
Springer Nature 2021 LATEX template

Quantum Symbolic Execution

Jiang Nan1,2, Wang Zichen1 and Wang Jian3,4*

1The Faculty of Information Technology, Beijing University of
Technology, Beijing 100124, China.

2Beijing Key Laboratory of Trusted Computing, Beijing 100124,
China.

3School of Computer and Information Technology, Beijing
Jiaotong University, Beijing 100044, China.

4Beijing Key Laboratory of Security and Privacy in Intelligent
Transportation, Beijing Jiaotong University, Beijing 100044,

China.

*Corresponding author(s). E-mail(s): wangjian@bjtu.edu.cn;

Abstract

With advances in quantum computing, researchers can now write and run
many quantum programs. However, there is still a lack of effective meth-
ods for debugging quantum programs. In this paper, quantum symbolic
execution (QSE) is proposed to generate test cases, which helps to finding
bugs in quantum programs. The main idea of quantum symbolic execu-
tion is to find the suitable test cases from all possible ones (i.e. test case
space). It is different from the way of classical symbol execution, which
gets test cases by calculating instead of searching. QSE utilizes quantum
superposition and parallelism to store the test case space with only a
few qubits. According to the conditional statements in the debugged pro-
gram, the test case space is continuously divided into subsets, subsubsets
and so on. Elements in the same subset are suitable test cases that can
test the corresponding branch in the code to be tested. QSE not only
provides a possible way to debug quantum programs, but also avoids the
difficult problem of solving constraints in classical symbolic execution.

Keywords: quantum symbolic execution, test cases, quantum program
testing, quantum program, quantum computing

1

ar
X

iv
:2

20
9.

08
58

2v
1

 [
qu

an
t-

ph
]

 1
8

Se
p

20
22

Springer Nature 2021 LATEX template

2 Quantum Symbolic Execution

1 Introduction

Quantum computing has attracted much attention, because quantum super-
position, entanglement and other properties can greatly improve the efficiency
of computing [1, 2]. In recent years, with the development of quantum com-
puter hardware [3, 4], quantum software and quantum programming [5–8] has
also been greatly developed. Researchers can write and run many quantum
algorithms that have been proposed before but cannot be implemented due
to limitations, such as Grover’s algorithm [9], quantum principal component
analysis algorithm [10], quantum phase estimation [11], and etc. In the pro-
cess of writing quantum programs, some errors will inevitably occur [12–14].
For example, Zhao [15] defined a few bugs that focus on misuses of features
of the quantum programming language — Qiskit [6]. Huang [16] also recorded
some bugs in the Scaffold compiler [17]. For quantum programs we still need
to take corresponding measures to find these errors and fix them. Due to the
characteristics of quantum computing, we cannot debug programs as in the
classical environment. This difficulty in debugging quantum programs hin-
ders the development of quantum computing. An effective quantum program
debugging scheme is needed.

Researchers have proposed some methods for debugging quantum pro-
grams, including quantum unit tests [18], quantum assertions [16, 19–21], and
etc. Unit tests are used to determine whether a specific function is correct
under a specific condition. The role of the assertion is that when the program
executes to the assertion, the corresponding assertion should be true, and if
the assertion is not true, the program should terminate execution. These meth-
ods have corresponding quantum versions. However, these methods are not
very good to meet the needs. Currently, assertions in the quantum environ-
ment include statistical assertions [16] based on classical observations, dynamic
runtime assertions [19] that use auxiliary qubits to obtain information indi-
rectly, a projection-based runtime assertion [20], and dynamic assertion [21]
that extend dynamic runtime assertions [19]. These assertions have two main
shortcomings. Firstly, they are mostly used when an error has occurred dur-
ing the running of the program or when the programmer suspects that there
is an error somewhere in the program. Just like people do not directly set
breakpoints on the entire program, but often set breakpoints only when the
output is not as expected. Secondly, the use of assertions relies on the pre-
diction of results. They need to compare the actual output with the expected
result to judge whether the program is error. This is not simple for quantum
programs. Microsoft’s Q# [18] provides a method for unit testing of quan-
tum programs, which tests a unit of a quantum program individually to verify
whether it meets expectations, and internally still uses assertions to achieve
this goal. There is another method Quito (quantum input output coverage)
[22]. The biggest contribution of this paper is to define three coverage criteria
for the input and output of quantum program debugging. But the biggest flaw
of this method is that it still uses statistical analysis to determine test pass
and fail, which certainly does not reduce the complexity of quantum program

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 3

debugging. Therefore, they cannot meet the programmer’s needs for quantum
program debugging very well.

Only unit tests and assertion cannot meet the needs of program debugging.
In classical program debugging field, symbolic execution is another important
debug method and it has appeared much earlier [23]. With the development
of constraint solving technology, symbolic execution has become an effective
technology for generating high-coverage test cases [24] and been widely used
in different areas such as software testing, analysis and verification [25–27].

This paper proposes a quantum symbolic execution (QSE) method, which
focuses on generating high-coverage test cases for quantum programs. QSE
uses quantum superposition and parallel characteristics to store the test case
space with only a few qubits. According to the conditional statements in the
debugged program, the test case space is continuously divided into subsets.
Elements in the same subset are suitable test cases that can test the corre-
sponding branch in the code to be tested. QSE not only provides a possible way
to debug quantum programs, but also avoids the difficult problem of solving
constraints in classical symbolic execution.

2 Related Works

In this section, we briefly introduce the classical symbolic execution and some
existing quantum modules that will be used in QSE.

2.1 classical symbolic execution (CSE)

Programs often have conditional statements, and each branch represents an
execution path to the program. In software testing, symbolic execution is a
way to generate test cases that cover each execution path. Symbolic execution
works by two steps:
(1) creating execution paths, and
(2) using a constraint solver to calculate the answers to the execution paths,

i.e., generating test cases.
To formally accomplish this task, symbolic execution maintains two states

globally: a symbolic state σ, which maps variables to symbolic expressions,
and symbolic path constraints PCs, which are quantifier-free first-order logical
formulas over symbolic expressions. At the beginning of a symbolic execution,
σ is initialized to an empty map and PC is initialized to true. Both σ and PC
are populated during the course of symbolic execution. The update rule of σ is:
• At every read statement var = sym input() that receives program input,

symbolic execution adds the mapping var 7→ s to σ, where s is a fresh
symbolic value.

• At every assignment v = e, symbolic execution updates σ by mapping v to
σ(e), where σ(e) is the mapping of the symbolic state σ to the expression
e.

The update rule of PC is:

Springer Nature 2021 LATEX template

4 Quantum Symbolic Execution

• At every conditional statement if (e) S1 else S2, PC is updated
to PC1 = PC ∧ σ(e) (“then” branch) and PC2 = PC ∧ ¬σ(e) (“else”
branch).

For example, the symbolic execution of the code in Fig. 1 starts
with an empty symbolic state σ and a symbolic path constraint true.
After Line 03, σ = {x 7→ x0, y 7→ y0}; after Line 05, a path constraint
(x0 + y0 < 4) ∧ (x0 > y0) is created; and after Line 09, a path constraint
(x0 + y0 ≥ 4) ∧ (y0 > 1) is created. Finally, there are 4 path constrains: PC11,
PC12, PC21, and PC22. Each path constraint is solved with a constraint solver
to obtain test cases. {x = 2, y = 1}, {x = 1, y = 2}, {x = 3, y = 2}, and
{x = 4, y = 1} are the possible outputs of the constraint solver for PC11,
PC12, PC21, and PC22 respectively, i.e., they are suitable test cases.

All the execution paths of a program can be represented using a tree, called
the execution tree. For example, Fig. 2 gives the execution tree of the code in
Fig. 1. The 4 branches correspond to the 4 path constrains.

{ }0= , :x x PC trues }0 ,}0}x PC},,}0

{ }0 0= , , :x x y y PC trues }0 0}x y y PC}0 00 0, , :, ,}0 00 00 0

= , :PC trues Æ

{ }0 0 1 0 0= , , : (4)x x y y PC x ys + <0 0 1 0}}}0 0 1 00 0}, ,, ,}0 0 1 00 00 0}

{ }0 0 11 0 0 0 0= , , : (4) ()x x y y PC x y x ys + < Ù >0 0 11}}}0 0 110 0}, ,, ,}0 0 110 00 0 11}

{ }0 0 12 0 0 0 0= , , : (4) ()x x y y PC x y x ys + < Ù <=0 0 12}}}0 0 120 0}, ,, ,}0 0 120 00 0 12}

{ }0 0 2 0 0= , , : (4)x x y y PC x ys + >=0 0 2 0}}}0 0 2 00 0}, ,, ,}0 0 2 00 00 0}

{ }0 0 21 0 0 0= , , : (4) (1)x x y y PC x y ys + >= Ù >0 0 21}}}0 0 210 0}, ,, ,}0 0 210 00 0}

{ }0 0 22 0 0 0= , , : (4) (1)x x y y PC x y ys + >= Ù <=0 0 22}}}0 0 220 0}, ,, ,}0 0 220 00 0 22}

Fig. 1 An example to illustrate symbolic execution

2.2 related quantum modules

Suppose a and b are two n-qubit binary numbers, quantum adder [28] “A”
implements addition of two qubits:

A(|ab〉|0〉⊗n+1) = |ab〉|a+ b〉.

The quantum module is shown in Fig. 3(a).
Quantum multiplier [29] “M” implements multiplication of two qubits:

M(|ab〉|0〉⊗2n) = |ab〉|a× b〉.

The quantum module is shown in Fig. 3(b).

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 5

x+y<4true false

y>1

x=4,y=1x=3, y=2

true false

x>y

x=1,y=2x=2, y=1

true false

11
PC

12
PC

21
PC

22
PC

Fig. 2 The execution tree for the example in Fig. 1

The quantum comparator [30] “C” is used to compare two binary numbers.
c1 and c2 are two 1-qubit outputs to record the comparison:

C(|ab〉|00〉) = |ab〉|c1c2〉.

When a > b, |c1c2〉 = |10〉; when a < b, |c1c2〉 = |01〉; and when a = b,
|c1c2〉 = |00〉. The module is shown in Fig. 3(c).

(a) quantum adder (b) quantum multiplier

(c) quantum comparator

Fig. 3 Three quantum modules

Springer Nature 2021 LATEX template

6 Quantum Symbolic Execution

3 Quantum symbolic execution

In this section, we first give the workflow of quantum symbolic execution.
Then we explain how to prepare the initial test case space and use relational
operators, logical operators to delineate subspaces. Then we give the overall
framework of QSE. Finally give an example to illustrate.

3.1 main idea

In Section 2.1, we briefly describe the process of symbolic execution in the
classical environment. Generally speaking, it first traverses the program to
collect the path constraints, and then uses the constraint solver to calculate a
set of inputs that meet the path constraints.

Quantum symbolic execution is completely different, which works by two
steps:
(1) generating a test case space that includes all possible test cases, and
(2) according to the conditional statements in the code to be tested, parti-

tioning the test case space into subspaces, and each subspace contains all
the test cases that fit into a path constraint.
Fig. 4 contrasts classical symbolic execution and quantum symbolic

execution.

Fig. 4 The contrast between classical symbolic execution and quantum symbolic execution.

QSE uses two quantum registers: |s〉 and |c〉, where

|q〉 =
1
√

2
n

2n−1∑
i=0

|si〉 ⊗ |ci〉 (1)

|s〉 = |sn−1sn−2 · · · s0〉 consists of n qubits and si is a value used to represent
a test case. |c〉 = |cm−1cm−2 · · · c0〉 consists of m qubits and is the flag to
subspace. |s〉 and |c〉 entangle together to realize the partition of |s〉: si with

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 7

Table 1 relational operation

relational operators meaning
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
! = not equal to

Table 2 logical operation

logical operators meaning
&& AND
|| OR
! NOT

the same ci belongs to the same subset, i.e. test cases for the same branch. |s〉
and |c〉 are collectively referred to as |q〉.

The flag |c〉 plays an important role in QSE, and it is gradually modified
as the conditional statements in the code to be tested. Different conditions
correspond to different ways to modify |c〉. Therefore, it is necessary to know
how many types of conditions there are when programming. According to [31–
33], the conditions mainly include relational operation in Table 1 and logical
operation in Table 2.

The effects of relational and logical operations on |c〉 will be described in
detail in Sections 3.3 and 3.4, respectively.

3.2 Preparation of the test case space

Prepare m+ n qubits and set all of them to |0〉. The initial state of |q〉 is

|q〉0 = |0〉⊗n ⊗ |0〉⊗m (2)

i.e., |s〉0 = |0〉⊗n and |c〉0 = |0〉⊗m.
n H quantum gates and m I quantum gates are used to transform the

initial state |q〉0 to state |q〉1, where

H =
1√
2

[
1 1
1 −1

]
, I =

[
1 0
0 1

]
The quantum preparation of the test case space can be expressed as U1:

U1 = H⊗n ⊗ I⊗m (3)

Springer Nature 2021 LATEX template

8 Quantum Symbolic Execution

U1 changes the initial state |q〉0 to the test case space:

|q〉1 =U1(|q〉0)

=H⊗n(|s〉0)⊗ I⊗m(|c〉0)

=(H|0〉)⊗n ⊗ (I|0〉)⊗m

=
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)⊗ · · · ⊗ 1√
2

(|0〉+ |1〉)⊗ |0〉m

=
1
√

2
n (|0 · · · 00〉+ |0 · · · 01〉+ · · ·+ |1 · · · 11〉)⊗ |0〉m

=
1
√

2
n (|0〉+ |1〉+ · · ·+ |2n − 1〉)⊗ |0〉m

=
1
√

2
n

2n−1∑
i=0

|i〉 ⊗ |0〉m

=|s〉 ⊗ |0〉m

(4)

where |s〉 = 1√
2
n

∑2n−1
i=0 |i〉. The quantum circuit is shown in Fig. 5.

Fig. 5 The preparation of the test case space

Eq. (4) shows that the test case space |s〉 stores all integers from 0 to 2n−1,
which are all the possible test cases. If the code to be tested contains l (l > 1)
variables x1, x2, · · · , xl, |s〉 is still able to store all possible test cases. Divide
the n qubits of |s〉 into l parts and each part stores all the possible value of
a variable. The ith part contains ni qubits |sxi〉 = |sni−1

xi
sni−2
xi

· · · s0xi
〉, where

n =
∑l

i=1 ni. For example, the code in Fig. 1 has two variables: x and y. They
contain 3 and 2 qubits respectively. Hence,

|s〉 = |sxsy〉 =
1
√

2
3

7∑
i=0

|i〉 ⊗ 1
√

2
2

3∑
i=0

|i〉 =
1
√

2
5

31∑
i=0

|i〉

3.3 Relational operator

Relational operators compare two numbers. Therefore, QSE uses the quantum
comparator to divide the test case space. Section 2.2 shows that the quantum
comparator has two output qubits: |c1c2〉. Suppose they correspond to some

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 9

Table 3 The output of rational operation

relational operator |cici−1〉
< |01〉
<= |0∗〉
> |10〉
>= | ∗ 0〉
== |00〉
! = |01〉 or |10〉

two adjacent qubits in |c〉 = |cm−1cm−2 · · · c0〉, and mark them as |cici−1〉.
Combining Table 1, we can get the relationship between the relational opera-
tors and the state of the output qubits as shown in Table 3. In this table, “∗”
indicates that there is no requirement for the state of that qubit.

Sometimes, instead of directly comparing two variables, the code to be
tested compares the values of two expressions. Suppose the two expressions
are e1 and e2, and their outputs are |ϕ1〉 and |ϕ2〉 respectively. A quantum
comparator is used to compare |ϕ1〉 and |ϕ2〉. |ci〉 and |ci−1〉 record the results
of the comparison, i.e., they are the flags to segment the test case space. The
segmentation of the test case space by a relational operator is expressed as Ur:

Ur = C ⊗ e1 ⊗ e2 (5)

Ur can segment the test case space by modifying the state of |cici−1〉.

Ur(|s〉|0〉⊗k|0〉⊗t|00〉)
=C(e1(|s〉|0〉⊗k)e2(|s〉|0〉⊗t)|00〉)
=C(|s〉|ϕ1〉|ϕ2〉|00〉)
=|s〉 ⊗ C(|ϕ1〉|ϕ2〉|00〉)
=|s〉|ϕ1〉|ϕ2〉|cici−1〉

(6)

In |s〉 ⊗ |cici−1〉, due to the entanglement between |s〉 and |cici−1〉, different
states of |cici−1〉 correspond to different subspaces of |s〉. The circuit is shown
in Fig. 6.

In the following, we use |cici−1〉e to indicate that |cici−1〉 is in the output
state of e, and |cici−1〉e to indicate that |cici−1〉 is not in the output state of e,
where e = (e1 ◦ e2) and ◦ ∈ {<,≤, >,≥,=, 6=}. For example, if e = (e1 < e2),
|cici−1〉e = |01〉, and |cici−1〉e = |10〉 or |11〉 or other non-|01〉 states.

3.4 Logical operators

3.4.1 T module

Usually, the inputs to a logical operator are the outputs of rational operator(s).
A rational operator has two outputs |cici−1〉. Hence, Module T is defined firstly
to facilitate later descriptions.

Springer Nature 2021 LATEX template

10 Quantum Symbolic Execution

Fig. 6 The segmentation of the test case space by relational operations.

T is a control module that acts on two qubits |cici−1〉. According to
Table 3, |cici−1〉 have 6 states. Therefore, there are also 6 cases of T =
{T<, T≤, T>, T≥, T=, T6=}. Their circuits are shown in Fig. 7.

(a) T< (b) T≤ (c) T>

(d) T≥ (e) T= (f) T6=

Fig. 7 Six cases of Module T

For example, in Fig. 7(a), because it is T<, the state of |cici−1〉 is |01〉.
Hence, we place a 0-control on qubit |ci〉 and a 1-control on |ci−1〉. Thus, these
two control qubits represent that the result of the previous relational operation
is “less than”.

3.4.2 Logical operators

There are 3 logical operators. We will give their quantum circuits one by one.
(1) AND

Suppose there is an expression e1&&e2, where e1 and e2 are two rational
operations. The logical AND in QSE is shown in Fig. 8(a), where Te1 , Te2 ∈ T ,

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 11

|ci1ci−11 〉 are the flags of e1, and |ci2ci−12 〉 are the flags of e2. The output of
logical AND is |cA〉: if and only if both e1 and e1 are satisfied, |cA〉 becomes
|1〉; otherwise, it remains unchanged in |0〉 state. That is to say, |cA〉 becomes
a flag of logical AND.

(a) The inputs are relational
operations.

(b) The inputs are logical
operations.

Fig. 8 logical AND for QSE

Define
UAr = Te1 -Te2 -NOT (7)

Then,

UAr(|ci1ci−11 〉 ⊗ |ci2ci−12 〉 ⊗ |0〉)
=Te1-Te2-NOT(|ci1ci−11 〉 ⊗ |ci2ci−12 〉 ⊗ |0〉)
=|ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |1〉+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |0〉

+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |0〉+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |0〉

(8)

If e1 and e2 are two logical operations, it is only necessary to replace |ci1ci−11 〉
with |c1〉, |ci2ci−12 〉 with |c2〉, and Te1 and Te2 with 1-control, as shown in Fig.
8(b), where |c1〉 and |c2〉 are the outputs of e1 and e2 respectively. Now

UAl = CC-NOT (9)

and

UAl(|c1〉 ⊗ |c2〉 ⊗ |0〉)
=CC-NOT(|c1〉 ⊗ |c2〉 ⊗ |0〉)
=|1〉 ⊗ |1〉 ⊗ |1〉+ |0〉 ⊗ |1〉 ⊗ |0〉+ |1〉 ⊗ |0〉 ⊗ |0〉+ |0〉 ⊗ |0〉 ⊗ |0〉

(10)

(2) OR
For logical OR, there is an expression e1||e2. Fig. 9(a) shows the logical

OR in QSE if e1 and e2 are two rational operations. The output of logical OR
is |cO〉: as long as one of e1 and e1 is satisfied, |cO〉 becomes |1〉; otherwise, it

Springer Nature 2021 LATEX template

12 Quantum Symbolic Execution

remains unchanged in |0〉 state. That is to say, |cO〉 becomes a flag of logical
OR.

(a) The inputs are relational operations. (b) The inputs are logical opera-
tions.

Fig. 9 logical OR for QSE

Define
UOr = Te1-Te2-NOT⊗ Te2-NOT⊗ Te1 -NOT (11)

Then,

UOr(|ci1ci−11 〉 ⊗ |ci2ci−12 〉 ⊗ |0〉)
=Te1 -Te2 -NOT⊗ Te2-NOT(Te1 -NOT(|ci1ci−11 〉 ⊗ |ci2ci−12 〉 ⊗ |0〉))
=Te1 -Te2 -NOT⊗ Te2-NOT(|ci1ci−11 〉e1 ⊗ |ci2ci−12 〉 ⊗ |1〉+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉 ⊗ |0〉)
=Te1 -Te2 -NOT(|ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |0〉+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e1 ⊗ |1〉

+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |1〉+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e1 ⊗ |0〉)
=|ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |1〉+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e1 ⊗ |1〉

+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e2 ⊗ |1〉+ |ci1ci−11 〉e1 ⊗ |ci2ci−12 〉e1 ⊗ |0〉
(12)

If e1 and e2 are two logical operations, the quantum circuit is shown in Fig.
9(b) and represented as UOl. The migration principle is the same as in Fig. 8
and will not be repeated.
(3) NOT

NOT does not need to be implemented with any quantum circuits. For !e,
not matter e is a rational operation or a logical operation, e divides |s〉 into two
subsets: one satisfies e and the other does not. !e just reverses the satisfiability
and does not affect the division of the two subsets. Therefore, there is no need
for quantum circuits to change the division of the subsets or to divide the
subsets further.

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 13

3.5 Divide the test case space

Programs often have complex e or the branch statements are nested. Therefore,
multiple quantum operations are needed to be connected to continuously divide
the test case space.

Define
U2 = U⊗k (13)

where U ∈ {Ur, UAr, UAl, UOr, UOl} and k is a positive integer. Act U2 on |q〉1:

|q〉2 =U2(|q〉1)

=U⊗k(|s〉 ⊗ |0〉m)

=
1
√

2
n

2n−1∑
i=0

|si〉 ⊗ |ci〉
(14)

According to the definitions of Ur, UAr, UAl, UOr, UOl in Section 3.3 and
Section 3.4, the qubits |0〉m in |q〉1 is gradually modified based on the relational
and the logical operators in the program to be tested. Eventually, through the
entanglement of |s〉 and |c〉, the test case space is divided into multiple subsets.
The values belonging to the same subset are test cases that can cover the same
branch.

4 Experiments

4.1 An example

4.1.1 The division of the test space

The program shown in Fig. 1 is used as an example to further illustrate how
QSE works. There are 3 branch statements in the program. Coupled with the
process of preparing the test case space, the quantum circuit consists of 4 parts
as shown in Fig. 10.
(1) Prepare the test case space

3 and 2 qubits are used to represent variables x and y respectively. Hence,
5 H quantum gates transform the initial state |0〉⊗5 to state |sx〉 ⊗ |sy〉, i.e.,

H⊗5(|0〉⊗5) = (H|0〉)⊗3 ⊗ (H|0〉)⊗2

=
1
√

2
3

7∑
i=0

|i〉 ⊗ 1
√

2
2

3∑
i=0

|i〉 = |sx〉 ⊗ |sy〉

That is to say, |sx〉 stores 0 ∼ 7 and |sy〉 stores 0 ∼ 3. This is the test case
space.
(2) x+ y < 4?

The outermost branch statement is to determine whether x+y is less than
4. The quantum adder “A” is used to get the sum of x and y. We add a |0〉

Springer Nature 2021 LATEX template

14 Quantum Symbolic Execution

Fig. 10 QSE circuit for example in Fig. 1

qubit as the highest bit of |sy〉 to make |sy〉 and |sx〉 both have 3 qubits. The
quantum comparator “C” is used to compare |sx +sy〉 and |4〉, and the output
is |c1c0〉. If x + y < 4, |c1c0〉 = |01〉; otherwise, |c1c0〉 = | ∗ 0〉. The whole

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 15

process can be described with the following equation.

(C ⊗A)(|sx〉|sy〉 ⊗ |0〉|4〉|0〉|0〉) = C(A(|sx〉|sy〉|0〉)⊗ |4〉|0〉|0〉)
=C((|0〉|0〉|0〉+ |0〉|1〉|1〉+ |0〉|2〉|2〉+ |0〉|3〉|3〉

+ |1〉|0〉|1〉+ |1〉|1〉|2〉+ |1〉|2〉|3〉+ |1〉|3〉|4〉
+ |2〉|0〉|2〉+ |2〉|1〉|3〉+ |2〉|2〉|4〉+ |2〉|3〉|5〉
+ |3〉|0〉|3〉+ |3〉|1〉|4〉+ |3〉|2〉|5〉+ |3〉|3〉|6〉
+ |4〉|0〉|4〉+ |4〉|1〉|5〉+ |4〉|2〉|6〉+ |4〉|3〉|7〉
+ |5〉|0〉|5〉+ |5〉|1〉|6〉+ |5〉|2〉|7〉+ |5〉|3〉|8〉
+ |6〉|0〉|6〉+ |6〉|1〉|7〉+ |6〉|2〉|8〉+ |6〉|3〉|9〉
+ |7〉|0〉|7〉+ |7〉|1〉|8〉+ |7〉|2〉|9〉+ |7〉|3〉|10〉)⊗ |4〉|0〉|0〉)

=|0〉|0〉C(|0〉|4〉|0〉|0〉) + |0〉|1〉C(|1〉|4〉|0〉|0〉) + |0〉|2〉C(|2〉|4〉|0〉|0〉)
+ |0〉|3〉C(|3〉|4〉|0〉|0〉) + |1〉|0〉C(|1〉|4〉|0〉|0〉) + |1〉|1〉C(|2〉|4〉|0〉|0〉)
+ |1〉|2〉C(|3〉|4〉|0〉|0〉) + |1〉|3〉C(|4〉|4〉|0〉|0〉) + |2〉|0〉C(|2〉|4〉|0〉|0〉)
+ |2〉|1〉C(|3〉|4〉|0〉|0〉) + |2〉|2〉C(|4〉|4〉|0〉|0〉) + |2〉|3〉C(|5〉|4〉|0〉|0〉)
+ |3〉|0〉C(|3〉|4〉|0〉|0〉) + |3〉|1〉C(|4〉|4〉|0〉|0〉) + |3〉|2〉C(|5〉|4〉|0〉|0〉)
+ |3〉|3〉C(|6〉|4〉|0〉|0〉) + |4〉|0〉C(|4〉|4〉|0〉|0〉) + |4〉|1〉C(|5〉|4〉|0〉|0〉)
+ |4〉|2〉C(|6〉|4〉|0〉|0〉) + |4〉|3〉C(|7〉|4〉|0〉|0〉) + |5〉|0〉C(|5〉|4〉|0〉|0〉)
+ |5〉|1〉C(|6〉|4〉|0〉|0〉) + |5〉|2〉C(|7〉|4〉|0〉|0〉) + |5〉|3〉C(|8〉|4〉|0〉|0〉)
+ |6〉|0〉C(|6〉|4〉|0〉|0〉) + |6〉|1〉C(|7〉|4〉|0〉|0〉) + |6〉|2〉C(|8〉|4〉|0〉|0〉)
+ |6〉|3〉C(|9〉|4〉|0〉|0〉) + |7〉|0〉C(|7〉|4〉|0〉|0〉) + |7〉|1〉C(|8〉|4〉|0〉|0〉)
+ |7〉|2〉C(|9〉|4〉|0〉|0〉) + |7〉|3〉C(|10〉|4〉|0〉|0〉)

=|0〉|0〉|0〉|4〉|0〉|1〉+ |0〉|1〉|1〉|4〉|0〉|1〉+ |0〉|2〉|2〉|4〉|0〉|1〉+ |0〉|3〉|3〉|4〉|0〉|1〉
+ |1〉|0〉|1〉|4〉|0〉|1〉+ |1〉|1〉|2〉|4〉|0〉|1〉+ |1〉|2〉|3〉|4〉|0〉|1〉+ |1〉|3〉|4〉|4〉|0〉|0〉
+ |2〉|0〉|2〉|4〉|0〉|1〉+ |2〉|1〉|3〉|4〉|0〉|1〉+ |2〉|2〉|4〉|4〉|0〉|0〉+ |2〉|3〉|5〉|4〉|1〉|0〉
+ |3〉|0〉|3〉|4〉|0〉|1〉+ |3〉|1〉|4〉|4〉|0〉|0〉+ |3〉|2〉|5〉|4〉|1〉|0〉+ |3〉|3〉|6〉|4〉|1〉|0〉
+ |4〉|0〉|4〉|4〉|0〉|0〉+ |4〉|1〉|5〉|4〉|1〉|0〉+ |4〉|2〉|6〉|4〉|1〉|0〉+ |4〉|3〉|7〉|4〉|1〉|0〉
+ |5〉|0〉|5〉|4〉|1〉|0〉+ |5〉|1〉|6〉|4〉|1〉|0〉+ |5〉|2〉|7〉|4〉|1〉|0〉+ |5〉|3〉|8〉|4〉|1〉|0〉
+ |6〉|0〉|6〉|4〉|1〉|0〉+ |6〉|1〉|7〉|4〉|1〉|0〉+ |6〉|2〉|8〉|4〉|1〉|0〉+ |6〉|3〉|9〉|4〉|1〉|0〉
+ |7〉|0〉|7〉|4〉|1〉|0〉+ |7〉|1〉|8〉|4〉|1〉|0〉+ |7〉|2〉|9〉|4〉|1〉|0〉+ |7〉|3〉|10〉|4〉|1〉|0〉

(3) x > y?

Springer Nature 2021 LATEX template

16 Quantum Symbolic Execution

If x + y < 4, it needs to be further judged whether x is greater than y.
Hence, a T<-C module acts on the subspace |sx〉|sy〉 ⊗ |c3c2c1c0〉.

T<-C(|0〉|0〉|0001〉+ |0〉|1〉|0001〉+ |0〉|2〉|0001〉+ |0〉|3〉|0001〉
+ |1〉|0〉|0001〉+ |1〉|1〉|0001〉+ |1〉|2〉|0001〉+ |1〉|3〉|0000〉
+ |2〉|0〉|0001〉+ |2〉|1〉|0001〉+ |2〉|2〉|0000〉+ |2〉|3〉|0010〉
+ |3〉|0〉|0001〉+ |3〉|1〉|0000〉+ |3〉|2〉|0010〉+ |3〉|3〉|0010〉
+ |4〉|0〉|0000〉+ |4〉|1〉|0010〉+ |4〉|2〉|0010〉+ |4〉|3〉|0010〉
+ |5〉|0〉|0010〉+ |5〉|1〉|0010〉+ |5〉|2〉|0010〉+ |5〉|3〉|0010〉
+ |6〉|0〉|0010〉+ |6〉|1〉|0010〉+ |6〉|2〉|0010〉+ |6〉|3〉|0010〉
+ |7〉|0〉|0010〉+ |7〉|1〉|0010〉+ |7〉|2〉|0010〉+ |7〉|3〉|0010〉)

=|0〉|0〉|0001〉+ |0〉|1〉|0101〉+ |0〉|2〉|0101〉+ |0〉|3〉|0101〉
+ |1〉|0〉|1001〉+ |1〉|1〉|0001〉+ |1〉|2〉|0101〉+ |1〉|3〉|0000〉
+ |2〉|0〉|1001〉+ |2〉|1〉|1001〉+ |2〉|2〉|0000〉+ |2〉|3〉|0010〉
+ |3〉|0〉|1001〉+ |3〉|1〉|0000〉+ |3〉|2〉|0010〉+ |3〉|3〉|0010〉
+ |4〉|0〉|0000〉+ |4〉|1〉|0010〉+ |4〉|2〉|0010〉+ |4〉|3〉|0010〉
+ |5〉|0〉|0010〉+ |5〉|1〉|0010〉+ |5〉|2〉|0010〉+ |5〉|3〉|0010〉
+ |6〉|0〉|0010〉+ |6〉|1〉|0010〉+ |6〉|2〉|0010〉+ |6〉|3〉|0010〉
+ |7〉|0〉|0010〉+ |7〉|1〉|0010〉+ |7〉|2〉|0010〉+ |7〉|3〉|0010〉

If and only if |c1c0〉 = |01〉, |sx〉 and |sy〉 need to be compared, i.e., |c3c2〉
is changed according to |sx〉 and |sy〉: if |sx〉 > |sy〉, |c3c2〉 = |10〉; otherwise,
|c3c2〉 = |0∗〉. As long as |c1c0〉 6= |01〉, |c3c2〉 remains unchanged at state |00〉.
(4) y > 1?

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 17

If x + y ≥ 4, it needs to be further judged whether y is greater than 1.
Hence, a T≥-C module acts on the subspace |sy〉|1〉 ⊗ |c3c2c1c0〉.

T≥-C(|0〉|1〉|0001〉+ |1〉|1〉|0101〉+ |2〉|1〉|0101〉+ |3〉|1〉|0101〉
+ |0〉|1〉|1001〉+ |1〉|1〉|0001〉+ |2〉|1〉|0101〉+ |3〉|1〉|0000〉
+ |0〉|1〉|1001〉+ |1〉|1〉|1001〉+ |2〉|1〉|0000〉+ |3〉|1〉|0010〉
+ |0〉|1〉|1001〉+ |1〉|1〉|0000〉+ |2〉|1〉|0010〉+ |3〉|1〉|0010〉
+ |0〉|1〉|0000〉+ |1〉|1〉|0010〉+ |2〉|1〉|0010〉+ |3〉|1〉|0010〉
+ |0〉|1〉|0010〉+ |1〉|1〉|0010〉+ |2〉|1〉|0010〉+ |3〉|1〉|0010〉
+ |0〉|1〉|0010〉+ |1〉|1〉|0010〉+ |2〉|1〉|0010〉+ |3〉|1〉|0010〉
+ |0〉|1〉|0010〉+ |1〉|1〉|0010〉+ |2〉|1〉|0010〉+ |3〉|1〉|0010〉)

=|0〉|1〉|0001〉+ |1〉|1〉|0101〉+ |2〉|1〉|0101〉+ |3〉|1〉|0101〉
+ |0〉|1〉|1001〉+ |1〉|1〉|0001〉+ |2〉|1〉|0101〉+ |3〉|1〉|1000〉
+ |0〉|1〉|1001〉+ |1〉|1〉|1001〉+ |2〉|1〉|1000〉+ |3〉|1〉|1010〉
+ |0〉|1〉|1001〉+ |1〉|1〉|0000〉+ |2〉|1〉|1010〉+ |3〉|1〉|1010〉
+ |0〉|1〉|0100〉+ |1〉|1〉|0010〉+ |2〉|1〉|1010〉+ |3〉|1〉|1010〉
+ |0〉|1〉|0110〉+ |1〉|1〉|0010〉+ |2〉|1〉|1010〉+ |3〉|1〉|1010〉
+ |0〉|1〉|0110〉+ |1〉|1〉|0010〉+ |2〉|1〉|1010〉+ |3〉|1〉|1010〉
+ |0〉|1〉|0110〉+ |1〉|1〉|0010〉+ |2〉|1〉|1010〉+ |3〉|1〉|1010〉

If and only if |c0〉 = |0〉, |sy〉 and |1〉 need to be compared, i.e., |c3c2〉
is changed according to |sy〉 and |1〉: if |sy〉 > |1〉, |c3c2〉 = |10〉; otherwise,
|c3c2〉 = |0∗〉. As long as |c0〉 6= |0〉, |c3c2〉 remains unchanged.

Finally, the state of the subspace |sx〉|sy〉 ⊗ |c3c2c1c0〉 is

|0〉|0〉|0001〉+ |0〉|1〉|0101〉+ |0〉|2〉|0101〉+ |0〉|3〉|0101〉
+|1〉|0〉|1001〉+ |1〉|1〉|0001〉+ |1〉|2〉|0101〉+ |1〉|3〉|1000〉
+|2〉|0〉|1001〉+ |2〉|1〉|1001〉+ |2〉|2〉|1000〉+ |2〉|3〉|1010〉
+|3〉|0〉|1001〉+ |3〉|1〉|0000〉+ |3〉|2〉|1010〉+ |3〉|3〉|1010〉
+|4〉|0〉|0100〉+ |4〉|1〉|0010〉+ |4〉|2〉|1010〉+ |4〉|3〉|1010〉
+|5〉|0〉|0110〉+ |5〉|1〉|0010〉+ |5〉|2〉|1010〉+ |5〉|3〉|1010〉
+|6〉|0〉|0110〉+ |6〉|1〉|0010〉+ |6〉|2〉|1010〉+ |6〉|3〉|1010〉
+|7〉|0〉|0110〉+ |7〉|1〉|0010〉+ |7〉|2〉|1010〉+ |7〉|3〉|1010〉

(15)

There are 4 cases of the state |c3c2c1c0〉:
• |1001〉: |c1c0〉 = |01〉 indicates x + y < 4 and |c3c2〉 = |10〉 indicates x > y.

Hence, |1001〉 indicates x+ y < 4 && x > y, which corresponds to PC11 in
classical symbolic execution.

Springer Nature 2021 LATEX template

18 Quantum Symbolic Execution

• |0 ∗ 01〉: |c1c0〉 = |01〉 indicates x+ y < 4 and |c3c2〉 = |0∗〉 indicates x ≤ y.
Hence, |0 ∗ 01〉 indicates x + y < 4 && x ≤ y, which corresponds to PC12

in classical symbolic execution.
• |10 ∗ 0〉: |c1c0〉 = | ∗ 0〉 indicates x+ y ≥ 4 and |c3c2〉 = |10〉 indicates y > 1.

Hence, |10 ∗ 0〉 indicates x+ y ≥ 4 && y > 1, which corresponds to PC21 in
classical symbolic execution.

• |0 ∗ ∗0〉: |c1c0〉 = | ∗ 0〉 indicates x+ y ≥ 4 and |c3c2〉 = |0∗〉 indicates y ≤ 1.
Hence, |0 ∗ ∗0〉 indicates x+ y ≥ 4 && y ≤ 1, which corresponds to PC22 in
classical symbolic execution.

These 4 states of |c3c2c1c0〉 divide |sx〉|sy〉 into 4 subsets. As shown in Eq.
15,

• Subset {|1〉|0〉, |2〉|0〉, |3〉|0〉, |2〉|1〉} contains all the test cases that can test
the branch x+ y < 4 && x > y.

• Subset {|0〉|0〉, |0〉|1〉, |0〉|2〉, |0〉|3〉, |1〉|1〉, |1〉|2〉} contains all the test cases
that can test the branch x+ y < 4 && x ≤ y.

• Subset {|2〉|2〉, |3〉|2〉, |4〉|2〉, |5〉|2〉, |6〉|2〉, |7〉|2〉, |1〉|3〉, |2〉|3〉, |3〉|3〉, |4〉|3〉,
|5〉|3〉, |6〉|3〉, |7〉|3〉} contains all the test cases that can test the branch x+
y ≥ 4 && y > 1.

• Subset {|4〉|0〉, |5〉|0〉, |6〉|0〉, |7〉|0〉, |3〉|1〉, |4〉|1〉, |5〉|1〉, |6〉|1〉, |7〉|1〉} contains
all the test cases that can test the branch x+ y ≥ 4 && y ≤ 1.

4.1.2 Running on a quantum computer

We use the ibmq qasm simulator quantum computer on the IBM Quantum
platform to perform the example. The circuit is shown in Fig. 11. This
experiment uses 28 qubits, with q0 as the lowest bit and q25 as the highest bit:

• q2q1q0 represent |sx〉;
• q5q4q3 represent |sy〉;
• q9q8q7q6 represent |sx + sy〉;
• q12q11q10 are the auxiliary qubits of the quantum adder “A”;
• q16q15q14q13 are used to represent constant |4〉 and q17 is used to represent

constant |1〉;
• q23q22q21q20q19q18 are the auxiliary qubits of the quantum comparator “C”;
• q24q25 are the flags |c3c2〉 and q26q27 are the flags |c1c0〉.

The three purple bars in the figure are three quantum comparators. At the
end of the circuit, q0q1q2q3q4q5 and q24q25q26q27 are measured and they have
32 results as shown in Fig. 12. The abscissa displays all the results and the
default state of qubits that are not measured is 0. The ordinate represents the
probability of each state in a total of 8192 measurements.

The 32 results can be divided into four test case spaces. Fig. 13(a) gives the
measurement results whose |c3c2c1c0〉 = |1001〉, i.e., x+ y < 4 && x > y. Fig.
13(b) gives the measurement results whose |c3c2c1c0〉 = |0 ∗ 01〉, i.e., x + y <
4 && x ≤ y. Fig. 13(c) gives the measurement results whose |c3c2c1c0〉 =

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 19

Fig. 11 circuit implementation of QSE

Fig. 12 measurement results for the circuit in Fig. 11

|10 ∗ 0〉, i.e., x + y ≥ 4 && y > 1. Fig. 13(d) gives the measurement results
whose |c3c2c1c0〉 = |0 ∗ ∗0〉, i.e., x+ y ≥ 4 && y ≤ 1.

4.2 Experiment data

8 real programs are used to evaluate the performance of QSE. They come
from 2 references: [34] and [35] as shown in Table 4. The “Operations” column
describes the type of operations appearing in the path conditions. The “Line of
code” column lists the number of source code lines in the program, excluding
comments and empty lines.

Springer Nature 2021 LATEX template

20 Quantum Symbolic Execution

(a) x + y < 4 && x > y (b) x + y < 4 && x ≤ y

(c) x + y ≥ 4 && y > 1 (d) x + y ≥ 4 && y ≤ 1

Fig. 13 Four test case spaces

Firstly we compare the complexity and the time consumption of CSE and
QSE. The comparison results are shown in Table 5. The main factor that
affects the complexity of CSE are the number of path constraints. The main
factor that affects the complexity of QSE is the number of subspace divisions.
Table 5 shows that the complexity of QSE is less than that of CSE. We also
compare the actual time consumption of CSE and QSE. The tool to realize
CSE is JDart [36], which supports the z3 constraint solver [37]. In most cases,
the time consumption of QSE is also smaller than that of CSE.

We also show the impact of test case space on program branch coverage.
In the example given in Section 4.1.2, three qubits are used for each variable.
In fact, more or fewer qubits can affect the performance of QSE. Too few
qubits make it impossible for QSE to cover all branches. Consider the more

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 21

Table 4 Programs for the experiments

Program Operations Line of code From
dart Polynomials 11 [34]
power Exponential function 20 [34]
stat Mean and std. dev. computation 62 [34]
tcas Constant equality checks 82 [34]
early Polynomials 14 [34]

basic00181 Constant equality checks 30 [35]
snp3-ok Constant equality checks 24 [35]
CWE789 Integer computation 141 [35]

Table 5 The comparison of complexity and time consumption of CSE and QSE.

Program
CSE QSE

number of
time/s

number of
time/s

path constraints subspace divisions
dart 4 0.48 3 0.45
power 11 1.32 7 1.05
stat 3 0.36 2 0.3
tcas 5 0.6 4 0.6
early 2 0.24 1 0.15

basic00181 3 0.36 2 0.3
snp3-ok 1 0.12 1 0.15
CWE789 6 0.72 3 0.45

extreme case: there are 4 branches in the program, but only 1 qubit is used
to store variables, i.e., there are only 2 test cases in the test case space. Such
a test case space is unlikely to cover all branches. Isn’t the more qubits used,
the better? No. Too many qubits will increase the difficulty of QSE, and lead
to the waste of quantum resources. Therefore, the smallest number of qubits
that can cover all branches is the best choice. Fig 14 shows the relationship
between the number of qubits used by variables in the three programs in Table
5 and the program branch coverage. The best numbers of qubits for the three
programs are 2, 4 and 5 respectively.

5 Conclusion

This paper proposes a quantum symbolic execution for the first time to gener-
ate high-coverage test cases. It is completely different from not only classical
symbolic executions, but also quantum debugging schemes. QSE divides the
test case space into subsets according to the conditional statements in the
debugged program, and a subset contains all test cases that can test the same
program branch. QSE not only provides a possible way to debug quantum
programs, but also avoids the difficult problem of solving constraints in clas-
sical symbolic execution, which obviously reduces the difficulty and improves
the efficiency of the work.

Funding This work is supported by the National Natural Science Foundation
of China under Grants No.61502016.

Springer Nature 2021 LATEX template

22 Quantum Symbolic Execution

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

P
R

O
G

R
A

M
 B

R
A

N
C

H
 C

O
V

E
R

A
G

E

NUMBER OF QUBITS

dart power early

Fig. 14 The relationship between the number of qubits and branch coverage

Data availability All data generated or analysed during this study are
included in this article.

References

[1] Nielsen, M.A., Chuang, I.: Quantum computation and quantum informa-
tion. American Association of Physics Teachers (2002)

[2] Jiang, N., Liang, X., Wang, M.: Programmable quantum processor imple-
mented with superconducting circuit. Communications in Theoretical
Physics 73(5), 055102 (2021)

[3] Zhong, H., Wang, H., Deng, Y., Chen, M., Peng, L., Luo, Y., Qin, J.,
Wu, D., Ding, X., Hu, Y., et al.: Quantum computational advantage using
photons. Science 370(6523), 1460–1463 (2020)

[4] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends,
R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quan-
tum supremacy using a programmable superconducting processor. Nature
574(7779), 505–510 (2019)

[5] Broughton, M., Verdon, G., McCourt, T., Martinez, A.J., Yoo, J.H.,
Isakov, S.V., Massey, P., Halavati, R., Niu, M.Y., Zlokapa, A., et al.: Ten-
sorflow quantum: A software framework for quantum machine learning.
arXiv preprint arXiv:2003.02989 (2020)

[6] Cross, A.: The ibm q experience and qiskit open-source quantum com-
puting software. In: APS March Meeting Abstracts, vol. 2018, pp. 58–003
(2018)

[7] Paolini, L., Piccolo, M., Zorzi, M.: Qpcf: higher-order languages and quan-
tum circuits. Journal of Automated Reasoning 63(4), 941–966 (2019)

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 23

[8] Selinger, P.: Towards a quantum programming language. Mathematical
Structures in Computer Science 14(4), 527–586 (2004)

[9] Adedoyin, A., Ambrosiano, J., Anisimov, P., Bärtschi, A., Casper, W.,
Chennupati, G., Coffrin, C., Djidjev, H., Gunter, D., Karra, S., et
al.: Quantum algorithm implementations for beginners. arXiv preprint
arXiv:1804.03719 (2018)

[10] He, C., Li, J., Liu, W.: An exact quantum principal component analy-
sis algorithm based on quantum singular value threshold. arXiv preprint
arXiv:2010.00831 (2020)

[11] O’Brien, T.E., Tarasinski, B., Terhal, B.M.: Quantum phase estimation
of multiple eigenvalues for small-scale (noisy) experiments. New Journal
of Physics 21(2), 023022 (2019)

[12] Paltenghi, M., Pradel, M.: Bugs in quantum computing platforms: An
empirical study. arXiv preprint arXiv:2110.14560 (2021)

[13] Wang, J., Gao, M., Jiang, Y., Lou, J., Gao, Y., Zhang, D., Sun, J.: Quan-
fuzz: Fuzz testing of quantum program. arXiv preprint arXiv:1810.10310
(2018)

[14] Miranskyy, A., Zhang, L., Doliskani, J.: Is your quantum program bug-
free? arXiv preprint arXiv:2001.10870 (2020)

[15] Zhao, P., Zhao, J., Ma, L.: Identifying bug patterns in quantum programs.
arXiv preprint arXiv:2103.09069 (2021)

[16] Huang, Y., Martonosi, M.: Statistical assertions for validating patterns
and finding bugs in quantum programs. In: Proceedings of the 46th
International Symposium on Computer Architecture, pp. 541–553 (2019)

[17] JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T.,
Martonosi, M.: Scaffcc: Scalable compilation and analysis of quantum
programs. Parallel Computing 45, 2–17 (2015)

[18] Bright, P.: Microsoft’s q# quantum programming language out now in
preview. Ars Technica, December 11 (2017)

[19] Liu, J., Byrd, G.T., Zhou, H.: Quantum circuits for dynamic runtime
assertions in quantum computation. In: Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1017–1030 (2020)

[20] Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Proq: Projection-
based runtime assertions for debugging on a quantum computer. arXiv

Springer Nature 2021 LATEX template

24 Quantum Symbolic Execution

preprint arXiv:1911.12855 (2019)

[21] Liu, J., Zhou, H.: Systematic approaches for precise and approximate
quantum state runtime assertion. In: 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), pp. 179–193
(2021). IEEE

[22] Ali, S., Arcaini, P., Wang, X., Yue, T.: Assessing the effectiveness of
input and output coverage criteria for testing quantum programs. In: 2021
14th IEEE Conference on Software Testing, Verification and Validation
(ICST), pp. 13–23 (2021). IEEE

[23] King, J.C.: Symbolic execution and program testing. Communications of
the ACM 19(7), 385–394 (1976)

[24] Cadar, C., Sen, K.: Symbolic execution for software testing: three decades
later. Communications of the ACM 56(2), 82–90 (2013)

[25] ZHAO, W., ZHANG, W., WANG, J., WANG, H., WU, C.: Smart con-
tract vulnerability detection scheme based on symbol execution. Journal
of Computer Applications 40(4), 947–953

[26] YANG, C., GUO, Y., HU, H., LIU, W., HUO, S., WANG, Y.: Cache-
based side-channel vulnerability detection based on symbolic execution.
ACTA ELECTONICA SINICA 47(6), 1194 (2019)

[27] Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: Cached: Identifying
cache-based timing channels in production software. In: 26th {USENIX}
Security Symposium ({USENIX} Security 17), pp. 235–252 (2017)

[28] CHANG, L., ZHU, Y., JIANG, H.: Design of quantum full adder. ACTA
ELECTONICA SINICA 47(9), 1863 (2019)

[29] Yuan, S., Wang, Y., Wang, Y., Huang, F.: Quantum multiplier and its
implementation method. Journal of Chongqing University of Posts and
Telecommunications (Natural Science Edition) (2019)

[30] Wang, D., Liu, Z., Zhu, W., Li, S.: Design of quantum comparator based
on extended general toffoli gates with multiple targets. Computer Science
39(9), 302–306 (2012)

[31] Prata, S.: C Primer Plus, (2014)

[32] Bruce, E.: Thinking in Java (Fourth Edition), (2006)

[33] Eric, M.: Python Crash Course: A Hands-On, Project-Based Introduction
to Programming (First Edition), (2015)

Springer Nature 2021 LATEX template

Quantum Symbolic Execution 25

[34] Dinges, P., Agha, G.: Solving complex path conditions through heuristic
search on induced polytopes (2014)

[35] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y.:
Vuldeepecker: A deep learning-based system for vulnerability detection
(2018)

[36] Luckow, K.S., Dimjaevi, M., Giannakopoulou, D., Howar, F., Isberner,
M., Kahsai, T., Rakamaric, Z., Raman, V.: Jdart: A dynamic symbolic
analysis framework (2016)

[37] Jovanovi, D., Moura, L.D.: Solving non-linear arithmetic (2012)

	Introduction
	Related Works
	classical symbolic execution (CSE)
	related quantum modules

	Quantum symbolic execution
	main idea
	Preparation of the test case space
	Relational operator
	Logical operators
	T module
	Logical operators

	Divide the test case space

	Experiments
	An example
	The division of the test space
	Running on a quantum computer

	Experiment data

	Conclusion

