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Chapter 6

The high-dimensional landscapes paradigm: spin-glasses, and beyond
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In this Chapter we review recent developments on the characterization of random
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the landscape topology and geometry, discussing techniques to count and classify its
stationary points and stressing connections with the statistical physics of disordered
systems and with random matrix theory.
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The idea of corrugated landscapes was ubiquitous in many sciences, however it was

not easy to put all these things together and to produce a theory for these kind of phe-

nomena [1]. As G. Parisi recalls in his Nobel lecture, the study of glasses has been

instrumental in providing such a theory, allowing to put into a quantitative framework

what was up to then regarded mostly as a ‘useful metaphor’ [2]. In an attempt to charac-

terise metastability and slow dynamics in glasses, several tools to count and classify the

stationary points (local minima, maxima and saddles) of complicated, very non-convex

(free)-energy landscapes have been conceived and developed. Given that corrugated

landscapes are ubiquitous, these techniques are expected to play a relevant role in other

contexts involving rugged landscapes to optimize, being them fitness landscapes in bi-

ology [3, 4], utility functions in economics [5], cost functions in constraint satisfaction

or inference problems [6–8], loss landscapes in supervised learning [9], and obviously

energy landscapes in condensed and soft matter physics [10], but also string theory and

cosmology [11, 12]. Most of these settings are naturally high-dimensional: for instance,

the space of genotypes over which fitness landscapes are defined is combinatorially large;

in the same vein, training huge artificial neural networks like those used in current deep

learning applications requires to find good minima of loss landscapes depending on an

extremely large number of parameters. Therefore, techniques developed in the context

of the mean-field study of glasses [13], where this high-dimensional limit is built in, are

potentially useful to tackle also newly-emergent problems in biology, computer science

and so on. In addition, the complexity of the landscapes and the proliferating num-

ber of local attractors of optimization algorithms (local minima or, in the language of

glasses, metastable states) makes it reasonable to adopt a statistical framework. In

fact, in several fields it is customary to model these landscapes by means of random

functions, and to seek a statistical description of their properties. The problem is also

of great mathematical interest, lying at the intersection between statistics, probability

and differential geometry [14]. In this Chapter, we aim to briefly summarise the efforts

made to substantiate this landscape paradigm, with a particular focus on more recent

developments and applications. We will not discuss dynamics, for which we refer the

reader to the other Chapters of this book.

6.1. Modelling complex landscapes: high-dimensional random fields

Complex high-dimensional landscapes are usually modelled as random scalar fields V(s)

defined on configuration spaces CN of high dimensionality N ≫ 1, s = (s1, · · · , sN ) ∈

CN . The variables si (representing the state of a spin, particle, neuronal connection,

gene, agent, and so on) are either discrete, e.g. si = ±1, or continuous, e.g. si ∈ R. In

the following we denote with ‖s− s
′‖ the Hamming or Euclidean distance between two

configurations, and we refer to the normalized scalar product s · s′/N as their overlap.

The landscape is random in the sense that the field V(s) at each configuration s depends

explicitly on the disorder, i.e. on certain random variables. We denote with E [·] the

average over this randomness. The interest lies in characterizing the structure of the

landscape statistically, and in particular in capturing typical properties which occur
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with probability converging to one as N → ∞, as well as atypical properties, that in the

large-N limit are captured by large-deviation theory. To do so in a quantitative way, it

is necessary to make some assumptions on the fluctuations of V(s).

We focus mostly on the simplest and most ubiquitous case, that of isotropic Gaussian

random fields : V(s) is thus assumed to have Gaussian fluctuations, with correlations

between the field at two different configurations s and s
′ that depend only on the

distance between them in CN ,

E [V(s)V(s′)]− E [V(s)]E [V(s′)] = NF2

(

‖s− s
′‖2

2N

)

. (6.1)

Notable members of this class of random fields are obtained with the following

parametrization:

VJ(s) =
∞
∑

p=2

αp

N
p−1
2

∑

i1,i2,··· ,ip

Ji1i2···ipsi1 · · · sip , (6.2)

where for any p the parameters Ji1i2···ip are independent, centered Gaussian variables

with unit variance, and the configuration space CN is either a discrete hypercube

{±1}⊗N
, or the surface SN of theN -dimensional hypersphere SN =

{

s :
∑N

i=1 s
2
i = N

}

.

In the latter case, the constraint
∑

p 2
pαp < ∞ guarantees that the field is smooth and

Morse almost surely, meaning that all its stationary points are non-degenerate [15]. It

is straightforward to see that the covariance of (6.2) is isotropic:

E [VJ(s)VJ(s
′)] = N

∞
∑

p=2

α2
p

(

s · s′

N

)p

(6.3)

and thus (6.1) holds with F2(x) =
∑

p α
2
p (1− x)

p
. In the physics literature, random

functions of the form (6.2) go under the name of (spherical) p-spin Hamiltonians : the

spherical ones (when CN = SN ) have been introduced in [16, 17] as a generalization

to continuous variables of the standard spin-glass models defined for binary variables

si = ±1, such as the Sherrington–Kirkpatrick model [18]. When αp′ = δp,p′ for a fixed p,

the model is referred to as pure (as opposed to mixed) in physics, or as random Gaussian

monomial in mathematics. Notice also that given that s · s′/N 6 1, when p → ∞ the

covariance (6.3) vanishes, and the landscape reduces to that of the ‘simplest spin-glass’,

the random energy model [19], which is uncorrelated at each point in configuration

space.

Landscapes of the form (6.2) are centered; in many cases of interest, however, it

makes sense to tilt the isotropic Gaussian field V(s) with non-random functions of s,

for instance:

F(s; r) = V(s)− rNf
(

s · s∗
N

)

, (6.4)

where s∗ is some special configuration in CN , and f some (usually convex) function.

These types of models emerge very naturally in inference settings [7, 20], where the spe-

cial configuration s∗ is a signal embedded in the noise represented by the fluctuating

part of the field. They appear also in the theoretical biology literature [21], the spe-

cial configuration s∗ representing some preferred genotypic configuration, or the native
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conformation in the landscape associated to proteins [22]. When f is linear, the tilting

function simply represents a magnetic field aligned with the direction s∗. Deterministic

terms of this form break the statistical isotropy, but ‘weakly’: the statistics depends on

s only through its overlap (or the distance) to the special configuration s∗. Tuning r,

which measures the strength of deterministic contribution with respect to the fluctuat-

ing ones, can generate transitions in the structure of the landscape (see below). In a

somehow similar vein, one may consider soft variables si ∈ [a, b] ⊆ R and replace the

spherical constraint with a confining potential [23]:

F(s;µ) = V(s) +
µ

2
s · s, (6.5)

with µ some positive mass parameter. We remark that the case of anisotropic mass

µ → µi with µi following a certain distribution has also attracted attention recently

[24–27]. Functions like (6.5) can also be thought of as the simplest incarnation of a

wider class of models involving random functionals rather then functions, such as:

F [s(x);κ, µ] =

∫

dx
(

V [s(x),x] +
κ

2
(∇s(x))

2
+

µ

2
s(x)2

)

(6.6)

where now s(x) is an N -dimensional vector field depending on some internal d-

dimensional state x, the term proportional to κ is an elastic term, V [s(x)] is again

a centered Gaussian field and isotropy now takes the form:

E [ V [s(x),x] V [s′(y),y] ] = N δ(x− y)F2

(

‖s(x)− s
′(x)‖2

2N

)

. (6.7)

Of course, for d → 0 this reduces to (6.5). The landscape (6.6), often referred to as

the random elastic manifold energy landscape, actually appears in a broad variety of

optimization problems (see for instance [28]), in which a random potential favouring

configurations supported in the spots where V [s(x),x] is lower, competes with elastic

terms which instead promote smoother and flatter configurations.

It is worth mentioning another class of Gaussian random functions with a different

parametrization with respect to that of (6.2):

VJ(s;α) =
1

αN

αN
∑

µ=1

φ (Jµ · s) , (6.8)

where φ is a (non-linear) function, α ∈ (0, 1] and the randomness is encoded in the

vectors Jµ ∈ RN , which in most applications are assumed to be independent Gaussian

vectors. These types of functions have been extensively studied in statistical physics

and in the statistical theory of learning [29–32]. An analog version of (6.4) now reads:

V(s;α) =
1

2αN

αN
∑

µ=1

[φ (Jµ · s)− φ (Jµ · s∗)]2 , (6.9)

which can be seen as a toy model to study problems of generalization in machine learning

in an inference-like setup [33].

In the following, we denote the landscape generically with F(s) and we mostly focus

on continuous spaces CN , for which methods relying on continuous differential calculus

(see Sec. 6.3.3) apply. Let us stress however that the landscapes (6.3) on discrete spaces
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are paradigmatic mean-field (fully-connected) models of energy functions, to which one

can associate an averaged free-energy function, the so-called Thouless–Anderson–Palmer

or TAP free-energy [34], which depends on continuous variables — the local magneti-

zation. Techniques similar to those discussed in Sec. 6.3.3 can then be (and have been

very extensively) applied to study properties of these functions, too [35–38].

6.2. The questions: optimization, topology and geometry

The landscape paradigm is motivated by the problem of understanding the time evolu-

tion of complex systems, whenever such evolution can be thought of as some effective

optimization process: either the minimization of an energy or cost, or the maximization

of a fitness or utility. Typical optimization algorithms update the system configuration

using the local gradient of the function to optimize F(s), sometimes combined with

stochastic terms ǫ(t) which are unbiased with respect to the landscape,

d s(t)

d t
= −∇F(s) + ǫ(t). (6.10)

Gradient descent, Langevin dynamics and (in some broader sense) stochastic gradient

descent algorithms used in current machine learning applications [39–41] are of this

form. In physics, ǫ(t) is interpreted as an effective term resulting from interactions

with a thermal bath, and it is usually chosen as a centered Gaussian process with

equal-time variance proportional to the temperature. The information of interest to

understand these algorithms is frequently associated not only with the property of the

global attractor of (6.10), the global minimum, but also with the number and position

of other stationary points sst (minima, maxima and saddle points) on the landscape

surface, defined by ∇F(sst) = 0. For clarity, we classify the landscape properties

related to their distribution into topological and geometrical properties.

6.2.1. Landscape’s topology

Loosely speaking, the landscape topology has to do with the total number of stationary

points. The word topology in this context is motivated by Morse theory, which allows to

relate the topological properties of a manifold to the property of the stationary points

of differentiable functions defined on it. Some questions of interest in this context are:

The complexity of level sets. Random landscapes in general display plenty of local

minima connected by saddles. To interpret the system’s dynamical evolution it is crucial

to know the number NN (f ; k) of stationary points belonging to specific level sets of the

landscape, i.e. such that limN→∞ N−1F(sst) = f ∈ R, and having a certain stability

index k ∈ {0, · · · , N} counting the number of independent directions in CN along which

the landscape has a negative curvature (k = 0 for minima, k = N for maxima, and all

other values correspond to saddles). In the limit N ≫ 1, the number NN (f, k) typically

diverges exponentially, defining an entropy Σ called the landscape complexity:

Σ(f, k) ≡ lim
N→∞

log NN (f ; k)

N
. (6.11)
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The complexity (6.11) gives information, for instance, on how deep the system can

descend in the landscape without encountering local minima, and thus at which level

sets one expects metastability to matter and to slow-down the optimization dynamics.

Topology trivialization transitions. Landscapes depending on external parameters,

such as r in (6.4) or µ in (6.5), can undergo transitions when tuning the parame-

ters, between regimes where Σ > 0 and regimes where the complexity vanishes and the

number of stationary points is thus sub-exponential. These transitions are known in the

literature as topology trivialization transitions [42], and have a natural interpretation in

terms of optimization, which is expected to be a hard task (hindered by metastability)

when Σ > 0, and to become easy when Σ = 0.

6.2.2. Landscape’s geometry

We call geometrical properties the landscape’s features that have to do with how sta-

tionary points are distributed in the space CN . The word geometrical is motivated by

the fact that these features involve notions of distance and position in CN . Questions

of interest in this context are:

Correlations between stationary points. Stationary points of Morse functions are iso-

lated, and one may be interested in understanding what is the typical distance (or

overlap) between them or, given some reference configuration s∗, what is the number of

minima, saddles and maxima that are at fixed overlap from it. We use for the reference

configuration the same notation as for the special configuration in the models (6.4) and

(6.9) since in these cases it would be a natural choice, but more generally s∗ may be

a stationary point (e.g. the global minimum of the landscape). Questions of this type

can be addressed by computing a geometrically-constrained complexity Σ(f, k; q) as a

function of an additional parameter, the overlap:

q = lim
N→∞

sst · s∗
N

. (6.12)

Having this refined geometrical knowledge is relevant to understand ‘how badly’

metastability affects the underlying optimization problem, i.e. whether the local min-

ima trapping the system under the dynamics (6.10) are similar to (magnetized towards)

the global minimum, or the signal or any other sought configuration s∗ (i.e. q > 0), or

whether they are far away and uncorrelated to it (i.e. q = 0). In the first case, in the

inference setting the term partial recovery is used, to signify that minimization algo-

rithms are likely to converge to local attractors that are at least partially informative

on the signal configuration s∗, being at non-zero overlap with it.

Distribution of barriers. Ruggedness implies that moving from one local minimum

to another requires climbing up in the landscape: local minima are separated by the

landscape’s barriers, which correspond to saddles that are nearby the minima in CN ,

but located at higher level sets. When the landscape is highly non-convex, the number

of (low-index) saddles surrounding a given local minimum may be exponentially large,
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and thus associated with a complexity providing information on the distribution of

barriers. Determining the statistics of barriers is a non-trivial task, as it requires to

control of both geometrical properties (one wants to target only stationary points that

are in the vicinity of a certain local minimum), but also to have a refined control of

their stability; in fact, one is looking for saddles, but not arbitrary ones: such saddles

must be connected to the reference minimum in CN , meaning that following the unstable

direction of the saddle one should move in the direction of the minimum. This non-

trivial task is very relevant for understanding stochastic dynamics in regimes in which

(weak) noise terms (such as ǫ(t) in (6.10)) contrast the gradient and allow the system

to climb up and escape from trapping local minima via activated jumps. The resulting

dynamics (which corresponds to a high-dimensional version of the well-known Kramer’s

escape problem) is slow, dominated by rare events (jumps between different minima) in

which the configuration of the system changes substantially, and it is very challenging

to describe quantitatively in the high-dimensional setting.

6.2.3. Dealing with the randomness: average vs typical

The above properties can be understood for fixed realizations of F(s), but the main

interest lies in characterizing it statistically. Quantities like NN are random variables,

and one needs to give a statistical meaning to the complexity. The first non-trivial

quantity of interest is the first moment of NN , the asymptotics of which defines the

so-called annealed complexity:

Σann ≡ lim
N→∞

log E[NN ]

N
. (6.13)

As it often happens in disordered systems, however, the average of quantities fluctuating

exponentially in N ≫ 1 like NN is in general much larger than the typical value, and

the two remain different when N → ∞: in other words, NN is not self-averaging [43].

One would like then to describe typical realizations of F(s), and thus to compute the

asymptotics of the typical value of NN given by the quenched complexity:

Σque ≡ lim
N→∞

E

[

log NN

N

]

. (6.14)

Thus, one needs to compute averages of logarithms. The same problem obviously ap-

pears when dealing with equilibrium properties: one is in general not interested in

getting the average of the partition function

Zβ,J =

∫

CN

d s e−βEJ(s), (6.15)

but rather of the free-energy, which is self-averaging:

F (β) = − lim
N→∞

E

[

1

Nβ
logZβ,J

]

. (6.16)

Replicas have been introduced [44, 45] precisely as a trick to extract the expectation

value of the logarithm from higher moments of the random variable, via the identity:

logNN = lim
n→0

[NN ]n − 1

n
. (6.17)
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The quenched complexities discussed below are computed by making use of this trick;

this requires making some hypothesis on the structure (symmetric or not) of the correla-

tions (overlaps) between different stationary points, similarly to what has to be done in

the equilibrium setting [13]; in some fortunate cases, this structure takes a simple form

and quenched and annealed complexities match (see Sec. 6.4 for an example) and can

be computed in a mathematically rigorous way. In general though, the use of the replica

trick forces one to give up the benefit of mathematical rigor, disclosing in exchange a

universe of fascinating properties of the underlying complex systems, as testified by the

other Chapters of this book.

6.3. Techniques for non-convex landscapes

We now give a brief summary of the techniques that have been developed to gain

information on stationary points of random landscapes. To facilitate the reading, we

begin with a few comments to clarify our terminology.

6.3.1. (Free)-energies, equilibrium, metastability

Optimizing a complex, high-dimensional landscape means seeking its global minimum.

Of course, when the landscape is very non-convex local algorithms of the form (6.10) fail

in locating such configuration(s), as they get trapped into local minima located at higher

level-sets of the landscape. In the literature on spin-glasses, the random functions (6.2)

are effective energy functions and the optimal configuration(s), the system’s ground

state(s), correspond to the equilibrium state at infinite inverse temperature β → ∞,

i.e. the configuration on which the Boltzmann measure

νβ,J(s) ≡
e−βEJ(s)

Zβ,J

ds, Zβ,J =

∫

CN

d s e−βEJ(s) (6.18)

concentrates in that limit. In glassy systems, the above statements generalize to a full

range of β: stochastic Langevin dynamics initialized randomly is unable to converge

to the equilibrium states identified by the Boltzmann measure at the temperature cor-

responding to the noise strength, as it gets attracted by metastable states having an

intensive free-energy f higher than the equilibrium one (6.16). These metastable states

appear to be exponentially numerous, and thus associated to a configurational complex-

ity Σ(f, β), which reduces to the complexity of local minima of the energy landscape

when β → ∞. Moreover, the Boltzmann measure itself appears to fracture into an

exponential multiplicity Σ(feq, β) of equilibrium states, whose internal free energy feq is

related to (6.16) by F (β) = feq−β−1Σ(feq, β). In mean-field models, these equilibrium

and metastable states can be identified with stable stationary points of the TAP free-

energy functionals (see Sec. 6.1) in a statistical sense, once averaging over the couplings

J is performed.

6.3.2. Probing metastability within equilibrium formalisms

Characterizing metastable states is a purely dynamical problem [46]. However, in the

literature on mean-field glasses techniques have been developed to extract information
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on metastability via (suitably modified) thermodynamic calculations involving real repli-

cas [47] or copies [48] or clones [49] of the system. The basic idea is that the structure

of complex free-energy landscapes can be probed considering copies of the system that

evolve in the same landscape being weakly coupled to each others. We briefly review

these approaches in the following, without entering into any technicality.

Legendre transforms, or the Monasson method. It is shown in [48] that Σ(f, β)

is related via a Legendre transform to the free-energy of several (say m) copies of the

system interacting via an infinitesimal coupling term. The coupling is assumed to be

strong enough to force the copies to explore the same metastable state, but weak enough

so that they can be considered as independent within the state. Under this assumption,

a standard thermodynamic calculation shows that the intensive free-energy F (m,β) of

the coupled system is given by:

F (m,β) = inf
f

[

fm−
1

β
Σ(f, β)

]

. (6.19)

Introducing

f∗(m,β) = arg inf
f

[

fm−
1

β
Σ(f, β)

]

, (6.20)

we see how the simple equality (6.19) allows to get Σ(f, β) parametrically in the con-

jugate variable m, if the free energy F (m,β) is known: it suffices to fix m, determine

the corresponding f∗(m,β) = ∂mF (m,β) → f , and get the entropy associated to it as

Σ(f, β) = βfm − βF (m,β) evaluated at the corresponding m. The complexity curve

is thus reconstructed by tuning m; for m → 1, one gets the complexity of the equi-

librium states and their internal free energy. This method boils down to computing

the free-energy of a (slightly complicated) disordered system, which can be done by

exploiting the machinery (namely, replica theory) developed in the study of the ther-

modynamics of glasses. As such, it has been used extensively in the physics literature to

explore metastability, for instance in more realistic models of glasses involving particles

in high-dimension [50, 51], and even beyond the field of glasses [52].

Large deviations, or the Franz–Parisi potential. The Franz–Parisi potential

VFP(q) is a large deviation function that measures the free-energy cost to keep one

copy s of the system at fixed overlap q from another copy s0, where both of them

are weighted with a Bolzmann measure (6.18) with two (in general different) inverse

temperatures. Explicitly,

VFP(q) = − lim
N→∞

1

Nβ
E

[

1

Zβ0,J

∫

CN

νβ0,J(s0) (logZβ,J(s0; q) + F (β))

]

, (6.21)

where F (β) is as in (6.16) and

Zβ,J(s0; q) =

∫

CN

νβ,J(s)δ
(

q −
s · s0
N

)

. (6.22)

As shown in detail in [53, 54] and subsequent literature, in presence of metastability

the potential VFP(q) is non-monotonic. When β = β0 and one local minimum is present
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as some value of q = qEA, one has βVFP(qEA) = Σ(feq, β), i.e. the potential gives the

complexity of the equilibrium states. Indeed, e−NβVFP(qEA) measures the (exponentially

small) probability to find two copies of the system in the same equilibrium state, which

can be thought of as being proportional to the inverse of the number of such states,

e−NΣ(feq,β). The Franz–Parisi potential or variations of it have become a standard tool

in physics [55–59], mathematics [60, 61] and computer science [62], not only to compute

complexities but also to study the relationship between equilibrium states at different

temperatures via the so-called state following procedure. Recently, its large deviations

have been studied as well [63].

These methods are very insightful but they are tailored to track stable states or local

minima; in general, they need to be adapted to count states or minima that are only

marginally stable, and it seems very hard to generalize them to count unstable stationary

points and thus to get information on saddles and landscape’s barriers. For these aims,

direct counting techniques (see the following section) seem to be more suitable.

6.3.3. Direct counting methods: the Kac–Rice formalism

The landscape problem, as we have formulated it so far, is a bare counting problem: one

wants to determine the number of distinct configurations sst that satisfy ∇F(sst) = 0.

For s ∈ CN = RN this amount to finding all solutions of the simultaneous conditions

fi(s) =
∂

∂ si
F(s) = 0 i = 1, · · · , N. (6.23)

For general manifolds CN , the functions fi(s) may take a more general form: on the

sphere CN = SN , the gradient ∇F(s) lies in the tangent plane to the sphere at s,

and thus the fi(s) are the projections of ∂skF(s) on the tangent plane (equivalently,

the spherical constraint can be encoded in fi with a Lagrange multiplier). The Kac

formula [64] for the number NN of isolated solutions of (6.23) reads:

NN =

∫

CN

d s δ(f1) · · · δ(fN )

∣

∣

∣

∣

det

(

∂fi
∂sj

)
∣

∣

∣

∣

, (6.24)

where δ(f) stands for the Dirac delta-function, and appropriate smoothness of the func-

tions fi(s) is assumed. One can recognize in the determinant in (6.24) a Jacobian of a

change of variables in the delta-function: for fi(s) = ∂siF(s), the matrix is nothing but

the Hessian matrix, whose eigenvalues give the curvature of the landscape in the vicinity

of the stationary point, and thus control its linear stability. For fi containing random

Gaussian terms, Rice [65, 66] (see also [67]) derived an expression for the average of

NN , which we write here as:

E [NN ] =

∫

CN

d s Pf(s) (0) E

[∣

∣

∣

∣

det

(

∂fi
∂sj

)∣

∣

∣

∣

∣

∣

∣
fi(s) = 0 ∀i

]

, (6.25)

where Pf(s) (0) is the joint density of the variables fi(s) evaluated at 0, and E [·|·] a

conditional expectation value. For fi(s) = ∂siF(s), the mean number of stationary

points can thus simply be written as E [NN ] =
∫

CN
d s ρst(s), with ρst(s) being the
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corresponding mean density

ρst(s) = E

[

| det
(

∂2
sisj

F(s)
)

|
N
∏

i=1

δ(∂siF(s))

]

. (6.26)

The equation (6.25) is the simplest instance of a Kac–Rice (KR) formula. A nice

review of the history of this formula can be found in [68] and in references therein;

its applications to the high-dimensional setting are discussed in [69], see also [15, 70]

for a mathematical exposition. The formula can be generalized to count stationary

points satisfying specific constraints (belonging to a certain level set or having a certain

index) by inserting in the expectation value (6.26) characteristic functions enforcing

these conditions.

It is clear from (6.13) that to get the annealed complexity of the landscape or of

any of its level sets, it suffices to get the large-N asymptotics of (6.24). The quenched

complexity (6.14), however, requires going beyond the computation of the first moment.

To this aim, one has to introduce Kac–Rice formulas for the higher moments of NN [71]

or replicated Kac–Rice in the language of [72], which in the notation used above can be

written as:

E [Nn
N ] =

∫

CN

n
∏

a=1

d sa Pf(sa) (0) E

[∣

∣

∣

∣

∣

n
∏

a=1

det

(

∂fi(s
a)

∂saj

)∣

∣

∣

∣

∣

∣

∣

∣
fi(s

a) = 0 ∀i, a

]

, (6.27)

where now the conditioning to fi(s
a) = 0 has to be imposed for all a = 1, · · · , n, and

Pf(sa) (0) is the joint probability density associated to this event. To determine the

asymptotics of (6.25) or (6.27) one has to deal with the conditional expectation of the

determinant. In much of the spin-glass literature this term is dealt with approximately;

it is only in more recent years that it was realized that random matrix theory allows

to treat it exactly, and thus to get a more thorough comprehension of the stability

properties of the stationary points one is counting.

Dealing with determinants, approximately: integral representations. The

absolute value in (6.25) is not an innocent detail: as it follows from Morse theory [15],

omitting it would give a topological invariant (the Euler characteristics of CN) rather

than NN . Despite being well aware of this fact [73], early works in the physical litera-

ture succeeded nevertheless to count minima of energy or TAP free-energy landscapes

by largely omitting the modulus, and by introducing integral representations of the

determinant (with its own sign) in terms of commuting [35] or anti-commuting (Grass-

mann) variables [74, 75]. This was justified by the expectation that in the large-N

limit the bottom of the landscape is dominated by minima all having strictly positive

determinant; thus, when restricting the counting problem to level sets corresponding

to low values of the (free)-energy, the absolute value can be safely dropped. This is

in fact the case for models such as the spherical pure p-spin model: below a certain

threshold value of the energy the number of stable local minima is exponentially (in N)

larger than the number of saddles, and the calculation of the total complexity (with no

constraint on the index) of stationary points of low energy performed in this way [17] re-

produces correctly the complexity of local minima [76]. However, the situation becomes
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complicated when the dominant stationary points are only marginally stable (i.e. such

that some eigenvalue of the Hessian vanishes and the states are very fragile under ex-

ternal perturbations), as it is the case for the models (6.2) defined on discrete spaces

si = ±1, including the Sherrington–Kirkpatrick model [77–79]. The calculation of the

TAP complexity in these cases proved to be particularly challenging and sometimes

not easily interpretable: an illustration of this is the extensive debate one finds in the

physical literature [35, 80–86] on the connection between marginality and the break-

ing of the BRST supersymmetry [87] — a symmetry between the commuting and the

anticommuting variables introduced with the integral representation of the determinant.

Dealing with determinants, exactly: random matrix theory. The paper [42]

was seemingly the first one in which it was observed that the application of the Kac–Rice

formula to a certain class of random Gaussian landscapes (in that work, model (6.5))

can be conveniently cast into a Random Matrix Theory (RMT) problem. The random

matrices in question are obviously the Hessian matrices: the approach of [42] consists

in determining their distribution directly, instead of giving integral representations of

their determinant. The condition (6.1) is then crucial, as it translates into properties

of invariance of the corresponding random matrix ensembles, allowing one to perform

explicit calculations. Indeed, one easily sees that (6.1) implies for a centered Gaussian

field V(s):

E

[

∂2
slsi

V(s)∂2
s′
j
s′
k
V(s′)

]

=N∂2
slsi

∂2
s′
j
s′
k
F2

(

‖s−s
′‖2

2N

)

=
1

N
F ′′
2

(

‖s−s
′‖2

2N

)

[δkiδjl+δjiδkl+δjkδli]

+
1

N2
F ′′′
2

(

‖s−s
′‖2

2N

)

g1(s,s
′)+

1

N3
F ′′′′
2

(

‖s−s
′‖2

2N

)

g2(s,s
′)

(6.28)

where

g1(s, s
′) =δkl(sj − s′j)(si − s′i) + δjl(sk − s′k)(si − s′i) + δil(sj − s′j)(sk − s′k)

+ δkj(sl − s′l)(si − s′i)

g2(s, s
′) =(sk − s′k)(si − s′i)(sj − s′j)(sl − s′l).

(6.29)

Therefore, the correlations between entries of the Hessian matrix, obtained setting s =

s
′, simply read:

E

[

∂2
slsi

V(s)∂2
sjsk

V(s)
]

=
1

N
F ′′
2 (0) [δkiδjl + δjiδkl + δjkδli] , (6.30)

implying GOE-like statistics. Similarly, one can deduce that the matrix elements of the

Hessian and the first derivatives ∂siV(s) at the same point in CN are independent, thus

the conditioning in the expectation value (6.25) is immaterial, rendering the calculation

of the first moment particularly simple. This mapping to RMT has been extended

and developed in [88–91], culminating in the works [14, 92] that considerably advanced

RMT-based techniques for counting stationary points with a fixed index and conditioned

on the value of the landscape (for (6.2) on the sphere SN ).
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Computing the higher moments (6.27) is more challenging, as correlations enter into

play. Indeed, one has to determine the joint expectation of the product of determinants

at different configurations, which as it follows from (6.28) are correlated to each oth-

ers; moreover, the Hessian at one configuration s is correlated to the derivatives of the

random field at another configuration s
′, and therefore the conditioning in (6.27) is no

longer immaterial. However, such calculation can be carried out explicitly for isotropic

Gaussian fields [72, 93]; crucial ingredients are the facts that (i) the conditioning mod-

ifies the invariant Hessian statistics (6.30) by means of finite-rank perturbations, the

effect of which on the Hessian spectrum can be studied explicitly with RMT techniques,

(ii) the correlations between the Hessian matrices at different configurations is negligible

when computing the joint expectation value of the determinants to leading order in N

(see also [94] for a rigorous proof of this statement for n = 2).

The RMT approach is thus fully controllable and it allows one to determine an-

nealed landscape’s complexities within a mathematically rigorous framework. It can be

extended to quenched complexities embedding the replica trick in the formalism. In

particular, the RMT setup is essential to characterize the Hessian statistics well beyond

the leading order contribution of the determinant, allowing one to study the emergence

of isolated eigenvalues in the spectrum and thus to control in detail the stability of the

stationary points one is counting; this is fundamental to address the questions related

to the landscape geometry and the distribution of barriers, as we hint at in the following

Section.

6.4. Recent results on random landscapes: a short summary

In this Section we give an overview of recent results, organizing the presentation around

the questions introduced in Sec. 6.2 and focusing mostly on recent developments involv-

ing KR formulas and RMT.

On the complexity of level sets. The spherical pure p-spin model (6.2) with αp′ =

δp,p′ , p > 3 and CN = SN has quickly become one of the most paradigmatic models in

the theoretical literature on glasses [95], as well as the favorite playground to test and

compare the approaches recalled in Sec. 6.3, which all give consistent results for this

model. The expression for the annealed complexity Σ(f) of the stationary points at

intensive energy f has been proven rigorously in [14, 92] using KR. It was known from

replica calculations [17] that in the pure model quenched and annealed complexities

coincide, a statement made rigorous in [94] by means of the second moment method.

The works [14, 92] go beyond the calculation of the total complexity by determining the

explicit expression of the annealed complexity Σ(f, k) of stationary points at fixed index

k. The calculation is elegantly framed in the RMT setting: the complexity of saddles of

index k is obtained from the large deviation function of the smallest eigenvalues of a GOE

matrix [96]. The resulting picture is that of an energy landscape that is hierarchically

organized at its bottom (below the threshold energy mentioned in Sec. 6.3.3): at fixed f

the complexity curves are ordered in the index k, the highest one being that of minima
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(k = 0), followed by that of saddles of index 1, 2, 3, . . . . The curves never cross, meaning

that at low energy densities saddles are exponentially numerous, but exponentially less

numerous than minima (the suppression in their number is precisely due to the large

deviation cost mentioned above). The equivalence between quenched and annealed

complexity extends to the fixed index case [97]. It should be mentioned that for this

model, the curves Σ(f, k) were already obtained in [76] within the approximations of

Sec. 6.3.3, which are effective here in part thanks to the lacking of crossings between the

Σ(f, k) for different k (and thus different Hessians sign). Another fortunate property of

the pure model is the fact that no temperature chaos is present, implying that results

on the complexity of the energy landscape can be extended adiabatically to the free-

energy landscape at low temperature. This is due to the fact that the energy function

is homogeneous (a polynomial of fixed degree), and temperature enters as a global

rescaling factor [98]. A lot of progress on this topic has been made recently on the

mathematical side [99–103].

These simple features of the pure model are quite fragile: already adding a deter-

ministic field breaks the identity between quenched and annealed complexity [104], and

the two remain in general different for mixed models. In the latter case the landscape

structure becomes more intricate (see [105, 106] for the calculation of the annealed

complexity of a p + k model with the techniques of Sec. 6.3.3). The interest in these

models has reignited recently [107] partly due to the discovery of new forms of ergodicity

breaking in the Langevin dynamics associated with these systems [58], and partly due

to their emergence in problems of inference [108], and non-linear optics [109]. Recent

mathematical work on the free-energy of mixed models [110] also elucidated the mech-

anisms behind the Parisi replica symmetry breaking, complementing approaches based

on a direct analysis of Parisi measures [111]. Intriguing features of the complexity of

stationary points of the pure model defined on complex configuration spaces CN ⊆ C
N

are discussed in [112, 113].

On topology trivialization transitions. Topology trivialization transitions have

been identified and discussed in the recent works [42, 69, 89, 90, 114]: they occur

when a control parameter, like the signal-to-noise ratio r in (6.4) or the curvature µ in

(6.5), exceeds a critical value set by the variance of the local Hessian, F ′′
2 (0) in (6.30).

Such critical values are exactly those where zero-temperature replica symmetry break-

ing mechanisms cease to be operative [89], reflecting the change in the nature of the

landscape from supporting exponentially many stationary points to only a few. The

transition is further accompanied by the change in the Hessian spectrum at the global

minimum of the associated landscape [115]. In the trivial phase Σque = Σann = 0, and

in some cases more precise asymptotics of NN can be determined [116, 117]. A partic-

ularly interesting example is provided by the model (6.6) in presence of a force term,

where the topology trivialization transition corresponds to the so-called depinning dy-

namical transition [118–120]. Annealed complexities, in that case, have been rigorously

and elegantly computed in [25] using advanced RMT insights into the properties of ex-

pectations of random determinants obtained by the same authors in an accompanying

paper [25]. For further discussion of topology trivialization (or lack of it) for different
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types of random landscapes see [8, 121].

On the correlations between stationary points. The models (6.4) are proto-

typical examples of landscapes where deterministic, convex contributions compete with

fluctuating terms, giving rise to a variety of transitions in both the topology and ge-

ometry of the landscape. The geometry of a variation of the p + k model obtained

choosing V(s) to be a pure p-spin model and f(x) = xk/k has been studied in [93]

(see [122] for the study of the equilibrium properties) by means of the computation of

a quenched constrained complexity Σ(f, k; q). This study has unveiled the occurrence

of three different transitions as a function of r: (i) a transition related to recovery,

occurring when the deepest minimum of the landscape becomes correlated with s∗ and

thus informative on its position in CN , implying that partial information on s∗ could be

recovered by an effective landscape minimization; (ii) a geometrical transition occurring

when the landscape in the vicinity of the global minimum ceases to be rugged, implying

that optimization algorithms initialized with a bias towards the direction of s∗ are able

to converge to the global minimum; (iii) a topology trivialization transition occurring

when the whole landscape becomes convex, even far away from s∗. In this model, the

trivialization of the landscape is induced by the low rank perturbations to the Hessian

matrices at the stationary points, which generate an isolated eigenvalue that becomes

negative, signalling that the local minima develop an instability (a direction of negative

curvature) towards s∗. In a certain regime of parameters, the landscape is dominated

by marginally stable states with a single zero mode of the Hessian, similarly to what

happens in other models [38, 105]: in [93] the functional dependence of this special

eigenvalue on f, r and on the overlap q is obtained within a quenched formalism com-

bined with RMT. Based on this analysis, a classification of tilted random landscapes

emerges: for k = 1 (p-spin in a field) the landscape is very sensitive to the presence

of s∗ and the exponential majority of local minimma are informative— the quenched

complexity of this model was computed in [104]. For k = 2, a topology trivialization

transition occurs for values of r ∼ O(N0) thanks to the weak instability given by the

isolated eigenvalue, while for k = 3 the transition occurs for r ∼ O(Nα) with α > 0.

This classification emerges with a broader generality when studying the performance of

optimization dynamics [39]. We stress that the case k > 3 is particularly interesting in

the inference setting, as it includes the so called spiked-tensor problem (when p = k)

that has attracted a lot of attention in recent literature as a prototypical problem with

a statistical-to-algorithmic gap [20, 123–126].

On the distribution of barriers. The recent advances on the KR formalism allow

one to revisit the question on the distribution of barriers [127, 128], identified here with

the difference between the values of F(s) at one minimum and that at a nearby, con-

nected saddle. To extract this information, it is necessary to study the landscape locally,

i.e. to determine the distribution of stationarity points in the vicinity of any arbitrary

local minimum chosen as a reference point, and to study their stability. In high-N ,

this is in essence a large deviation calculation. Early attempts to address this problem

for the spherical, pure p-spin model have been made in [129] by means of a variation
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of the Franz–Parisi potential, and in [130] computing a constrained complexity in the

annealed framework. The quenched calculation has been done in [72], and the analysis

of the Hessian statistics has revealed a crossing between a population of dominating

rank-1 saddles sufficiently close to the reference minimum, and a population of minima

dominating far-away in configuration space. It is also shown that the local maximum of

the Franz–Parisi potential, which gives an upper bound to the dynamical barrier [98],

actually likely corresponds to a local minimum in the landscape rather than a saddle.

The complexity of low-rank connected saddles in the region dominated by minima has

been determined in [131] via a mapping to a large deviation problem for the smallest

eigenvalue and eigenvector of a random matrix perturbed by additive and multiplica-

tive finite-rank perturbations, generalizing the RMT results in [132]. Combining this

refined knowledge on the landscape structure with the direct study of activated dynam-

ics for the pure p-spin model is an ongoing research direction [133–136]. Recent progress

has been made also in the study of free-energy barriers of the Sherrington–Kirkpatrick

model with Ising variables [137], that (at variance with the p-spin case) are not scaling

linearly in N . This has been made possible by a careful study of the scaling of the

coefficients of the expansion of the TAP free energy around a minimum.

6.5. Open challenges: landscape paradigm, and beyond

High-dimensional landscapes have been first introduced long ago as a visual aid for

the dynamical evolution of complicated systems. It is within the field of glasses that

this turned into an established theory, with the development of tools to capture and

characterize statistically the complexity arising in the high-dimensional limit. Recently

these tools are gaining an ever-increasing importance, boosted by the impressive growth

of available data on complex systems that are inherently high-dimensional (organisms,

neuronal systems, ecosystems, deep networks) and whose evolution can be interpreted

as a landscape optimization. We can thus talk about a high-d landscape paradigm;

nonetheless, substantial work still has to be done to advance the landscape program.

First, even though one might expect that isotropic Gaussian fields are justified by

some sort of central limit theory arising in high-dimensional, it would be desirable

to export the tools described in this chapter to settings in which standard spin-glass

functions are not suitable landscape models. Problems of supervised learning are a

playground for this, and indeed in recent years, there has been a continuously evolving

effort to study different models mimicking loss landscapes emerging in realistic machine

learning applications [138, 139]. Similarly, problems of reconstruction of encrypted

signals give rise to optimization landscapes that are non-Gaussian, given for example by

a sum of squared Gaussian terms [140] (see also [141] for applications of similar models

to confluent tissues): understanding the landscape structure, in this case, is certainly an

open direction worth to explore. Within the Kac–Rice formalism, giving up Gaussianity

implies that the conditioning of the statistics of the Hessian becomes a more challenging

problem: an example of this is discussed in [142], where landscapes of the form (6.8),

(6.9) are considered and the complexity problem (within the annealed approximation) is

rephrased in terms of a variational problem for the spectral density of the Hessian. The
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recognition of random-matrix theory as a crucial ingredient for complexity calculations

is promising in this respect, as one might hope to derive general (universal) results

without needing to restrict from the start to standard invariant ensembles [143, 144].

Methodologically, the replicated Kac–Rice formalism for the quenched complexity

has been used so far only within simple replica symmetry-breaking schemes, and it would

be interesting to use it e.g. in contexts in which full replica-symmetry-breaking occurs

[145]. In particular, studying the finite-rank perturbations to the Hessian statistics

induced by this structure is an interesting problem, which might clarify some of the

questions related to the stability of minima in models where marginality is relevant.

From the mathematical perspective, it remains a huge open problem how to derive

quenched complexities without needing to invoke the replica trick.

It is also worth mentioning that Kac–Rice methods can be used to address proper-

ties of complex high-dimensional systems beyond the landscape paradigm, by counting

statistics of equilibrium points of non-gradient autonomous dynamics. The motivations

for such studies come from applications in fields ranging from neural networks to ecol-

ogy, economics, and nonlinear wave scattering. Progress in this direction has been made

in [146–152] for the calculation on the annealed complexity of the equilibria of the asso-

ciated systems of equations, and in [153] for the quenched complexity. Understanding

how the properties of a conservative system change under non-gradient perturbations is

certainly a question with a huge theoretical interest and a broad range of applications.

Finally, we find it appropriate to conclude this Chapter by recalling that getting

a refined information on the landscape topology and geometry can hopefully shade

light and guide us into the comprehension of the dynamical evolution of the complex

systems associated to it: establishing quantitatively this connection between landscape

and dynamics is the underlying goal of the landscape program, and thus the most

relevant perspective.
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[14] A. Auffinger, G. B. Arous, and J. Černỳ, Commun. Pure Appl. Math. 66(2), 165–201,
(2013).

[15] R. J. Adler and J. E. Taylor, Random fields and geometry. vol. 80, (Springer, 2007).
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