
Combining Reinforcement Learning and Tensor Networks, with an Application to
Dynamical Large Deviations

Edward Gillman,1, 2 Dominic C. Rose,3 and Juan P. Garrahan1, 2

1School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
2Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,

University of Nottingham, Nottingham, NG7 2RD, UK
3Department of Physics and Astronomy, University College London,

Gower Street, London WC1E 6BT, United Kingdom

We present a framework to integrate tensor network (TN) methods with reinforcement learning
(RL) for solving dynamical optimisation tasks. We consider the RL actor-critic method, a model-
free approach for solving RL problems, and introduce TNs as the approximators for its policy
and value functions. Our “actor-critic with tensor networks” (ACTeN) method is especially well
suited to problems with large and factorisable state and action spaces. As an illustration of the
applicability of ACTeN we solve the exponentially hard task of sampling rare trajectories in two
paradigmatic stochastic models, the East model of glasses and the asymmetric simple exclusion
process (ASEP), the latter being particularly challenging to other methods due to the absence of
detailed balance. With substantial potential for further integration with the vast array of existing
RL methods, the approach introduced here is promising both for applications in physics and to
multi-agent RL problems more generally.

Introduction. Tensor networks (TNs), routinely used
in the study of quantum many-body systems [1–7], are
increasing being applied in machine learning (ML), see
e.g. Refs. [8–20]. Both domains often deal with systems
with state-spaces which are exponentially large in the
number of degrees of freedom, say the number of qubits
in a quantum system, or of pixels in images to be clas-
sified. In such situations TNs provide a powerful way
to represent functions, vectors and distributions, while
allowing for efficient sampling and computation of quan-
tities such as inner products and norms.

To date, the intersection of TNs and ML has been
mostly in supervised and unsupervised learning, see e.g.
Refs. [8–20]. In contrast, the combination of TNs and
reinforcement learning (RL) [21] has been more limited,
despite recent major advances in RL [22–26]. While
some promising related directions have been explored,
such as the approximation of Q-functions in the context
of large state-spaces [27], and/or large action-spaces [28],
the flexible integration of TNs with RL remains an open
problem, along with demonstrating useful applications.

Here, we introduce the actor-critic with tensor net-
works (ACTeN) method, a general framework for inte-
grating TNs into RL via actor-critic (AC) techniques. By
combining decision-making “actors” with “critics” that
judge an actor’s quality, AC methods are used in many
state-of-the-art RL applications. Using TNs as the basis
for modelling actors and critics within AC and RL rep-
resents a powerful combination to tackle problems with
both large state and action spaces.

To demonstrate the effectiveness of our approach,
we consider the problem of computing the large devi-
ation (LD) statistics of dynamical observables in clas-
sical stochastic systems [29–35], and of optimally sam-
pling the associated rare long-time trajectories [36–48].
Such problems are of wide interest in statistical mechan-

time

sp
a
ce

FIG. 1. Actor-Critic with tensor networks (ACTeN)
(a) Sketch of a Markov decision process. (b) In actor-critic
RL, the state is passed to an “actor”, which chooses the ac-
tion, and to a “critic”, which values the state given the re-
ward. This value is used to improve the actor’s policy. In
ACTeN, the function approximators for actor and critic are
tensor networks. (c) Top: typical trajectory of the ASEP
at half-filling and L = 50 sites with one particle highlighted
(blue), shown for 3000 steps. Bottom: trajectory with a cur-
rent large deviation, sampled from the ACTeN solution for
biasing (counting) field λ = −3. See the text for details.

ics and can be phrased straightforwardly as an optimiza-
tion problems that may be solved with RL [49–52] and
similar techniques [53–61]. For concreteness we consider
two models: (i) the East model, a kinetically constrained

ar
X

iv
:2

20
9.

14
08

9v
2

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
 5

 A
pr

 2
02

4

2

model used to study slow glassy dynamics, and (ii) the
asymmetric exclusion process (ASEP), a paradigmatic
model of non-equilibrium, in which particles hop around
a lattice while blocking each others movement. In par-
ticular, and in contrast to the East model, the ASEP
(with periodic boundaries) does not obey detailed bal-
ance [62], and thus evades straightforward use of TNs
to compute spectral properties of the relevant dynamical
generators. We demonstrate that ACTeN can be applied
to both problems irrespective of the equilibrium/non-
equilibrium distinction, by computing their dynamical
LDs for sizes well beyond those achievable with exact
methods. Given the vast array of options for improving
the RL algorithm that we use, our results indicate that
the overall framework outlined here is highly promising
for applications more generally.

Background: Reinforcement Learning and Actor-
Critic. A discrete-time Markov decision process (MDP)
[21] consists at each time t ∈ [0, T] of stochastic variables
Xt = (St, at, Rt), named state, action and reward. We
assume these are drawn from t-independent finite sets,
S,A and R, where the action set may depend on the
current state, A(S) for S ∈ S. The action and state
variables are associated with the policy, π(a|S), and en-
vironment, P (S′|S, a), distributions. These are sampled
in a sequence of steps to generate a trajectory of the
MDP, ω = (X0, X1, ..., XT), see Figure 1(a). We assume
that the reward is a deterministic function of the state
and action variables.

In the typical scenario of policy optimisation, the pol-
icy is controllable and known, while the environment
is fixed and potentially unknown. We focus on MDPs
that are “continuing”, and admit a steady state distri-
bution independent of X0. We can then define the aver-
age reward per time-step when following a given policy
as r(π) = limt→∞Eπ[Rt], where Eπ [·] is the stationary
state expectation over states and over transitions from
those states according to policy π. The task of policy op-
timisation is to find the policy π∗ that maximises r(π).
Reinforcement learning (RL) refers to the group of

methods that aim to discover optimal policies by us-
ing the experience gained from sampling trajectories of
an MDP. In policy gradient methods, the policy is ap-
proximated by a function πw(a|S) with parameters w,
and optimized using the gradient of r(πw) with respect
to w. Building on this, actor-critic (AC) methods then
assess πw(a|S) by computing the value, vπ(S), of the
states that result when following the policy. This value
is defined as the difference between rewards in the fu-
ture of a given state and the average reward, vπ(S) =
Eπ [

∑∞
τ=t [Rτ − r(π)] |S]. The gradient of r(πw) can be

written exactly in terms of these values as

∇wr(π) = Eπ [δ
π
t ∇w lnπw(at|St)] , (1)

where we have introduced the temporal difference (TD)
error, δπt = vπ(St+1) + Rt+1 − r(πw) − vπ(St) [21, 49],
which quantifies if a resultant state is better than the

current one. AC methods use this information to alter
the probability of taking that action in the future.

In reality, calculating the true value of every state un-
der the current policy is impractical, and thus an aux-
iliary approximation for the value-function, vψ(S) with
parameters ψ, is introduced, the so-called “critic”. To
optimize the critic, we note that the value of a state is re-
lated to the value of states reachable from it, as encoded
in the differential Bellman equation [21],

vπ(St) = Eπ [vπ(St+1) +Rt+1 − r(πw)|St] . (2)

Minimizing the error in the Bellman equation when sub-
stituting the critic for the true values can be done by
updating the weight as ψ′ = ψ + αEπ [δt∇ψvψ(S)(St)],
in terms of the approximate TD error, δt = vψ(St+1) +
Rt+1 − r(πw) − vψ(St), and a learning rate α. Intu-
itively, the estimated expected reward before a tran-
sition occurs, vψ(St), is compared to the expected re-
ward afterwards plus the true reward for that time-step,
vψ(St+1) + Rt+1 − r(πw), and vψ(S) adjusted to make
these closer. The policy is then updated by following the
gradient in Eq. (1) with the exact TD error δπ replaced
by the critic’s approximate TD error δ.

Analytic Example: Two-Site East Model. To illus-
trate these ideas, consider two spins, s1,2 = 0, 1, evolving
with a constrained set of transitions as in the East model
studied below, such that a spin can flip only when its left-
neighbour (in this case simply the other spin due to peri-
odic boundaries) is 1. The states are S = {00, 01, 10, 11}.
The dynamics of this model can be implemented as an
MDP using a policy that (stochastically) selects which
spins to flip. Denoting no-flip/flip by 0/1 and requiring
at most one spin flip per time-step, the action-sets for
this model are then: A(10) = {00, 01}, A(01) = {00, 10},
and A(11) = {10, 01}, with the state 00 being discon-
nected from the rest. An example policy that selects
from all possible actions equally would assign a proba-
bility of 1/2 to each of these, e.g. π(a = 00|S = 10) =
π(a = 01|S = 10) = 1/2 and similarly for the other
states. The transition to a new state is then enacted by
the environment. We can choose this to be deterministic,
and simply apply the spin-flip operations selected by the
actor to the current state, si → (1−ai)si+ai(1−si). Fi-
nally, an example reward can be defined via the function
R(S, a, S′) = −λ(1−δS′,S), which awards −λ every time
a spin flip occurs (a ̸= 0), encouraging activity/inactivity
for negative/positive λ. For this reward, the optimal pol-
icy for negative λ will maximize activity, flipping a spin
at every step, requiring going from 10 and 01 to 11 with
probability 1, i.e. π∗(01|10) = 1, etc.

Method: Actor-Critic with Tensor Networks
(ACTeN). We now focus on applying AC to solve prob-
lems with large state and action spaces. For example, we
may wish to find the optimal dynamics of a system of L
binary components, resulting in 2L states, with individ-
ual agents and their actions associated to each compo-
nent. To ensure optimal choices for a given task, actions

3

may need to be correlated not only with other agents
states, but also the actions other agents are about to
take. In such problems, simple approaches such as tab-
ular RL fail due to exponentially large memory require-
ments and sampling costs, and a common alternative
is to use neural networks (NNs) when defining πw(a|S)
and vψ(S). TNs offer another approach, with polynomial
memory and computational costs, and showing state-of-
the-art performance in many settings; see e.g. the review
[6]. Motivated by this, we define a general framework
(which we call ACTeN) that exploits TNs to efficiently
represent πw(a|S) and vψ(S).
A TN is a set of tensors, T = {T [1]

i1j1k1···, T
[2]
i2j2k2···, ...},

contracted in some pattern, cf. Fig. 1(b). This results
in a single tensor that can be viewed as defining a mul-
tivariate function, φ(x) = Tx, Tx = C[T], where C indi-
cates the chosen contractions and x all remaining uncon-
tracted indices. For a given problem, the selection of an
appropriate TN depends on factors such as dimensional-
ity and geometry. Here we consider applying ACTeN
to study one-dimensional (1D) systems with periodic
boundaries (PBs) and L components, such that a state
is S = (s1, · · · , sL) with si taking d values. To represent
the value function vψ(S) we use a translation invariant
matrix product state (MPS) which mirrors the chain ge-
ometry of the system. This TN is built from a single
real-valued tensor Asij of shape (d, χ, χ) (or equivalently
d square χ-dimensional matrices [As]ij = Asij) whose el-
ements encode the parameters of vψ(S), ψ = {Asij}ds=1.
For a given S = (s1, · · · , sL) this TN is defined as,

φ(S) = Tr [As1As2 ...AsL] , (3)

i.e., for each site we select the corresponding matrix Asi ,
multiplying the L matrices together with a trace to pro-
duce a real scalar. To take advantage of translation in-
variance and apply approximations from smaller L to
larger L systems, we then define the value function in
terms of φ(S) after the additional application of a square
and log, which prevents the exponential growth or decay
of values as L is changed for fixed Asij . Hence,

vψ(S) = log
[
φ(S)2

]
. (4)

To define πw(a|S) we use a matrix product opera-
tor (MPO). This TN is built from a single real-valued
(dS , dA, χ, χ)-shaped tensor, Aasij , equivalent to ds×dA
χ-dimensional square matrices [Aas]ij = Aasij , i.e., one
matrix per combination of local state and action. Given
a state S = (s1, · · · , sL) and actions a = (a1, · · · , aL),
the contraction is given by the traced matrix product,

φ(a, s) = Tr [Aa1s1Aa2s2 ...AaLsL] . (5)

To use this to define a policy, we need to ensure positivity
and normalization, as well as preventing the policy from
producing invalid actions. To achieve this we define

πw(a|S) = C(a, S)[N (S)]−1φ(a, S)2 , (6)

FIG. 2. Dynamical large deviations in the East model
using ACTeN. Scaled-cumulant generating function for the
dynamical activity of the East model as a function of biasing
field λ from ACTeN (symbols), for L = 50 and PBC. Our RL
results coincide with those obtained from the current state-of-
the-art method using DMRG, cf. Ref. [64] (which is possible
since the East model obeys detailed balance). Inset: Kinetic
constraint of the East model; a spin, si, can flip, si → 1− si,
only if the spin to the left is up, si−1 = 1.

where N (S) =
∑
a|C(a,S)=1 φ(a, S)

2 is the (state-

dependent) normalisation factor and C(a, S) returns one
if an action a is possible in state S or zero otherwise [63].

Application: Dynamical Large Deviations. To test
ACTeN we consider the problem of computing the large
deviations (LDs) of trajectory observables [29, 31, 33] in
the East model and the ASEP in 1D with PBs. Both
models are many-body binary spin systems with large
state-spaces for large L, S = {si}Li=1, with si = 0, 1 (see
the Appendix for details on the models). The dynam-
ics of these systems are subject to local constraints that
lead to rich behaviours in their trajectories, ωT0 = {St}T0 .
This can be observed in the time-integrals of time-local
quantities, O(ωT0) =

∑T
t=1 o(St, St−1), the moments of

which are contained in derivatives of the moment gen-

erating function (MGF), ZT (λ) =
∑
ωT

0
e−λO(ωT

0)P (ωT0),

where P (ωT0) =
∏T
t=1 P (St|St−1)P (S0) is the trajectory

probability under the dynamics.
In the long-time limit, the MGF obeys a large devia-

tion principle [29, 31, 33] with the scaled cumulant gen-
erating function (SCGF), θ(λ) = limT→∞

1
T lnZT (λ),

playing the role of a free-energy for trajectories. In
principle the SCGF can be obtained by sampling meth-
ods. However, this is exponentially hard (in time and
space) using the original dynamics. An alternative
is to find a more efficient sampling dynamics which
may then be combined with importance sampling to
obtain unbiased statistics. This can be formulated
as a RL problem as follows: can we find a param-
eterized dynamics Pw (St|St−1) such that Pw(ω

T
0) =

e−λO(ωT
0)P (ωT0)/ZT (λ), i.e. it reproduces a trajectory

ensemble biased towards rare trajectories of the origi-
nal dynamics. This dynamics is connected to an un-
derlying policy πw(a|S) by a deterministic environment

4

FIG. 3. Dynamical large deviations in the ASEP using ACTeN. (a) In the ASEP particles can only move to an
unoccupied neighbouring site, with probability p to the left and q = 1 − p to the right. (b) SCGF for the time-integrated
particle current as a function of biasing field. We show results from ACTeN for p = 0.1 (squares) and p = 1/2 (diamonds).
The lack of detailed balance for PBC and p ̸= 1/2 prevents straightforward application of DRMG, but for small sizes (here
L = 14) we can compare to exact diagonalisation (blue curve for p = 0.1, green for p = 1/2). (c) SCGF for p = 0.1 from
ACTeN for size L = 50 which is beyond the scope of ED. Compared to L = 14 (blue curve from ED), we see that ACTeN
captures the flattening of the SCGF for larger sizes indicative of a LD phase transition, cf. Ref. [32]. The inset shows the
smooth convergence of our ACTeN numerics with L for two values of λ. (d) Since ACTeN provides direct access to the optimal
dynamics, observables such as the time-integrated current can be evaluated directly (black squares for L = 50). We show for
comparison the numerical differentiation of the ACTeN SCGF (red circles) and of the ED SCGF at L = 14 (blue line).

which returns states after receiving an associated action,
i.e. Pw [S′ = f(a, S)|S] = πw(a|S), where for each S,
f(a, S) returns a unique S′ for each a. For example, in
the East model if we take the action a = {ai}Li=1 then
sites with ai = 1 are flipped and those with ai = 0
are not flipped; the new state is then S′ = f(a, S) =
{(1− ai)si + ai(1− si)}Li=1.

Optimizing the KL divergence between the two tra-
jectory ensembles gives a regularized form of RL with a
reward depending on the policy [49]

Rt = −λo(St, St−1)− ln

(
Pw (St|St−1)

Porig (St|St−1)

)
, (7)

with its expected value becoming the SCGF at optimal-
ity [49]. Intuitively, choosing actions (e.g. flips) to maxi-
mize the first term increases the likelihood of rare events
with extreme values of the observable, while maximizing
the second term minimizes the difference between the
parameterized and original dynamics, thus making the
event more probable. Maximizing this reward is a bal-
ancing act between these two aims, resulting in dynam-
ics biased towards rare events in a way representative
of their occurrence in the original dynamics. In the ap-
pendices, we illustrate ACTeN by solving explicitly the
2-site East model and showing how this can be exactly
represented by the TN ansatz.

(i) East model and dynamical activity: Figure 2 shows
the SCGF of the dynamical activity [total number of
spin flips in a trajectory, defined by o (St, St−1) = 1 −
δSt,St−1

], calculated using ACTeN (symbols). Since the
East model obeys detailed balance, the SCGF is the
log of the largest eigenvalue of a Hermitian operator
and can be estimated via density matrix renormalisa-
tion group (DMRG) methods, cf. Ref. [64–70] (here we
ITensors.jl [71]). Figure 2 shows that the DMRG re-
sults (blue curve) coincide with ACTeN (black squares)

for size L = 50, which is well beyond what is accessible
to exact diagonalisation (ED). Note that DMRG with
PBs tends to be much less numerically stable than for
open boundaries. Nonetheless, ACTeN can reach L ≳ 50
without the need for any special stabilisation techniques.

(ii) ASEP and particle current: Figure 3 presents
the LDs of the time-integrated particle current, de-
fined by o(st, st−1) = 1

2

∑L
i=1 s

i
t−1s

i+1
t − sits

i+1
t−1. Fig-

ure 3(b) shows the SCGF obtained via ACTeN (black
squares/diamonds). Unlike the East model, for asym-
metric hops (p ̸= 1/2) Hermitian DMRG cannot be ap-
plied directly to the ASEP, so for comparison we show
results from exact diagonalisation for both p = 0.1
(blue line) and p = 1/2 for L = 14. Beyond L = 14
ED becomes prohibitive, while ACTeN remains feasible.
Figures 3(c,d), show the expected phase transition be-
haviour [32] and convergence with L up to L = 50. The
optimal dynamics itself, i.e. the learnt policy, can be
used to generate trajectories representative of λ ̸= 0, see
Fig. 1(c), and directly sample rare values of the inte-
grated current, see Fig. 3(d).

Outlook. ACTeN compares very favourably with state-
of-art methods for computing rare events without some
of the limitations, such as boundary conditions or de-
tailed balance. From the corpus of research in both TNs
and RL, our approach has considerable potential for fur-
ther improvement and exploration. These include: nu-
merical improvements to precision via hyper-parameter
searches; stabilisation strategies for large systems; in-
tegration with trajectory methods such as transition
path sampling or cloning; integration with advanced RL
methods such as those offered by the DeepMind ecosys-
tem [72]; generalisation to continuous-time dynamics;
and applications to other multi-agent RL problems, such
as PistonBall [73], via integration with additional pro-

5

cessing layers particularly those for image recognition.

Acknowledgement. We would like to thank Christo-
pher J. Turner for useful discussions. We acknowledge
funding from The Leverhulme Trust grant no. RPG-
2018-181, EPSRC Grant No. EP/V031201/1, and Uni-
versity of Nottingham grant no. FiF1/3. We are grateful
for access to the University of Nottingham’s Augusta
HPC service. DCR was supported by funding from
the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 853368). We thank
the creators and community of the Python programming
language [74], and acknowledge use of the packages JAX
[75], NumPy [76], pandas [77], Matplotlib [78] and h5py

[79]. We also thank the creators and community of the
Julia programming language [80], and acknowledge use
of the packages ITensors.jl [71] and HDF5.jl [81].

Appendix on kinetically constrained models:
(i) East Model. Flipping of a spin is constrained on

the spin to its left being in state 1 [31, 82]. Dynamics
then amounts to two steps: first, select a random site
i with probability 1/L; second, if spin si−1 = 1 then
flip si. Given N spins in state 1 and periodic boundary
conditions, the transition probability is P (s′|s) = 1

L for
each possible new state s′ ̸= s, and probability P (s|s) =
1− N

L for no flip occurring.
(ii) Asymmetric simple exclusion process. The

constraint is particle exclusion: a particle at site i
(si = 1) can move left or right only if the destination
is unoccupied [83]. The movement of a particle to, say,
the right thus corresponds to 10 → 01, i.e. a flip of
both spin variables. The dynamics again amounts to
two steps: first, select a particle with probability 1/N ,
with N =

∑
i si the particle number; second, choose

whether this particle hops right or left with probabilities
p or 1−p, respectively, with the hop occurring if the new
site is unoccupied. The transition probabilities are then:
P (s′|s) = p/N for a right hop; P (s′|s) = (1− p)/N for a
left hop; and, given the number of neighbouring particles
Nnn =

∑L
i=1 sisi+1, with sL+1 := s1, the probability of

no change is P (s|s) = 1−Nnn/N . In the main text, we
consider the case of half-filling, N = L/2.

Appendix on analytical solution of the two-site
East model with tensor network ansatz:

An exact solution for the optimal policy in the two-
site East model can be found by analytically con-
structing the so-called “Doob dynamics” [34, 84] as
follows. First we define a “tilted” evolution operator
[29, 31, 33] Pλ (St|St−1) = e−λo(St,St−1)P (St|St−1), such
that ZT (λ) = ⟨−|PTλ |Pss⟩ where ⟨−| =

∑
S ⟨S| and

|Pss⟩ is the stationary state vector for P . In the large
T limit the SCGF is the log of the largest eigenvalue of
Pλ [29, 31, 33]. The corresponding left eigenvector lλ
is related to the dynamics that maximises the expected
value of Eq. (7), given by the so-called Doob (or opti-

mal) dynamics PDλ (St|St−1) = lλ(St−1)Pλ(St|St−1)

eθ(λ)lλ(St−1)
. Ap-

plied to the two-site East model, defining the function
a(λ) = 4

1+
√

1+8e−2λ
, we find θ(λ) = − ln (a(λ)), with

optimal dynamics

PDλ (10|10) = PDλ (01|01) = a(λ)

2
,

PDλ (11|10) = PDλ (11|01) = 1− a(λ)

2
,

PDλ (10|11) = PDλ (01|11) = 1

2
.

We may then find the corresponding value function
by solving the differential Bellman equation (2). To do
this, note first that by symmetry the values of states 10
and 01 are identical, and second that Eq. (2) is invariant
under an overall shift of the value function by a constant.
Therefore, we may choose the value of states 10 and 01
to be 0, and thus find Vλ(11) = −λ− θ(λ).

These results are what is expected intuitively. Tra-
jectories biased towards enhanced activity (λ < 0) have
a(λ) < 1, making PDλ (11|10) = PDλ (11|01) > 1/2, i.e.
the system is more likely to transition to the state which
is guaranteed to flip at the next step rather than remain
in 01 or 10. Furthermore, Vλ(11) > 0, i.e. the state
guaranteed to flip is more valuable. In contrast, trajec-
tories biased towards reduced activity (λ > 0) show the
opposite behaviour.

To connect PDλ to our policy ansatz Eq. (6), we first
rewrite it as an operator. Using projection operators
P1 = |1⟩ ⟨1|, P0 = |0⟩ ⟨0|, and flip operators σ+ = |1⟩ ⟨0|,
σ− = |0⟩ ⟨1|, we define A(λ) = σ−+a(λ)σ++[2−a(λ)]P0.
We may thus write PDλ = 0.5(P1 ⊗A(λ) +A(λ)⊗ P1).

The policy ansatz Eq. (6) involves the element-wise
square of an operator φ(S′, S): we thus seek the element-
wise square root of PDλ . We define [Ã(λ)]ij =

√
[A(λ)]ij .

Due to their sparsity structures, we have Ã(λ) ⊙ P1 =
0, where ⊙ is element-wise (Hadamard) multiplication.
Since (A⊗B)⊙ (C ⊗D) = (A⊙C)⊗ (B ⊙D), we find
φ =

√
0.5(P1⊗Ã(λ)+Ã(λ)⊗P1) is such that φ⊙φ = PDλ .

It remains to factor φ into an MPO of the form of Eq. (5).
We may rewrite this as φ =

∑χ
d1,d2=1 Td1d2⊗Td2d1 where

each Td′d is a 2× 2 matrix acting on the single site state
space. This T can be constructed by taking χ = 2 with
T11 = T22 = 0, T12 = 0.51/4P1, and T21 = 0.51/4Ã(λ).
We thus find this order-4 tensor T reproduces the ex-
act Doob dynamics from our translation invariant MPO-
based ansatz.

For the value function, taking an exponential and
square-root element-wise of the value function to invert
Eq. (4) leads to the vector Ṽ λ =

(
eVλ(11)/2 − 1

)
|1⟩ ⊗

|1⟩+ |−⟩⊗ |−⟩. Since this is already a sum of symmetric
products, it is easy to rewrite it as a translation invari-
ant MPS with χ = 2, i.e. Ṽ λs1s2 =

∑2
d1,d2=1 v

d1d2
s1 vd2d1s2 ,

with order-3 tensor v such that v111 =
√
eVλ(11)/2 − 1,

v221 = v220 = 1, and vd
′d
s = 0 otherwise.

Appendix on training procedure:

6

FIG. 4. Training Procedure and Learning Curves (ASEP) (a) For each bias [we show λ = −1 (top row), λ = 1
(middle row), λ = 2 (bottom row)] TN-based policies and value-functions are produced via actor-critic optimization. These
are initiated at random for L = 4 with χ = 16 and trained for 106 steps. Every 5000 training steps the average reward of the
policy is evaluated over 104 steps (black squares) and the weights of the policy (which we call a “snapshot” for that time) are
stored. The evaluated values can be compared to the training estimate of r(π) (red circles), which tends to overestimate r(π)
initially. The policy snapshot with the highest evaluated r (blue dashed line) is used to initiate the policy for higher values
of L. This is repeated every ∆L = 2 up to L = 50, with L = 14 shown here. (b) For each bias, several policies (here six)
are independently trained via the same procedure from different random initial conditions. This produces a distribution of
evaluated average rewards, here represented by the median (black squares) and inter-quartile range (red-shaded region). The
policy with the maximum average reward at each L is selected as the optimal dynamics (blue triangles). (c) Same as (a) for
L = 50. The learning curves appear nosier than in (a) but note that the vertical scale is much smaller. The learning rate is
kept fixed throughout. (d) The distribution of r across parallel agents for L = 50 is again much tighter than for L = 14.

We now provide more details on the training proce-
dure used to obtain the policies of the main text. First,
we outline the update step used to improve the policy
and value function approximations. Second, we outline
size-annealing, where we apply transfer learning by us-
ing systems of increasing size. Finally, we discuss policy
evaluation and selection, whereby the best policy is cho-
sen from a set of candidates.

(i) Basic Outline of Training. We start by initial-
izing the parameters w0, ψ0 and r̄0, where r̄t is an esti-
mate of the average reward per-time step, r(πw), after
t training steps, along with the environment and initial
state s0. Choosing the three learning rates απ, αv and
αr, for each step t ∈ [0, T] we:

1. Sample an action at ∼ πw(·|st) [where x ∼
Y (·) stands for x sampled from Y], and from it
get its log probability and eligibility, lnπw(at|st),
∇w lnπw(at|st).

2. Get the next state and reward given the current
state and action, (st+1, rt+1) ∼ P (·, ·|at, st).

3. Get the temporal difference error with the current
value function, δt+1 = vψ(st+1)+rt+1− r̄t−vψ(st).

4. Update the parameters of the value function,
ψt+1 = ψt + αvδt+1∇ψvψ(st).

5. Update the parameters of the policy, wt+1 = wt +
απδt+1∇w lnπw(at|st) .

6. Update the estimate of the average reward per time
step, r̄t+1 = r̄t + αrδt+1 .

(ii) Annealing and Transfer Learning. In the
context of machine learning, “annealing” (sequentially

solving an optimisation problem reusing solutions to im-
prove an initial guess) can be considered a form of trans-
fer learning. In our case, we anneal the size of the sys-
tem: the optimal policies for two system sizes will be
similar as long as L′ ≳ L, and in the settings considered
the optimal dynamics should converge as L→ ∞.

We first approximate the optimal policy for a small
system, L = 4, starting from random initial weights.
The weights after optimisation at this size are then used
as the initial weights for L = 6. This is repeated in steps
of ∆L = 2, up to the maximum desired L. This process
ensures that effectively much longer training times are
used for larger systems, and produces smooth conver-
gence curves in L, which can be used both as diagnostic
tools and for extrapolation [c.f. Fig. 3(c) inset].

(iii) Policy Evaluation and Selection. To deter-
mine the quality of a policy, we use it to generate trajec-
tories without any change to the policy weights [c.f. Fig
1.(c) of the main text]. The set of rewards along these
trajectories can then be averaged to estimate r(πw) for
the policy, allowing for different policies to be compared.

To ensure that we obtain the best policies possible,
we then employ policy selection in two ways. Firstly,
throughout training a given policy we store its weights
periodically. After some number of periods, these weight
snapshots are then evaluated and the best one is selected,
ensuring that the policy can only improve with more
training. Secondly, we run parallel policy optimisations
and evaluations, starting from different random initial
weights, with the best one selected.

The specific processes of policy evaluation and selec-
tion used to produce the results in the main text are
illustrated for the ASEP in Fig. 4 (details in caption).

7

[1] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[2] S. R. White, Phys. Rev. B 48, 10345 (1993).
[3] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[4] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys.

82, 277 (2010).
[5] J. Eisert, Modeling and Simulation 3, 520 (2013),

1308.3318.
[6] S. Montangero, Introduction to Tensor Network Methods

(Springer International Publishing, 2018).
[7] R. Orús, Nature Rev. Phys. 1, 538 (2019), ISSN 2522-

5820.
[8] E. Stoudenmire and D. J. Schwab, in Advances in Neural

Information Processing Systems 29, edited by D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett (Curran Associates, Inc., 2016), pp. 4799–4807,
1605.05775.

[9] Y. Liu, X. Zhang, M. Lewenstein, and S.-J. Ran,
arXiv:1803.09111 (2018).

[10] Z.-Z. Sun, C. Peng, D. Liu, S.-J. Ran, and G. Su,
arXiv:1903.10742 (2019).

[11] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman,
B. Fontaine, Y. Zou, J. Hidary, G. Vidal, and S. Le-
ichenauer, arXiv:1905.01330 (2019).

[12] Z. Ghahramani and M. I. Jordan, Mach. Learn. 29, 245
(1997), ISSN 1573-0565.

[13] S. Efthymiou, J. Hidary, and S. Leichenauer,
arXiv:1906.06329 (2019).

[14] E. M. Stoudenmire, Quantum Sci. Technol. 3, 034003
(2018).

[15] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang,
Phys. Rev. X 8, 031012 (2018).

[16] Z.-F. Gao, S. Cheng, R.-Q. He, Z. Y. Xie, H.-H. Zhao,
Z.-Y. Lu, and T. Xiang, arXiv:1904.06194 (2019).

[17] Y. Levine, O. Sharir, N. Cohen, and A. Shashua, Phys.
Rev. Lett. 122, 065301 (2019).

[18] C. Guo, Z. Jie, W. Lu, and D. Poletti, Phys. Rev. E 98,
042114 (2018).

[19] I. Glasser, N. Pancotti, and J. I. Cirac, arXiv:1806.05964
(2018).

[20] I. Glasser, R. Sweke, N. Pancotti, J. Eisert, and I. Cirac,
in Advances in Neural Information Processing Systems
32, edited by H. Wallach, H. Larochelle, A. Beygelz-
imer, F. Alche-Buc, E. Fox, and R. Garnett (Curran
Associates, Inc., 2019), pp. 1496–1508.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction (MIT Press, 2018).

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al., Nature 518, 529 (2015),
ISSN 00280836.

[23] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha,
J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al.,
arXiv:1812.05905 (2018).

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al., Nature 529, 484
(2016).

[25] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and
P. Moritz, in International Conference on Machine
Learning (2015).

[26] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Lan-
glois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba,

arXiv:1907.02057 (2019).
[27] F. Metz and M. Bukov, arXiv:2201.11790 (2022).
[28] A. Mahajan, M. Samvelyan, L. Mao, V. Makoviy-

chuk, A. Garg, J. Kossaifi, S. Whiteson, Y. Zhu, and
A. Anandkumar, arXiv:2106.00136 (2021).

[29] H. Touchette, Physics Reports 478, 1 (2009), ISSN 0370-
1573, URL https://www.sciencedirect.com/science/

article/pii/S0370157309001410.
[30] J. P. Garrahan, J. Stat. Mech. 2016, 073208 (2016).
[31] J. P. Garrahan, Physica A 504, 130 (2018).
[32] R. L. Jack and P. Sollich, Eur. Phys. J. Spec. Top. 224,

2351 (2015), ISSN 1951-6401.
[33] R. L. Jack (2019), 1910.09883.
[34] R. Chetrite and H. Touchette, Ann Henri Poincaré

(2015).
[35] C. Casert, T. Vieijra, S. Whitelam, and I. Tamblyn,

Phys. Rev. Lett. 127, 120602 (2021), URL https://

link.aps.org/doi/10.1103/PhysRevLett.127.120602.
[36] S. N. Majumdar and H. Orland, J. Stat. Mech. 2015,

P06039 (2015).
[37] R. Chetrite and H. Touchette, J. Stat. Mech. 2015,

P12001 (2015), ISSN 1742-5468.
[38] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L.

Geissler, Annu. Rev. Phys. Chem. 53, 291 (2002).
[39] C. Giardinà, J. Kurchan, and L. Peliti, Phys. Rev. Lett.

96, 120603 (2006).
[40] C. Giardina, J. Kurchan, V. Lecomte, and J. Tailleur, J.

Stat. Phys. 145, 787 (2011).
[41] F. Cérou and A. Guyader, Stoch. Anal. Appl. 25, 417

(2007).
[42] V. Lecomte and J. Tailleur, J. Stat. Mech. 2007, P03004

(2007), URL http://stacks.iop.org/1742-5468/

2007/i=03/a=P03004.
[43] S. Whitelam, D. Jacobson, and I. Tamblyn, J. Chem.

Phys. 153, 044113 (2020), URL https://doi.org/10.

1063/5.0015301.
[44] B. De Bruyne, S. N. Majumdar, and G. Schehr, Phys.

Rev. E 104, 024117 (2021), URL https://link.aps.

org/doi/10.1103/PhysRevE.104.024117.
[45] B. D. Bruyne, S. N. Majumdar, H. Orland, and

G. Schehr, J. Stat. Mech. 2021, 123204 (2021), URL
https://doi.org/10.1088/1742-5468/ac3e70.

[46] B. D. Bruyne, S. N. Majumdar, and G. Schehr, J. Phys.
A 54, 385004 (2021), URL https://doi.org/10.1088/

1751-8121/ac1d8e.
[47] B. De Bruyne, S. N. Majumdar, and G. Schehr, Phys.

Rev. Lett. 128, 200603 (2022), URL https://link.aps.

org/doi/10.1103/PhysRevLett.128.200603.
[48] G. Pozzoli and B. D. Bruyne, arXiv:2207.06865 (2022).
[49] D. C. Rose, J. F. Mair, and J. P. Garrahan, New J.

Phys. 23, 013013 (2021), URL https://doi.org/10.

1088/1367-2630/abd7bd.
[50] A. Das and D. T. Limmer, J. Chem. Phys. 151, 244123

(2019), URL https://doi.org/10.1063/1.5128956.
[51] A. Das, D. C. Rose, J. P. Garrahan, and D. T. Limmer,

J. Chem. Phys. 155, 134105 (2021), URL https://doi.

org/10.1063/5.0057323.
[52] A. Das, B. Kuznets-Speck, and D. T. Limmer, Phys.

Rev. Lett. 128, 028005 (2022), URL https://link.aps.

org/doi/10.1103/PhysRevLett.128.028005.
[53] V. S. Borkar, S. Juneja, and A. A. Kherani, Commun.

Inf. Syst. 3, 259 (2003).
[54] G. Ferré and H. Touchette, J. Stat. Phys. 172, 1525

(2018).
[55] J. Yan, H. Touchette, and G. M. Rotskoff, Phys. Rev. E

https://www.sciencedirect.com/science/article/pii/S0370157309001410
https://www.sciencedirect.com/science/article/pii/S0370157309001410
https://link.aps.org/doi/10.1103/PhysRevLett.127.120602
https://link.aps.org/doi/10.1103/PhysRevLett.127.120602
http://stacks.iop.org/1742-5468/2007/i=03/a=P03004
http://stacks.iop.org/1742-5468/2007/i=03/a=P03004
https://doi.org/10.1063/5.0015301
https://doi.org/10.1063/5.0015301
https://link.aps.org/doi/10.1103/PhysRevE.104.024117
https://link.aps.org/doi/10.1103/PhysRevE.104.024117
https://doi.org/10.1088/1742-5468/ac3e70
https://doi.org/10.1088/1751-8121/ac1d8e
https://doi.org/10.1088/1751-8121/ac1d8e
https://link.aps.org/doi/10.1103/PhysRevLett.128.200603
https://link.aps.org/doi/10.1103/PhysRevLett.128.200603
https://doi.org/10.1088/1367-2630/abd7bd
https://doi.org/10.1088/1367-2630/abd7bd
https://doi.org/10.1063/1.5128956
https://doi.org/10.1063/5.0057323
https://doi.org/10.1063/5.0057323
https://link.aps.org/doi/10.1103/PhysRevLett.128.028005
https://link.aps.org/doi/10.1103/PhysRevLett.128.028005

1

105, 024115 (2022), URL https://link.aps.org/doi/

10.1103/PhysRevE.105.024115.
[56] J. Yan and G. M. Rotskoff, J. Chem. Phys. 157, 074101

(2022), ISSN 1089-7690, URL http://dx.doi.org/10.

1063/5.0095593.
[57] T. Nemoto and S.-i. Sasa, Phys. Rev. Lett. 112, 090602

(2014).
[58] T. Nemoto, R. L. Jack, and V. Lecomte, Phys. Rev. Lett.

118, 115702 (2017).
[59] H. J. Kappen and H. C. Ruiz, J. Stat. Phys. 162, 1244

(2016), ISSN 1572-9613.
[60] P. G. Bolhuis, Z. F. Brotzakis, and B. G. Keller,

arXiv:2207.04558 (2022).
[61] L. Holdijk, Y. Du, F. Hooft, P. Jaini, B. Ensing, and

M. Welling, arXiv:2207.02149 (2022).
[62] Note1, by obeying detailed balance we specifically mean

that a system has a dynamical generator that can be
made Hermitian via a similarity transformation defined
through the stationary state (i.e. equilibrium) distribu-
tion.

[63] Note2, there are two situations where one might sim-
ply set C(a, S) = 1 for all state-action pairs: (i) when
all actions are possible from any state; (ii) the form of
the constraint is unknown and must be learnt, for exam-
ple by penalising the policy when disallowed actions are
selected.

[64] M. C. Bañuls and J. P. Garrahan, Phys. Rev. Lett. 123,
200601 (2019).

[65] P. Helms, U. Ray, and G. K.-L. Chan, Phys. Rev. E 100,
022101 (2019).

[66] P. Helms and G. K.-L. Chan, Phys. Rev. Lett. 125,
140601 (2020), URL https://link.aps.org/doi/10.

1103/PhysRevLett.125.140601.
[67] L. Causer, I. Lesanovsky, M. C. Bañuls, and J. P. Gar-

rahan, Phys. Rev. E 102, 052132 (2020), URL https:

//link.aps.org/doi/10.1103/PhysRevE.102.052132.
[68] L. Causer, M. C. Bañuls, and J. P. Garrahan, Phys.

Rev. E 103, 062144 (2021), URL https://link.aps.

org/doi/10.1103/PhysRevE.103.062144.
[69] L. Causer, M. C. Bañuls, and J. P. Garrahan, Phys. Rev.

Lett. 128, 090605 (2022), URL https://link.aps.org/

doi/10.1103/PhysRevLett.128.090605.
[70] L. Causer, J. P. Garrahan, and A. Lamacraft, Phys.

Rev. E 106, 014128 (2022), URL https://link.aps.

org/doi/10.1103/PhysRevE.106.014128.
[71] M. Fishman, S. White, and E. Stoudenmire, SciPost

Physics Codebases (2022), URL http://dx.doi.org/

10.21468/scipostphyscodeb.4.
[72] DeepMind, Using jax to accelerate our research

(2022), URL https://www.deepmind.com/blog/

using-jax-to-accelerate-our-research.
[73] J. K. Terry, B. Black, N. Grammel, M. Jayakumar,

A. Hari, R. Sulivan, L. Santos, R. Perez, C. Horsch,
C. Dieffendahl, et al., arXiv:2009.14471 (2020).

[74] G. Van Rossum and F. L. Drake, Python 3 Reference
Manual (CreateSpace, Scotts Valley, CA, 2009), ISBN
1441412697.

[75] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, et al., JAX: composable
transformations of Python+NumPy programs (2018),
URL http://github.com/google/jax.

[76] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, et al., Nature 585, 357 (2020),

URL https://doi.org/10.1038/s41586-020-2649-2.
[77] The pandas development team (2022), URL https://

doi.org/10.5281/zenodo.7093122.
[78] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
[79] A. Collette, Python and HDF5 (O’Reilly, 2013).
[80] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,

SIAM Rev. Soc. Ind. Appl. Math. 59, 65 (2017), URL
https://doi.org/10.1137/141000671.

[81] HDF5.jl (2022), URL https://github.com/JuliaIO/

HDF5.jl.
[82] J. Jäckle and S. Eisinger, Zeitschrift für Physik B Con-

densed Matter 84, 115 (1991), ISSN 1431-584X, URL
https://doi.org/10.1007/BF01453764.

[83] F. Spitzer, Advances in Mathematics 5, 246 (1970),
ISSN 0001-8708, URL https://www.sciencedirect.

com/science/article/pii/0001870870900344.
[84] R. L. Jack and P. Sollich, Prog. Theor. Phys. Supp. 184,

304 (2010), ISSN 0375-9687, URL https://doi.org/10.

1143/PTPS.184.304.
[85] E. Gillman and D. C. Rose, Acten, actor critic with

tensor networks, https://github.com/RL-with-TNs/

acten_code (2022).

Supplemental Material

FORWARD PASSES FOR THE EAST MODEL AND SIMPLE EXCLUSION PROCESS

In this section we discuss the so-called forward passes required for the discovery of optimal dynamics using the
function approximations described in the main text. Along with the information here, example scripts that implement
the forward passes can be found on the associated GitHub repository, which should be referred to for more details
[85]. Note that, while we focus here on the case of kinetically constrained spin systems, specifically the east model
and asymmetric simple exclusion process (ASEP), much of the following is generic and can easily be adapted to a
variety of other applications.

Generally, to solve policy optimisation problems with actor-critic (AC), for a given state s we must be able to:

1. Evaluate the function approximation for the state-value function, vψ(S).

2. Sample an action, a, from the function approximation for the policy, πw(a|S).

3. Calculate log [πw(a|S)] for that action.

https://link.aps.org/doi/10.1103/PhysRevE.105.024115
https://link.aps.org/doi/10.1103/PhysRevE.105.024115
http://dx.doi.org/10.1063/5.0095593
http://dx.doi.org/10.1063/5.0095593
https://link.aps.org/doi/10.1103/PhysRevLett.125.140601
https://link.aps.org/doi/10.1103/PhysRevLett.125.140601
https://link.aps.org/doi/10.1103/PhysRevE.102.052132
https://link.aps.org/doi/10.1103/PhysRevE.102.052132
https://link.aps.org/doi/10.1103/PhysRevE.103.062144
https://link.aps.org/doi/10.1103/PhysRevE.103.062144
https://link.aps.org/doi/10.1103/PhysRevLett.128.090605
https://link.aps.org/doi/10.1103/PhysRevLett.128.090605
https://link.aps.org/doi/10.1103/PhysRevE.106.014128
https://link.aps.org/doi/10.1103/PhysRevE.106.014128
http://dx.doi.org/10.21468/scipostphyscodeb.4
http://dx.doi.org/10.21468/scipostphyscodeb.4
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
http://github.com/google/jax
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.7093122
https://doi.org/10.5281/zenodo.7093122
https://doi.org/10.1137/141000671
https://github.com/JuliaIO/HDF5.jl
https://github.com/JuliaIO/HDF5.jl
https://doi.org/10.1007/BF01453764
https://www.sciencedirect.com/science/article/pii/0001870870900344
https://www.sciencedirect.com/science/article/pii/0001870870900344
https://doi.org/10.1143/PTPS.184.304
https://doi.org/10.1143/PTPS.184.304
https://github.com/RL-with-TNs/acten_code
https://github.com/RL-with-TNs/acten_code

2

The computations that implement these are known as the forward passes, while the so-called backward passes im-
plement the gradients of these quantities with respect to the parameters (weights). Since gradients can be calculated
automatically in programming frameworks such as JAX [75], we are only required to implement the necessary forward
passes explicitly for a working AC method.

Evaluation of vψ(S)

Recall that in the main text we defined,

vψ(S) = log
[
φ(s)2

]
, (S1)

where

φ(s) = Tr [As1As2 ...AsL] . (S2)

Since the form of vψ(S) is independent of the dynamics in question, we start by describing its implementation
here, before moving onto the specific implementation of the policy forward passes for each model in turn below. To
ensure the implementation presented is readily applicable to automatic differentiation in frameworks such as JAX

[75], we describe it here in terms of standard functions (specifically “scan” functions) that are amenable to automatic
differentiation.

For a set of steps, k = 1, 2, ..., T , a scan-function is defined by the repeated application of a given function, f , to a
set of inputs, xk, and a single “carry” object, C, that is updated at each step. That is, for each k the scan-function
computes,

C, yk = f (C, xk) , (S3)

where yk is an output at each step which is not carried forward to the remaining steps, but instead is returned from
the overall scan function as an array of the yk values from each step. We will not make use of this output, instead
using the final carry as the result of the scan, and as such will ignore it.

To implement the forward-pass for φ(s) in Eq. (S2), the inputs xk are vectors defined as xk = (1 − sk, sk) with
k = 1, 2, ..., L i.e. L = T . The carry is initiated as the identity matrix, C = I, with shape (χ, χ). The carry output
of f is then defined in terms of the tensor components As,α,β = [As]α,β as,

Cα,γ =

χ−1∑
β=0

1∑
n=0

Cα,βAn,β,γ [xk]n . (S4)

The additional output yk is not required and can be discarded. Collecting the inputs and outputs as vectors, x and
y, then the value of φ(s) is then given by applying the scan-function for this f , followed by a trace over the carry,

C, y = scanf (C, x)

φ(s) = Tr [C] . (S5)

Implemented in this manner, e.g. as found in [85], the gradient of the value-function can be easily evaluated using
auto-differentiation.

Policy Function Approximations For Local Kinetic Constraints

Before turning to details of implementing the forward passes for πw(a|S) in the east model and ASEP, we briefly
discuss here how the constraints on the dynamics can be captured explicitly in the structure of πw(a|S) via the
constraint function C(a, s). To this end, recall first that in the main text we defined the policy function approximation
as,

πw(a|S) = C(a, s)φ(a, s)
2

N (s)
, (S6)

where

φ(a, s) = Tr [Aa1s1Aa2s2 ...AaLsL] . (S7)

3

Here, N (s) =
∑
a|C(a,s)=1 φ(a, s)

2 =
∑
a C(a, s)φ(a, s)2 and C(a, s) is the constraint function, which returns one if an

action a is possible given a state s, or zero otherwise.
The constraint function, C(a, s), allows us to include explicit constraints on the actions selected by our function

approximations. This is particularly powerful when modelling the dynamics of spin systems whose constraints are
both known and such that only a few states can be reached from any other. In that case we can construct C(a, s) so
that our policy reflects these constraints exactly, whereas in other scenarios this must be approximated or learnt.

Single Spin-Flip Constraint: In the dynamics studied in the main-text, we consider two varieties of constraint.
The first, which pertains to both models, requires that at most a single spin is allowed to flip at a given time. For
convenience, we will define the set of actions ãk for k ∈ [1, L+ 1] that represent a flip at site k when k ≤ L and no
flip at any site when k = L+ 1 (in which case the state is unchanged by the action). Taking L = 4 for illustration,
in terms of the variables in the main text where a = (a1, a2, a3, a4) with each ak indicating a flip at site k, we have
ã1 = (1, 0, 0, 0), ã2 = (0, 1, 0, 0), ã3 = (0, 0, 1, 0), ã4 = (0, 0, 0, 1), and ã5 = (0, 0, 0, 0). This constraint can be included
in πw(a|S) straightforwardly via the choice,

C(a, s) =
L+1∑
k=1

δãk,a. (S8)

With the choice of constraint function (S8), sampling πw(a|S) will select actions only from the L+ 1 possibilities
ãk, with other actions having strictly zero probability of occurring. As such, sampling can equivalently be performed
by selecting an action from the probabilities {πw(ãk|s)}L+1

k=1 alone. This simplifies the problem of sampling πw(a|S),
because the normalisation factor N (s) [c.f. (S6)] –which in general is hard to calculate for conditional probabilities–
can be calculated explicitly by enumerating C(ãk, s)φ(ãk, s)2 for all k = 1, 2, ..., L + 1. Thus, at most L + 1 com-
putations are required to sample an action from a policy with this constraint. While, in principle, these could be
computed in parallel, for the problems here we present an alternative method (as applied in the main text) where
the policy is instead sampled via a “sweep”, similar to that performed for more standard tensor network algorithms.

Local Kinetic Constraint: The second aspect of the constraints is the local kinetic constraint. Here, whether
a spin at site k = 1, 2, ..., L can flip depends only on the states of the neighbouring sites at k − 1, k and k + 1. For
example, in the case where the possibility of ãk depends on a three-site neighbourhood we can further write that,

C(a, s) =
L∑
k=1

δãk,aC(ãk, sk−1, sk, sk+1) + δãL+1,aC(ãL+1, s) . (S9)

Note that here we have separated out the “no-flip” action, ãL+1, as this must typically be treated separately in a
given problem.

While both the east model and ASEP are subject to local kinetic constraints, the specific form of the local
constraint function, C(ãk, sk−1, sk, sk+1), will depend on the model in hand. As such, the function approximations
for the polices will differ slightly and, therefore, so will the implementation of the forward passes.

Forward Pass for πw(a|S) in the East Model

We now describe the implementation of the forward pass for πw(a|S) in the east model, see [85] for an explicit
example of implementation. In the east model, a spin can only flip if the spin to its left it up. As such, this local
kinetic constraint can be captured by the local constraint function,

C(ãk, s) = C(ãk, sk−1, sk, sk+1) = sk−1 for k ∈ [1, L] . (S10)

For the case of no-flips, ãL+1, we take this to be always possible unless every spin is up, i.e.,

C(ãL+1, s) = 1− δs,(1,1,1,...,1) . (S11)

Due to the constraint Eq. (S8), we need consider only the possible actions ãk. For these actions, the matrix
product operator used in the function approximation for the policy (S6) takes the form,

φ(ãk, s) = Tr

[(
k−1∏
l=1

A0sl

)
A1sk

(
L∏

l=k+1

A0sl

)]
. (S12)

4

We then define the product of matrices A0sm to the left and right of some site m as,

M left
m =

m−1∏
l=1

A0sl , (S13)

and

M right
m =

L∏
l=m+1

A0sl . (S14)

These matrices can be constructed iteratively as,

M left
m+1 =M left

m A0sm , (S15)

and

M right
m−1 = A0smM

right
m . (S16)

To relate these to the probabilities of taking a given action, we then define the left-environment,

E left
m = C (a, s)M left

m A1sm , (S17)

which includes the site m and the constraint function, C (a, s). With this,

φ(ãk, s) = Tr
[
E left
k M right

k

]
. (S18)

The iterative form of Eq. (S15) and the expression Eq. (S18) shows that we can construct all required φ(ãk, s)
iteratively by “sweeping” from left to right (obtaining E left

k for k = 1, 2, 3, ..., L) and then from right to left (obtaining

M right
k for k = L,L − 1, ..., 1). These sweeps can be implemented efficiently with the use of a scan function, just as

with vψ(S) [c.f. Eq. (S5)]. However, while for vψ(S) just one sweep to the right was required (i.e. a single scan
function), here an additional sweep to the left is required.

Specifically, the rightward sweep is implemented by a scan of the “right-step” function fR, such that C, yk =
fR(C, xk). The carry in this case consists of two objects, C = {EL,M}. The first is the set of left environments,
EL, whose components are the left-environments for a specific site m, i.e. [E left]m = E left

m . The second object is the
matrix M , which at the start of any step k is simply equal to M left

k . At step k, these are updated as,

[EL]k → C(ãk, s)MA1sk , (S19)

M →MA0sk . (S20)

As with vψ(S), the output yk of fR is not needed and can be discarded. Scanning fR then gives,

{EL,M}, y = scanfR({EL,M}, x) , (S21)

where once again the input is a set of vectors, x = {(1− sl, sl)}Ll=1.

According to Eq. (S18), to complete the computations of φ(ãk, s) we must then computeM right
k ∀ k ∈ [1, L]. From

the iterative expression Eq. (S16) it is clear how to achieve this, see [85] for an example implementation.

Forward Pass for πw(a|S) in the ASEP

In the ASEP we consider, the local kinetic constraint is such that particles (i.e. up spins) can move to the left/right
only if there is an unoccupied space (i.e. a down spin) in that position. Moreover, analogous to the east model where
at most only a single spin could flip per time-step, for the ASEP at most a single particle can move left or right. These
constraints can be realised in πw(a|S) by setting the constraint function C(a, s) such that the only possible actions
are the L actions that flip pairs of spins, ãk : (sk, sk+1) → (1 − sk, 1 − sk+1), and the no-flip action ãL+1. Taking

5

L = 4 for illustration, in terms of the fundamental single-site spin flip actions: ã1 = (1, 1, 0, 0), ã2 = (0, 1, 1, 0),
ã3 = (0, 0, 1, 1), ã4 = (1, 0, 0, 1) and ã5 = (0, 0, 0, 0). The constraint function is then,

C(a, s) =
L∑
k=1

δa,ãkC(ãk, s) + δa,ãL+1
C(ãL+1, s) , (S22)

=

L∑
k=1

δa,ãkC(ãk, sk, sk+1) + δa,ãL+1
C(ãL+1, s) , (S23)

=

L∑
k=1

δa,ãk [(1− sk)sk+1 + sk(1− sk+1)] + δa,ãL+1
C(ãL+1, s) . (S24)

Here, in the third line, the choice of local constraint function, C(ãk, sk, sk+1), ensures action ãk only occurs when
there is a single particle in the pair of sites to be flipped.

The special case of no-flip, realised in C(ãL+1, s), can always occur except when no particles have a neighbour (e.g.
(0, 0, 1, 0) for L = 4). This can be expressed as,

C(ãL+1, s) = 1− I

(
L∑
k=1

sksk+1 = 0

)
, (S25)

where we have introduced the so-called indicator function, I, which returns 1 or 0 if the condition in its argument is
true or false respectively.

The expression for φ(ãk|st) in the case of the ASEP is,

φ(ãk, s) = Tr

[(
k−1∏
l=1

A0sl

)
A1skA1sk+1

(
L∏

l=k+2

A0sl

)]
. (S26)

Using the previous definitions for the left-environments, E left
k and the matrices M right

k , this is equivalent to

φ(ãk, s) = Tr
[
E left
k A1sk+1

M right
k+1

]
. (S27)

Expressed in this manner, it is clear that to implement the forward pass for φ(ãk, s) we can again apply a scan
function, just as with the east model. Indeed, the details of this procedure are very similar to those of the east model
outlined previously, although slightly more involved due to the fact the L+ 1 potential actions ãk change two sites
rather than one. For further details, a full example implementation is given in [85].

	Combining Reinforcement Learning and Tensor Networks, with an Application to Dynamical Large Deviations
	Abstract
	References
	Forward Passes for the East Model and Simple Exclusion Process
	Evaluation of v(S)
	Policy Function Approximations For Local Kinetic Constraints
	Forward Pass for w(a|S) in the East Model
	Forward Pass for w(a|S) in the ASEP

