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The low frequency region of the spectrum is a challenging regime for quantum probes. We support
the idea that, in this regime, performing Ramsey measurements carefully controlling the time at
which each measurement is initiated is an excellent signal detection strategy. We use the Fisher
information to demonstrate a high quality performance in the low frequency regime, compared to
more elaborated measurement sequences, and to optimise the correlated Ramsey sequence according
to any given experimental parameters, showing that correlated Ramsey rivals with state-of-the-art
protocols, and can even outperform commonly employed sequences such as dynamical decoupling
in the detection of low frequency signals. Contrary to typical quantum detection protocols for
oscillating signals, which require adjusting the time separation between pulses to match the half
period of the target signal, and consequently see their scope limited to signals whose period is
shorter than the characteristic decoherence time of the probe, or to those protocols whose target
is primarily static signals, the time-tagged correlated Ramsey sequence simultaneously tracks the
amplitude and the phase information of the target signal, regardless of its frequency, which crucially
permits correlating measurements in post-processing, leading to efficient spectral reconstruction.

I. INTRODUCTION

Identifying weak signals in the low frequency regime of
the electromagnetic spectrum is paramount for the study
of a wide variety of physical systems, ranging from low
energy fundamental particles, such as neutrinos or axions
[1], to chemical bonds (J-couplings) [2, 3], and material
defects [4]. As a consequence, the last years have wit-
nessed an effort to develop quantum sensors operating in
this regime, which could be revolutionary for quantum in-
formation processing [5], quantum communications and
radar applications [6, 7], biomedical imaging [8–10] or
nuclear quadrupole resonance [11, 12]. However, existing
sensors based on, e.g., Rydberg atoms [13, 14], masers
[15], optomechanical sensors [16, 17], or superconduct-
ing circuits [18], are restricted by sophisticated setups or
extreme operating temperatures.

The typical quantum sensing setup features a carefully
controlled quantum probe prepared on an initial coherent
superposition state. Interaction with an external signal
alters the quantum trajectory of the probe, making its
final state dependent on a number of parameters –such
as the frequency ω, the phase φ, or the amplitude ξ–
characteristic of the external signal, which is the under-
lying principle of quantum sensing. Repeating the mea-
surement process to gather statistics allows to estimate
the signal parameters. Yet this very same measurement
process means that the system interacts with a noisy en-
vironment that hinders the performance of the quantum
sensor. Such noise causes two distinct processes, namely,
dephasing or T ∗

2 noise, that describes the characteristic
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survival time of a coherent superposition state, and re-
laxation or T1 noise, which is the time the qubit takes
to return to its equilibrium state [19]. Noise imposes se-
vere constraints on the ability to detect signals whose
frequency is smaller than the inverse characteristic de-
phasing time [20]. Here, we challenge this limitation.

During the evolution time, control sequences are ap-
plied to ensure sensitivity to the signal of interest, and
to avoid interaction with unwanted noise. The Ramsey
sequence lets the probe evolve freely, making it most sen-
sitive to the slowest frequency component of the noise
spectrum, for which reason Ramsey spectroscopy is tra-
ditionally used to estimate parameters from static sig-
nals. In a Ramsey measurement, the probe is sensitive
to all noise sources and, consequently, it is only useful if
its interrogation time τR is such that τR < T ∗

2 . Detecting
oscillating signals requires suppressing the sensitivity to
the noisy frequencies lower than that of the target signal,
ω, which is most commonly achieved through a family
of control sequences collectively known as dynamical de-
coupling (DD) [21–23]. They comprise pulses intended to
refocus the probe and to filter out noise frequencies be-
low ωDD = π/τ , with τ the pulses separation [22]. This
has two consequences: on the one hand, DD demands
ωDD ≈ ω, requiring previous knowledge of the target
signal frequency, and fixing upfront the duration of the
corresponding sequence. On the other hand, DD extends
the decoherence time of the qubit to T2 ≥ T ∗

2 [19, 24],
which is typically determined experimentally [25]. Both
facts, when put together, mean that the spacing between
pulses in DD cannot exceed T2, posing a problem for
low frequency signals ω < π/T2, as DD sequences cannot
eliminate the noise around the target signal’s frequency.
Moreover, although there are techniques that can be em-
bedded within DD sequences, and that permit extending
the T2 of the probe [26], these sequences are ultimately
limited by T2 < T1. The immediate consequence being
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that sensing sufficiently low frequencies is not possible
with DD.

In this article, we explore the correlated Ramsey pro-
tocol for quantum parameter estimation of low frequency
signals, which uses the quantum heterodyne (Qdyne)
technique [27–29] to make the Ramsey sequence suit-
able for oscillating signals, and that was initially pro-
posed by Herbschleb et al. [30]. There, the authors
demonstrate experimentally the performance of the cor-
related Ramsey protocol for low frequency detection us-
ing bulk NV-centres, which feature T ∗

2 times in the or-
der of milliseconds. Rather, we use a distinct objective
tool, namely, the Fisher information, to study the per-
formance of the correlated Ramsey sequence, comparing
it to its immediate mathematical kindred, i.e. dynamical
decoupling, which permits us revealing the reason for the
success of correlated Ramsey in the low frequency region
of the spectrum. Further, the Fisher information allows
us to optimise the correlated Ramsey sequence according
to the particular features of any given experiment, thus
showing unambiguously the excellent performance that it
has in the typical regime of nuclear magnetic resonance
at the nano-scale, which requires having probes capable
of being very close to the sample, with the consequence
that they feature T ∗

2 times in the much more restrictive
microsecond regime, which then requires a different opti-
mal sequence design, as we demonstrate. The use of the
Fisher information permits us to characterise and opti-
mise the parameters defining the sequence, such that it
can be tailored to the particular experiment and param-
eter of interest; for example, the frequency. Addition-
ally, we compare the performance of correlated Ramsey
to state-of-the-art low frequency protocols such as con-
tinuous wave and pulsed ODMR [31–35], using the fre-
quency detection capabilities as a benchmark.

Typically, detection of oscillating signals requires a
frequency matching ωDD ≈ ω, such as in dynamical
decoupling, or fluorescence variations detection, as in
ODMR. The former is limited by the coherence time
of the probe, while the later has a sub-optimal scaling
with the total measurement time. Correlated Ramsey
takes advantage of the best of both worlds to simulta-
neously track the amplitude and the phase of the oscil-
lating signal, permitting correlating the measurements
during post-processing, thereby having a better scaling
with the total measurement time unburdened by any fre-
quency matching condition, thus avoiding the problem
of the limited coherence time of the probe. The corre-
lated Ramsey protocol becomes sensitive to the coherent
phase of the target signal, making it distinguishable from
incoherent noisy background signals of similar frequency.
This fact has already been taken advantage of to propose
Qdyne-like sequences capable of detecting highly oscillat-
ing fields [36], to which similar Ramsey-like synchronized
measurements have also been applied [37, 38]. In this ar-
ticle, we show explicitly that it is through using the infor-
mation about the target signal’s phase, that the Qdyne
measurement protocol acquires, what allows a Ramsey

Figure 1. (a) Correlated Ramsey protocol composed of N
Ramsey measurements repeated sequentially every τ̃ , which
includes the measurement time τR and an overhead time τo for
qubit readout and initialization, such that the total duration
of the protocol is T = Nτ̃ . (b) Low frequency target signal
S(t, ω, ξ, φ). (c) Dynamical decoupling sequence of equiva-
lent duration T = Mτ featuring M π pulses with even time
separation τ . For a low frequency, a series of equally spaced
Ramsey measurements imitate the behaviour of a dynamical
decoupling sequence of equivalent duration, avoiding, at the
same time, having to match the half period of the signal to
the pulses separation, thereby vanquishing the problem of the
probe’s decoherence time while keeping the benefits of DD se-
quences

.

sequence to be maximally sensitive to oscillating signals,
behaving as a dynamical decoupling sequence whose spe-
cific target is the low frequency regime, overcoming the
limitations to DD sequences imposed by the coherence
time of the probe in that regime. We show theoretically
the excellent performance of the correlated Ramsey pro-
tocol in the low frequency regime, and propose the best
experimental parameters to design optimal sequences.

II. THEORY

A. Formal definitions

Consider a qubit probe interacting with the longitu-
dinal component of an external signal S(t, ω, ξ, φ) [see
Fig. 1(b)]. The interaction may be modeled by the
Hamiltonian σzS(t, ω, ξ, φ), with σz = |1⟩ ⟨1| − |0⟩ ⟨0|.
The probe is additionally subject to transversal noise,
which we treat through the Lindblad master equation
formalism. Then, an initial superposition state on the
probe experiences decoherence with a characteristic time
Ts that depends on the environment of the qubit and on
the control sequence, s, used. For Ramsey, TR = T ∗

2 , and
TDD = T2 for DD. The probability to find the qubit in
its original state after some evolution time t is

Ps =
1 + e−t/Ts cos [Φs (t, ω, ξ, φ)]

2
, (1)
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where Φs(t, ω, ξ, φ) is the accumulated phase that de-
pends on the specific sequence, the evolution time t, and
the frequency ω, the amplitude ξ, and the phase φ of the
external signal.

We want to find the optimal control sequence that
yields the smallest mean squared error ∆ω in the esti-
mation of any signal parameter, e.g. the frequency ω, for
a fixed experiment duration. According to the Cramér-
Rao bound, the Fisher information (Iωs ) contained on a
sequence s about the frequency bounds ∆ω, such that
∆ω ≥ 1/Iωs [39, 40]. We can then compare the perfor-
mance of different sequences by computing their Fisher
information with [41]

Iαs =
1

Ps(1− Ps)

(
dPs

dα

)2

, (2)

with α referring to any of the parameters to be estimated.
Considering Eq. (1), Iαs relates to Φs through:

Iαs =
sin2 [Φs(t, ω, ξ, φ)]

exp (2t/Ts)− cos2 [Φs(t, ω, ξ, φ)]

[
dΦs(t, ω, ξ, φ)

dα

]2
.

(3)
Repeated experiments additively increase the Fisher in-
formation, such that for N measurements spanning a to-
tal experiment time T

IαNs(T, ω, ξ, φ) =

N∑
j=1

Iαs (τs, ωj , ξj , φj), (4)

where we allow for modification of the external parame-
ters for different experimental realizations.

To gain insight on the performance of correlated Ram-
sey, we compare the performance of a single DD ex-
periment featuring M π pulses, and of total duration
T = Mτ , with N Ramsey experiments of total equivalent
duration T = Nτ̃ , where τ̃ is the sum of the duration of
the experiment τR and an overhead time τo, as depicted
in Fig. 1. To do so, we resort to the gain

gα ≡ IαNR(T )

IαDD(T )
. (5)

In the limit of low frequencies we show that, for a wide
range of parameters, gα grows exponentially as the fre-
quency of the external signal decreases, demonstrating
that correlated Ramsey experiments are a suitable ex-
perimental procedure for low frequency sensing.

B. Single Ramsey experiment

We begin by considering the Ramsey sequence, which
consists on the free evolution of the qubit over a time
τR. The qubit is initially prepared on a superposition
state Ψ(0) = (|0⟩+ |1⟩)/

√
2 by means of a π/2 pulse. A

final π/2 pulse rotates the qubit back to the measure-
ment basis. Note that all pulses will be considered here

as having negligible duration (also known as the impul-
sive limit) and with amplitude much smaller than the
energy gap of the qubit. During the free evolution time,
the superposition accumulates a phase ΦR(t, ω, ξ, φ) =∫ t

0
dt′S(t′, ω, ξ, φ) due to the external signal. Assuming

that S(t, ω, ξ, φ) = ξ cos(ωt + φ), at the end of the se-
quence the total accumulated phase is

ΦR(τR, ω, ξ, φ) = ξτR cos
(ωτR

2
+ φ

)
sinc

(ωτR
2

)
. (6)

Typically, sensitivity to external signals is quantified
through the filter function (FF) of a given sequence,
defined as ⟨ΦR(τR, ω, ξ, φ)

2⟩φ, the signal’s phase aver-
aged square of the accumulated phase, and calculated
in terms of its parameters alone [42]. Nevertheless, in
the context of our discussion, it can also be interpreted
as ⟨ΦR(τR, ω, ξ, φ)

2⟩φ, the brackets denoting an average
over the signal’s phase. For Ramsey spectroscopy, the FF
reads FR(ω) = ξ2τ2Rsinc

2 (ωτR/2) /2 [43], which peaks at
vanishing frequency, supporting the idea that Ramsey se-
quences are mostly sensitive to static signals. Yet Eq. (6)
indicates that this need not be the case if the phase of
the signal is taken into account. For measurements per-
formed at random initial times, information about φ is
lost, and the relevant equation describing an experimen-
tal outcome is the FF of the given sequence. If the start-
ing time tj of each sequence is recorded, we can write
φj = ωtj+φ, such that information about φ is conserved.
A suitable measurement can then retrieve this informa-
tion through the dependency in the phase expressed in
Eq. (6) (see the Appendix A for details), revealing the
deep connection existing between filter functions and the
phase that a given probe accumulates due to the interac-
tion with an external signal. A relation that can be used
to tailor control sequences for given signals.

C. Dynamical decoupling

DD sequences are constructed by embedding π pulses
in between initialization and readout of the qubit. These
pulses invert the state of the qubit with respect to a spe-
cific axis on the Bloch sphere. The effect ofM π pulses on
the total accumulated phase can be computed by means
of a response function hM (t), which has a unit absolute
value, but changes sign every time a π pulse is applied.
Then, the accumulated phase on the qubit is the convo-
lution of hM (t) and the external signal S(t, ω, ξ, φ) [43],
yielding

ΦDD(T, ω, ξ, φ) = −ξτ cos

(
M

ωτ + π

2
+ φ

)
sin

(
M ωτ+π

2

)
cos

(
ωτ
2

) sin
(ωτ

4

)
sinc

(ωτ
4

)
.

(7)

DD sequences create a filter around their characteristic
frequency ωDD = π/τ , whose width is inversely pro-
portional to the number of pulses. Such a filter ef-
fect can be better understood studying the accumulated
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phase around the maximally sensitive region. Expand-
ing Eq. (7) around δ = ω − ωDD ≪ ω the accumulated
phase yields ΦDD(T, δ, ξ, φ) ∼ 2ΦR(T, ω, ξ, φ)/π, show-
ing that DD is equivalent to a Ramsey sequence if the
frequency variable is expressed in the adequate frame of
reference i.e. a DD sequence is most sensitive to the slow-
est frequency component of the noise spectrum as seen
by the rotating qubit. Conversely, a correlated Ramsey
sequence is, effectively, a dynamical decoupling protocol
not limited by the frequency matching condition.

III. RESULTS

A. Fisher information

All equations above are exact within the impulsive
limit. In order to demonstrate the sequence optimisa-
tion procedure, and to easily interpret the (also exact)
numerical results ahead, we now derive an approximate
expression for the low frequency limit of the accumulated
phases and the gain gα. In the low frequency limit, most
terms resulting from the derivative in Eq. (3) vanish, and
we keep only those proportional to the sinc function.
In DD, the first term in Eq. (3) can be upper bound
by exp (−2T/T2). Similarly, correlated Ramsey is up-
per bound by exp (−2τR/T

∗
2 ). Note that, in correlated

Ramsey, it is τR, the duration of a single measurement,
and not T , what upper bounds the Fisher information.
The reason is that in correlated Ramsey, dephasing af-
fects each measurement individually and not the global
sequence, as the qubit is repolarised into its |0⟩ state
after each measurement, which means that the exponen-
tial is a common upper bound of all terms in Eq. (4).
Then, the sum in Eq. (4) can be simplified noting that
the derivatives of oscillating functions can be written as
phase-shifts in Eq. (6).

Considering these approximations for the low fre-
quency regime, and keeping only the leading order in the
total measurement time T (see Ref. [27] and Appendix C
for details of the calculations), for correlated Ramsey

(8)IαNR(T ) = fα
NR(T )

τ2RT

2τ̃
e−2τR/T∗

2 ,

with fα
s a factor that depends on the specific target pa-

rameter and sequence s employed. Here fω
NR = ξ2T 2/3,

fξ
NR = 1, and fφ

NR = ξ2. alternatively, for a single DD
measurement

IαDD(T ) = fα
DD(T )

T 2

2π2
e−2T/T2 , (9)

with fω
DD = 3fω

NR and fξ
DD = 4fξ

NR. Note that, to fairly
compare with correlated Ramsey, we perform a phase
averaging in Eq. (9) which results in IφDD = 0 and that
decreases the total Fisher information by a factor of two.
Dividing Eq. (8) by Eq. (9) gives us

lim
ω→0

gα = e
2

(
T
T2

− τR
T∗
2

)
π2τ2R
T τ̃

fα, (10)

Figure 2. Logarithm of the exact gain for frequency estima-
tion gω from Eq. (5). In (a), we compare correlated Ramsey
to a DD sequence of eight pulses, which we assume to pro-
vide a coherence time enhancement T2 = 8T ∗

2 . We set the
duration of a single Ramsey measurement to τ̃ = 0.5T ∗

2 + τR,
which includes both the phase acquisition time τR and the
overhead time τo. We plot gω, the gain corresponding to the
frequency, as a function of T , the duration of either experi-
ment, and of τR. In (b), we compare correlated Ramsey to a
DD sequence for which we assume a hypothetical strong re-
coherence effect of T2 = 30T ∗

2 , marked by the vertical dashed
line. The total length of the sequence, T = Mτ , is optimized
through the number of pulses M to yield the highest phase
accumulation possible for a given τ that ranges from 2T ∗

2 to
40T ∗

2 . In this case, we set τR = 0.5T ∗
2 , such that each Ram-

sey sequence duration is τ̃ = 0.5T ∗
2 + τo. Here plot gω as a

function of the overhead time τo and the inter-pulse time τ of
the corresponding DD sequence. Note that, in both figures,
we choose the amount of Ramsey sequences N , that an ex-
periment features, to be N = ⌊T/τ̃⌋, the integer part of the
quotient, meaning that it will increase with the total mea-
surement time, and decrease as either τR or τo grows. The
DD sequence duration is, in both cases, independent of the
correlated Ramsey parameters, and sets the frequency of the
target signal, which is chosen in both figures to be ω = π/τ ,
defined in terms of the DD sequence inter-pulse time τ . In
both figures the dashed line indicates the boundary gω = 1,
and we consider the amplitude ξ = 1/T ∗

2 to be the same in
both protocols. For slow frequencies, a correlated Ramsey
solution can always be found which in principle outperforms
DD sequences.

with fω = 1/3 and fξ = 1/4.
Eq. (10) shows that gα grows exponentially for fre-

quencies ω < π/T2 that require T > T2, explicitly show-
ing the physical connection between correlated Ramsey
and dynamical decoupling, and explaining why the for-
mer performs well in the low frequency regime. As the
DD sequence duration approaches the coherence time of
the probe, it is not possible to disregard its influence in
shortening the Bloch vector, reflected as an exponential
decay of the estimation precision. Correlate Ramsey on
the other hand, permits adjusting the sequence duration
τR such that the Bloch vector is renewed in every mea-
surement without a significant loss in its length, as it
happens in high frequency dynamical decoupling, whose
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limit it recovers. In Fig. 2 we use T ∗
2 as unit of mea-

sure, and calculate the frequency gain gω exactly , using
Eq. (5) with the accumulated phases Eqs. (6) and (7),
assuming the frequency matching condition ω = π/τ for
DD. The approximate expression Eq. (10), which repro-
duces well the trends observed in the exact results, as
shown in Fig. 5 in Appendix E, can then be used to gain
insight into the behaviour of each protocol in the low
frequency regime.

The probe coherence time is usually modelled as a
function that grows sublinearly with the number of pulses
M [25]. In Fig. 2(a) we favour DD considering that
T2 = MT ∗

2 (with M = 8), and vary τR aiming for de-
tection of a signal with ω < π/T2. We observe that it is
always possible to find a τR such that correlated Ram-
sey improves the results from DD whenever T > T2. For
frequencies that can be fit within the coherence time T2,
but which still remain small enough (such that T must
be larger than the dephasing time T ∗

2 ), in Fig. 2(b) we
show that, for τR to 0.5T ∗

2 , it can still be advantageous
to choose to perform correlated Ramsey over the typical
DD choice, even in an optimistic coherence time scenario
for DD in which T2 = 30T ∗

2 , conditioned to being able
to keep the overhead time short. Thus, these results map
the transition from a high frequency regime in which DD
is preferred, to a low frequency regime, defined by the
coherence time of the probe, in which correlated Ramsey
has a better performance.

1. Sequence optimisation

The Fisher information is an objective measure of the
performance that a measurement protocol will show on
an experiment, as it defines the minimum error that will
be observed on a parameter estimation derived from a
given experimental data. The similarity between the
exact numerical results and the approximate expression
Eq. (10), reflects that the approximate formulas for the
Fisher information accurately mirror the behaviour of
each protocol according to the defined sequence param-
eters. Then, we can use Eq. (8) to derive the optimal
correlated Ramsey sequence parameters for a given ex-
periment. To do so, we rewrite Eq. (8) in terms of the
sequence parameters, replacing T by N(τR + τo). Since
the total Fisher information is accumulative, we can drop
the N , which is a global factor that will not affect the
position of the maximum, and which only tells that, the
more measurements performed, the better the estimation
will be. Thus, we are left with

IαNR(τR, τo, T
∗
2 ) = fα

NR[(τR + τo)]
τ2R
2
e−2τR/T∗

2 , (11)

where fω
NR[(τR + τo)] = ξ2(τR + τo)

2/3, fξ
NR = 1 and

fφ
NR = ξ2.
Of the parameters susceptible of optimisation, the de-

phasing time T ∗
2 is obvious, as the longer it is, the smaller

the estimation error will be. However, it is relatively fixed

by the probe that it is being used, and by the type of ex-
periment considered. Something similar happens to the
overhead time τo, which, from Fig. 2(b), it is required to
be as short as possible. Nonetheless, τo is lower-bound
by the requirement of measuring the qubit and reinitialis-
ing it with sufficiently high fidelity, being thus limited by
the experiment characteristics. Then, the only parame-
ter that can be tailored to obtain the maximum informa-
tion, is the phase acquisition time per Ramsey sequence
τR. From Eq. (11) we see that said optimal τR depends
on the parameter to be estimated. Then, for the ampli-
tude ξ or the phase φ, the optimal measurement strategy
is to choose τR = T ∗

2 In the case of frequency estimation,
there are two possible solutions for τR that yield a local
maximum of the Fisher information:

τ±R = T ∗
2 − τo

2
±

√
τ2o
4

+ T ∗
2
2. (12)

Of these two options, τR− leads to a negative time which,
if taken as an absolute value, does not yield a maximum.
This leaves us with τ+R as the optimal phase acquisition
time for correlated Ramsey. Surprisingly, we can see that,
optimising the overhead time, which means making it as
small as possible, yields an optimal τR → 2T ∗

2 . Con-
versely, for a large overhead time τo ≫ T ∗

2 , the optimal
Ramsey sequence measurement time for frequency esti-
mation is τR → T ∗

2 .
These results imply two important things: First, both

the optimal overhead time, and, crucially, the optimal
Ramsey measurement time, are substantially different
from those chosen when the probe features long dephas-
ing times, in excess of ms [19, 30, 44], mainly due to both
the overhead time and the dephasing time being similar,
which means none of them can be disregarded during
the optimisation procedure. And second, Eq. (12) shows
that, in fact, rather surprisingly, the best strategy for op-
timal frequency information acquisition is to enlarge each
measurement beyond the dephasing time of the probe.

B. Detection and sensitivity

We now turn to the specific frequency detection ca-
pabilities of correlated Ramsey, and compare them to
various state-of-the-art methods for low frequency sens-
ing with quantum probes, namely, continuous wave opti-
cally detected magnetic resonance (CW-ODMR) and its
pulsed sibling (p-ODMR) [31–35]. Fig. 3(a) we calculate
the exact Iωs of frequency estimation for a total measure-
ment time T = 1000T ∗

2 , and compare it with the min-
imal amount of information –lying above the shadowed
region– that is required for a successful parameter estima-
tion, defined by the Rayleigh criterion (RC) of classical
optics to be Iωs > 4/ω2 = 1/∆ωRC [45–47]. We calcu-
late IωNR for two instances of the phase φ of the signal,
and averaging out such phase. While particular phases
cause oscillations of IωNR at low frequencies, an experi-
ment which measures several time-traces with arbitrary
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phases on each of them [48] shall have no problem in esti-
mating any arbitrarily low frequency, provided the mea-
surement time T is sufficiently long. As expected, IωDD
decreases dramatically for low frequencies. The compar-
ison with the two ODMR variants is calculated exactly
by adapting the results from Refs. [33, 49, 50] to get a
measure of the Fisher information from the mean squared
error for optimal photon counting and contrast, and the
same total measurement time T . We can see that while
CW-ODMR is relatively limited by the low sensitivity
inherent to the technique [50], pulsed ODMR achieves
similar results as correlated Ramsey. It is noteworthy
that all the viable protocols are valid for all low frequen-
cies considered, showing unperturbed Fisher information
regardless of the frequency.

Finally, in Fig. 3(b) we calculate the sensitivity to the
frequency as a function of the total measurement time
T , which following [19] can be defined as ηs =

√
T/Iωs .

We include two instances of T2 behaviour with DD π
pulses, namely T2 = MT ∗

2 and T2 = M0.8T ∗
2 , to which

correlated Ramsey is far superior, even for a coherence
time linearly growing with the number of pulses, which
is the only viable DD protocol for low frequency sensing.
As well, we include the sensitivity for both continuous
wave and pulsed ODMR. We can see that pulsed ODMR
can be a better low frequency detection scheme whenever
the experiment time is constrained by different considera-
tions (e.g. a short sample coherence time), but the supe-
rior scaling with the total measurement time displayed
by correlated Ramsey with respect to ODMR –that is,
1/
√
T 3 vs 1/T ∗

2

√
T 2– means that correlated Ramsey can

always achieve better sensitivities.

C. Real sensors performance

We have already demonstrated that performing corre-
lated Ramsey measurements is an alternative, promising
pathway for low frequency signal detection, on par or
better than state-of-the-art sequences. Now, we focus
on the correlated Ramsey sequence itself and its possible
implementation on different quantum sensors.

A crucial feature of the correlated Ramsey sequence
is that it decouples the parameters describing the sig-
nal from those of the probe or the sequence. That is,
it does not require that any pulses spacing matches the
half period of the external signal, meaning that it be-
comes possible to optimize the sequence without having
prior information about the target signal, based solely on
knowledge from the sensor.

Following this intuition, we can calculate the expected
performance of various sensors with different signals. For
example, for one of the most prominent nano-scale mag-
netometers, the NV center in diamond, following the re-
sults from the previous section, the sensitivity of corre-

lated Ramsey to a magnetic signal is defined as

ηNR =
h̄

µBnavgC

√
T

IωNR

, (13)

with C the measurement contrast and navg the average
number of photons detected per measurement. Thus,
assuming a T ∗

2 = 2 µs, considering a sub-optimal τR =
T ∗
2 /2, and taking a fairly typical measurement contrast of

30% and an average photon number navg = 150 kcounts/s
we have that, for an overhead time τo = T ∗

2 /2, the sen-
sitivity to a signal of frequency ω = π/T2 with T2 = 100

µs is ηNR = 2 nT/
√
Hz. Note that this sensitivity is

independent of the frequency of the signal being probed
as long as ω < π/T ∗

2 , as can be deduced from Fig. 2(a),
whereas for larger frequencies it quickly grows, becoming
impractical for sensing. Furthermore, note that this sen-
sitivity can be improved by choosing an optimal τR ≈ 1.8
µs, as per Eq. (12). As a comparison, for similar param-
eters, a pulsed ODMR experiment achieves a sensitivity
ηp−ODMR = 8 nT/

√
Hz [50].

Using Eq. (13) we can estimate the sensitivity that
different quantum sensors can attain, with the correlated
Ramsey sequence, for low frequency sensing. Alternative
platforms such as trapped ions or Rydberg atoms fea-
ture much longer T ∗

2 times (ms to s) than NV centers,
at the prize of operating at very low or very high tem-
peratures. The added advantage of an extended T ∗

2 is
the limited influence that the overhead time has on the
sensor performance. Thus, for a trapped ion with 2 ms
T ∗
2 time, a sensitivity ηNR = 4 pT/

√
Hz for a signal of

frequency 1 Hz. For the same frequency, but with a T ∗
2 =

1 s on a Rydberg atom, the sensitivity can be decreased
further to ηNR = 10 fT/

√
Hz. These numbers put the

correlated Ramsey sequence in line with state-of-the-art
quantum sensing sequences performance, offering an op-
erating regime that reaches frequencies inaccessible by
conventional techniques for ac sensing.

IV. DISCUSSION AND CONCLUSIONS

We consider the correlated Ramsey protocol for quan-
tum sensing of low frequency signals [30]. We demon-
strate with exact numerical calculations that such a pro-
tocol behaves as a DD sequence attuned for the low fre-
quency regime, avoiding the limitations imposed by the
coherence time of the probe, thus outperforming the
commonly used DD sequences in the regime where the
coherence time of the probe is shorter than the half pe-
riod of the signal. We provide a simple but accurate an-
alytical expression that permits estimating the adequate
parameters to design tailored Ramsey sequences for any
given target signal, show which are the optimal param-
eters for a given sequence, and demonstrate the achiev-
able sensitivity for different quantum sensing platforms,
comparing correlated Ramsey with the performance of
current state-of-the-art low frequency sensing schemes,
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Figure 3. (a) Fisher information for frequency estimation IωNR, for a correlated Ramsey sequence of duration T = 1000T ∗
2 , for two

choices of φ and the phase-averaged result. IωDD for a DD sequence where we assume that the pulses provide a linear coherence
time enhancement T2 = MT ∗

2 , and we define M = ⌈Tπ/ω⌉, the integer part of the quotient plus one, to ensure that, at least,
M = 1. Fisher information corresponding to both continuous wave (CW-ODMR) and pulsed (p-ODMR) optically detected
magnetic resonance, adjusted from [33, 49, 50]. The shadowed area marks the region where Iωs is not sufficient for frequency
estimation, set here at ∆ω < ω2/4 as per the Rayleigh criterion, showing that only correlated Ramsey can successfully access

the low frequency regime. (c) Frequency detection sensitivity
√

T/Iωs as a function of the total measurement time, calculated
in the low frequency regime for a target signal of frequency ω = π/T ∗

2 , for correlated Ramsey, a DD sequence with either
T2 = MT ∗

2 or T2 = M0.8T ∗
2 , CW-ODMR and p-ODMR. Note that all Iss are calculated exactly and that τR = τo = 0.5T ∗

2 in
all Figures, where we choose ξ = 1/τR (ξ = 1/τ for DD), which is optimal for parameter estimation [51]. Smaller values of ξ
would just require larger T . In the case of ODMR we consider optimal detection efficiencies and contrast [50].

which correlated Ramsey matches. Importantly, infor-
mation about the phase of the signal can be acquired by
performing sequential measurements with a precise time
separation. This is the key that permits Ramsey mea-
surements to become sensitive to oscillating signals, even
though it is originally intended for static signals. Signal
processing for parameter estimation can be done through
a variety of methods, including maximum likelihood es-
timation [48], or via least squares fitting to a signal’s
correlation model or Fourier transform [51–53].

The low frequency regime features prominently in a
wide variety of fields, ranging from the study of J cou-
plings in molecules, to the life sciences [34, 54–56]. Our
analysis is made all the more compelling as we demon-
strate that no frequency matching condition is required

for correlated Ramsey, which also equals or improves the
sensitivity with respect to other state-of-the-art low fre-
quency sensing schemes based on the optically detected
magnetic resonance protocol. Correlated Ramsey re-
duces the number of pulses required per measurement,
and limits the damage produced by laser-induced broad-
ening. As such, the correlated Ramsey protocol is an
essential addition to the low frequency sensing toolbox.
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Appendix A: Phase accumulation

We provide a detailed account on how to calculate the phase that a qubit superposition state accumulates when it
is interacting with an external signal, and subject to either the Ramsey sequence or a generic dynamical decoupling
sequence. We consider that both sequences feature an initial π/2 pulse that creates the superposition state on the

qubit, Ψ(0) = (|0⟩+ |1⟩)/
√
2, and a final π/2 pulse after the evolution time which rotates the evolved state onto the

measurement basis. Throughout, we consider that the pulses intended to control the qubit have negligible duration
(impulsive limit), and that their amplitude is much smaller than the qubit energy gap.

Single Ramsey experiment — During the free evolution time τR in the Ramsey sequence, the quantum probe
superposition state evolves influenced by the external signal S(t, ω, ξ, φ), such that after some time t the state of the

probe is Ψ(t) = (|0⟩+ exp [iΦR(t, ω, ξ, φ)] |1⟩) /
√
2, with ΦR(t, ω, ξ, φ) a phase that the probe accumulates, and which

upon transformation onto the measurement basis and interrogation of the qubit state, reveals itself as a population
difference between the states |0⟩ and |1⟩. It is this population difference what carries the information about the
external signal parameters.

For our purposes here, we consider a pure tone signal of cosine form, such that S(t, ω, ξ, φ) = ξ cos (ωt+ φ). Then,
for a Ramsey measurement starting at t = 0 and with duration τR, the accumulated phase is calculated as

ΦR(τR, ω, ξ, φ) = ξ

∫ τR

0

dt cos (ωt+ φ)

= ξτR cos
(ωτR

2
+ φ

)
sinc

(ωτR
2

)
.

(A1)

The accumulated phase Eq. (A1) can be rewritten as ξℜ
{
eiφF [hR(t)]

}
, the real part of the Fourier transform

(or, alternatively, the cosine Fourier transform) of a function hR(t) = 1 in 0 ≤ t ≤ τR and zero otherwise. Such a
function is called response function, and can be said to characterize the value of the coherence of the qubit probe
during the evolution time. Describing the accumulated phase in terms of the Fourier transform of response functions
proves useful for more complicated measurement sequences, as will be shown in the next subsection for dynamical
decoupling.

To demonstrate that it is sensitivity to the phase of the external signal φ what allows Ramsey measurements to
detect oscillating signals, we can solve Eq. (A1) analytically to find its maximum in the frequency ω. This yields

ωτR = tan(ωτR + φ)− sinφ

cos(ωτR + φ)
. (A2)

For φ ̸= nπ the maximum phase accumulation occurs at a frequency ω ̸= 0.
The connection with usual experiments, in which the Ramsey sequence is mostly sensitive to static signals, can be

made by squaring Eq. (A1), and averaging it with respect to the phase to get the filter function, which is the typical
figure of merit for signal detection. Then

⟨ΦR(τR, ω, ξ, φ)
2⟩φ = ξ2τ2Rsinc

2
(ωτR

2

) 1

2π

∫ 2π

0

dφ cos2
(ωτR

2
+ φ

)
=

ξ2τ2R
2

sinc2
(ωτR

2

)
,

(A3)

whose maximum occurs at ω = 0.
Dynamical decoupling — Dynamical decoupling sequences are based on the Hahn echo of classical nuclear magnetic

resonance [22]. As such, they comprise a number M of π pulses acting on the qubit probe during the evolution time,
i.e. in between the two π/2 pulses that initiate and end the measurement sequence. These π pulses are usually evenly
spaced in time, with time separation τ , and their intention is to rephase the qubit state. Specifically, when acting on
the state Ψ(t, ω, ξ, φ), they will invert the state with respect to a particular axis of the Bloch sphere.

To calculate the phase accumulated during a dynamical decoupling sequence, we again have to integrate the external
signal for the duration of the evolution time, which forM π pulses applied isMτ , where we consider that the separation
between the first π pulse and the initial π/2 pulse is τ/2 (see Fig. 1 on the main text for a depiction of both protocols).
The same happens for the last π pulse and the π/2 that finishes the sequence. Moreover, we have to consider the
specific effect that each of the π pulses has on the qubit. To do so, we resort to the response function, and start off from
the Ramsey sequence case, which is also valid to describe the value of the qubit coherence during a free evolution time
τ . Then, since π pulses reverse the sign of the qubit coherence, a dynamical decoupling sequence can be constructed
using response functions of absolute value 1 and that change sign every time a π pulse is applied. For example, the
case of a Hahn echo of duration τ , with a π pulse applied at a time τ/2 is described as h1(t) = hR(t)− hR(t− τ/2),
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where we have taken τR = τ/2. The generic dynamical decoupling sequence response function is constructed repeating

the Hahn echo sequence every τ , such that hM (t) =
M−1∑
j=0

(−1)jh1(t − jτ). It is in this situation where writing the

accumulated phase as a Fourier transform proves useful, as we can then apply the time shift property of the Fourier
transform, that reads F [h(t− t′)] = exp (iωt′)F [h(t)], to the Ramsey sequence results, and calculate the accumulated
phase on a generic dynamical decoupling sequence [43]. Beginning with the Hahn echo sequence and generalizing we
get

ΦDD(T, ω, ξ, φ) = −ξτ cos

(
M

ωτ + π

2
+ φ

)
sin

(
M ωτ+π

2

)
cos

(
ωτ
2

) sin
(ωτ

4

)
sinc

(ωτ
4

)
.

(A4)

Appendix B: Small detuning δ limit for dynamical decoupling

We now calculate explicitly the small detuning limit δ → 0 of the accumulated phase ΦDD(T, ω, ξ, φ) in a dynamical
decoupling sequence with ωDD ≈ ω. Consider the full expression for ΦDD(T, ω, ξ, φ) in Eq. (A4). If the frequency
matching condition is met, such that τ is chosen to satisfy π/τ = ωDD ≈ ω, as it is generally required for a successful
signal detection with dynamical decoupling sequences, we can write ωDD = ω − δ, with δ ≪ ω a small detuning
frequency. Then, using ωDD = π/τ , the following holds: ωτ = ωπ/(ω−δ) = π/(1−δ/ω) ≈ π+πδ/ω+O(δ2) ≈ π+δτ ,
where in the last two steps we have made use of the small detuning assumption. A similar reasoning shows that
Mωτ ≈ M(π + δτ). Considering the terms which do not depend on M in Eq. (A4), we can write them as

4

ωτ

sin2 ωτ
4

cos ωτ
2

=
2

ωτ

1− cos ωτ
2

cos ωτ
2

≈ 2

ωτ

1− cos π

2(1− δ
ω )

cos π

2(1− δ
ω )

≈ 2

ωτ

1 + πδ
2ω +O(δ2)

− πδ
2ω +O(δ2)

≈ − 4

πδτ
,

(B1)

where the last steps involve a Taylor expansion around δ = 0, keeping only the leading order in δ. The terms that
contain M are rewritten as

− cos

(
M

ωτ + π

2
+ φ

)
sin

(
M

ωτ + π

2

)
≈ − cos

(
Mδτ

2
+ φ

)
sin

(
Mδτ

2

)
.

(B2)

Bringing all together with a bit of trigonometry gives us that the following expression for the accumulated phase as
a function of the detuning δ:

Φδ
DD(T, ω, ξ, φ) =

2Mξτ

π
cos

(
Mδτ

2
+ φ

)
sinc

(
Mδτ

2

)
, (B3)

which coincides (up to a 2/π factor) with Eq. (A1) by replacing the sequence duration Mτ → τR and δ → ω.

Appendix C: Detailed Fisher information calculations

Here we provide a step by step derivation of the total Fisher information formulas, for a correlated Ramsey pro-
tocol and a dynamical decoupling sequence of equivalent total duration, in the low frequency limit, with which the
approximate gain is calculated on the main text. We start from the expression for the Fisher information for a single
instance of a general measurement sequence s

Iαs =
sin2 [ΦS(t, ω, ξ, φ)]

exp (2t/Ts)− cos2 [ΦS(t, ω, ξ, φ)]

[
dΦS(t, ω, ξ, φ)

dα

]2
, (C1)
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with ΦS(t, ω, ξ, φ) the accumulated phase during that sequence and α any of the signal parameters. Focusing on
the first factor, we can see that it oscillates between zero and exp (−2t/Ts). We want to compare the information
accumulated due to Ramsey measurements with that accumulated by a dynamical decoupling sequence. For long
measurement time T as required by dynamical decoupling sequences intended for low frequency signals, we can upper
bound this first factor by exp (−2T/T2), and we do the same for correlated Ramsey sequences, thus, the following
approximate expressions for Iαs represent upper bounds on the Fisher information. Additionally, we note that, in the
low frequency limit, with ω → 0, sinc(ωτ/2) → 1, while for the same reason the derivative sinc′(ωτ/2) → 0, therefore,
we can safely neglect the terms including sinc′(ωτ/2) in the calculation. This works for a Ramsey measurement. In
the case of a dynamical decoupling sequence, the argument is the same but for the approximate formula Eq. (B3), in
which, when the frequency matching condition of dynamical decoupling sequences is met, δ → 0.

We begin by calculating the Fisher information of correlated Ramsey. For an arbitrary Ramsey sequence we have
that

IαR(τR) = exp(−2τR/T
∗
2 )

[
dΦR(τR, ω, ξ, φ)

dα

]2
. (C2)

The total Fisher information in a sequence of N measurements is obtained by summing the individual contribu-
tions from each Ramsey measurement composing the sequence. Notice that on implementing the correlated Ramsey
protocol, we have to consider that at the end of each measurement the qubit is repolarized into its |0⟩ state, and
consequently the dephasing affects each measurement individually. This means that on performing the sum of Fisher
informations we can take the exponential term out of the summation, such that

IαNR(T ) = exp(−2τR/T
∗
2 )

N∑
j=1

[
dΦR(tj , ω, ξ, φ)

dα

]2
. (C3)

Here, tj defines the starting times of each Ramsey sequence in the protocol, with j running from 1 to N , and where the
separation between consecutive measurements is such that tj+1 = tj+ τ̃ , with τ̃ = τR+τo including the overhead time
τo spent on interrogating the qubit probe at the end of each sequence, and reinitializing it for the next measurement.
Considering a tj starting time modifies Eq. (A1) adding an extra ωtj to the initial phase φ.

We begin with the case of the amplitude ξ, and we consider t1 = 0 such that tj = jτ̃ . Then, using N = T/τ̃ , we
get that:

N∑
j=1

[
dΦR(τR, ω, ξ, φ)

dξ

]2
= τ2Rsinc

2
(ωτR

2

) N∑
j=1

cos2
(
ωtj +

ωτR
2

+ φ
)

≈ τ2RT cos2 φ

τ̃
,

(C4)

where we have applied the low frequency limit ω → 0.

The case of the phase φ is similar, yielding

N∑
j=1

[
dΦR(τR, ω, ξ, φ)

dφ

]2
= ξ2τ2Rsinc

2
(ωτR

2

) N∑
j=1

sin2
(
ωtj +

ωτR
2

+ φ
)

≈ ξ2τ2RT sin2 φ

τ̃
.

(C5)
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The frequency ω contains a few more terms, but can be calculated in the same way:

N∑
j=1

[
dΦR(τR, ω, ξ, φ)

dω

]2
(C6)

= τ2Rξ
2sinc2

(ωτR
2

) N∑
j=1

(tj + τR/2)
2 sin2

(
ωtj +

ωτR
2

+ φ
)

(C7)

= τ2Rξ
2sinc2

(ωτR
2

) N∑
j=1

(
t2j +

τ2R
4

+ tjτR

)
sin2

(
ωtj +

ωτR
2

+ φ
)

(C8)

≈ τ2Rξ
2 sin2 φ

[
τ̃2

6

(
N + 3N2 + 2N3

)
+

τ2RN

4
+

τRτ̃

2

(
N +N2

)]
(C9)

≈ τ2Rξ
2 sin2 φ

[
τ̃2N3

3
+O(N2) . . .

]
≈ ξ2τ2RT

3 sin2 φ

3τ̃
, (C10)

where we keep just the leading order in N = T/τ̃ .
We can further simplify the expressions above for the total Fisher information of each parameter by taking a phase

average, as we did in Eq. (A3), which reduces each of them by a factor of 2. Then, we can write them in compact
form as

IαNR(T ) = fα
NR

τ2RT

2τ̃
exp(−2τR/T

∗
2 ), (C11)

which corresponds to the expression provided on the main text, with fω
NR = ξ2T 2/3, fξ

NR = 1 and fφ
NR = ξ2.

The Fisher information for a dynamical decoupling sequence can be immediately calculated using Eq. (B3). Note
that in a dynamical decoupling sequence, the phase φ of the external signal will be random, and the sequence will
gather no information about it. This means that in order to fairly compare the information about the frequency and
the amplitude gathered on a dynamical decoupling sequence, to that acquired for the same parameters on a correlated
Ramsey protocol of equal duration, we need to consider the uncertainty about the phase by again taking the average
with respect to it. Then, for a dynamical decoupling sequence of total duration T, the Fisher information is

IωDD(T ) =
ξ2T 4

2π2
sinc2

(
δT

2

)
e−2T/T2 ≈ fω

DD

T 2

2π2
e−2T/T2 , (C12)

for the frequency and

IξDD(T ) =
2T 2

π2
sinc2

(
δT

2

)
e−2T/T2 ≈ fξ

DD

T 2

2π2
e−2T/T2 , (C13)

for the amplitude. Then, fω
DD = 3fω

NR while fξ
DD = 4fξ

NR. Note that in both equations we consider the low detuning
limit δ → 0.

Appendix D: Short Hahn echo vs correlated Ramsey

In this Section, we compare the performance of correlated Ramsey with that of a Hahn echo. As we did for Fig. 2(b)
in the main text, here we also choose an hypothetical probe for which the coherence time in the presence of π pulses
is T2 = 30T ∗

2 , unaffected by the number of pulses, but in Fig. 4, rather than optimizing the DD sequence for said T2

adjusting the number of pulses, we keep the Hahn echo sequence, which defines the total duration of the measurement
to be T = 2τ , i.e. twice the duration of the sequence. As well, the target signal frequency is defined through the pulses
separation as ω = π/τ . Thus we explore the regime in which frequencies can still be fit within the coherence time
T2, but which remains small enough (such that T must be larger than the dephasing time T ∗

2 ). In this intermediate
regime, despite the Hahn echo phase accumulation being relatively untouched by decoherence, especially at short
measurement times, we see that choosing τR to be 0.5T ∗

2 , it is still advantageous to perform correlated Ramsey,
whenever the overhead time can be also kept short. This somewhat counter-intuitive behaviour is explained by the
fact that the DD sequence of choice does not use the whole of the coherence time available efficiently, and due to the
correlated Ramsey sequence being specifically designed for frequency detection, where accumulating measurements
and correlating in post-processing increases the information that can be extracted. Thus, these results map the
transition from a high frequency regime in which DD is preferred, to a low frequency regime, defined by the coherence
time of the probe, in which correlated Ramsey has a better performance.
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Figure 4. Logarithm of the exact gain for frequency estimation gω in Eq. (5). In this Figure, we compare correlated Ramsey
to a Hahn echo sequence for which we assume a hypothetical strong recoherence effect of T2 = 30T ∗

2 . The total length of the
sequence T = 2τ ranges from 2T ∗

2 to 40T ∗
2 , and the pulses separation τ for the Hahn echo sets the frequency of the target signal,

which is chosen to be ω = π/τ . Additionally, we set τR = 0.5T ∗
2 , such that each Ramsey sequence duration is τ̃ = 0.5T ∗

2 + τo,
and plot gω as a function of the overhead time τo and the duration of either experiment T . Note that we choose the amount
of Ramsey sequences N , that an experiment features, to be N = ⌊T/τ̃⌋, the integer part of the quotient, meaning that it will
increase with the total measurement time, and decrease as τo grows. The Hahn echo sequence duration is independent of the
correlated Ramsey parameters, the dashed line indicates the boundary gω = 1, and we consider the amplitude ξ = 1/T ∗

2 to
be the same in both protocols. For slow frequencies, a correlated Ramsey solution can always be found which in principle
outperforms any Hahn echo.

Appendix E: Approximate gain comparison

We show now that the results for the gain presented on Fig. 2, which were calculated exactly, are well reproduced
with the approximate formula

lim
ω→0

gα = e
2

(
T
T2

− τR
T∗
2

)
π2τ2R
T τ̃

fα, (E1)

with fω = 1/3 and fω = 1/4. We can see that the trends observed in the exact results are well captured by the
approximate formula Eq. (E1), despite deviations [especially in Fig. 5(b)], that can be attributed to the different
approximations considered, specially truncating the number of terms with T on Eq. (C10), which, as all other ap-
proximations taken, favours dynamical decoupling sequences, in spite of which most scenarios of low frequency still
show the advantage of performing correlated Ramsey measurements.

The results presented here show that, despite the approximations taken, in the low frequency limit, the approximate
formula Eq. (E1) can be used to estimate in a simple way the performance of a given correlated Ramsey protocol as
compared to the equivalent dynamical decoupling sequence, allowing to choose the best Ramsey sequence parameters
that maximize the gain.
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Figure 5. Logarithm of the approximate gain for frequency estimation gω in Eq. (E1). In (a) we compare correlated Ramsey
to a DD sequence of eight pulses, which we assume to provide a coherence time enhancement T2 = 8T ∗

2 . We set the duration
of a single Ramsey measurement to τ̃ = 0.5T ∗

2 + τR, which includes both the phase acquisition time τR and the overhead time
τo. We plot gω, the gain corresponding to the frequency, as a function of T , the duration of either experiment, and of τR.
(b) Comparison between correlated Ramsey and a Hahn echo sequence for which we assume a hypothetical strong recoherence
effect of T2 = 30T ∗

2 . The total length of the sequence T = 2τ then ranges from 2T ∗
2 to 40T ∗

2 . In this case, we set τR = 0.5T ∗
2 ,

such that each Ramsey sequence duration is τ̃ = 0.5T ∗
2 + τo. In this case, we plot gω as a function of the overhead time τo and

the duration of either experiment T . Note that in both figures the dashed line shows the boundary gω = 1, and we consider
the amplitude ξ to be the same in both protocols, such that gω does not depend on ξ.
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