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Single-photon sources with near-unity efficiency and indistinguishability play a major role in
the development of quantum technologies. However, on-demand excitation of the emitter imposes
substantial limitations to the source performance. Here, we show that coherent two-color pumping
allows for population inversion arbitrarily close to unity in bulk quantum dots thanks to a decoupling
effect between the emitter and its phonon bath. Driving a micropillar single-photon source with
this scheme, we calculate very high photon emission into the cavity mode (0.95 photons per pulse)
together with excellent indistinguishability (0.975) in a realistic configuration, thereby removing the
limitations imposed by the excitation scheme on single-photon source engineering.

I. INTRODUCTION

Photonic quantum technologies [1, 2] — such as quan-
tum computers, simulators, and networks — rely on
multi-photon interference to process information [3–5]
and therefore on the availability of efficient sources of
indistinguishable single photons [6]. For a single-photon
source (SPS) with photon output N and degree of indis-
tinguishability I, the rate of successful n-photon inter-
ference scales as (N ·I)n [7]. Thus, for scalable quantum
information processing, the source’s figure of merit N · I
must be increased as close as possible to 1.

The most successful SPS is currently based on cavity-
coupled semiconductor quantum dots (QDs) [8–10],
which are however strongly affected by the vibrational
environment. Previous theoretical work demonstrates a
trade-off betweenN and I induced by phonon scattering,
and indicates a pathway towards optimal performance
using the cavity effect [11]. By carefully engineering the
cavity, simulations predict values of N · I in the range
0.95–0.98 once the emitter is initialized in the excited
state [7, 12]. This calls for an excitation scheme that pre-
pares the desired initial state with the highest possible fi-
delity and is compatible with the requirement N ·I → 1.
In this paper, we show that the performance of a SPS
driven with two-color excitation schemes [13–16] matches
the one calculated for an initially excited source, thereby
demonstrating that the excitation scheme is no longer a
limitation.

Initial experiments on SPSs relied on p-shell pump-
ing [8, 17], whereby a laser pulse excites the QD into
a higher energy state, which subsequently decays to the
exciton level. Owing to the shorter wavelength of the
pump with respect to the outgoing single photons, the
laser is then removed via spectral filtering. However,
indistinguishability obtained under p-shell excitation is
significantly reduced by the time-jitter effect [18]. Elec-
trical triggering, which has been explored as an alterna-
tive to optical pumping [19, 20], suffers from a similar
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Figure 1. Sketch of two-color excitation schemes in the
frequency domain relative to the QD emission line. a) “Red-
and-blue” dichromatic excitation. b) SUPER scheme.

mechanism [21]. Resonant excitation with short laser
pulses set a new milestone, enabling two-photon interfer-
ence visibility ≥ 0.99 [8, 22]. A resonant scheme, how-
ever, requires cross-polarization filtering to distinguish
the outgoing single photons from the pump. This, in
turn, suppresses the number of available photons by at
least a factor 2, so that N · I can never exceed 0.5.

A trade-off between these two competing effects is of-
fered by near-resonant phonon-assisted excitation, where
N = 0.50 has been demonstrated in experiments at the
expense of a lower I = 0.91 [23]. Still, exciton prepara-
tion is limited to 0.85–0.90 fidelity both in experiments
and theory [23–25], posing a fundamental limitation to-
wards further increasing the performance. A promising
strategy involving stimulated emission from the biexciton
level [26–28] has generated single photons with I = 0.93
and in-fiber efficiency of 0.51 [27] in experiments. How-
ever, increasing the figures of merit towards unity de-
mands a detailed understanding of the role of phonons
during the excitation process [29, 30], and an excitation
scheme which is compatible with arbitrary increase to-
wards unity of N · I has not been demonstrated so far.
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A dichromatic (or two-color) protocol makes use of
two laser pulses detuned from the QD emission frequency
(Fig. 1a). He et al. initially proposed to use a symmetric
“red-and-blue” configuration — that is, with one pulse
on the blue side and one on the red side of the spectrum
with respect to the emitter [13] — and Koong et al. sub-
sequently demonstrated partial population of the exciton
level by acting on the relative pulse amplitudes [14]. This
effect is however significantly hindered by phonon scat-
tering, with a population inversion ∼0.6 predicted theo-
retically in Ref. [14]. Here, on the other hand, we access
a phonon-decoupled regime where phonon effects are re-
moved from the excitation process [31, 32] and arbitrarily
high population inversion is within reach for bulk QDs.
As a specific example, we demonstrate that a micropil-
lar SPS driven with our scheme can generate up to 0.95
photons per pulse into the collection optics with even
better indistinguishability than the one obtained under
resonant excitation.

An alternative two-color strategy named SUPER
scheme [15, 16, 33–35] makes use of two laser pulses on
the red side of the spectrum (Fig. 1b). This has resulted
in an estimated population inversion ranging from 0.67
[33] to 0.97 [16] in experiments, but insufficient indistin-
guishability to date [33]. As we show in the following,
the SUPER scheme is also compatible with an increase
of N · I towards 1, provided that the phonon decoupled
regime is attained [30].

The paper is organized as follows. In Section II we
study the population inversion of a bulk quantum dot
under two-color excitation. We consider both the “red-
and-blue” and the SUPER scheme, and we show the in-
fluence of phonon coupling on the performance of both
schemes. Then, in Section III we calculate the photon
output and the indistinguishability of a state-of-the-art
SPS driven with two-color excitation, and we compare
with the artificial case of an initially excited emitter. In
Section IV we draw our conclusions. Four Appendices
are devoted to technical details and to the validation of
our methods.

II. POPULATION INVERSION OF A BULK
QUANTUM DOT

A. Red-and-blue dichromatic scheme

We begin by considering the dichromatic pumping dy-
namics of a QD in bulk in the absence of phonon coupling.
We thus take a two-level system — ground state |G〉, ex-
cited state |X〉 — which is coupled to two laser pulses
centered at angular frequency ωj , j ∈ {1, 2}. They have
Gaussian shape in the time domain, namely

Ωj(t) =
Θj

tp
√
π
e
−
(

t
tp

)2

, (1)

where Θj =
∫ +∞
−∞ dtΩj(t) is the pulse area, and tp is

the pulse temporal width (identical for both pulses, for
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Figure 2. Exciton population in the absence of phonon
coupling after the pulse as a function of Θb and Θr, and for
η = 1 (a), η = 3 (b), η = 4 (c), η = 6 (d).

simplicity). In a reference frame rotating at the exci-
ton frequency ωX , and making use of the rotating wave
approximation, the system Hamiltonian reads

HS(t) =
~
2

[
Ω1(t)e−iδ1t + Ω2(t)e−iδ2t

]
σ† + h.c., (2)

where σ† = |X〉〈G| is the QD raising operator, and δj =
ωj−ωX is the frequency detuning from the exciton. The
time evolution of the density operator ρS(t) is readily
obtained by solving the Von Neumann equation ρ̇S(t) =
− i

~ [HS(t), ρS(t)], with the QD initialized in the ground
state at t = t0. For the moment, we neglect the QD
spontaneous emission and any source of decoherence to
illustrate the physics of the pumping mechanism.

First, let us focus on the red-and-blue configuration
discussed in Refs. [13, 14] with symmetric detuning δ1 =
−δ2 = δ. In the following discussion, we will use the
notation 1 ≡ b and 2 ≡ r to identify the first and sec-
ond pulse with the blue and red side of the spectrum,
respectively. To assess the pumping efficiency, we con-
sider as a figure of merit the exited state population
PX(t) = Tr

[
σ†σρS(t)

]
at a time t after the pulse is

gone (specifically, we use t = 3tp). In the ideal sce-
nario where any source of decoherence and dissipation
is neglected, PX can take a maximum value of PX = 1,
corresponding to perfect population inversion. When the
system dynamics is unitary and governed by Eq. (2), one
can show that PX after the laser pulse is determined by
f(Θb,Θr, η = tpδ), i.e. it depends on the product η = tpδ
and not on tp and δ separately (see Appendix A). We
explore such a functional dependence in Fig. 2. At η = 1
(Fig. 2a) we observe a periodic pattern that is reminis-
cent of Rabi oscillations, especially along the diagonal
Θb = Θr. Indeed, the symmetric dichromatic driving
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with Ωb(t) = Ωr(t) = Ω(t) has a simple analytical solu-

tion PX = sin2(ξ), where ξ =
∫ +∞
−∞ dtΩ(t) cos(δt) is the

spectral component of the dichromatic laser pulse at the
exciton frequency [14]. This shows that the oscillations
along the diagonal are due to direct resonant coupling to
the QD, which gives rise to the typical Rabi physics.

The spectral component of the driving laser at the exci-

ton frequency, which scales as e−η
2/4, is smaller at larger

η. Here, richer physics is observed in the exciton popu-
lation. Rabi oscillations along the diagonal become pro-
gressively slower — one full oscillation is visible in Fig.
2b, while almost no oscillations are observed in Figs. 2c
and 2d. At the same time, new bright spots exhibiting
PX = 1 emerge at Θb 6= Θr, which are not due to direct
resonant excitation [14]. Their distance from the origin
increases with η and is linked to the total power pro-
vided by the laser pulse, which scales as ∼ (Θ2

b + Θ2
r)/tp.

Therefore, a trade-off between larger values of η — en-
suring low spectral overlap of the laser with the exciton
frequency — and lower values to minimize the power is
necessary. We use η = 6 in the following, for which the

laser spectral component at ωX is e−6
2/4 ≈ 1 · 10−4 rela-

tively to its peak value.
We analyze now the performance of the dichromatic

driving at η = tpδ = 6 in the presence of phonon-induced
dissipation, focusing on the case of GaAs as host mate-
rial. The QD couples to a phonon environment — repre-

sented by HE =
∑
k ~νkb

†
kbk — through the interaction

Hamiltonian

HI =
∑
k

~gk(b†k + bk) |X〉〈X| . (3)

The environment is characterized by a phonon spectral

density Jph(ω) =
∑
k |gk|2δ(ω − νk) ≈ αω3e−ω

2/ω2
c . For

a QD in GaAs we use the coupling strength α = 0.03 ps2,
and the frequency cutoff ωc = 2.2 THz [36, 37]. The effect
of the phonon bath is, among other things, to shift the
exciton frequency to ωX −D, with (see e.g. Ref. [36])

D =

∫ +∞

0

dω
Jph(ω)

ω
=

√
π

4
αω3

c . (4)

It is convenient to move into a frame rotating at fre-
quency ωX −D, where the system Hamiltonian reads

HS(t) = −~D |X〉〈X|

+
~
2

∑
j=1,2

[
Ωj(t)e

−iδjtσ† + Ωj(t)e
+iδjtσ

]
, (5)

with δj = ωj − ωX + D the frequency detuning of each
pulse with respect to the re-normalized exciton frequency.
The dynamics in the absence of phonon coupling is read-
ily obtained by setting α = 0 (and thus D = 0).

To obtain ρS(t), we adopt a master equation formal-
ism within the weak-coupling approximation [36], whose
implementation is detailed in Appendix B. The reduced
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Figure 3. (a-d) Exciton population after the pulse as a
function of Θb and Θr, for fixed η = tpδ = 6 and δ = 1 THz
(a), δ = 2 THz (b), δ = 3 THz (c), δ = 6 THz (d). Here,
phonon-induced effects are considered. (e) PX(t) for tp =
6 ps, δ = 1 THz, Θb = 2.12π, Θr = 6.96π (red), tp = 1 ps,
δ = 6 THz, Θb = 1.80π, Θr = 6.96π (purple).

density operator is determined by solving

d

dt
ρS(t) = − i

~
[HS(t), ρS(t)] +K[ρS(t)] (6)

where the extra term K accounts for environment-
induced effects. Due to the intrinsic asymmetry between
phonon absorption and emission at low temperature, PX
is now function of tp and δ separately. The behavior
of PX for tp = 6 ps and δ = 1 THz (corresponding to
~δ ≈ 0.65 meV) is reported in Fig. 3a, where the fea-
tures described in Fig. 2d are significantly hindered by
phonon scattering. For an excitation pulse predomi-
nantly on the blue side (i.e. Θb > Θr), we observe a
rather broad area revealing PX ≈ 0.8, which is attributed
to phonon-assisted processes [23–25]. On the other hand,
the red side (Θb < Θr) shows an isolated peak similarly
to the case without phonon coupling, but with a signifi-
cantly smaller maximum value. We find PX = 0.661 at
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(Θb,Θr) = (2.12π, 6.96π), which is in qualitative agree-
ment with Ref. [14], where a similar detuning was used.

Moving to larger detuning (while simultaneously keep-
ing η = tpδ fixed), phonon scattering becomes progres-
sively less detrimental. In Figs. 3b, 3c, and 3d, the
dichromatic features gradually emerge from the back-
ground, with Fig. 3d begin almost identical to the cor-
responding calculation in the absence of phonons (Fig.
2d). Indeed, at δ = 6 THz (~δ ≈ 3.95 meV) we find a
maximum PX = 0.987 at (Θb,Θr) = (1.80π, 6.96π). One
can further increase PX arbitrarily close to 1 by increas-
ing the detuning beyond δ = 6 THz at constant η = tpδ.
For instance, we find PX = 0.999 at (tp, δ) = (0.2 ps,
30 THz) (see Appendix C). However, a configuration with
such ultra-short pulses and large detuning has practical
challenges, and we will limit the discussion to the range
tp ∈ [1, 6] ps.

We interpret this result in terms of an effective phonon
decoupling occurring at larger δ and shorter tp, which is
known to play a role in the reappearance of Rabi oscil-
lations at large pump power and in the Adiabatic Rapid
Passage [29, 31, 32, 38]. The population inversion is the
result of a fast oscillating dynamics illustrated in Fig. 3e,
where we plot PX(t) for the two configurations marked
with a star in Figs. 3a and 3d. We observe that the ex-
cited state population oscillates on a time scale which
is shorter than tp. However, phonon relaxation occurs
on a time scale of ∼1–5 ps [36, 39]. For (tp, δ) = (6 ps,
1 THz) (red), the dynamics is sufficiently slow to allow
for phonon-mediated relaxation events, and PX remains
well below 1 after the dichromatic pulse. For (tp, δ) =
(1 ps, 6 THz) (purple), on the other hand, such oscilla-
tions occur on a time scale that is much shorter than
the phonon dynamics. Phonons cannot follow the QD
dynamics instantaneously and are effectively decoupled
from the emitter, resulting in very little dissipation effect
and much higher population inversion (a phenomenon
that also occurs for resonant excitation [40]) Tempera-
ture has almost no influence on the exciton preparation,
further confirming the decoupling effect (see Appendix
C). At the same time, the phonon spectral density is
mostly contained within a range of 2–3 THz. When mov-
ing to δ = 6 THz, the detuning becomes larger than the
maximum phonon frequency and no states are available
for phonon emission or absorption. This explains why
phonon-assisted events (which are particularly evident in
the bottom right region of Fig. 3a) are no longer allowed
at larger detuning. Note that the value δ = 6 THz stays
well below the p-shell of Stranski-Kranstanov grown dots.
For instance, in Ref. [17] the p-shell is 53.7 THz above
the exciton level in our units, so that the blue pulse will
not excite higher confined states. Similarly, biexciton
preparation via the two-photon resonance occurs roughly
1 THz below the exciton line [27] and will not interfere
with our optimal scheme. It should be noted, however,
that QD of different type and size may present a different
phonon spectral density [41] or different p-shell energy
[42].
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Figure 4. Exciton population obtained under the SUPER
scheme as a function of R = δ2/δ1 and Θ2, for fixed η =
tpδ1 = −6. We use Θ1 = 4π (a), Θ1 = 6π (b) Θ1 = 7π (c),
and Θ1 = 8π (d). Here, the phonon coupling is not included
in the calculation.

The ability to capture the decoupling effect numeri-
cally is crucial. We have used here the weak-coupling
model due to its straightforward formulation and ease
of implementation, however more advanced methods are
available in the literature [43, 44]. In Appendix D, we
have thus tested the weak-coupling model against the nu-
merically exact TEMPO method [43, 45], obtaining ex-
cellent agreement. The polaron master equation [11, 37],
on the other hand, overestimates the detrimental effect
of phonons on the exciton preparation by roughly 5% at
short tp.

B. SUPER scheme

In the SUPER scheme, both laser pulses are spectrally
positioned to the red side of the emitter (i.e. δ2 < δ1 < 0)
[15]. In the absence of phonons, the population inver-
sion PX is determined by a function f of four param-
eters f(Θ1,Θ2, η, R), with η = tpδ1 and R = δ2/δ1
(see Appendix A). As frequently done in the literature
[15, 16, 33, 34], one can fix the parameters pertaining to
the first pulse (time duration, detuning, amplitude) and
explore the functional dependence with respect to the
second pulse. We perform this analysis in Fig. 4, where
we fix the value η = tpδ1 = −6 and use different values of
the first-pulse amplitude Θ1 in each panel. We observe
that a threshold amplitude is required in order to reach
full population inversion, i.e. we obtain PX = 1 only for
Θ1 ≥ 8π (panel d). Two maxima are observed at val-
ues Θ1 = 8π,Θ2 = 7.2π, η = −6, R = 3.495 (red cross)
and Θ1 = 8π,Θ2 = 14.0π, η = −6, R = 4.125 (purple
cross). Up to this point, any combination of tp, δ1 and
δ2 generating the same values of η and R leads to perfect
population inversion.

However, this symmetry is broken by the phonon cou-
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Figure 5. Exciton population obtained under the SUPER
scheme as a function of δ2 and Θ2, for fixed η = tpδ1 = −6
and Θ1 = 8π, and with the inclusion of phonon coupling. We
use tp= 6 ps (a) and tp= 1 ps (b), with δ1 = η/tp determined
accordingly.

pling. In Fig. 5 we compare the two cases (tp, δ1) =
(6 ps, −1 THz) and (tp, δ1) = (1 ps, −6 THz) (panels a
and b, respectively) in the presence of phonon coupling
at fixed Θ1 = 8π. A significant quantitative difference is
found. For the same values of Θ2 and R, we now obtain
PX=0.653 (red cross) and 0.795 (purple cross) for longer
pulses (panel a) compared to PX=0.989 (red cross) and
0.985 (purple cross) for shorter pulses (panel b). This
is explained again in terms of phonon decoupling. The
former configuration is relatively slow compared to the
phonon relaxation time and uses a frequency detuning
smaller than the phonon spectral density, while the lat-
ter uses sufficiently short pulses and large detuning to
effectively avoid phonon scattering. As before, these fig-
ures can be pushed arbitrarily close to 1 by decreasing
tp and increasing δ1 and δ2 by identical factors — for
instance, we obtain PX = 0.997 at tp= 0.5 ps.

We note that phonon scattering can possibly explain
some observation reported by Boos et al. in Ref. [33].
There, a population inversion of PX ≈ 0.66 is estimated
experimentally for Θ1 = 8π, Θ2 = 8.8π, tp = 8.49 ps,
δ1 = −1.064 THz, δ2 = −3.115 THz in our units (corre-
sponding to η = −9.02 and R = 3.31), whereas a near-
unity PX is expected in the absence of phonon coupling.
In Figs. 6a and 6b we report the dynamics both in the
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P X
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tp=8.49 ps (no phonons)
tp=8.49 ps
e (t/tp)2
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2.5 0.0 2.5
t/tp

0.0

0.5

1.0

P X
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d

Figure 6. (a) Evolution of the exciton population in time
for Θ1 = 8π, Θ2 = 8.8π, tp = 8.49 ps, δ1 = −1.064 THz, δ2 =
−3.115 THz, and no phonon coupling. (b-d) Same calculation
in the presence of phonon coupling, with tp = 8.49 ps (b), tp =
4.25 ps (c), tp = 4.25 ps (d). In (b-d) the values of δ1 and δ2
are adjusted to keep η = tpδ1 = −9.02 and R = δ2/δ1 = 3.31
fixed. The dashed line marks the performance in the absence
of phonons.

absence and in the presence of phonon coupling for such
a configuration, obtaining final values of PX = 0.954 and
PX = 0.574 respectively. This shows qualitatively that
the imperfect population inversion reported in Ref. [33]
is partly due to phonon coupling. Indeed, the pulse dura-
tion tp = 8.49 ps is rather long compared to the phonon
relaxation time, and the pulse detunings δ1 and δ2 are
well within the phonon spectral density. Better per-
formance could be obtained by reducing tp while corre-
spondingly increasing δ1 and δ2. For instance, we obtain
PX = 0.789 by halving tp at constant η and R (Fig. 6c),
and PX = 0.935 when tp is reduced by a factor 5 (Fig.
6d).

III. SINGLE-PHOTON SOURCE FIGURES OF
MERIT: PHOTON OUTPUT AND

INDISTINGUISHABILITY

We now characterize a state-of-the-art SPS driven with
the two-color scheme in terms of photon outputN and in-
distinguishability I, and compare to the case of resonant
pumping. State-of-the-art SPSs rely on the cavity effect
to funnel the emission into the zero-phonon line and di-
rect the outgoing photons towards the collection optics.
We thus introduce a single-mode cavity with annihilation
operator a, which is assumed to be on resonance with the
QD emission. In the frame rotating at frequency ωX−D,
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the system Hamiltonian is now

HS(t) =− ~D |X〉〈X|+ ~g
(
a†σ + aσ†

)
+ (7)

+

{
~
2

[
Ω1(t)e−iδ1t + Ω2(t)e−iδ2t

]
σ† + h.c.

}
with g the QD-cavity coupling strength. We also add
three Lindblad terms [46] to the master equation, which
account for photon leakage out of the cavity at a rate
κ, spontaneous decay of the QD into non-cavity (back-
ground) modes at a rate Γb, and pure dephasing at a rate
γd induced by charge and nuclear spin fluctuations in the
vicinity of the emitter. The master equation now reads

d

dt
ρS =− i

~
[HS(t), ρS ] +K[ρS ]

+ κLa[ρS ] + ΓbLσ[ρS ] + γdLσ†σ[ρS ] (8)

with LA[ρ] = AρA† − 1
2

{
A†A, ρ

}
. We consider a mi-

cropillar device formed by sandwiching the QD between
two stacks of DBR mirrors, whose performance has been
optimized in previous work [12, 47]. Parameters for
the microscopic modeling (g, κ, and Γb) are extracted
from optical simulations of the electromagnetic environ-
ment [12]. We use g = 0.041 THz, κ = 0.46 THz,
Γb = 0.45 · 10−3 THz, and the dephasing rate is set at
γd = 0.13 · 10−3 THz.

The number N of single photons successfully reaching
the collection optics is calculated as

N = γcollκ

∫ +∞

t0

dt
〈
a†(t)a(t)

〉
(9)

where γcoll is the fraction of photons emitted from the
cavity that are successfully collected. We use γcoll = 1
for the two-color schemes and γcoll = 0.5 for resonant
excitation, due to the need for cross-polarization filter-
ing. The indistinguishability of the emitted photons is
determined as

I = 1−

∫
dt
∫

ds
[
G

(2)
pop(t, s) + g(2)(t, s)−

∣∣g(1)(t, s)∣∣2]∫
dt
∫

ds
[
2G

(2)
pop(t, s)− |〈a(t+ s)〉 〈a†(t)〉|2

]
(10)

with G
(2)
pop(t, s) =

〈
a†(t)a(t)

〉 〈
a†(t+ s)a(t+ s)

〉
,

g(2)(t, s) =
〈
a†(t)a†(t+ s)a(t+ s)a(t)

〉
, and

g(1)(t, s) =
〈
a†(t)a(t+ s)

〉
as detailed in Refs. [25, 48].

For later convenience, we also calculate the single-photon
purity P as [15, 25, 35]

P = 1−
∫

dt
∫

ds g(2)(t, s)∫
dt
∫

dsG
(2)
pop(t, s)

(11)

which measures the probability of multi-photon emission.
Correlation functions are evaluated using the quantum
regression theorem [46], which may overestimate the ef-
fect of phonon coupling [49, 50]. One can thus interpret
our result as a lower bound to I.

Losses and decoherence may occur both during the ex-
citon preparation phase and the emission phase. In the
latter, some photons will be lost into background modes
if Γb 6= 0, resulting in a coupling efficiency to the cavity
mode β < 1. This sets an upper bound N ≤ N (UB) = β
for the case of pure single-photon emission [51]. Simi-
larly, I is deteriorated both by temporal indeterminacy
in the excited state preparation via the time-jitter ef-
fect [18], and by phonon scattering and noise-induced
dephasing during the emission phase. To calculate the
maximum performance that can be attained with such
a cavity design, we artificially initialize the system in
the state |ψ(t0)〉 = |X〉 as done in Ref. [11]. We obtain
N (UB) = 0.966 and I(UB) = 0.975. These hard limits —
which can be understood in terms of the Franck-Condon
factor as explained in Ref. [11] — are defined by dissipa-
tion and decoherence occurring after excitation, and not
by imperfections in the excitation.

In Figs. 7a and 7b, we show the values N (UB) and
I(UB) calculated for an initially excited exciton with a
yellow line. The values N and I calculated starting from
|ψ(t0)〉 = |G〉 and in the presence of the pumping laser
will necessarily obey N ≤ N (UB) and I ≤ I(UB), and we
highlight this accessible region with a yellow shade. We
then plot N and I for the red-and-blue and the SUPER
two-color drives at constant η and R and different values
of tp, and a resonant π pulse of the same duration. For
each data point, the two-color detunings δ1, δ2 are chosen
as δ1 = −δ2 = 6/tp for the red-and-blue dichromatic
scheme, and δ1 = −6/tp and δ2 = 3.49δ1 for the SUPER
scheme.

As expected, the best N is obtained for shorter pulses,
where the performance is almost at the same level as
the one calculated in the absence of phonons. Inter-
estingly, all data points for two-color excitation are well
above the 0.5 limit for resonant excitation, which is set
by the need for polarization filtering. In particular, the
value increases from N = 0.642 (0.628) at tp = 6 ps to
N = 0.953 (0.954) at tp = 1 ps for the red-and-blue (SU-
PER) two-color excitation. Importantly, the deviation
1 − N is not a fundamental limitation of our scheme.
Losses through spontaneous emission into background

modes are calculated as Nb = Γb

∫ +∞
t0

dt
〈
σ†(t)σ(t)

〉
,

which yields Nb = 0.034 at tp = 1 ps for the two-color
schemes. An additional loss 1−PX is caused by imperfect
exciton preparation as obtained previously for a bulk QD
in the absence of any emission mechanism, and we indeed
observe that N +Nb+(1−PX) = 1. Note, however, that
losses due to population inversion can be made arbitrar-
ily small by resorting to shorter pulses, while background
emission is unrelated to the pumping mechanism, and can
be controlled using photonic engineering [7].

Turning to the indistinguishability I, we observe very
high values I ≥ 0.99 for two-color schemes in the ab-
sence of phonon coupling (dashed curves in Fig. 7b), with
a slight decrease for longer pulses. The reason for this
is attributed to possible re-excitation of the QD which
becomes more likely for slow pulses, with a detrimental
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Figure 7. Figures of merit N , I, and P as a function of tp
for a two-color and a resonant π pulse of the same duration.
The frequency detunings are determined as δ1 = −δ2 = 6/tp
for the red-and-blue dichromatic scheme, δ1 = −6/tp and
δ2 = 3.49δ1 for the SUPER scheme, and δ = 0 for the resonant
pulse. The upper bounds N (UB), I(UB) and P(UB) are also
reported, and the regions below such bounds are marked with
a shade.

effect on two-photon interference visibility. This is con-
firmed by the single-photon purity P shown in Fig. 7c.
Here, a value P < 1 indicates the occurrence of multi-
photon emission, while P(UB) = 1 is the upper bound
corresponding to perfect anti-bunching, which is obtained
with an initially excited emitter.

As mentioned, when the effect of phonon coupling is
taken into account (solid curves in Fig. 7) the indistin-
guishability remains below the value calculated in the
absence of phonons due to decoherence in the emission
dynamics [11]. Nevertheless, we obtain an excellent per-
formance for any choice of parameters, with I ranging
from 0.966 at tp = 6 ps up to 0.975 at tp = 1 ps — the
latter corresponding exactly to the upper bound due to
unavoidable phonon scattering during emission, as de-
fined by the Franck-Condon factor [11]. It is noteworthy
that the indistinguishability obtained under two-color

schemes is better than the one under resonant excita-
tion for any value of tp, with all schemes converging to-

wards I(UB) at short tp. This is again a consequence of
the single-photon purity P. As was recently explained
in Ref. [35], two-color pumping is less likely to induce
re-excitation of the QD than a resonant scheme due to
its strongly off-resonant nature. Indeed, in Fig. 7c we
always obtain P ≥ 0.990 using two-color schemes, with
P ≥ 0.999 for tp ≤ 3 ps. On the other hand, purity un-
der resonant excitation ranges between P = 0.974 (at
tp = 6 ps) and P = 0.998 (at tp = 1 ps).

IV. CONCLUSIONS

In conclusion, we have discussed the role of phonon
coupling on the performance of two-color pumping
scheme such as the red-and-blue dichromatic excitation
and the SUPER scheme. We have shown that a necessary
condition in order to exploit the full potential of two-
color excitation is to enter the regime of phonon decou-
pling, where the exciton population oscillates on a time
scale which is faster than the phonon relaxation time ad
the pulse detuning are beyond the range of phonon spec-
tral density. Finally, our calculations demonstrate that
two-color pumping schemes can push the performance of
state-of-the-art SPSs towards N · I = 1, in accordance
with the requirements for scalable quantum technologies.
Our results establish two-color excitation as fundamental
tool for SPS engineering, and illustrate the importance of
pulse-shaping devices such as Spatial Light Modulators
[16].
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Appendix A: Functional dependence of PX

Here we show that, for the case with no phonon cou-
pling (α = 0), the exciton population PX(t1) after the
laser pulse is a function of a limited set of parameters.
In the absence of phonons and any spontaneous decay,
the dynamics is unitary and determined by PX(t1) =

| 〈X|U(t1, t0)|G〉|2 with

U(t1, t0) = T exp

[
− i
~

∫ t1

t0

duHS(u)

]
. (A1)

With a simple change of variable, this reads
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U(t1, t0) = T exp

[
− i

2
√
π

∫ t1
tp

t0
tp

ds e−s
2(

Θ1e
−itpδ1s + Θ2e

−itpδ2s
)
σ† + h.c.

]
(A2)

Since e−s
2 ≈ 0 for large |s|, one can safely extend the integration to ±∞ provided that t0 and t1 are chosen suitably

— in practice, it is sufficient to take t0/tp ≤ −3 and t1/tp ≥ +3. With the definitions η = tpδ1 and R = δ2/δ1 one has

U(t1, t0) = T exp

[
− i

2
√
π

∫ +∞

−∞
ds e−s

2(
Θ1e

−iηs + Θ2e
−iRηs)σ† + h.c.

]
(A3)

which indeed shows that PX(t1) = f(Θ1,Θ2, η, R). To
obtain a symmetric red-and-blue configuration we set
R = −1, thereby reducing the free parameters to three.

Appendix B: Methods

1. Weak coupling master equation

We resort to the weak-coupling master equation to cal-
culate the QD dynamics in the presence of phonon cou-
pling [36]. The master equation for the density operator
ρ(t) reads

d

dt
ρ(t) = − i

~
[HS(t), ρ(t)] +K(t)[ρ(t)] (B1)

where the phonon dissipation is given by

K(t)[ρ(t)] =

∫ +∞

0

dsC(s)
[
X̂(t− s, t)ρ(t), X

]
+ h.c.

(B2)

with X = σ†σ, X̂(t− s, t) = U†(t− s, t)XU(t− s, t) and

U(t− s, t) = T exp

[
− i
~

∫ t−s

t

duHS(u)

]
(B3)

The environment correlation function reads

C(s) =

∫ +∞

0

dω Jph(ω)·

·
[
coth

(
~ω

2κBT

)
cos(ωs)− i sin(ωs)

]
(B4)

with T the temperature, which is set at T = 4 K through-
out this work.

The dynamics is obtained by solving the master equa-
tion via a 4th-order Runge-Kutta algorithm, with initial
condition ρ(t0) = |G〉〈G|. We set t0 = −3tp to make sure
that Ωj(t ≤ t0) ≈ 0. A second Runge-Kutta algorithm is
used to calculate U(t− s, t) in Eq. (B3) by solving

d

ds
U(t− s, t) =

i

~
HS(t− s)U(t− s, t) (B5)

at fixed t as a function of s, with initial condition
U(t− s, t)

∣∣
s=0

= I (I being the identity). Finally,
two-time correlation functions necessary for the indistin-
guishability calculation are evaluated using the quantum
regression theorem [46].

2. Polaron theory

In the polaron theory, which is presented here for com-
parison, the Hamiltonian is diagonalized by applying the
polaron transformation. This removes the QD-phonon
interaction term [Eq. (3)] by applying a unitary displace-
ment to the phonon modes [36]. The system dynamics is
then obtained by solving the polaron master equation,

d

dt
ρ(t) = − i

~
[HS(t), ρ(t)] +Kpol(t)[ρ(t)] (B6)

The system Hamiltonian, in a frame rotating at frequency
ωX −D, is

HS(t) =
~
2
B
∑
j=1,2

[
Ωj(t)e

−iδjtσ† + Ωj(t)e
+iδjtσ

]
, (B7)

Here the quantity B = exp
[
− 1

2φ(0)
]

is a phonon-induced
re-normalization of the laser pulse amplitude, where φ(s)
is the phonon correlation function

φ(s) =

∫ +∞

0

dω
Jph(ω)

ω2
·

·
[
coth

(
~ω

2κBT

)
cos(ωs)− i sin(ωs)

]
(B8)

Note that the polaron transformation automatically
produces the frequency shift ωX → ωX − D, which is
thus not explicitly included in Eq. (B7).

The second term in Eq. (B6) is the polaron dissipator,

Kpol[ρ(t)] =
1

~2

∫ +∞

0

ds ·

·
∑
i=x,y

Cii(s)
[
Âi(t− s, t)ρ(t), Ai(t)

]
+ h.c. (B9)

Here, the time dependent operators Ai(t) are given by

Ax(t) =
~
2
B
∑
j=1,2

[
Ωj(t)e

−iδjtσ† + Ωj(t)e
+iδjtσ

]
, (B10)

Ay(t) = i
~
2
B
∑
j=1,2

[
Ωj(t)e

−iδjtσ† − Ωj(t)e
+iδjtσ

]
(B11)
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Figure 8. Exciton population after a slow (red), fast (purple),
and ultra-fast (green) pulse as a function of the temperature.
See text for details.

and Âi(t − s, t) = U†(t − s, t)Ai(t − s)U(t − s, t), with
U(t − s, t) as in Eq. (B3). The environment correlation
functions are

Cxx(s) = B2{cosh[φ(s)]− 1}, (B12)

Cyy(s) = B2 sinh[φ(s)] (B13)

Again, we use a 4th-order Runge-Kutta algorithm to
solve the polaron master equation, with initial condition
ρ(t0 = −3tp) = |G〉〈G|.

Appendix C: Effect of the temperature

In this section, we show additional evidence for the
phonon decoupling effect by analyzing the exciton popu-
lation PX after the red-and-blue dichromatic pulse as a
function of the temperature. We consider three different
configurations, all of them with constant tpδ = 6:

• slow pulse (red star in Fig. 2a of the main text):
(tp, δ) = (6 ps, 1 THz),
(Θb,Θr) = (2.12π, 6.96π)

• fast pulse (purple star in Fig. 2d of the main text):
(tp, δ) = (1 ps, 6 THz),
(Θb,Θr) = (1.80π, 6.96π)

• ultra-fast pulse (not shown in the main text):
(tp, δ) = (0.2 ps, 30 THz),
(Θb,Θr) = (1.80π, 6.96π)

As reported in Fig. 8, the performance of the slow
pulse falls significantly with increasing temperature, as
expected (from 0.675 at T = 1 K to 0.484 at T = 20 K).
This is due to phonon scattering becoming more and
more relevant at higher temperature, which results in a
smaller population inversion.

18 12 6 0 6 12 18
0.0

0.2

0.4

0.6

0.8

1.0

P X
(t)

a

weak c.
TEMPO
polaron
e (t/tp)2

3 2 1 0 1 2 3
t [ps]

0.0

0.2

0.4

0.6

0.8

1.0

P X
(t)

b

weak c.
TEMPO
polaron
e (t/tp)2

Figure 9. Comparison of the time evolution PX(t) predicted
by the weak-coupling master equation, the polaron master
equation, and the TEMPO algorithm after a slow (panel a)
and fast (panel b) pulse. See text for details, and colored
markers in Fig. 3a and 3d of the main text.

On the other hand, temperature has little influence
on the fast pulse, with a mere 2% decrease in PX be-
tween T = 1 K and T = 20 K (from 0.988 to 0.968). We
attribute this fact to the decoupling mechanism, which
quenches the detrimental effect of phonons even at rela-
tively high temperature.

An ultra-fast pulse with tp goes even deeper into the
decoupling regime, as shown by the green curve in Fig.
8. Here, PX stays constant at 0.999 for the entire range
T ∈ (1 K, 20 K). This last configuration is unpractical
for applications, but is presented here to demonstrate
the phonon decoupling.

Appendix D: Comparison of different methods

Predictions of the weak-coupling theory are compared
here with results obtained from the polaron master equa-
tion and the more advanced TEMPO method [43, 45].
The latter offers the benefit of being numerically ex-
act at the cost of a larger numerical burden and cod-
ing complexity. As such, it is a valuable tool to explore
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new physics in a non Markovian regime, or to assess the
performance of approximate methods such as the weak-
coupling and polaron theories. Here, TEMPO calcula-
tions are performed using the open source Python pack-
age OQuPy [45].

Figures 9a and 9b show the excited state population
PX(t) predicted by the three methods after the slow and
fast red-and-blue pulse respectively (see previous sec-
tion). The weak-coupling prediction is in perfect quan-
titative agreement with the TEMPO calculation, both
for slower and faster driving. This certifies that the
weak-coupling master equation is indeed sufficient to ac-
curately describe the pumping dynamics even in the pres-
ence of fast oscillations, provided that the phonon cou-
pling is not too strong and the temperature is sufficiently

low. On the other hand, we observe a deviation of the
polaron results from the other two lines. For the case of

fast driving (tp = 1 ps, Fig. 9b), we obtain P
(pol)
X = 0.941,

in contrast with PX = 0.987 obtained from the weak-
coupling and TEMPO calculations. Thus, while being in
qualitative agreement with the other two methods, the
polaron underestimates the final probability by a factor
∼ 5%, which is a significant difference in the quest for
a QD excitation scheme with near-unity efficiency. The
reason is that the polaron theory overestimates phonon-
induced dissipation when the exciton population oscil-
lates too fast, i.e. on a time scale that is shorter than the
phonon relaxation time — a very relevant case in this
work.
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role of phonons for exciton and biexciton generation in
an optically driven quantum dot,” J. Phys: Condens.
Matter 26, 423203 (2014).
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