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Abstract

Introducing additional tunable parameters to quantum circuits is a powerful way of improving per-
formance without increasing hardware requirements. A recently introduced multiangle extension of the
quantum approximate optimization algorithm (ma-QAOA) significantly improves the solution quality
compared with QAOA by allowing the parameters for each term in the Hamiltonian to vary indepen-
dently. Prior results suggest, however, considerable redundancy in parameters, the removal of which
would reduce the cost of parameter optimization. In this work we show numerically the connection
between the problem symmetries and the parameter redundancy by demonstrating that symmetries can
be used to reduce the number of parameters used by ma-QAOA without decreasing the solution quality.
We study Max-Cut on all 7,565 connected, non-isomorphic 8-node graphs with a nontrivial symmetry
group and show numerically that in 67.4% of these graphs, symmetry can be used to reduce the number
of parameters with no decrease in the objective, with the average ratio of parameters reduced by 28.1%.
Moreover, we show that in 35.9% of the graphs this reduction can be achieved by simply using the largest
symmetry. For the graphs where reducing the number of parameters leads to a decrease in the objective,
the largest symmetry can be used to reduce the parameter count by 37.1% at the cost of only a 6.1%
decrease in the objective. We demonstrate the central role of symmetries by showing that a random
parameter reduction strategy leads to much worse performance.

1 Introduction

Quantum hardware has improved rapidly in recent years [1-4], opening up the possibility of demonstrating
quantum advantage on a relevant practical problem. Combinatorial optimization problems are commonly
considered targets for near-term quantum devices [5, 6], with the quantum approximate optimization al-
gorithm (QAOA) [7,8] as a promising candidate algorithm because of its low hardware resource require-
ments [9-12].

QAOA solves optimization problems using a parameterized circuit composed of layers of alternating op-
erators, with two operators being evolutions with a Hamiltonian encoding the objective function and a
problem-instance-independent mixer Hamiltonian. The evolution times are free parameters (often called an-
gles), which are optimized with the goal of maximizing the expected quality of the measurement outcomes.
The success of variational quantum algorithms with a large number of trainable parameters such as quan-
tum neural networks and the variational quantum eigensolver [13] motivated the introduction of additional
parameters in QAOA. Intuitively, adding additional parameters to the algorithm based on the structure
of the problem can only increase the circuit expressiveness and thereby can only improve the algorithm’s
performance.

Multiangle QAOA (ma-QAQA) is a modification of QAOA that incorporates additional parameters [14]
by allowing the parameter associated with each term in the problem and mixer Hamiltonian to vary inde-
pendently. ma-QAOA has been shown to solve Max-Cut on star graphs exactly using only one layer, whereas
QAOA achieves an approximation ratio of only 0.75. The improvement in the quality of the solution achieved
by the introduction of the parameters is modest, however, suggesting that the large number of parameters



does not translate to a highly expressive circuit. Moreover, preliminary ma-QAOA research has shown that
parameters tend to cluster around multiples of 0.257 [15]. Together, these observations suggest that the
number of parameters in ma-QAOA can be reduced without affecting the solution quality.

In this work we demonstrate the connection between the redundancy in ma-QAOA parameters and the
problem symmetries. Specifically, we reduce the number of parameters by setting the parameters connected
by a chosen symmetry to be equal. We consider the problem of Max-Cut and show numerically that on
68.0% of graphs that have a nontrivial symmetry group, the number of parameters can be reduced on average
by 28.1% by using one of the symmetries without decreasing the objective function value. Inspired by this
observation, we propose a modification of ma-QAOA that uses the full symmetry group (max-sym-QAOA).
The full symmetry group can be obtained efficiently for many classes of graphs, and fast heuristic solvers
can be used in practice [16]. We show that max-sym-QAOA reduces the number of parameters by 37.1%
at the cost of only a 6.1% decrease in the objective. Moreover, we provide evidence of the centrality of
the symmetries by showing that a random strategy with the same number of parameters yields much worse
performance.

This paper is organized as follows. First, we introduce binary optimization, QAOA, and graph symmetry
background material in Sec. 2. In Sec. 3 we then discuss the methods used in this work. In Sec. 4 we discuss
our results, and we conclude with a discussion in Sec. 5.

2 Background

We first briefly review the relevant background material and introduce the notation.

2.1 Binary Optimization Problem

We consider binary optimization(BO) problems of the form max,¢o 1y f(2), where f(x) is a non-negative
objective function over the Boolean cube {0,1}™. It is often a sum of other functions that describe the
system, called clauses.

When solving BO problems on quantum hardware, we construct a cost Hamiltonian H, that encodes
f(x), so that H.|z) = f(x) |z). Then the optimization problem becomes

max (z| H.|z).
pohax (zl Hele)
The outcome of the algorithm is marked as z*, and algorithm performance is typically quantified by the
approximation ratio r € [0, 1] given by
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max f(z) max (z| H.|x)’

2.2 QAOA

QAOA is a hybrid quantum-classical algorithm that finds approximate solutions to combinatorial optimization
problems [8]. To solve a given optimization problem with QAOA, one must construct a cost Hamiltonian
H, that encodes the objective function and a mixer Hamiltonian H,,. Let U(y,C) = e~ *#<7 and U(3, B) =
e~ "mB where v and 3 are free parameters. These two unitaries are applied to an initial state |s), which is

—.

an eigenvector of H,,,. The outcome of p iterations of the algorithm is denoted |7, ) p and is

-

5.8, =U(Bys Hu)U (3 He) ...
U(ﬁla Hm>U(’Yl7 HC) |S> .
The parameters v and S are chosen to maximize
E(7,8) = (7.5 He |7.5).

-

Measuring the state |¥, 8) gives an approximate solution to the BO problem encoded by H..



ma-QAOA is similar to QAOA; however, the definitions of U(v,C) and U(8, B) are changed to

U(7,0) = "2 Coe
and
U(B’7 B) = e X Xohy

where C, is a clause in the objective function and X} is the Pauli-x operator acting on qubit b. Throughout
this work, 7, refers to the approximation of y-QAOA, where y is a variation of QAOA.

2.3 QAOA on Max-Cut Problem

The Max-Cut problem is well studied in QAOA literature (e.g. [9,17]) and is thus a natural problem to
consider when studying QAOA variants. Given a simple graph G = (V] E), the Max-Cut problem aims to
partition V into two disjoint sets so that the number of edges with endpoints in both sets is maximized.
This problem is NP-hard to solve exactly.

When solving the Max-Cut problem using QAOA, the cost Hamiltonian is

1
He= Y ST = ZuZy),
uveE

H, = Z Xva

veV

and the mixer Hamiltonian is typically

where Z, and X, are single-qubit Pauli operators acting on qubit v. Each layer of the QAOA circuit has one
~ for all edges and one 3 for all vertices. The number of tunable parameters is just 2p, independent of the
graph size.

In ma-QAOA, each vertex and each edge has its own angle. Thus, there are (|F|+ |V]) - p parameters to
optimize in this modified algorithm. One drawback to this approach is that finding (|E|+|V]) - p parameters
can be difficult, especially as the size of the problems grows. However, the algorithm has better performance
than QAOA has on average [14].

2.4 Graph Symmetries

A graph automorphism is a permutation of the vertex set of a graph, o : V' — V' that satisfies the condition
that a pair of vertices, (u,v), forms an edge if and only if the pair (o(u),o(v)) also forms an edge. Automor-
phisms can be represented by products of disjoint cycles, o = my ... 7, where m; = (41,142,...,7;) and each
entry in the cycle is a unique integer. In this notation, o(i,) = i4+1 modulo j. Any set of automorphisms
can generate a corresponding vertex and edge orbit, which are the equivalence classes of the vertices (edges)
of a graph G under the action of the automorphism.

A generator of a group is a set of automorphisms (o1, ..., 0, ) containing group elements so that (possibly,
repeated) application of the generators on themselves and each other can produce all elements in the group.
In this work, we call the group generator of the automorphism group of the graph G the symmetry generator,
and it can generate corresponding vertex and edge orbits. In this paper we denote the vertex (edge) orbit
of the symmetry generator as the mazimum vertex (edge) orbit, written as O, (O,).

3 Methods

We use the symmetry structure of the problem to reduce the number of parameters in ma-QAQOA. Symmetry is
known to impact QAOA performance [16]. To analyze the role of symmetries, we introduce three modifications
called best-1sym-QAOA, max-sym-QAOA, and rand-group-QAOA.

sym-QAOA selects a single automorphism of the target graph and assigns the same angle to all vertices
in the same vertex orbit and the same angle to all edges in the same edge orbit. It then optimizes the
QAOA parameters and executes the resulting QAOA circuit. best-1sym-QAOA runs sym-QAOA over all
automorphisms of G and selects the one that gives the largest Max-Cut value.



Algorithm 1: max-sym-QAOA

Input : Graph G, number of layers p.

Output: Optimized {57 7} approx. max-cut A

Construct cost Hamiltonian H,. from G

Find the symmetry generator of G and corresponding maximum vertex/edge orbit sets O, O,

N =

Sample |O,| + |O.| initial parameters {5, 7} =A{Bos -+ Bjo,~1],705 - - - s No. -1} Fix vertices/edges
in the same orbit to have the same value |1 (5,7)) « QAOAcirc({5, 7}, p)
E(B,7) < (B, V)| He [¥(B, 7))

{B, 7}, x* + classical optimization algorithms to optimize E(g, ¥)

w

[

When using max-sym-QAOQOA to solve Max-Cut on a graph G, the first step is to compute the symmetry
generator of G and determine the corresponding maximum vertex orbit, O,, and edge orbit, O.. The
algorithm requires |0, | +|O,| parameters, where each element in the same vertex orbit or edge orbit receives
the same parameter. The algorithm samples |O,| + |O.| parameters randomly as initial parameters and runs
the QAOA variational quantum circuit as a subroutine using those parameters. QAOA optimization steps
are applied until the solution converges to the optimal solution or until the desired number of iterations has
been performed. The formal algorithm is described in Alg. 1.

Finding the generating set of the automorphism group of a graph is an extra step in max-sym-QAOA
compared with ma-QAOA. The time complexity of this step is at most quasi-polynomial since its polynomial
time equivalent graph isomorphism problem can be solved by a quasi-polynomial algorithm [18]. Also, many
polynomial time heuristics exist for specific classes of graphs such as nauty [19,20] used in this work.

rand-group-QAOA groups vertices in the problem graph randomly into |O,| sets and edges randomly into
|O.| sets, so that the number of parameters is the same as that of max-sym-QAOA.

The generator used in max-sym-QAOA is usually a set of automorphisms, so max-sym-QAOA is not
always contained in best-1sym-QAOA, which ranges over all single automorphisms. Thus, max-sym-QAOA
may perform better than best-1sym-QAOA.

4 Results

In this work we implement one iteration of max-sym-QAOA, rand-group-QAOA, and best-1sym-QAOA, using
the graph descriptions from [21]. We then compare the algorithms with one another and ma-QAOA using
the data found in [22]. We use COBYLA to optimize the QAOA parameters, although we expect similar
results to be obtained with other gradient-free and gradient-based local methods.

4.1 best-1sym-QAOA vs. ma-QAOA

Among all 7,565 graphs with nontrivial symmetries, best-1sym-QAOA has fewer parameters than ma-QAOA
has on 5,918 graphs. Thus, we analyze only best-1sym-QAOA on those graphs. Figure 1 shows the difference
in approximation ratios between best-1sym-QAOA and ma-QAOA for these 5,918 graphs. best-1sym-QAOA
has the same approximation ratio as ma-QAOA has on 5,097 graphs, which is approximately 86.1% of the
studied graphs, while using on average 28.1% fewer parameters than ma-QAOA uses.

We also quantify the ratio of the difference in the Max-Cut (approximation ratio) values of ma-QAOA
and best-1sym-QAOA to the difference in the Max-Cut (approximation ratio) values of ma-QAOA and QAOA
as

f(z:wa) - f(zgest—lsym—QAOA)

f(@ha) — f(2daoa)

where f(zy) denotes the approximate Max-Cut found by y — QAOA. When k = 0, best-1sym-QAOA recovers
ma-QAOA; and when k£ = 1, best-1sym-QAOA performs the same as QAOA. Thus, this ratio indicates whether
best-1sym-QAOQA performance is closer to ma-QAOA performance or QAOA performance. In this study, the
denominator of the ratio is always nonzero.

; (2)

Kbest-1sym-QAOA =
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Figure 1: Difference of approximation ratio r between ma-QAOA and best-1sym-QAOA, as defined in (1).
For most graphs with symmetry, one symmetry can be used to reduce the number of parameters without
affecting the solution quality.

It is encouraging that the approximation ratios for best-1sym-QAOA and ma-QAOA are similar. But
this finding is of limited value if both methods use the same number of parameters. We therefore consider
the quantity lpest-1sym-Qaoa, Which is the relative difference in parameters between ma-QAOA and best-1sym-
QAOA (as compared with the difference in the number of parameters between ma-QAOA and QAOA). That
is,

|E| + V] = (10c(9)] +0u(9)])
[El+[V] -2

lbest—lsym-QAOA = ) (3)
where |O,(0)| and |O.(0)| are the number of vertex orbits and edge orbits, respectively, induced by the
automorphism o. This ratio determines how close the number of parameters in best-1sym-QAOA is to either
ma-QAOA or QAOA, depending on whether the ratio is closer to 0 or not.

4.2 max-sym-QAOA vs. ma-QAOA

Of the 11,117 connected, non-isomorphic 8-vertex graphs, 3,552 have only trivial symmetries. In these
cases max-sym-QAOA is ma-QAOA. Thus, our analysis focuses on the 7,565 graphs that contain nontrivial
symmetry, where max-sym-QAQA has fewer parameters to optimize over. As shown in Fig. 2, max-sym-QAOA
performs as well as ma-QAOA on 2,713 of these graphs. Furthermore, it performs the same as QAOA on
30 graphs, which is only about 0.4% of the graphs with nontrivial symmetry. These results indicate that
max-sym-QAOA performance is comparable, even though it requires fewer parameters.

We define the ratio of the difference in the Max-Cut values of ma-QAOA and max-sym-QAOA to the
difference in Max-Cut values of ma-QAOA and QAOA as

kmax_sym = f(mma) f(xmax—sym) . (4)
f(@ha) — f(2Qaon)
When k£ = 0, max-sym-QAOA recovers ma-QAOA; and when k = 1, max-sym-QAOA performs the same as
QAOA. Thus, this ratio indicates whether max-sym-QAOA’s performance is closer to ma-QAOA’s performance
or QAOA’s performance. In this study, the denominator of the ratio is always nonzero.
We quantify the ratio of the reduction of parameters from ma-QAQOA to max-sym-QAOA over the difference
in parameters between ma-QAOA and QAOA as

l - ‘E|+|V|_(|Oe|+|0v|) (5)
max-sym - ‘E| T |V| _9 ;

since ma-QAOA uses |E| + |V| parameters, max-sym-QAOA requires |O,| + |O,| parameters, and QAOA uses
two parameters.

Figure 3 shows that a positive correlation exists between the quantities k and I. Among results that
achieve the result equivalent to ma-QAOA, the number of parameters reduced is spread nearly evenly over
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Figure 2: Difference of approximation ratio r between ma-QAOA and max-sym-QAOA, as defined in (1). In
a plurality of graphs with symmetry, simply using the largest symmetry leads to a reduction in the number
of parameters with no impact on solution quality.
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Figure 3: Comparison of Amaxsym and lmaxsym for max-sym-QAOA, as defined in (4) and (5). There is a
positive correlation between these two variables.

[0.1,0.8]. Since there are almost no points between [0,0.1], max-sym-QAOA almost always requires at least
10% fewer parameters than ma-QAOA requires. Imax.sym averaged over all those graphs with nontrivial
symmetries is 0.37.

Note that specifically for those graphs where reducing the number of parameters leads to a decrease in
the objective, max-sym-QAOA can reduce the parameter count by 37.1% at the cost of only a 6.1% decrease
in the objective.

4.3 Evidence for Central Role of Symmetries

max-sym-QAOA is also compared with rand-group-QAQOA, which groups vertices and edges randomly so that
the corresponding number of parameters is the same as that of max-sym-QAOA. Figure 4 demonstrates
the centrality of symmetries to ma-QAQOA parameter redundancy by showing that the parameter reduction
strategy of max-sym-QAOA has a clear advantage over rand-group-QAOA in terms of solution quality.

4.4 max-sym-QAOA vs. best-1sym-QAOA

In this section we compare max-sym-QAOA and best-1sym-QAOA on the 5,918 graphs for which best-sym-QAOA
requires fewer parameters than does ma-QAOA.

Figure 5 indicates that best-1sym-QAOA has k = 0 on nearly twice as many graphs as max-sym-QAOA.
Additionally, k& < 0.6 for the majority of graphs solved with best-1sym-QAOA while k is spread over [0, 1]
with max-sym-QAOQA.



Although max-sym-QAOA does not perform as well as best-1sym-QAOA on the majority of graphs, the
average Imax-sym is around 0.39 while the average lpest-sym is only 0.31, so best-1sym-QAOA has more parameters
than max-sym-QAOQA, on average.

5 Discussion

In this work we demonstrate the connection between the parameter redundancy in ma-QAOA and the sym-
metries of the problem to be optimized. Specifically, we show that the number of parameters in ma-QAOA
can often be dramatically reduced without affecting the solution quality. To that end, we introduce three
QAOA variations that require fewer parameters than ma-QAOA: best-1sym-QAOA, max-sym-QAQOA, and rand-
group-QAOA. The three algorithms assign classical parameters based on the symmetries (automorphisms)
of the underlying problem graph. We evaluate these algorithms on all connected, non-isomorphic 8-vertex
graphs and compare the results with those of ma-QAOA.

In most cases, max-sym-QAOQOA requires at least 10% fewer parameters than ma-QAOA does, while main-
taining a comparable approximation ratio, which is the primary metric of QAOA success. In fact, in over
one-third of the connected 8-vertex graphs with nontrivial symmetry, max-sym-QAOA finds the same ap-
proximate Max-Cut as does ma-QAOA. Furthermore, a positive correlation exists between the number of
parameters reduced and the reduction in the approximation ratio, as expected. Additionally, significantly
more graphs have k = 0 when solved with max-sym-QAOA than rand-group-QAOA, implying that max-sym-
QAOA outperforms rand-group-QAOA in general. On the other hand, significantly more graphs have k = 0
when solved with best-1sym-QAOA than max-sym-QAOA, yet max-sym-QAOA needs fewer parameters (on
average) than does best-1sym-QAOA.

Thus, out of best-1sym-QAOA, max-sym-QAOA, and rand-group-QAOA, rand-group-QAOA appears to have
the worst performance while best-1sym-QAOA appears to have the closest performance to ma-QAOA on these
small graphs. The failure of rand-group-QAOA demonstrates the importance of symmetry to parameter
setting in QAOA.

Approximately one-third of the graphs considered in this study had only trivial symmetry, and max-
sym-QAOA is equivalent to ma-QAOA in these cases. Nonetheless, numerical evidence in [14] suggests that
for these graphs the redundancy in parameters is also present. Therefore, an interesting future direction is
understanding how the redundancy in parameters can be reduced for graphs with no symmetries.

Sauvage et al. proposed using symmetries to improve the performance of variational quantum algo-
rithms [23]. They observed that in ma-QAOA applied to the Max-Cut problem, the number of parameters
can be reduced and the trainability improved by using an approach equivalent to max-sym-QAOA described
in this work. Unlike [23], we highlight the role of symmetries in quantum optimization by showing that
symmetry-based parameter reduction leads to much better performance than does a random approach.
Moreover, we consider utilizing a part of the symmetry group (best-1sym-QAQOA).

max-sym-QAOA
rand-group-QAOA

o o
(o] ©

o
3

o
~

fraction of graphs
o o
w (s,

°

=3
o

0.0 0.2 0.4 0.6 0.8 1.0
k

Figure 4: Fraction of graphs achieving ratio k for max-sym-QAOA and rand-group-QAOA. If a random param-
eter reduction is used, the performance deteriorates significantly, suggesting the central role of symmetries.
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