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Abstract. Recently, bootstrap methods from conformal field theory have been

adapted for studying the energy spectrum of various quantum mechanical systems.

In this paper, we consider the application of these methods in obtaining the spectrum

from the Schrödinger equation with periodic potentials, paying particular attention

to the Kronig-Penney model of a particle in a one-dimensional lattice. With an

appropriate choice of operator basis involving position and momenta, we find that

the bootstrap approach efficiently computes the band gaps of the energy spectrum

but has trouble effectively constraining the minimum energy. We show how applying

more complex constraints involving higher powers of momenta can potentially remedy

such a problem. We also propose an approach for analytically constructing the

dispersion relation associated with the Bloch momentum of the system.

1. Introduction

Most quantum mechanical systems do not possess an analytic solution, even in

one dimension. Merely brute force numerical methods for such problems can be

costly; hence, symmetry principles that enhance the efficiency of such a process

have historically proved useful. In this regard, inspired by [1], the bootstrapping

methodology of conformal field theory‡ was recently adapted in [4] in a bid to

numerically solve such classes of systems that are not analytically soluble or are hard

to do so even numerically.

The central philosophy of their bootstrapping approach is as follows: given a

set of initial data for a Hamiltonian quantum system (such as energy eigenvalues),

other statistical moments of quantum operators can be computed using symmetries

‡ To be familiarised with state of the art for CFT bootstrap techniques, the reader is directed for

example to [2, 3] and the references within. This list is in no way exhaustive.
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of the system. These moments of different order are, in turn, related to each other

via recursion relations, effectively reducing the search space for independent data. To

determine whether the initial data is physically viable (i.e. whether it is consistent

with a square-integrable eigenstate of the whole Schrödinger equation), one then

enforces an adequate set of constraints upon the computed statistical moments, such

as requiring the positivity of quadratic operators. By computing more and more

statistical moments and testing them against the given constraints, the goal is that

the set of allowed initial data points will converge to the system’s actual solution.

The bootstrapping methodology of [4], implemented in that work as a tool to

solve matrix models and matrix quantum mechanics, has recently been applied to

numerically solve various quantum mechanical problems [5–18]. In particular, the

procedure has been used to find the energy spectrum of physical systems, and has

proved most effective at finding lower energy modes. Furthermore, it has been

observed that the convergence speed of the bootstrap is improved by computing

statistical moments that have the same symmetries as the total system. That is,

the efficiency of the bootstrap increases by, for example, considering creation and

annihilation operators for a diagonalisable system [5], or periodic moments for a

periodic potential [6, 8, 14].

With such a potentially powerful algorithm by our side, we must test out the

effectiveness of the system by employing it to solve already tractable sectors. Ideally,

one hopes to use the bootstrap as a trained black-box to readily spew out the spectrum

of a quantum system with certain symmetries, and the training requires it to go

through many familiar problems. Our present work is just another small step towards

that goal.

More specifically, as we have already mentioned, work has recently begun in

applying the bootstrapping procedure to quantum systems with periodic potentials,

which have several applications, such as in solid state physics [19–21]. In particular,

[6, 8, 14] have considered a cosine potential (the Mathieu problem), and successfully

reproduced the expected energy spectrum. However, reconstructing the dispersion

relation for the quasimomentum has proved challenging. In [14], the authors had

success using a statistical approach, approximating the dispersion relation from a

probability distribution for momentum reconstructed from a finite number of moments.

In this paper, we continue the investigation of the quantum mechanical bootstrap

as applied to periodic potentials. Starting with a generic periodic potential, we

concentrate on the Kronig-Penney model [22], a simplified model of a particle in a one-

dimensional lattice where a series of periodic delta spikes model the crystal structure

(the Dirac comb), which has applications from models of graphene [23] to ultra-cold

atoms [24], to name a few. We choose a general spatially periodic operator basis

to compute our recursion relation and reconstruct the probability density function
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using that relation§. A numerical search for allowed energy eigenvalues restricted

by the positivity constraint for the generic operator basis gives rise to the discrete

band structure associated with the problem. We find the convergence of bootstrapped

energy bands to the analytic ones depends explicitly on the structure of the operator

basis chosen. We also sketch a way to extract the exact dispersion relation for the

band structure using our bootstrap data.

The rest of the paper is organised as follows: In Section 2, we review the general

bootstrapping identities and use them to construct a recursion relation first for a

general periodic potential and then specialise in the Kronig-Penney model. In Section

3 we review the positivity constraint for periodic operators, numerically reproduce the

band gaps of the known solution to the Kronig-Penney model, and discuss how to

obtain the full energy spectrum from the positivity constraint for a periodic potential.

In Section 4, we find that an analytic approach can reconstruct the exact dispersion

relation of the model. We conclude with a teaser of the road ahead. The appendices

contain some extra details and neat examples of anomalies appearing in recursion

relations for completeness.

2. Bootstrapping identities for a periodic potential

We begin with a summary of how to take stock of the initial data associated with a

bootstrap problem, mostly following the treatise of [4]. We begin with the general

one-dimensional Hamiltonian with a space-dependent potential

H = p2 + V (x), (1)

defined over the interval {x1 ≤ x ≤ x2}, where [x̂, p̂] = i, and we use throughout the

convention ~ = 1 and 2m = 1. Consider an eigenstate |ψ〉 of the Hamiltonian Ĥ with

energy E, defined in the position basis |x〉 as

|ψ〉 =

∫ x2

x1

dxψ(x)|x〉. (2)

In the eigenstate |ψ〉, the expectation values of position-space functions f(x) are

defined as

〈f(x)〉 =

∫ x2

x1

dxf(x)ρ(x), (3)

where ρ(x) = |ψ(x)|2 is the wavefunction density. The first step of the bootstrapping

procedure is to construct a relation for moments of the distribution ρ(x) using two

identities. The first identity is that, for an operator Ô, the following average vanishes,

albeit up to an anomaly:〈[
Ĥ, Ô

]〉
+AÔ = 0, (4)

§ Note this analytical trick of using moment recursion relations was already discussed many decades

ago in [25].
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where AÔ is the anomaly defined in [9] as

AO =
〈(
H† −H

)
O
〉
ψ

=

∫ x2

x1

dx

[(
Ĥψ(x)

)†
− ψ†(x)Ĥ

]
Ôψ(x). (5)

When expectation values are computed over a finite domain, the anomaly generates

contact terms in the recursion relation [9]. Mathematically, it corresponds to the

difference between computing the expectation values by approaching the boundaries

of the domain from the left or the right.

Using equation (4), and choosing two classes of operators, namely Ô = f(x) and

Ô = f(x)p, we obtain the following relations:

−〈f ′′〉 − 2i〈f ′p〉+Af = 0, (6a)

−〈f ′′p〉 − 2i〈f ′p2〉+ i〈fV ′〉+Afp = 0, (6b)

having used the identity [p, f ] = −if ′ and the notation f (n) = ∂nf/∂xn. The second

identity we need is that as |ψ〉 is an energy eigenstate of the Hamiltonian,〈
ÔĤ

〉
= E

〈
Ô
〉
, (7)

from which (for Ô = f) we obtain the relation

〈fp2〉+ 〈fV 〉 − E〈f〉 = 0. (8)

By relating f to its derivatives, from equations (6a), (6b) and (8), we can construct a

relation between moments of the probability distribution.

2.1. A general periodic potential

For a periodic potential of period a, the domain of interest becomes {−a/2 ≤ x ≤ a/2}
and the wavefunction satisfies the Dirichlet boundary condition ψ(−a/2) = ψ(a/2).

A stronger constraint is actually imposed by the Bloch theorem, which states that

the wavefunctions of energy eigenstates of a periodic lattice can be written as

ψ(x) = exp (ikx)u(x). Here, k is a wavevector bounded by {−π/a ≤ k ≤ π/a},
and u(x) = u(x+ a) i.e. a function with the same periodicity of the lattice.

For our choice of f , it will prove convenient to consider a spatially periodic

function. In particular, we pick f = tn = exp (i2πnx/a), where tn is a shorthand

we use throughout this work. Using the Bloch ansatz, we compute the anomalies

mentioned in the last section:

At̂n = At̂np = 0. (9)

Additionally, tn is conveniently related to derivatives of itself via t′n = i2πn
a
tn, and we

obtain for n 6= 0:

〈tnp〉+ n
π

a
〈tn〉 = 0, (10a)

4n2
(π
a

)2
〈tnp〉+ 4n

π

a
〈tnp2〉+ i〈tnV ′〉 = 0, (10b)

〈tnp2〉+ 〈tnV 〉 − E〈tn〉 = 0. (10c)
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For n = 0, we have 〈t0〉 = 〈1〉, and the only non-trivial bootstrapping identity at this

level is

〈V ′〉 = 0, (11)

which is the statement that the average derivative of a periodic potential is zero. For

n 6= 0; however, the recursion relation must then be derived from the expression

4n
π

a

[
E − n2

(π
a

)2]
〈tn〉 = 4n

π

a
〈tnV 〉 − i〈tnV ′〉. (12)

Equation (12) will mostly be used as the master relation for bootstrapping periodic

potentials throughout our work. There are two ways to deal with the derivative

of the potential that appears here. As it is periodic, one can complete a Fourier

decomposition, and write

V (x) =
∞∑

m=−∞

Vmtm, (13)

where the modes are given by

Vm =
1

a

∫ a/2

−a/2
dxV (x)e−i2πnx/a =

1

a

∫ a/2

−a/2
dxV (x)t−m. (14)

Such a decomposition yields

n

[
E − n2

(π
a

)2]
〈tn〉 =

∞∑
m=−∞

(2n+m)Vm〈tn+m〉. (15)

Such a formulation of the recursion relation is practical for a potential composed of

a finite number of {Vm} modes, such as the cosine potential discussed in [8, 14]. In

that instance, Vm ∝ δm,±1, and the recurrence relation links each moment to only two

others. Indeed, one can reproduce the exact recurrence relation discussed in [8, 14]

using our general formula above.

However, equation (15) becomes much less useful for potential with a large number

of Fourier modes, like in the case for a delta function (where the set of {Vm} is

infinite). We thus consider a second approach, one that involves reconstructing the

probability distribution function from the moments. Starting with (12) and expanding

the expectation value as an integral and integrating by parts we obtain

〈tnV ′〉 = −〈t′nV 〉 −
∫ a/2

−a/2
dxρ′(x)tnV, (16)

where all other contributions have vanished due to the periodicity of tn, V (x), and

ρ(x). The recursion relation (12) then becomes

4n
π

a

[
E − n2

(π
a

)2]
〈tn〉 = 2n

π

a
〈tnV 〉+ i

∫ a/2

−a/2
dxρ′(x)tnV. (17)

To proceed further, we get a handle on ρ′(x) by using integration by parts to obtain

from equation (11)

0 =

∫ a/2

−a/2
dxρ(x)V ′ = −

∫ a/2

−a/2
dxρ′(x)V, (18)

which will allow us to compute the recursion relation in the case studied in this work.
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2.2. The recursion relation in the Kronig-Penney Model

We now turn our attention to the central point of the paper, the Kronig-Penney

model [22], where an infinite array of rectangular barriers approximates a 1D crystalline

lattice. In the limit that these barriers become infinitely narrow, they are treated as

a series of periodic delta spikes of uniform height, and the potential becomes

V (x) = A
∞∑

m=−∞

δ (x−ma) , (19)

where a is the spacing between the barriers (the period of the lattice) and A

parameterises the height of the potential barriers. Analytic solutions to this system is

a textbook problem and solving the Schrödinger equation in Fourier space yields the

familiar dispersion relation [26]

cos (ka) = cos
(
a
√
E
)

+
A

2
√
E

sin
(
a
√
E
)
, (20)

where k is the Bloch wavevector introduced earlier. For V (x) as defined in equation

(19), we can explicitly compute the right hand side of equation (18) and obtain

ρ′(0) = 0, which implies that the integral on the right hand side of equation (17)

vanishes; i.e.
∫ a/2
−a/2 dxρ

′(x)tnV = 0. We additionally compute that

〈tnV 〉 = Aρ(0), (21)

so that equation (17) gives rise to,

〈tn〉 =
Aρ(0)

2

1

E − n2π2/a2
, (22)

which is valid for n 6= 0 and E 6= n2π2/a2. In the special case that Em = m2π2/a2 for

some m ∈ Z/{0}, we can explicitly find that ρ(0) = 0, together with 〈tn〉 = 0, provided

we have n 6= ±m or n = 0. This particular limit is exactly the one corresponding to

the infinite square well, as will be discussed in detail in Appendix A. Observe that

for E < n2π2/a2, the denominator of (22) is always negative, and the sign of 〈tn〉 is

always opposite to that of ρ(0) i.e. if ρ(0) > 0, as we would expect, 〈tn〉 is negative

for all non-zero n.

Having solved the recursion relation for the moments, we can now reconstruct the

wavefunction density ρ(x). As we did with V (x), we write down a Fourier expansion

of the probability density:

ρ(x) =
∞∑

m=−∞

ρmtm, (23)

where the modes are again given by,

ρm =
1

a

∫ a/2

−a/2
dxρ(x)t−m =

1

a
〈t−m〉. (24)

Substituting equation (22) for m 6= 0 and 〈t0〉 = 1, we obtain the functional form of

the probability density:

ρ(x) =
1

a
+

1

a

∞∑
m=1

Aρ(0)

E − π2m2/a2
cos

(
2πmx

a

)
. (25)
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Figure 1: Analytic solution for E as a function of ρ(0) for a = A = 2.

From this expression, we can solve for ρ(0). Setting x = 0 and using the identity

cot z =
1

z
+
∞∑
n=1

2z

z2 − n2π2
, (26)

we obtain

ρ(0) =
2

A
[
2a
A

+ 1
E
− a√

E
cot
(
a
√
E
)] . (27)

We plot this solution in Figure 1 for a = A = 2. Observe that the function centres

on ρ(0) = 1/a, and that negative values of ρ(0) are allowed by this expression. This

latter fact appears unphysical, and we will return to this subtlety shortly.

As noted before, ρ(0) = 0 when E = m2π2/a2 form ∈ Z/{0}. The poles physically

correspond to the limit a→ 0 where it is impossible to define a wavefunction (as the

potential is infinite everywhere). Having computed ρ(0) as a function of E, equation

(22) now only depends upon E, so numerically, our bootstrapping procedure needs

only to consider one parameter.

3. Numeric implementation of the bootstrap

Having constructed (and in our case, solved) a recursion relation between the moments

of the probability distribution, the other key element of the bootstrapping procedure

is to restrict the values of those moments via a positivity constraint. In particular,

consider a list of linearly independent operators Oi. Then some linear combination

O =
∑

i aiOi must obey the constraint [1, 4]〈
ψ
∣∣O†O∣∣ψ〉 ≥ 0, (28)
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where ψ is an energy eigenstate as before. This constraint of positive definiteness can

now be checked numerically, given the initial data from the recursion.

As mentioned earlier, previous work suggests using an operator basis with

commensurate symmetries to increase the convergence speed of the bootstrap. Thus,

given the operators we have encountered in our periodic potential, we are motivated

to consider operators of the form

Ô =
K∑
n=0

L∑
s=0

an,sp̂
stn, (29)

where an,s is set of (K + 1)× (L+ 1) arbitrary complex coefficients [14]. In the case,

expanding equation (28) yields

K∑
n,n′=0

L∑
s,s′=0

a∗n,san′,s′

〈
t−np̂

s+s′tn′

〉
≥ 0, (30)

which is equivalent to the requirement that the matrix Mnσ,mτ = 〈t−mpσ+τ tn〉 be

positive semi-definite. If we fix σ + τ , we have a (K + 1) × (K + 1) matrix. From

this matrix, we numerically obtain allowed energies by scanning over the parameter

space (in our case, the energy E) and ruling out energies which do not correspond

to a positive definite matrix. The philosophy of the bootstrapping process is that as

K increases, the allowed energies should converge to those obtained from explicitly

solving the Schrödinger equation. In the case σ + τ = 0, the requirement for Mnσ,mτ

to be positive semi-definite is equivalent to the solution to the classical trigonometric

moment problem (as proven in [27]) and the matrix is referred to as the Toeplitz

matrix.

Note that when calculating equation (27), we used the fact that the sum in

equation (25) is over infinite 〈tn〉. As Mnσ,mτ is computed for a finite number of

modes, in what follows, we numerically compute ρ(0) using the finite sum

ρ(0) =

(
a− A

K∑
m=1

1

E − π2m2/a2

)−1
, (31)

which is equivalent to equation (27) in the K →∞ limit.

3.1. Obtaining band gaps from the Toeplitz matrix

We begin by considering the σ + τ = 0 case, fixing a = A = 2‖, and then scan over

different values of energy E. We plot the result of this process for different values

of K in Figure 2. The horizontal axis is the energy, and the vertical lines mark the

boundaries of the exact energy spectrum from the equation (20). For K = 2, only the

first two band gaps are noticeable, and the numerical band gaps are smaller than the

exact value. As K increases, all band gaps become evident and converge to the exact

values. We quantify this in Table 1, up to a numeric error of ±0.01. The band gaps

‖ The same patterns would occur for a 6= A, we simply study this example for aesthetic reasons.
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Figure 2: Bootstrap for the Kronig-Penney model at various K and a = A = 2.

Parallel vertical lines mark the exact energy bands.

K

2 5 10 20 50 100 Analytic

∆E

1st Gap 1.09 1.45 1.58 1.63 1.64 1.66 1.66

2nd Gap 0.90 1.35 1.65 1.80 1.85 1.87 1.87

3rd Gap 0.09 1.03 1.57 1.79 1.91 1.93 1.94

Table 1: First three energy gaps computed numerically at various K and a = A = 2.

Values are quoted to a numeric error of ±0.01.

between higher energies converge less rapidly than those between lower energies.

We also plot the values of ρ(0) corresponding to allowed values for E in Figure 3

for K = 5, 10 and 100. Given the finite sum, the curves qualitatively differ from the

analytic solution shown in Figure 1 for small K. As K increases, the range of allowed

ρ(0) decreases; in particular, only positive values of ρ(0) are allowed. This indicates

that requiring ρ(0) ≥ 0 could improve the effectiveness of the bootstrap for small K.

However, there is an obvious problem: as is evident in Figure 2, requiring the

positivity of the Toeplitz matrix does not constrain the minimum energy. Regardless

of the value of K, all energies below π2/a2 (including negative energies) are allowed

by the bootstrap. This indicates that the positivity of the Toeplitz matrix is not a

sufficient constraint to find the energy spectrum of the model and that it is necessary

to add another tool to our bootstrapping philosophy.
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Figure 3: Numeric solution for E as a function of ρ(0) for a = A = 2 for some values

of K. Observe that for K = 100 the negative ρ(0) region stops being allowed, in line

with physical intuition.

3.2. Further matrices and constraints for the Kronig-Penney model

We now move on to the higher constraints, i.e. consider the consequence of enforcing

the positivity of the matrix Mnσ,mτ for σ + τ ≥ 1. We start by constructing elements

of the form 〈t−mpstn〉 from 〈tmps〉 and the commutation relation

[p, tm] =
2mπ

a
tm. (32)

From equations (10a) and (10c) we immediately have

〈tnp〉 = −nπ
a
〈tn〉, (33a)

〈tnp2〉 = E〈tn〉 − Aρ(0), (33b)

and we construct 〈tmps〉 from equation (8) by choosing f = tmp
s. In particular, for

s ≥ 1 we obtain (after simplifying with equation (32)),

〈tnps+2〉 =

(
E − 4n2

(π
a

)2)
〈tnps〉 − 4n

π

a
〈tnps+1〉 − A

a

∞∑
m=−∞

〈tm+np
s〉. (34)

A similar double recursion relation was obtained in [14]; however, in that work, the

higher order moments (specifically for n = 0) were found to be numerically unstable.
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Analytically computing the next two terms in the recursion, we can easily see the

reason:

〈tnp3〉 = −nπ
a

(E〈tn〉 − 2Aρ(0)) , (35)

〈tnp4〉 = E2〈tn〉 − Aρ(0)

[
2E + 4n2(π/a)2 − A

a

∞∑
m=−∞

]
, (36)

or to say specifically, the recursion leads to a non-convergent infinite sum.¶
We will be discussing a way of analytically treating this sum in Section 4. However,

for numerics, here we treat it as a finite size correction by summing over the (finite)

number of modes determined by the bootstrap matrix of dimension K. With that in

mind, in what follows, we consider only the cases where σ + τ ≤ 4, where the infinite

sum first appears, as the first investigation into these finite size effects. To do so, we

can analytically construct the following matrices

〈t−mptn〉 =
π(n+m)

a
〈tn−m〉, (37)

〈t−mp2tn〉 =

((
2π

a

)2

nm+ E

)
〈tn−m〉 − Aρ(0), (38)

〈t−mp3tn〉 =
π

a
(n+m)

[[
3E − 2

(
m2 − 4mn+ n2

) (π
a

)2]
〈tn−m〉 − 3Aρ(0)

]
, (39)

〈t−mp4tn〉 = E2〈tn−m〉+ E8n
(π
a

)2
(n+ 2m) 〈tn−m〉 (40)

−8n
[
m3 − 3m2n−mn2 + n3

]
(π/a)4〈tn−m〉

−Aρ(0)

[
2E + 4(m+ n)(m+ 2n)(π/a)2 − A

a

∞∑
m=−∞

]
.

Using the expressions of 〈tnps〉. It is evident that as σ+ τ increases, the matrices

become more unwieldy.

3.3. Constraining the minimum energy

As discussed earlier, the problem with using the Toeplitz matrix constraint was that

it did not constrain the lowest energy value and allowed an infinite sea of negative

values. To demonstrate a potential way of improving this using higher constraints, we

start with K = 5, and fixing a = A = 2, we scan over different values of energy E

for different σ + τ . We plot the result of this process for each of the matrices with

0 ≤ σ + τ ≤ 4 in Figure 4a.

Remember, we are now interested in constraining both the band gaps and the

minimum allowed energy. Observe that as σ + τ increases for K = 5, the band gaps

are narrower, i.e. less accurate. This difference becomes negligible as K increases:

we plot the result of the bootstrapping process for K = 100 in Figure 4b, and the

¶ The symbol
∑∞

m=−∞ implies an infinite series of ... + 1 + 1 + 1 + ... for our case.
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(a) K = 5 (b) K = 100

Figure 4: Bootstrap for the Kronig-Penney model at a = A = 2 for 0 ≤ σ + τ ≤ 4 for

a) K = 5 and b) K = 100. Parallel vertical lines mark the exact energy bands. The

minimum energy is more constrained for even σ + τ values.

exact band gaps are obtained for all σ + τ up to the numerical error of 0.3%. The

bootstrapping procedure is most efficient at obtaining the exact band gap structure

for smaller σ + τ .

On the other hand, now consider the behaviour of the minimum energy. For

σ + τ = 1 a near-continuum spectrum of negative energies is still allowed, but for

σ+ τ > 1, i.e. increasing the power of momentum leads us to a finite minimum bound

on the energy. There appears to be an even-odd asymmetry, as evident in Figure 4a

and 4b, where the even powers of momentum in the calculated moment lead to a more

accurate constraint than the odd powers. One can interpret this as an artefact of the

analytic dispersion relation (equation (20)) being only dependent on even powers of

Bloch momentum, which is a consequence of the spatial symmetry of the system. We

will return to this discussion in Section 4.

The best approximation to the minimum energy is achieved for σ + τ = 4. This

matrix contains a non-convergent infinite sum as it depends on 〈tnp4〉. In Figure 5a we

plot the allowed energy levels in the σ + τ = 4 case for different values of K. We plot

the minimum energy as a function of K in Figure 5b. As K increases, the minimum

energy increases and converges towards a constant value, which is a lower bound on the

minimum energy. This demonstrates that, numerically, the infinite sum contributes a

finite size correction, which converges in the limit of a large number of modes.

We conclude from Figure 4 that the bootstrapping philosophy needs to be updated

for periodic potentials. Not only does increasing the value of K increase the accuracy

of the energy spectrum obtained, but it is also necessary to explore multiple powers

of momentum p (higher values of σ + τ). Lower powers of momentum converge more

quickly to the desired band gaps, whilst higher powers of momentum converge to

provide a better constraint on the minimum energy. This is because, by exploring
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(a) (b)

Figure 5: Bootstrap for the Kronig-Penney model at σ + τ = 4 and a = A = 2 at

various K, where we zoom into the structure of the first band. The exact minimum

energy is marked in a) by a vertical line. In b), we plot the minimum energy obtained

numerically as a function of K.

more powers of momentum, more moments to constrain the dispersion relation are

being accessed.

4. Towards constructing the dispersion relation

As discussed in the introduction, constraining the dispersion relation for periodic

systems using the moment recursion relation is much more involved. We sketch here a

resolution of the issue using quantities computed in the previous sections. The reader

is reminded that a wavefunction of the Bloch form satisfies ψ(x) = exp(ikx)u(x),

applying the exponential of the momentum operator yields eip̂a|ψ〉 = eika|ψ〉, so the

Bloch wavevector k is extracted via 〈eip̂a〉 = eika. The dispersion relation is thus

extracted from

cos (ka) =
∞∑
n=0

(−1)n
a2n

(2n)!
〈p̂2n〉, (41)

where p2n is extracted from the n = 0 instance of equation (34), which reads,

〈ps+2〉 = E〈ps〉 − A

a

∞∑
m=−∞

〈tmps〉, (42)

and 〈tmps〉 are themselves computed from equation (34). It was found in [14] that

following such a procedure proved numerically unstable; we propose that this is because

this leads to larger and larger sums, even for potential with a finite number of Fourier

modes {Vm}. We instead deal with the infinite sums using two known values of the

Riemann zeta function

ζ (0) = −1

2
, ζ (−2n) = 0 n ∈ N. (43)
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With that, the infinite sum in equation (36) simplifies, and we find via induction

〈tnp2s〉 = Es〈tn〉 − Aρ(0)

(
Es−1 +

s−1∑
m=1

c(1)m,nE
s−1−m (n2π2/a2

)m)
, (44)

〈tnp2s+1〉 = −nπ
a

[
Es〈tn〉 − Aρ(0)

(
Es−1 +

s−1∑
m=1

c(2)m,nE
s−1−m (n2π2/a2

)m)]
, (45)

where the c
(i)
m,n for i ∈ {1, 2} are numeric factors without an apparent closed form,

but those will not prove relevant to our interests. Using equation (43), we readily

obtain:

〈p2s〉 = Es

(
1− sAρ(0)

E

)
, (46a)

〈p2s+1〉 = Es〈p〉, (46b)

where 〈p〉 = −a/2j (a/2) as computed in terms of the particle current j in Appendix

B using a proper calculation of the anomaly Ax. We do not solve a recursion relation

for the particle current in this work, but by considering different operator forms of O,

one could do so.

Substituting the solution from equation (46a) back into equation (41) and using

equation (27) for ρ(0) does not help us a lot. However, the dispersion relation is a

semi-classical quantity. Keeping in with that, in [14] it was noted that the dispersion

relation for Bloch momenta could be obtained only by taking the average of a statistical

ensemble. In accordance with that, we then focus on the expectation value of ρ(x)

instead, which is simply

〈ρ(x)〉 = 1/a, (47)

and then trivially 〈ρ(0)〉 = 1/a. Now, using this expectation value in (46a), we get,

〈p2s〉 = Es

(
1− s A

aE

)
, (48)

which we can then substitute the above into equation (41) to obtain

cos ka = 〈cos pa〉 = cos
(
a
√
E
)

+
A

2
√
E

sin
(
a
√
E
)
, (49)

exactly the relation in equation (20). We have thus proposed an analytic approach to

deal with the unstable summations present in the recursion for ps observed in [14] and

demonstrated its effectiveness for the Kronig-Penney model. It remains a question for

future investigations whether (and how) this trick can be implemented numerically.

5. Conclusions

Summary

In this work, motivated by recent advancements, we explore the effectiveness of the

bootstrap method for the Dirac comb model of a 1d lattice system (the Kronig-

Penney model). This problem generally can be easily solved analytically, but it is
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very important to pass it through this algorithm for the sake of further development.

We successfully achieved some progress in terms of developing the bootstrap as a tool

for solving generic periodic systems using this model as an example. We derived

a general dispersion relation for a Bloch periodic problem, considering anomalies

generated by the boundary conditions. We also demonstrated the benefit of explicitly

reconstructing probability density functions to have analytical handling of the band

structure associated with the problem.

Numerically, we proposed novel positivity constraints involving a spatially

periodic operator basis to zero in on the allowed energy eigenvalues of the system.

An intriguing question associated with the Quantum Mechanics bootstrap program

is finding constraints which are enough, with a sufficiently sized Hankel matrix, to

converge on the exact spectrum of the system. For our case, it turned out that not

only a larger size of the constraint matrix but also the power of the momentum used

to change the allowed energies pretty drastically, with higher powers generating the

band structure better. We augmented our discussion by providing a roadmap toward

reconstructing the Kronig-Penney dispersion relation from our analytic considerations.

Comments about the minimum energy

One intriguing feature of our numerical calculation is the presence of the seemingly

unconstrained minimal energy, which we could minimize by using higher powers of

momentum. However, there lingers a question about how to constrain this value

properly. In a recent work by Morita, [13], it was shown that the positive definiteness

of the Hamburg matrix for K = 2 is equivalent to the Heisenberg uncertainty relation.

Computing 〈x2〉 explicitly from equation (25), requiring 〈x2〉〈p2〉 ≥ 1/4 can be used

numerically to obtain finite minimum energy for our model.

A bit of tinkering reveals, for a = A = 2, the Heisenberg constraint obtains

Emin = 0.245, as compared to the numerical value Emin = −0.435 obtained via the

σ + τ = 4 matrix in the K = 400 case, and the analytic value Emin = 0.741. Whilst

the Heisenberg constraint provides a more effective constraint on the minimal value; it

allows all energies E > Emin; that is, it cannot obtain the rest of the energy spectrum.

That observation feeds into the narrative, which is apparent from our results; the

Toeplitz matrix converges quickly to the band gaps for E > π2/a2, but isn’t useful for

constraining the minimum possible energy.

In this work, we found that the matricesMnσ,mτ for σ+τ > 0 provide one means to

get a finite lower bound on the minimum energy (whilst at the same time constraining

the band gaps). The Heisenberg relation simply samples another constraint from the

set of possible quadratic constraints. It remains an open question of which constraint

is most effective for finding the exact minimum energy.
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Comments about a quasi-periodic case

In this work, we have considered periodic potentials and focused on the Kronig-Penney

model as a particular example. A closely related class of systems are those with quasi-

periodic potentials, which have emerged in recent years as important classes of models

in condensed matter physics, like the celebrated Aubry-André-Harper (AAH) model

[19, 20]. The simplest example of such a quasi-periodic potential in the continuous

regime is:

V (x) = cos

(
2π

a
x

)
+ cos

(
α

2π

a
x+ β

)
, (50)

where α is irrational (so that there is no periodic solution) and β contributes a phase.

We can consider the machinery developed in this work to try and construct a recursion

relation for moments for such a potential (although those results were derived for the

explicitly periodic case). Computing the Fourier modes Vm to substitute into equation

(15), we obtain

Vm =
1

2
[δm,1 + δm,−1] +

1

π(α2 −m2)
(−1)m sin (πα) [m cos β − iα sin β] , (51)

so we can see the set {Vm} is infinite in size. This would require an infinite sum in the

recursion relation, meaning that it is not numerically solvable. Alternatively, one may

explicitly compute

〈tnV 〉 =
1

2

〈
t1−n + t−1−n + e−iβei

2π
a
(α−n) + eiβei

2π
a
(−α−n)

〉
. (52)

Observe that, as α is irrational, the terms dependent on it are outside the sequence of

tn, and it is not possible to rescale the operator basis to include them in the sequence.

Furthermore, to conclude the vanishing of anomalies, we assumed an exactly periodic

(Bloch) wavefunction density, which is no longer necessarily valid. A probable way

out is to consider an explicitly quasi-periodic basis of operators and rework the whole

algorithm. This is beyond the scope of this work and will be discussed in future

communication.

Future directions

The bootstrap technique has already proven to be of much interest and seemingly very

powerful in solving Quantum Mechanical problems. Periodic problems, especially ones

with Bloch symmetry, are very new to this growing list of explorations. We considered

one of the simpler examples in this work, and extending our results to other tight-

binding models makes perfect sense.

Of course, other tractable Quantum Mechanical problems are open to exploration

using similar methods. Recently [28] has initiated an intriguing study of infinite lattice

Ising models in different dimensions using similar bootstrap techniques. One could

think of these as a viable alternative to the conformal bootstrap procedure, and this

leaves ample scope for improvements in the formalism employed, given the success

of the conformal bootstrap program. We hope to contribute to these refinements in

future work.
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Appendix A. Bootstrapping the Infinite Square Well

The infinite square well is a standard problem in undergraduate quantum mechanics,

considering a potential of the form

V (x) =

{
0 if 0 ≤ x ≤ a

∞ elsewhere

Solving the Schrödinger equation, one can find the position-space energy eigenfunctions

easily. However, here we will use our moment recursion method to solve the system.

To bootstrap the infinite square well, we will consider a basis of operators with

O = xn and O = xnp. Over a finite interval x ∈ {0, a}, where the particle is

free, these operators generate non-zero anomaly terms. Assuming the position-space

wavefunction ψ(x) to be real, we compute the anomalies

Axn = nan−1ψ(a)2 − δn,1ψ(0)2, (A.1)

Ap = i
[
ψ(a) (E − V (a))− ψ(0) (E − V (0)) + ψ′(a)2 − ψ′(0)2

]
, (A.2)

Axnp = iδn,1ψ(0)ψ′(0)− i
[
ψ(a)nan−1ψ′(a)− ψ(a)an (E − V (a))− anψ′(a)2

]
. (A.3)

In the infinite square well, we assume the Dirichlet boundary conditions ψ(0) =

ψ(a) = 0, so Axn as defined above identically vanishes and we are left with

Ap = ianψ′(a)2, (A.4)

Axnp = i
(
ψ′(a)2 − ψ′(0)

)2
, n 6= 0. (A.5)

Accounting for these anomalies and noting that 〈V (x)〉 = 0 for the infinite square well,

from general recurrence relations (6a), (6b), and (8) we obtain for n 6= 0:

〈Xn−1P 〉 =
i

2
(n− 1) 〈Xn−2〉, (A.6)

〈XnP 2〉 = E〈Xn〉, (A.7)

− n(n− 1)〈Xn−2P 〉 − 2in〈Xn−1P 2〉+ ianψ′(a)2 = 0. (A.8)
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Equation (6b) for n = 0 implies that

Axnp = 0⇒ ψ′(a)2 = ψ′(0)2, (A.9)

and our effective recursion relation for the system becomes

〈Xn〉 = −n(n− 1)

4E
〈Xn−2〉+

an+1

2E(n+ 1)
ψ′(a)2. (A.10)

Fixing 〈X0〉 = 1, we obtain

ψ′(a)2 =
2E

a
, (A.11)

and the recursion relation then becomes

〈Xn〉 = −n(n− 1)

4E
〈Xn−2〉+

an

(n+ 1)
. (A.12)

Observe that 〈X〉 = a/2 which is expected from the usual symmetry intuition of the

infinite well. The recursion relation can now be solved by

〈X2m〉 = (2m)!

(
− 1

4E

)m m∑
k=0

(−4Ea2)
k

(2k + 1)!
, (A.13)

〈X2m+1〉 = (2m+ 1)!

(
− 1

4E

)m m∑
k=0

(−4E)k

(2k + 2)!
a2k+1. (A.14)

Following a similar procedure to Section 2.2, for a function defined over an interval

[0, a], we can write a fourier decomposition:

ρ(x) =
∞∑

n=−∞

cn exp

(
i2πnx

a

)
, (A.15)

and calculate the modes as:

cn =
1

a

∫ a

0

dxρ(x) exp

(
−i2πnx

a

)
(A.16)

From equations (A.13) and (A.14), we can see that only for the known values of infinite

well energies, i.e. for E = m2π2/a2 for m ∈ Z we can get:

c0 = 1/a, (A.17)

c±m = −1/2a, (A.18)

cn = 0 n 6= ±m, 0. (A.19)

We thus obtain, for E = m2π2/a2, and the probability density is:

ρ(x) =
2

a
sin2

(nπx
a

)
, (A.20)

in agreement with the solution we directly compute from the Schrödinger wavefunction.

One can clearly see that for E 6= m2π2/a2, cn = 0, i.e. these energies are not allowed

by the constraints (as expected). Note that this consistent solution would never have

been possible without the use of proper anomalies in the finite domain.
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Agreement with ρ(0) limit

We note in Section 2.2 that, for the Kronig-Penney mdoel, when E = n2π2/a2 we have

ρ(0) = 0. In that case, the sum on the right hand size of equation (25) has a 0/0

term for m = n. Recall that ρ(0) is itself a function of E; and we can compute via

L’Hospitals rule that

lim
E→n2π2/a2

Aρ(0)

E − n2π2/a2
=

∂
∂E

[Aρ(0)]E=n2π2/a2

∂
∂E

[E − n2π2/a2]E=n2π2/a2

= −1, (A.21)

and thus in this limit

ρ(x) =
1

a

(
1− cos

(
2πnx

a

))
=

2

a
sin2

(nπx
a

)
, (A.22)

again in agreement with equation (A.20). This is equivalent to showing that the 〈tn〉
for the Kronig-Penney model agrees with the 〈tn〉 for the infinite square well in the

E → n2π2/a2 limit.

Appendix B. Computing 〈p〉

From equation (6a), considering f = x̂ we have that

〈p〉 =
1

2i
Ax. (B.1)

It is straightforward to compute, using equation (5) and ψ(x) = ψ(x+ a), that

Ax = a

[
ψ∗(x)

∂ψ(x)

∂x
− ∂ψ∗(x)

∂x
ψ(x)

](a
2

)
= iaj

(a
2

)
, (B.2)

where j(x) is the particle current defined j = −i (ψ∗(x)∂x (ψ(x))− ∂x (ψ∗(x))ψ(x)).

We thus have

〈p〉 =
a

2
j
(a

2

)
, (B.3)

as quoted in Section 4. Note that [14] claim 〈p〉 = 0; this is because in that work the

authors did not account for anomalies.
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