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We investigate the adiabatic evolution of thermal state in non-reciprocal many-body systems
coupled to their environment and subject to periodic drivings. In such systems we show that
besides the dynamical phase a geometrical phase can exist and it drives the relaxation dynamic of
the system. On the contrary to the dynamical phase which always pushes the system toward its
equilibrium state we show that the geometric phase can speed up or reduce the speed of relaxation
process. These results could have applications in the field of thermal management of complex
systems.

PACS numbers:

I. INTRODUCTION

Understanding and controlling the time evolution of
the thermal state of a system in non-equilibrum situation
is of tremendeous importance in physics. Many strategies
have been implemented to date to actively control this
evolution using an external driving. Hence, by modulat-
ing some intensive quantities, such as the temperature or
the chemical potential, an additional flux to the primary
flux induced by a temperature bias can be generated
and used to control heat exchanges. This shuttling ef-
fect1–4 results from the variation of the local curvature of
flux with respect to these parameters. When the system
displays a negative differential thermal resistance (i.e. a
negative curvature of flux), this effect can contributes to
inhibit the primary flux and even can pump heat from
the cold to the hot part of the system. A slow cycling
modulation of control parameters near-topological singu-
larities5,6 such as exceptional points can also be used to
enhance or inhibit energy exchanges within a system. Fi-
nally, the spatio-temporal modulation of thermal prop-
erties, such as the thermal conductivity or the specific
heat, in systems can give rise7 to an effective convective
flux which superimposes to the diffusive flux. This leads
to an apparent change of heat transport regime which
can be exploited to control heat flows in solids networks
at mesoscopic and macroscopic scales. Beside these de-
veloppements the concept of geometric phase theorized
by Berry8 has been exploited to develop novel pumping
strategies in quantum and classical systems. Inspired by
the Thouless charge pumping9 heat pumping in solid-
state systems has been proposed10 to control heat flux in
numerous classical and quantum systems11,12.

In this work, we introduce a general theory to describe
the temporal evolution of thermal state of arbitrary non-
reciprocal many-body systems13–15 close to their equi-
librium state under the action of external periodic driv-
ings. In the adiabatic limit we show that this modulation
can be used to slightly modify the relaxation dynamics.

We show that in this limit a geometrical phase can ex-
ist which adds to the dynamical phase. We discuss the
necessary conditions for the existence of the geometrical
phase and provide a general example in a two-body sys-
tem interacting with an external bath as well an example
for near-field heat transfer in a many-body system.

II. TIME EVOLUTION OF THERMAL STATE
IN N-BODY SYSTEMS

To start let us consider a generic many-body system
made with N bodies in mutual interaction and in interac-
tion with an external bath at temperature Tb. The time
evolution of thermal state T = (T1, ..., TN ) of this system
under temporal driving is governed by an energy balance
(master) equation of the general form

Ci
dTi
dt

=
∑
j 6=i

Pj→i(T;Tb, t), i = 1, ..., N. (1)

Here Pj→i denotes the power received by the ith element
from the jth element within the system and Ci its heat ca-
pacity. Close to the equilibrium state Teq = (Tb, ..., Tb)

t

the net power can be linearized and expressed in term of
pairwise thermal conductance

Gij = lim
Tj→Ti

Pj→i

Tj − Ti
(2)

and of conductance

Gib = lim
Tb→Ti

Pb→i

Tb − Ti
(3)

between the bath and each element. In this approxima-
tion equations (1) can be recast in the matrix form

C(t)
dT

dt
= Ĝ(t)T + S(t), (4)
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where Ĝ(t) denotes the conductances matrix with

Ĝij = −
∑
j 6=i

(Gij +Gib)δik − (1− δik)Gik, (5)

C = diag(C1, ..., CN ) is the heat capacity matrix and
S(t) is the source vector induced by the bath (i.e. Si =
GibTb). The time evolution of thermal state is given by
the following expression

T(t) = U(t0, t)T0 +

∫ t

t0

U(τ, t)C−1(τ)S(τ)dτ. (6)

Here U denotes the propagator of differential system (4)
and T0 = (T1(t0), ..., TN (t0))t is the initial thermal state.
In reciprocal systems (i.e. Ĝij = Ĝji) the fundamental
matrix can be expressed in term of the exponential of
the conductance matrix so that the thermal state (6)
can easily be calculated. On the other hand, in non-
reciprocal systems (i.e. Ĝij 6= Ĝji), the situation is more
tricky and no simple expression of thermal state can be
derived. Nevertheless, following Garrisson and Wright16
we can, in the adiabatic appoximation, seek a solution
of this system by expanding it over the basis {ϕ⊥}n of
eigenstates of Ĝ. To proceed we first recast the master
equation as

dT̃

dt
= G̃(t)T̃, (7)

by setting T̃ = (T, Tb)
t and

G̃ =


Ĝ

...

 G1b

...
GNb


· · · · · · · · ·(

0 · · · 0
) ... 0

 . (8)

Note, that for convenience Ĝ is now the conductance ma-
trix normalized by the heat capacities. Then we seek a
solution of Eq.(7) using the following expansion

T̃(t) =

N+1∑
i=1

ci(t)e
γdi(t)ϕi(t), (9)

where γdi(t) =
∫ t
0
λi(τ)dτ is the dynamical phase associ-

ated the eigenvalue λi of G̃ while ϕi is its eigenvector. It
is easy to check that λN+1 = 0 is an eigenvalue with the
corresponding eigenvector ϕN+1 = 1N+1 = (1, ..., 1)t. It
turns out that the temperatures vector takes the form

T̃(t) =

N∑
i=1

ci(t)e
γdi(t)ϕi(t) + cN+11N+1. (10)

Since T̃ → (Teq, Tb)
t after a sufficiently long time (Ĝ

being strictly definite negative) we can write the solution

of Eq.(7) as

T̃(t) =

N∑
i=1

ci(t)e
γdi(t)ϕi(t) + Tb1N+1, (11)

Taking the projection of this temperature vector on the
subspace e1 ⊗ ... ⊗ eN generated by the basis vectors ei
of the canonic base, we get finally the thermal state

T(t) =

N∑
i=1

ci(t)e
γdi(t)ϕ⊥i(t) + Tb1N , (12)

where according to the form of the block matrix defined
in (8) ϕ⊥i is the ith eigenvector of Ĝ.

III. ADIABATIC LIMIT AND GEOMETRICAL
PHASE

Inserting the solution in Eq. (12) into the master equa-
tion (4) we obtain, after removing the subscript ⊥ for
readability reasons, the relations

N∑
i=1

∂t(cie
γdiϕi) =

N∑
i=1

ci(t)e
γdiĜϕi + TbĜ1N + S. (13)

As TbG̃1N = −S and Ĝϕi = λiϕi we have equivalently
N∑
i=1

(ċie
γdiϕi + cie

γdiϕ̇i) = 0. (14)

Multiplying this relation by ψj the jth eigenvector of
the transpose matrix Ĝt and using the biorthogonality
relations ψi ·ϕj = δij between the eigenvectors of Ĝ and
Ĝt we find

ċje
γdj +

N∑
i=1

cie
γdiψj · ϕ̇i = 0. (15)

Now, assuming a slow (adiabatic) variation of external
control parameters with respect to time this system sim-
plifies into

ċj + cjψj · ϕ̇j = 0, (16)

whose the solution reads

cj(t) = αje
γgj(t), (17)

with

γgj(t) = −
∫ t

0

dτ ψj · ϕ̇j(τ) (18)

the so called geometric phase. Hence, in the adiabatic
limit the thermal state can be written as

T(t) =

N∑
i=1

αie
γdi(t)eγgi(t)ϕi(t) + Tb1N . (19)

This expression is the classical analog of the Berry’s re-
sult to arbitrary non-reciprocal many body systems. The
constants αi can be readily calculated from the initial
thermal state T0.
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Figure 1: (a) Non-vanishing component of the effective mag-
netic field in the parameter space (x, y). The inset is a sketch
of studied system made with two solids in mutual interaction
with asymmetric conductances and in interaction with an ex-
ternal bath. (b) Trajectory in the parameter space associated
to two different eigenvalues of Ĝ when Λ = τ and (c) Λ = 10τ .
(d) Cumulative geometric phases with τ = 1 s.

IV. A SIMPLE TOY MODEL

To show to what extent the flux is affected by the ge-
ometrical phase we consider below a generic system as
sketched in (Fig.1-a) made of two objets in mutual inter-
action and in interaction with the external bath. In this
case the conductance matrix takes the form

Ĝ =

(
−a G12

G21 −b

)
, (20)

with a = G12 +G1b and b = G21 +G2b. The eigenvectors
of Ĝ and of its transpose are

ϕi =

(
1
G21

b+λi

)
and ψi =

1

βi

(
1
G12

b+λi

)
, (21)

where

λi =
1

2
trĜ±

[
1

4
tr2Ĝ− detĜ

]1/2
(22)

denotes the (real) eigenvalues of Ĝ, βi being calculated
from the normalization relation ϕi · ψi = 1. By setting
xi = G21

b+λi
and yi = G12

G21
it follows that the geometric

phase accumulated between the initial instant up to time
t is

γgi(t) = −
∫ t

t0

dτ
xiẋiyi

1 + x2i yi
. (23)

Now, suppose that Ĝ(t) = Ĝ(R(t)), where R =
(R1, R2)t denotes a set of control parameters and that
there is a time T for which R(t0 + T ) = R(t0). Hence,
we consider a closed trajectory in parameter space. Then
the accumulated geometrical phase in Eq. (23) during
this interval T can be written as

γgi(T ) =

∮
∂S

dR ·Ai, (24)

where

Ai = (∇Rϕi)
t ·ψi (25)

is analog to a vector potential whose associated magnetic
field isBi = ∇×Ai. Here ∂S is the path of the trajectory
in parameter space. Using the Stoke theorem with the
oriented surface S enclosed by the countour ∂S generated
by the change of parameter R during the interval [t0, t0+
T ] we can express the geometric phase in term of Bi as

γgi(T ) =

∫
S

dS ·Bi (26)

where dS is the infinitesimal oriented surface element on
S.

These expressions allow us to determine the vector po-
tential and magnetic field in our two-body system for any
trajectory R. With Eq. (23) for one period T we find

Ai =
xiyi
βi

(
∇Rxi

)
. (27)

Note that this expression is not gauge invariant as it is
typical for vector potentials. For example, also the ex-
pression

A′i = − x2i
2βi

(
∇Ryi

)
(28)

is a valid representation of the vector potential. On the
other hand, the magnetic field is gauge invariant, and
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consequently we obtain for both Ai and A′i the magnetic
field

B = −(∇Rxi)×
(
∇Ryi

) xi
β2
i

. (29)

Interestingly, from this expression it is obvious that B =
0 if yi = 1, i.e. if G12 = G21. Hence, non-reciprocity
is a necessary condition for the appearance of a Berry
phase. Furthermore, the magnetic field vanishes if ∇Rxi
and ∇Ryi are parallel or antiparallel. This happens for a
constant background conductance if ∇RG12 and ∇RG21

are parallel or antiparallel, i.e. if for example G12 and
G21 change in phase with the external parameter change.
Therefore, if G12 and G21 are in phase or phase-shifted
by π, then there is no Berry phase.

The above statements are very general. Now, we take
a conrete path in the parameter space by choosing the
two natural parameters xi and yi for a path embedded in
R3, i.e. R(t) = (xi(t), yi(t), 0)t. Then the magnetic field
is

B = − xi
β2
i

ez. (30)

In Fig. 1 we plot the non-vanishing component of Bi in
the space of control parameters as well as the trajecto-
ries defined by the parametric curve R = (xi(t), yi(t))

t.
It is clear from expresion (26) that the geometric phases
γgi(T ) depends intimely on the the shape of closed con-
tour generated by these trajectories during one oscillation
period.

In Fig. 1-b and 1-c we show some typical trajectories
followed by these parameters during one cycle of modu-
lation and the corresponding cumulative geometric phase
(Fig.1-d) when the exchanges conductances obey to the
following variation laws

G12 = G+ δG cos

(
2π

Λ
t

)
, (31)

G21 = H + δH cos

(
2π

Λ
t+ θ

)
, (32)

G1b = g + δg cos

(
2π

τ
t

)
, (33)

G2b = h+ δh cos

(
2π

τ
t+ θ

)
. (34)

The numerical results show clearly the sensitivity of ge-
ometric effect to the multiperiodicity of driving. When
Λ ∼ τ and Λ → ∞ the integration surface reduces to a
single point so that the Berry phase vanishes. On the
contrary, with a finite period Λ the closed countour de-
limits a non-vanishing area and this countour is simple
(without crossing point) provide that Λ = τ whereas in
the case of multiperiodic driving (i.e. Λ 6= τ) this coun-
tour presents, in general, several crossing points and it
can be decomposed into several loops which are traveled
either in clockwise or anti-clockwise direction. In the
first case if a loop is in the first quadrant (i.e. xi > 0

Figure 2: Approximate (adiabatic) and exact relaxation dy-
namics of hot bodies in a two body system driven by the
conductance matrix (31)-(34) with G = 1, H = 0.8, g = 0.5,
h = 0.3, δG = 0.5, δH = 0.4, δg = δh = 0.1 and θ = π/2.
The initial temperature is T1(0) = 400 K while the exter-
nal bath is set at Tb = 300 K in the case (a) Λ = 10τ and
(b) Λ = τ with τ = 1 s. (c)-(d) Cumulated geometric and
dynamic phases.

and yi > 0) and the countour is browsed in clockwise
direction resulting in a positive contribution to the geo-
metric phase γi. In other words, during this period the
geometric phase tends to insulate the different parts of
the system. On the other hand, if the loop is browsed in
the opposite direction the generated geometric phase is
negative and the relaxation process is accelerated. This
phenomenon is analog to the coiled light mechanism dis-
covered by Chiao et al.17,18 where the parameters space
corresponds to the light polarization state.

Finally, the relaxation dynamic is plotted in Fig. 2
when Λ = 10τ and Λ = τ both using the approximate
adiabatic solution in Eq. 19 and a numerical exact so-
lution of the energy balance equation in Eq. (1) using a
Runge-Kutta (RK) type method. When the oscillation
period Λ of main coupling channel is sufficiently large
compared to the relaxation time of system we see (Fig. 2-
a) that the relaxation dynamics is properly described by
the adiabatic approximation (12). On the other hand,
for shorter oscillations we observe in Fig. 2-b a devia-
tion between this approximation and the exact evolution
calculated with the RK method. Notice that, the cumu-
lated dynamic phases (always negative) being, at large
time scale, larger than the cumulated geometric phase
as shown in Fig. 2-c and Fig. 2-d it always pushes the
system toward its equilibrium state. On the other hand,
the geometrical phase, which can be either positive or
negative, has an oscillatory character and its accumula-
tion after one or several periods can be either positive or
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Figure 3: Geometrical and dynamical phases for the model as
in Fig. 2-c for Λ = 10τ but with G = 0.01, H = 0.1, g = 0.01,
h = 0.01, δG = 0.005, δH = 0.05, δg = 0.1g, δh = 0.1h, and
θ = π/2.

negative so that they can speed up or speed down the
relaxation process. Unfurtunatly, this geometric effect
cannot be persistent in time and the system finishes at
the end to be driven only by the dynamical phase. In
our toy model the two Berry phases γgi(Λ) become much
smaller than the dynamical phases γdi(Λ) after one pe-
riod Λ = 10τ but during the first cycle they can be of the
same order of magnitude and even much larger as visu-
alized in Fig. 3. Optimization procedures will certainly
be able to find the maximal Berry phases in this simple
system and more generally in arbitrary many-body sys-
tems. However, this problem goes far beyond the scope
of the present work.

V. CONCLUSION

In summary, although the physics of non-reciprocal
systems remain today largely ellusive, the results intro-
duced in this work highlight the peculiarities of relaxation
processs for this systems when they are driven by periodic
external actuations. On the contrary to reciprocal sys-
tems, the presence of a geometrical phase superimposes
to the dynamical phase and has the potential to signifi-
cantly alter the relaxation dynamic of systems. We have
shown that this phase can be used either to accelerate or
reduce the speed of relaxation. We hope that these pre-
liminary results will stimulate research on the thermal
control of non-reciprocal systems. On a theoretical point
of view it would be interesting to explore the role played
by the dissipation mechanisms induced by the external
driving as well as the potential of multispectral drivings
on the relaxation dynamics. The non-adiabatic control of
these systems remains also a challenging problem. These
problems will be addressed in subsequent studies.

Acknowledgments

P.B.-A. acknowledges support from the Agence Na-
tionale de la Recherche in France through the NBodheat
project (ANR-21-CE30-0030-01). S.-A. B. acknowledges
support from Heisenberg Programme of the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) under the project No. 404073166. This research
was supported in part by the National Science Founda-
tion under Grant No. NSF PHY-1748958.

∗ Electronic address: s.age.biehs@uni-oldenburg.de
† Electronic address: pba@institutoptique.fr
1 N. Li, P. Hänggi and B. Li, Europhys. Lett. 84, 40009
(2008).

2 N. Li, F. Zhan, P. Hänggi and B. Li, Phys. Rev. E 80,
011125, (2009).

3 I. Latella, R. Messina, J. M. Rubi and P. Ben-Abdallah,
Phys. Rev. Lett. 121, 023903 (2018).

4 R. Messina and P. Ben-Abdallah, Phys. Rev. B 101, 165435
(2020).

5 H. Li, L. J. Fernández-Alcázar, F. Ellis, B. Shapiro and T.
Kottos, Phys. Rev. Lett., 123, 165901 (2019).

6 G. Xu, Y. Li, W. Li, S. Fan and C.-W. Qiu, Phys. Rev.
Lett. 127, 105901 (2021).

7 D.Torrent, O. Poncelet and J.-C. Batsale, Phys. Rev. Lett.,
120, 125501 (2018).

8 M. V. Berry, Proc. Math. Phys. Eng. Sci. 392, 45 (1984).
9 D. J. Thouless, Phys. Rev. B 27, 6083, (1983).

10 Z. Wang, L. Wang, J. Chen and C. Wang, J. Ren, Front.
Phys. 17 (1): 13201 (2022).

11 J. Ren, S. Liu and B. Li, Phys. Rev. Lett. 108, 210603
(2012).

12 T. Chen, X.-B. Wang and J. Ren, Phys. Rev. B 87, 144303

(2013).
13 P. Hanggi and F. Marchesoni, Rev. Mod. Phys. 81, 387

(2009).
14 N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi and B. Li,

Rev. Mod. Phys. 84, 1045 (2012).
15 S.A. Biehs, R. Messina, P.S. Venkataram, A.W. Rodriguez,

J.C. Cuevas, and P. Ben-Abdallah, Rev. Mod. Phys. 93,
025009 (2021).

16 J. C. Garrison and E. M. Wright, Phys. Lett. A, 128, 3,4
(1988).

17 R. Y. Chiao and Y.-S. Wu, Phys. Rev. Lett., 57 (8). 933-
936 (1986).

18 A. Tomita and R. Y. Chiao, Phys. Rev. Lett., 57 (8). 937-
940 (1986).

19 P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev.
Lett. 107, 114301 (2011).

20 P. Ben-Abdallah, Phys. Rev. Lett. 116, 084301 (2016).
21 I. Latella and P. Ben-Abdallah, Phys. Rev. Lett. 118,

173902 (2017).
22 A. Ott, R. Messina, P. Ben-Abdallah, S.-A. Biehs, J. Pho-

ton. Energy 9, 032711 (2019).
23 R. M. Abraham Ekeroth, A. García-Martín, and J. C.

Cuevas, Phys. Rev. B 95, 235428 (2017).

mailto:s.age.biehs@uni-oldenburg.de
mailto:pba@institutoptique.fr


6

24 R. M. Abraham Ekeroth, P. Ben-Abdallah, J. C. Cuevas
and A. García-Martín, ACS Photonics 5 705 (2018).

25 E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186,
705 (1973).

26 S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H.

Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A.
García-Martín, and J. J. Sáenz, Optics Express, 18, 4, pp.
3556-3567 (2010).


	I Introduction
	II Time evolution of thermal state in N-body systems
	III Adiabatic limit and geometrical phase
	IV A simple toy model
	V conclusion
	 Acknowledgments
	 References

