up to θ ≈ 0.06π (bottom X marker). On
the line for 0.06π ≲ θ ≲ π/4 (between the X markers),
the system is a gapped phase, separated from the floating
phase by the two BKT transitions which are represented
by the X markers. In the following subsections, we an-
alyze the properties of these quantum phases and phase
transitions with substantial numerical evidence.

A. θ = 0: Heisenberg chain

The spin–1/2 chain Hamiltonian in Eq. (7) for θ = 0
reads

Hθ=0 =
∑
i

(
−σx

i σ
x
i+1 − σy

i σ
y
i+1 + σz

i σ
z
i+1

)
− (hz + 2)

∑
i

σz
i , (16)

which is a Heisenberg model with an external field in
the z-direction after a π-rotation around the z-axis for
even or odd sites. It has an SU(2) Heisenberg point at
hz = −2, which is in the BKT universality class [107]
with a central charge c = 1. As we increase hz from
−2, a non-zero magnetization per site in the z-direction,
mz = [

∑
i⟨Sz

i ⟩] /N , is induced [See Fig. 3]. As the total
magnetization is conserved, the magnetization in the z-
direction

∑
i⟨Sz

i ⟩ increases in steps of 1/2 and the mag-
netization per site is continuous in the large N limit.
Based on previous studies [80, 81], before the magneti-
zation saturates, the system is in the critical partially
magnetized phase with logarithmically diverging entan-
glement entropy. Our data shows that large SvN persists
until hz = 2 where SvN suddenly jumps to zero and the
magnetization per site saturates at 1/2. When the sys-
tem size is increased from N = 257 to N = 1025, the
increment in SvN is almost a constant about 0.23, con-
sistent with CFT prediction ln(4)/6 with central charge
c = 1. It has been argued that SvN for Eq. (16) has par-
ity oscillations that depend on the Fermi momentum and
Luttinger liquid parameter [108], which also results in os-
cillations in SvN as a function of hz shown in Fig. 3. The
oscillation amplitude decreases with the system size and
SvN becomes smooth in the large N limit. For hz ≥ 2,
all the spins point along the z-direction and the system
is in the fully magnetized phase with maximum magne-
tization.

In the thermodynamic limit, the magnetization per site
along the z-direction mz changes continuously with hz,
thus there is a power-law scaling for mz near the phase
transition inside the partially magnetized phase. In the
inset of Fig. 3, we plot the mz as a function of hz near
hz
c = 2. Assuming mz ∼ 1/2 − (hz

c − hz)β , we obtain
β = 0.501(1) from a curve fit. Our numerical results are
consistent with the transition between the incommensu-
rate partially magnetized phase and the commensurate
fully magnetized phase belonging to the PT universality
class with β = ν = 1/2 [67].

B. Ising ring

For θ = π/2, the spin chain Hamiltonian Eq. (7) reads

Hθ=π
2

=
∑
i

(
−1

2
σx
i σ

x
i+1 − σy

i σ
y
i+1 + 2σz

i σ
z
i+1

)
+ (hz − 1)

∑
i

σx
i . (17)



7

FIG. 3. The entanglement entropy SvN for N = 257 and
1025, and the magnetization per site |mz| for N = 1025 as
functions of hz at θ = 0. The large entanglement entropy
with small oscillations (blue pluses and blue squares) in the
partially magnetized phase sharply drops to zero in the fully
magnetized phase. The magnetization per site increases with
hz in the partially magnetized phase and saturates at 1/2
in the fully magnetized phase. The inset shows a fit of the
power-law scaling of |mz| near the phase transition between
the partially and fully magnetized phases.

Here, Jz = 2|Jy| = 4|Jx| = 2, Γx = 1 − hz, and Γz = 0.
The dominant part of the Hamiltonian is a transverse-
field Ising model HIsing =

∑
i

[
2σz

i σ
z
i+1 − Γxσ

x
i

]
, which

has a quantum phase transition belonging to the Ising
universality class. A π-rotation about z-axis only re-
verses the direction of the Γx field, so there should be
two Ising critical points equidistant from hz = 1. The
critical points of HIsing are given by |hz − 1| = 2 [79].
However, the FM coupling −σxσx/2 will enhance the ef-
fects of transverse field, so the expected critical values
follow |hz

c − 1| < 2. At a deviation δθ from θ = π/2 e.g.,
θ = π/2− δθ, one can show that in Eq. (7), Jx, Jz, and
Γx all deviate from the values at θ = π/2 by order of
(δθ)2, so the transverse-field Ising model persists to be
the dominant part of the Hamiltonian as long as δθ is
small. As θ is decreased from π/2, the positive Jz de-
creases, the negative Jx decreases, and |Γz| increases, so
the strength of the Γx field at the critical points should
decrease until a tiny transverse field can induce an Ising
transition. Therefore, it is expected to have a ring of
Ising critical points centered at θ = π/2 and hz = 1, up
to a correction of order of (δθ)2.
We do see a ring of critical points in the phase dia-

gram shown in Fig. 1(b). To demonstrate that the phase
transitions belong to the Ising universality class, we show
the staggered magnetization per site |mz

stag| in Fig. 4(a),
where there is a circular area in which |mz

stag| > 0 and
out of which |mz

stag| = 0. This observation indicates an
AFM phase inside the ring and a quantum phase tran-
sition associated with Z2 symmetry breaking. Moreover,
this region can be verified as belonging to the Ising uni-

versality class by showing that the central charge c = 1/2.
To find c for the transition, it is necessary to find the crit-
ical field hz

c where the Ising transition occurs. We first
plot SvN as a function of hz for different system sizes, N ,
shown in Fig. 4(b). Interpolations are performed to accu-
rately locate the peak positions of SvN. Subsequently, in
Fig. 4(c) we plot the corresponding values of hz for SvN

peaks as a function of 1/N . We then fit the peak posi-
tions with a high degree polynomial of 1/N to obtain the
value of the critical field hz

c in the thermodynamic limit
N → ∞. The extrapolated value of hz

c is 0.5036(2) and
the corresponding |Γx| = 0.4964(2) < 2 as expected. We
finally calculate the entanglement entropy for different N
at hz

c , and fit the data with the expected scaling predicted
by CFT and given by Eq. (15). The results are presented
in Fig. 4(d), and yield the fitted value of c = 0.498(3),
which is consistent with the value c = 0.5 for Ising CFT.
In Appendix E we show results for θ = 1.4 ≈ 0.45π,
where we found hz

c = 0.6298(12) and c = 0.50(3). All of
these observations verify that the critical ring is of Ising
universality class.

C. Γx = 0: Incommensurate line

We have argued in Sec. II C that the Γx = 0 line is
special, while the Γz = 0 line is trivial without any criti-
cality, so the Γx = 0 line will be analyzed in this section.
Notice that any field perturbation along the x direction,
i.e., Γx = 0 → δΓx, will reduce the symmetry of the
XYZ model in the presence of an external field along
the z-direction [See Eq. (7)]. Both spontaneous and ex-
plicit global symmetry breakings result in energetic do-
main wall excitations and create a gapped phase with
low entanglement between subsystems. Thus, the entan-
glement entropy peaks exactly at Γx = 0, as shown in
Fig. 1(b), and any criticality must be strictly on Γx = 0
line without finite width.
In the phase diagram Fig. 1(b), it is observed that the

Γx = 0 line connects the circular phase boundary to the
PT point at θ = 0. As discussed in Sec. II C, the com-
petition between an AFM coupling and the tendency to
align along the external field in the presence of transverse
FM couplings may cause proliferation of domain wall ex-
citations and create a floating phase. The floating phase
is an incommensurate density wave order with gapless
excitations and emergent U(1) symmetry [61, 62, 109].
On the Γx = 0 line below the ring, we indeed observe an
incommensurate density wave at θ = 0.4π [See the inset
of Fig. 1(b)], where the wavelength is fractional in units
of lattice spacing but close to 2, due to proximity to the
AFM phase which has a periodicity of 2. The big enve-
lope is due to the superposition of two waves with close
wave vectors: one is the floating phase and the other is
the intrinsic wave defined by the lattice. Another ex-
ample of an incommensurate density wave is shown in
Fig. 5(d) for θ = 0.38π, where the wave length deviates
more from 2 and the envelope is smaller. These incom-
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FIG. 4. Staggered magnetization per site mz
stag and entanglement entropy SvN for the Ising ring. (a) The magnitude of the

staggered magnetization per site |mz
stag| along the crystal z–axis as a function of θ and hz is plotted for N = 1025. (b) The

entanglement entropy SvN as a function of hz at θ = π/2 is plotted for different system sizes. (c) The peak positions of SvN as
a function of 1/N are fit to a polynomial to extrapolate the critical value of hz for the Ising transition at θ = π/2 on the left
side of the ring. (d) The entanglement entropy at the critical point found in (c) v.s. ln(N) is fit to the CFT form in Eq. (15)
and the extracted central charge c = 0.498(3).

mensurate density waves with varying wavelength show
that we have a floating phase on the Γx = 0 line.

Based on the theory of TLL [68], a large class of 1d
critical phases is described by a free boson field with
a renormalized stiffness K (Luttinger liquid parameter),
where the bosons act as density fluctuations and propa-
gate with an effective velocity v. The PT transition be-
tween 1d critical phases and crystalline orders happens
when this velocity becomes zero, and the physical system
has a spectrum where the leading dispersion relation is
quadratic with the momentum of low-energy excitations
[110]. Additionally, the BKT transition happens when
the Luttinger-liquid parameter reaches the value at which
TLL is unstable and becomes a disordered phase with ex-
ponentially decaying correlations [68, 109]. The values of
K and v in the effective TLL theory change continuously
with coupling constants in the physical system. This sug-
gests there is a critical floating phase near the PT point
at θ = 0, and the Γx = 0 line must have another PT point
between the floating phase and AFM phase. Our model
is similar to the XY model in an external field along the
x-direction, which is dual to the quantum ANNNI model
and has a critical floating phase bounded by a BKT line
and a PT line [111]. As a result there are likely BKT
transitions between the floating phase and the disordered
phase on the Γx = 0 line, and this is investigated further
in this section.

To numerically investigate our predictions, we plot the
entanglement entropy SvN as a function of θ for N = 257,
513, 1025, and 2049 in Fig. 5(a). We only provide data
with θ ≤ 0.064π for N = 2049 to confirm criticality for
small θ. It is seen that the entanglement entropy around
0.15π saturates at N ≳ 512, indicating that there exists
a noncritical gapped phase on the Γx = 0 line around this

point. Near θ = 0 and θ = 0.41π, SvN continues to in-
crease with the system size for large N , confirming that
there exist two separate critical floating phases. There
are two BKT transition points on the Γx = 0 line between
the two floating phases and the gapped phase, which are
signaled by the peaks of SvN at θ ≈ 0.04π and θ ≈ 0.26π.
We also extract the correlation length ξSz from the con-
nected correlators C(r) = ⟨Sz

i0
Sz
i0+r⟩ − ⟨Sz

i0
⟩⟨Sz

i0+r⟩ with
i0 = (N − 1)/2 for N = 1025 [64] and plot ξ−1

Sz as a func-

tion of θ in Fig. 5(a). One can see that ξ−1
Sz is maximized

around 0.14π and decreases towards θ = 0 and θ = 0.41π,
which is consistent with the two floating phases having
divergent correlation lengths, while the correlation length
of the gapped phase between them is finite [112].

The PT point at θ = 0, has a spin density pro-
file ⟨Sz

i ⟩ that is flat, which corresponds to a density
wave vector kp = 0, while the PT point at θ ≈ 0.41π
on the AFM phase boundary has staggered magneti-
zation ordering, which corresponds to kp = π. We
use a natural logarithmic scale to show the absolute
value of the discrete Fourier transform of the spin den-
sity profile with the magnetization subtracted |S̃z

k | =
|
∑

n (S
z
n −mz) exp (−ikn)| on the Γx = 0 line, and as

a function of θ and the wave vector k for N = 1025 in
Fig. 5(b). When calculating |S̃z

k | we used sites indexed
between N/3 and 2N/3 in mz and the sum over n in or-
der to remove some edge effects. The peak position of
k gives the density wave vector kp, which characterizes
the main oscillation pattern in the spin density waves.
It is clear that there exist two smooth lines of peaks of
|S̃z

k |, symmetric about k = π, connecting kp = 0 (2π)
at θ = 0 and kp = π at θ ≈ 0.41π. Thus the density
wave vector kp changes continuously from 0 (2π) to π as
θ is tuned from 0 to about 0.41π. It is also seen that
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FIG. 5. Critical properties along the Γx = 0 line. (a) The entanglement entropy SvN as a function of θ is plotted for different
system sizes on the left y axis. The results for N = 2049 sites only contain data with θ ≤ 0.064π. The inverse correlation
length ξ−1

Sz extracted from connected correlators C(r) = ⟨Sz
i0S

z
i0+r⟩ − ⟨Sz

i0⟩⟨S
z
i0+r⟩ with i0 = (N − 1)/2 is plotted on the right

y axis. (b) The filled contour plot shows the absolute value of the discrete Fourier Transform of the spin density profile |S̃z
k |

as a function of θ and k on a natural logarithmic scale for N = 1025. The peak position kp of |S̃z
k | changes continuously from

kp = 0 (kp = 2π) to kp = π with θ. The three red asterisks show the locations of PT points, while the four red X’s show the
locations of BKT points. The inset shows kp v.s. θ fit to their power-law near the PT point with kp = π. (c) The entanglement
entropy at θ = 0.38π as a function of lnN is fit to the CFT form in Eq. (15) to find the central charge c = 1.02(3). (d) The
spin density profile at θ = 0.38π is plotted for N = 1281. (e) The best data collapse of the rescaled energy gap Nz∆E v.s.

N1/ν(θ − θPT ) for various system sizes is presented at the optimal values of the PT point θPT and critical exponents ν and z.
The inset shows the rescaled energy gap N2∆E as a function of θ/π.

the peak height of |S̃z
k | decreases with θ, until it reaches

a minimum near θ = 0.15π where it begins to increase.
The floating phase has an incommensurate density wave
order and the peak height of |S̃z

k | should be finite, while
the disordered phase has no density wave order in the
thermodynamic limit and should have weaker oscillations
in spin density profile than the floating phase in finite-
size systems. The results in Fig. 5(b) are consistent with
there being a gapped disordered phase between two float-
ing phases on the Γx = 0 line.

To further quantify the criticality of the floating phase,
we study the scaling of the entanglement entropy at
θ = 0.38π on Γx = 0 line. The spin density profile is
plotted in Fig. 5(d) and one can see it is indeed an in-
commensurate density wave. The entanglement entropy
as a function of lnN is plotted in Fig. 5(c), where we
find SvN is grows linearly with lnN . We fit the data for
SvN to the CFT form in Eq. (15) and obtain the central
charge c = 1.02(3), which is consistent with the theory

of TLL or Gaussian CFT with c = 1 [113].

We finally provide numerical evidence for the PT tran-
sition between the floating phase and AFM phase on the
Γx = 0 line. Notice that the entanglement entropy sud-
denly drops as θ increases past θ ≈ 0.41π where the
Γx = 0 line crosses the AFM ring, which clearly dis-
tinguishes the PT point from a BKT point where SvN

changes smoothly across the transition. The critical ex-
ponents for the PT transitions are β̄ = ν = 1/2 and
z = 2. The β̄ exponent describes the power-law behavior
of the density wave vector kp−π ∼ (θc−θ)β̄ for the float-

ing phase near the PT point. We fit the peaks of |S̃z
k | in

Fig. 5(b) to a power-law form and obtain β̄ = 0.50(2),
consistent with the expected value 1/2. On the other
hand, when approaching the PT point from the gapped
side, the correlation length diverges as ξ ∼ (θ − θc)

−ν

and the energy gap closes as ∆E ∼ 1/Nz. A scaling
hypothesis can be postulated for the energy gap around
the critical point Nz∆E = f(N1/ν [θ − θc]), where f(x)
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is a universal function of x. We calculate the energy gap
for N = 513, 683, 855, and 1025 at values of θ close to
the phase transition point but inside the AFM phase and
plot N2∆E v.s. θ/π in the inset of Fig. 5(e). There ex-
ists a fixed crossing point for N2∆E near θ = 0.4095π,
indicating a phase transition there. We then fit Nz∆E
as a function of N1/ν(θ − θPT) to a high-degree polyno-
mial, where θPT, ν, and z are tuning parameters. By
minimizing the mean squared residuals for the curve fit,
the location of PT point θPT and the critical exponents z
and ν can be determined. Figure. 5(e) shows the optimal
results for the curve fit where θPT = 0.40946260(17)π,
z = 1.963(33), and ν = .5093(77). These results are con-
sistent with the expected values ν = 1/2 and z = 2 for
PT transitions.

In summary, we have provided strong evidence in this
section that on the Γx = 0 line, there exist two separate
critical floating phases each bounded by a PT point and
BKT point, between which is a gapped disordered phase
bounded by two BKT points.

IV. CONCLUSIONS

We propose a novel solid-state quantum simulator
based on a 1D chain of spin centers implanted in SiC
or diamond. We show that by considering the magnetic
dipole-dipole interaction between S = 1 spin centers, and
an applied magnetic field, we are able to obtain an effec-
tive S = 1/2 interacting spin chain defining our quan-
tum simulator. Most importantly, we show that the
corresponding effective Hamiltonian can be tuned with
different values of magnetic field, and with the angle θ
between the direction of the spin center array and the
spin center main symmetry axis. These enable our quan-
tum simulator to be mapped to both isotropic Heisen-
berg model in the presence of a longitudinal field and
spin chains in the universality class of the transverse-
field Ising model. Furthermore, between these regimes,
we find a line of enhanced entanglement entropy that
presents a number of interesting behaviors, namely crit-
ical floating phases characterized by incommensurate
spin density waves, and associated Pokrovsky-Talapov
and Berezinskii-Kosterlitz-Thouless transitions. There
has been much interest in realizing floating phases and
studying commensurate-to-incommensurate phase tran-
sitions [64, 114, 115], both with corresponding experi-
ments based on cold atoms [116] and experimental pro-
posals using Rydberg-atom arrays [117]. This is the first
proposal of a quantum simulator based on spin centers in
solid-state materials for realizing floating phases, where
PT transitions between the commensurate AFM phase
and incommensurate floating phases can be probed ex-
perimentally.
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Appendix A: The effective spin–1/2 Hamiltonian
from spin centers

In the NV− centers, if the levels |−1⟩ and |0⟩ are nearly
degenerate, to the first-order approximation, we just need
to keep the submatrix elements of spin–1 operators as-
sociated with the two states, then Sx

S=1 →
√
2Sx

S=1/2,

Sy
S=1 →

√
2Sy

S=1/2, and Sz
S=1 → Sz

S=1/2 − 1/2. The

effective spin-1/2 Hamiltonian is

H

J
=

N−1∑
i=1

{[
3 sin2(θ)− 1

]
Sx
i S

x
i+1 − Sy

i S
y
i+1

+
3 cos2(θ)− 1

2

(
Sz
i S

z
i+1 +

1

4

)
+

3 sin(2θ)

2
√
2

(
Sx
i S

z
i+1 + Sz

i S
x
i+1

)}
−

N∑
i=1

[
hz
ex + 3 cos2(θ)− 1

2
Sz
i +

3 sin(2θ)

2
√
2

Sx
i +

hz
ex

4

]
+

[
3 cos2(θ)− 1

4
(Sz

1 + Sz
N ) +

3 sin(2θ)

4
√
2

(Sx
1 + Sx

N )

]
(A1)

After leaving out the boundary terms and the constants,
which do not change the criticality, and replacing the
spin-1/2 operators by Pauli matrices, we obtain Eq. (6).

Appendix B: Rotation of the spin-1/2 Hamiltonian

Rotating the Hamiltonian Eq. (7) around the y-axis by
an angle α, the new spin operators change as follows

σx → eis
yασxe−isyα = cos(α)σx + sin(α)σz, (B1)

σz → eis
yασze−isyα = cos(α)σz − sin(α)σx. (B2)
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FIG. 6. Results for even number of sites N = 256. (a) The filled contour plot shows the entanglement entropy SvN in the
hz–θ plane. (b) The filled contour plot shows the staggered magnetization per site along the crystal z-axis mz

stag. (c) The spin
density profile is plotted at θ = 0.42π and hz = 1.0 on the yellow entanglement plateau in (a). The domain wall forms due to
boundary effects with even number of sites.

Then the new Hamiltonian can be written as

H̃ =
∑
i

(
Jxσ

x
i σ

x
i+1 + Jzσ

z
i σ

z
i+1 − σy

i σ
y
i+1

)
+

∑
i

Jxz
(
σx
i σ

z
i+1 + σz

i σ
x
i+1

)
−

∑
i

(Γzσ
z
i + Γxσ

x
i ) , (B3)

where

Jx =
A−B

2
cos (2α)− C sin (2α) +

A+B

2
, (B4)

Jz = −A−B

2
cos (2α) + C sin (2α) +

A+B

2
,(B5)

Jxz =
A−B

2
sin(2α) + C cos(2α), (B6)

Γz = (hz
ex + 2B) cos(α) + 2C sin(α), (B7)

Γx = − (hz
ex + 2B) sin(α) + 2C cos(α), (B8)

for A, B, C, and α defined in Sec. II C.
Let Jxz = 0, we can solve for α such that the σx

i σ
z
i+1+

σz
i σ

x
i+1 terms are eliminated. The solution is given by

tan(2α) = 2C/(B − A) if θ ̸= arcsin(2/3) or α = π/4 if
θ = arcsin(2/3), where θ = arcsin(2/3) is the angle for
A = B. Notice that the arctan function returns values
between −π/2 and π/2, so there is a discontinuity in α
when B−A becomes negative from positive as we increase
θ. We can let α ∈ [0, π/2], then we obtain an expression
of α as a continuous function of θ in Eq. (11).

Appendix C: DMRG Specifications

Our DMRG calculations are performed with ITensor
Julia Library [118]. When searching for the ground
state, we gradually increase the maximum bond dimen-
sion D during the variational sweeps until the trunca-
tion error ϵ is below 10−10. Some high-precision calcu-
lations have truncation errors between 10−11 and 10−12

to ensure that the largest bond dimension of the sweeps
reaches ≳ 100. DMRG sweeps are terminated once the
ground-state energy changes less than 10−11 and the von
Neumann entanglement entropy changes less than 10−8

between the last two sweeps. In this work, the largest
bond dimension in the final sweeps for ϵ = 10−10 is about
D = 350 for N = 1025, θ = 0.27π, and hz = hc, where
hz
c is a solution for the Γx = 0 line. All results shown use

open boundary conditions (OBCs).

Appendix D: Effects of odd and even number of sites

On the boundary sites, because the interaction only
comes from one side in the bulk, they often prefer some
particular states favored by the external field. Near the
AFM transition at the ring in our phase diagram, if we
have even number of sites, the AFM state will have op-
posite spin states on the boundary sites. This is not
favored by a uniform external field, so a state with a
domain wall in the center may exist near the phase tran-
sition. Fig. 6(a) shows that there exists a high entangle-
ment plateau before the transition into the AFM phase,
which is due to the domain-wall state that introduces a
large entanglement constant. The constant will not scale
with the system size, so it will not change the critical
point. This high plateau may overwhelm the entangle-
ment scaling at small system sizes, so we use odd number
of sites to remove the domain-wall state. In the domain-
wall state, there is a reflection symmetry, each half of the
chain has a non-zero staggered order, but the staggered
order is zero for the whole system. One can see from
Fig. 6(b) that the circle of non-zero staggered order is
smaller than the one for odd number of sites N = 257
shown in Fig. 4(a). Fig. 6(c) shows the AFM state with
a domain wall at θ = 0.42π and hz = 1.0 on the yellow
entanglement plateau.
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Appendix E: Additional data for Ising ring

This section shows data and the process used to con-
firm that the phase transition at θ = 1.4 ≈ 0.45π belongs
to the Ising universality class. Similarly to Section III B,
in Fig. 7(a) we show the entanglement entropy SvN for
several system sizes N , as hz is tuned across the phase
transition. This clearly shows that for different system
sizes, the entanglement entropy peaks for different values
of hz, which indicates that the phase transition occurs at
different hz. For each system size we use interpolation
to precisely find hz at the peak and plot these values of
hz v.s. 1/N in Fig. 7(b), where the data is fit to a high
degree polynomial and extrapolated to 1/N = 0 to find
that the phase transition occurs at hz

c = 0.6298(12) in the
thermodynamic limit. Eq. (15) from CFT predicts that

at a critical point such as this, the entanglement entropy
should scale linearly with ln(N) in the thermodynamic
limit. However, finite-size effects cause this to be a poor
fit for our data in Fig. 7(c), which shows the scaling of
entanglement entropy SvN as a function of ln (N). This
is corrected by adding a term to the fit function that
goes to 0 as N goes to infinity, but greatly improves the
quality of the fit. The data in Fig. 7(c) is fit to

SvN = s0 +
c

6
ln(N) +Ke−N , (E1)

for the non-universal constants s0 and K, to find the cen-
tral charge c = 0.50(3), which confirms that this transi-
tion and all transition on the Ising ring are of the Ising
universality class where c = 1/2.
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