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ABSTRACT 

Quantum computers have been shown to have tremendous potential in solving difficult problems in 

quantum chemistry. In this paper, we propose a new classical-quantum hybrid method, named as power 

of sine Hamiltonian operator (PSHO), to evaluate the eigenvalues of a given Hamiltonian (𝐻̂). In PSHO, 

for any reference state |𝜑0⟩, the normalized energy of the sinn(𝐻̂𝜏) |𝜑0⟩ state can be determined. 

With the increase of the power, the initial reference state can converge to the eigenstate with the largest 

|sin(𝐸𝑖𝜏)|  value in the coefficients of the expansion of |𝜑0⟩ , and the normalized energy of the 

sinn(𝐻̂𝜏) |𝜑0⟩ state converges to 𝐸𝑖. The ground and excited state energies of a Hamiltonian can be 

determined by taking different 𝜏 values. The performance of the PSHO method is demonstrated by 

numerical calculations of the H4 and LiH molecules. Compared with the current popular variational 

quantum eigensolver (VQE) method, PSHO does not need to design the ansatz circuits and avoids the 

complex nonlinear optimization problems. PSHO has great application potential in near-term quantum 

devices. 
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1. Introduction 

Highly accurate quantum chemistry calculations are very important for understanding the intrinsic 

properties of molecules and materials and for elucidating the mechanisms of chemical reactions, and 

play a key role in material designs, biomedicine, energy, and chemical industry.1 The core problem in 

quantum chemistry is to find the energy eigenstates of a given electronic Hamiltonian.2 Of course, not 

only in chemistry, solving eigenvalue-problems of large matrices also has a wide applications in science 

and engineering, such as electrical networks, hydrodynamics, structural mechanics, etc.  

The full configuration interaction (FCI) with complete basis set (CBS) limit is an exact method to 

calculate ground and excited states of molecules, but the computational cost increases exponentially 

with the size of a molecular system, which limits the its applications to systems containing only a few 

atoms.3 In order to treat large molecular systems, approximate methods have been developed to balance 

the accuracy and computational cost, such as coupled-cluster with single and double excitation method 

(CCSD),4 fourth-order Møller-Plesset perturbation theory (MP4),5,6 and density functional theory 

(DFT)7,8. These methods are usually accurate for single-reference state quantum chemical problems 

where only one electronic configuration is dominant in the wavefunction. However, these methods 

work poorly for the simulation of stretched bond molecules, excited states, and transition metals, due 

to the intrinsic multireference character of these strongly correlated systems. Despite that some 

progresses have been achieved in extending these methods to multireference systems, the 

computational cost increase sharply with the increase of the number of considered reference states.9  

Quantum computers possess profoundly different computing mode from classical devices, and 

quantum computing is expected to be able to solve some computational problems which are intractable 

in classical computing.10,11 Developing quantum-chemistry algorithms on quantum computing devices 

has attracted tremendous research interests with the evolving of quantum computing hardware. In the 

FCI algorithm for classical computers, the resource required to store the wavefunctions increases 

exponentially with the increase of the number of molecular orbitals. However, due to the superposition 

and entanglement characteristics of quantum bits (qubits), a wavefunction in FCI is naturally suitable 

to be represented by a group of qubits. Only twice the number of qubits as the molecular orbitals is 

needed for the representation of wavefunctions, so the quantum chemical calculations can be performed 

much more efficiently on quantum computers than on classical ones.  

Quantum phase estimation (QPE) was the first algorithm proposed to solve the Hamiltonian 

eigenvalue problems on a quantum computer,12,13 in which a multiqubit register is required to control 



3 

the time evolution of the Hamiltonian. The number of needed qubits depends on the required accuracy. 

Running the QPE algorithm, the final quantum register state will collapse to one random eigenstate of 

the Hamiltonian. The collapse probability depends on the overlap between the eigenstate and the initial 

state. By repeatedly performing QPE routine for many iterations, all the eigenstates which have non-

negligible overlaps with the initial state can be obtained. Compared with the algorithms for classical 

computers, the QPE algorithm is shown an exponential speedup. However, the implementation of QPE 

requires a large qubit quantum processor with error correction and long coherence time which is a 

severe challenge to current Noisy Intermediate-Scale Quantum (NISQ) devices.14 To mitigate the high 

quantum resource cost of QPE method, many quantum phase based algorithms have also been proposed, 

which partly reduces the depth of quantum circuits.15–18  

Recently, variational quantum eigensolver (VQE), an algorithm suitable for NISQ devices, has 

attracted tremendous attention.19,20 As a hybrid method, the VQE computational workflow is running 

on a infrastructure consisting of classical and quantum computers. A quantum processor is employed 

to prepare a trial state by a quantum circuit (ansatz), where the ansatz circuit is constructed by some 

parameterized quantum gates. By the Jordan-Wigner (or Bravyi-Kitaev) transformation, the 

Hamiltonian within the second quantization formulation can be mapped into a series of Pauli strings. 

The energy can be obtained by measuring the expectation value of these Pauli strings. In the VQE 

algorithm, the classical computer is employed to optimize the ansatz circuit parameters. Compared 

with the QPE method, the ansatz circuit depth in VQE is relatively shallow, which has obvious 

advantages in applying the algorithm on the near-term NISQ devices.21 The original VQE algorithm is 

only applicable to the ground state calculation. Some progresses have been made in extending VQE to 

excited-state calculations, such as quantum subspace expansion (QSE)22, variational quantum deflation 

(VQD)23,24, subspace-search variational quantum eigensolver (SSVQE)25,26 and orthogonal state 

reduction variational eigensolver (OSRVE)27 methods.  

The QPE method requires an error correction, whereas the VQE algorithm is somewhat robust to 

coherent errors.28,29 However, there are two issues for the VQE-based methods. One is that the ansatz 

circuit should be designed rationally. Constructing an effective ansatz circuit is still an open problem. 

Many efforts have been devoted to the development of ansatz circuits, such as the unitary coupled 

cluster with single and double excitations (UCCSD)30, qubit coupled cluster (QCC)31–34, hardware-

efficient ansatz35, adaptive-ansatz36–38 etc. These ansatzes can be classified into two categories. One is 

based on the theoretical methods in Quantum Chemistry, such as UCCSD. The other is the heuristic 
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method, which does not rely on chemical intuition and similar to deep neural networks. However, the 

heuristic ansatz is suffered by the barren plateaus problem, which poses a great challenge to the 

optimization of quantum circuit parameters.39 It is difficult to guarantee  that the state of interest is in 

the representation space of the ansatz circuit. If the eigenstate is beyond the ansatz circuit representation 

space, it is impossible to obtain the correct results. The other drawback of VQE arises from the 

optimization of circuit parameters, and it is very difficult to obtain the global optimal solution for a 

multi-parameter, non-linear, and non-convex optimization problem. The ground state calculation 

requires finding the global minimum. Therefore, even a reasonable ansatz circuit is designed, the 

optimization method also affects the final result accuracy. Moreover, random fluctuation errors are 

inevitably introduced into sampling, which will further affect the performance of the gradient-based 

optimization algorithms.40,41  

In addition to the QPE and VQE methods, nonunitary operation methods have attracted a widespread 

attention.42–44 A typical nonunitary method is the imaginary time evolution (ITE) method, which acts 

the 𝑒−𝛽𝐻̂ operator on an initial state |𝜑0⟩. ITE leads the state evolve into the eigenstate |Ψ0⟩ at the 

evolution time limit (𝛽 → ∞), where |Ψ0⟩ has the lowest eigenvalue of the Hamiltonian 𝐻̂ and the 

overlap between |𝜑0⟩  and |Ψ0⟩  state is non-negligible. The computational complexity of ITE is 

prohibitively high and exponentially dependent on the number of molecular orbitals on the classical 

computer. Therefore, it is of great value to explore the accelerated implementation of the ITE algorithm 

on quantum computers. However, all qubit gates in quantum computers are unitary, which means that 

the nonunitary ITE method cannot be performed directly. There are three ways to indirectly implement 

ITE on quantum computer: variational ITE (VITE)45,46, quantum ITE (QITE)47,48 and probabilistic ITE 

(PITE)49.  

In VITE, similar with VQE, an ansatz circuit is required to prepare the trial state. The effect of ITE 

operator on initial state is reflected by the circuit parameters updating, in which a McLachlan’s 

variational equation should be solved on classical computers. The essence of VITE is within the VQE 

algorithm framework, thus still suffered by the ansatz design problem.50 The ansatz circuit must be 

selected appropriately to ensure that the evolved state can be covered by the manifold of ansatz circuit. 

In QITE, each ITE segment 𝑒−𝜏ℎ̂𝑖 is replaced by a unitary evolution operator (𝑒−𝑖𝜏𝐴̂𝑖), where 𝐴̂𝑖 is a 

linear combination of a series of Pauli strings. A linear equation can be determined such that the 

unitarily evolved state approximates the exactly normalized nonunitary evolved state. The coefficients 
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of Pauli tensors in 𝐴̂𝑖 can be determined by solving the linear equation on classical computer. QITE 

is considered as an efficient approach to evaluate the ground state energy because it does not have the 

two weaknesses in the VQE-based methods and does not require deep circuits. However, the dimension 

of the linear equation grows exponentially with the number of qubits. In order to resolve the exponential 

explosion problem, the local approximation of the state is used to limit the number of Pauli strings, 

which would reduce the accuracy of the QITE method.51–54 In PITE, the measured gates are used to 

implement nonunitary operations. Apply unitary operations on the initial state, and then perform 

measurements. The state collapse to the desired state with a certain probability. A complete PITE 

process should be divided into multiple subroutines. In each subroutine, the state should collapse to the 

desired state successfully, which means that the probability of successfully performing PITE decreases 

exponentially with the number of subroutines.  

In this paper, we propose a new nonunitary operation quantum method, called power of sine 

Hamiltonian operator (PSHO), to evaluate the ground and excited states energy of a quantum many-

body systems. For a given Hamiltonian (𝐻̂) and a reference state |𝜑0⟩, the normalized energy of the 

sinn(𝐻̂𝜏) |𝜑0⟩ state can be determined on quantum device. The normalized sinn(𝐻̂𝜏) |𝜑0⟩ state will 

converge to the eigenstate state with the maximum eigenvalue (|sin(𝐸𝑖𝜏)|) of the |sin(𝐻̂𝜏)| operator. 

Therefore, various eigenstates energy can be obtained by taking different 𝜏 values. Similar with the 

ITE methods, the implementation of PSHO also needs to overcome the nonunitary problem. It is 

difficult to transform the sin(𝐻̂𝜏)  operator into an equivalent quantum circuit. In this paper, we 

skillfully avoid this problem: the normalized energy of sinn(𝐻̂𝜏) |𝜑0⟩  state is calculated without 

preparing the state. The method is based on the equation: sin(𝐻̂𝜏) =
𝑖

2
(𝑒−𝑖𝐻̂𝜏 − 𝑒𝑖𝐻̂𝜏) . For the 

sinn(𝐻̂𝜏) |𝜑0⟩ state, the unnormalized energy can be expressed as a polynomial expansion of 𝑒𝑖𝐻̂𝜏 

with different 𝜏 values, where the expansion coefficient can be determined by the binomial theorem. 

We design a new quantum circuit which can be used to evaluate each term in the expansion. The 

unnormalized energy can be determined by substituting all of estimated values into the expansion. The 

normalization coefficient can be obtained by the same way, and the normalized energy can be obtained 

by dividing the two quantities. In addition, the normalized energy can be calculated with an efficient 

and low-cost route, in which only the normalization coefficients are required without calculating the 

unnormalized energies. With this algorithm, the sampling numbers in the quantum circuit are 
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significantly reduced.  

The rest of the paper is organized as follows. In section 2, we introduce the PSHO algorithm, 

including the main formulas and the technical details. The corresponding quantum circuits are proposed 

in this section. In section 3, we give the numerical simulation results of the H4 and LiH molecules to 

validate our algorithm. The simulation results show that the proposed PSHO method can accurately 

calculate the ground and lower-order excited states. Section 4 summarizes the results and concludes 

the paper.  

 

2. Theory and Methodology 

In this section, we first discuss the PSHO theory, and propose two different implementations. The first 

one is a direct approach, and the normalized sinn(𝐻̂𝜏) |𝜑0⟩ state is directly prepared on a quantum 

register. The other one is an indirect method, in which the normalized energy of the sinn(𝐻̂𝜏) |𝜑0⟩ 

state is calculated without preparing the corresponding quantum state. For the sake of convenience, the 

unnormalized sinn(𝐻̂𝜏) |𝜑0⟩ state is denoted as |𝜑𝑛⟩. 

2.1 PSHO Theory 

For any reference state |𝜑0⟩ , it can be expanded into the linear superposition of |Ψ𝑖⟩ : |𝜑0⟩ =

∑ 𝑐𝑖|Ψ𝑖⟩𝑖 , where |Ψ𝑖⟩ is the ith eigenstate of the Hamiltonian matrix, 𝑐𝑖 is the overlap between |𝜑0⟩ 

and |Ψ𝑖⟩. Thus the |𝜑𝑛⟩ state can be written as: 

|𝜑𝑛⟩ = sinn(𝐻̂𝜏) |𝜑0⟩ = ∑ 𝑐𝑖 sinn(𝐸𝑖𝜏) |Ψ𝑖⟩
𝑖

                                             (1) 

where the energy (eigenvalue) of the |Ψ𝑖⟩ state is denoted as 𝐸𝑖. With the increase of the power n, the 

contribution of the eigenstate |Ψ𝑖⟩ which gives the maximum eigenvalue for the |sin(𝐻̂𝜏)| operator 

in |𝜑0⟩ state will increase, and the normalized |𝜑𝑛⟩ = sinn(𝐻̂𝜏) |𝜑0⟩ state will converge to the |Ψ𝑖⟩ 

state. Therefore, it is necessary to explore how the 𝜏 value affect the final converged state. For the 

convenience of analysis, 𝜏 is limited to be greater than 0. When the value of 𝜏 satisfy |𝐸0𝜏| ≤ 𝜋/2, 

as can be seen in Figure 1(a), the ground state gives the maximum eigenvalue of |sin(𝐸0𝜏)| for the 

|sin(𝐻̂𝜏)| operator. The relative fraction of the ground state |Ψ0⟩ in |𝜑𝑛⟩ is exponentially increased 

with n, and the normalized |𝜑𝑛⟩ state will converge to the ground state. The greater the difference 

between sin(𝐸0𝜏) and other sin(𝐸𝑖≠0𝜏) values, the faster the fraction of the excited states in |𝜑𝑛⟩ 
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decays. It is worth noting that here we have assumed that the ground energy is negative and has the 

highest absolute value. This is true for most molecular systems. When the absolute value of the highest 

eigenvalue is greater than that of the ground state energy, the above analysis is incorrect. However, 

even if this is the case, it can be circumvented easily by adding a negative constant term to the 

Hamiltonian. The negative constant term can shift all eigenstates towards the negative direction. For 

the convenience of discussion, we assume that all eigenvalues are negative in the following analysis. 

When |𝐸0𝜏|  slightly exceeds 𝜋/2 , as can be seen in Figure 1(b), the ground state still gives the 

maximum eigenvalue for the |sin(𝐻̂𝜏)|  operator, but the difference of the |sin(𝐻̂𝜏)|  eigenvalues 

between the ground state and the excited state is narrowed with the increase of 𝜏, and the convergence 

rate will be slowed down. When the eigenvalue for |sin(𝐻̂𝜏)| of the first excited state exceeds that of 

the ground state and is the maximum of sin(𝐸𝑖≠0𝜏), supposed that the overlap between the |𝜑0⟩ and 

|Ψ1⟩ states is non-zero, the normalized |𝜑𝑛⟩ state will converge to the first excited state. As can be 

seen in Figure 1(c), when |𝐸0𝜏| is in the range of 𝜋/2 to 𝜋, with the gradual increase of 𝜏, the final 

state will converge to each excited state in an order. When |𝐸0𝜏| is greater than 𝜋, as shown in Figure 

1(d), |sin(𝐸0𝜏)| is increasing with 𝜏, and the converged state of |𝜑𝑛⟩ may no longer be in an order.  

 

 

Figure 1. Schematic diagram of different 𝜏 values affecting the converged states. Y-axis represents the 

eigenvalue of the sin(𝐻̂𝜏) operator for each eigenstate (red vertical lines). X-axis represents the 𝐸𝑖𝜏 value with 

different 𝜏 values.  
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The converged energy can be obtained from the normalized and converged |𝜑𝑛⟩ state. Take the 

|𝐸0𝜏| ≤ 𝜋/2 situation as an example. According to the above analysis, we have:  

lim
𝑛→∞

|𝜑𝑛⟩ = lim
𝑛→∞

∑ 𝑐𝑖 sinn(𝐸𝑖𝜏) |Ψ𝑖⟩
𝑖

≈ 𝑐0 sinn(𝐸0𝜏) |Ψ0⟩                                  (2𝑎) 

lim
𝑛→∞

𝐸(|𝜑𝑛⟩) = lim
𝑛→∞

⟨𝜑𝑛|𝐻̂|𝜑𝑛⟩

⟨𝜑𝑛|𝜑𝑛⟩
= 𝐸0                                                  (2𝑏) 

Define 𝑄𝑛 as the ratio of the normalization coefficient of |𝜑𝑛⟩ to that of |𝜑𝑛−1⟩, we have:  

lim
𝑛→∞

𝑄𝑛 = lim
𝑛→∞

⟨𝜑𝑛|𝜑𝑛⟩

⟨𝜑𝑛−1|𝜑𝑛−1⟩
=

|𝑐0|2 sin2n(𝐸0𝜏)

|𝑐0|2 sin2n−2(𝐸0𝜏)
= sin2(𝐸0𝜏)                   (3) 

As n increases, the 𝑄𝑛 will converges to a fixed value, and the ground state energy can be calculated 

by:  

𝐸0 = lim
𝑛→∞

𝐸𝑛
′ = lim

𝑛→∞

arcsin √𝑄𝑛

𝜏
                                                    (4) 

For convenience, we name the method in Eq. 2 as the energy-based PSHO method, which evaluates 

the normalized energy of the converged |𝜑𝑛⟩. The method defined in Eqs 3 and 4 is named as the 

normalization-coefficient based PSHO method, which only evaluates the normalization coefficients.  

 

2.2 Direct Method for Implementing PSHO 

The direct method for implementing PSHO is to prepare the normalized |𝜑𝑛⟩ state on a quantum 

computer, and evaluate its energy by sampling. Since the sin(𝐻̂𝜏) operator is nonunitary, and the 

general quantum circuit can only support unitary gates, we need to find a way to implement the 

sin(𝐻̂𝜏) operator on a quantum computer. As shown in previous works to implement the ITE operator 

on quantum computers, a promising scheme is to embed the nonunitary operator into a large unitary 

operator. That is, despite that the sin(𝐻̂𝜏) operator is nonunitary, we have sin2(𝐻̂𝜏) + cos2(𝐻̂𝜏) =

𝐼, where 𝐼 is an identity operator. A larger unitary operator Σ can be constructed with an ancillary 

qubit.  

Σ = (
sin(𝐻̂𝜏) cos(𝐻̂𝜏)

cos(𝐻̂𝜏) − sin(𝐻̂𝜏)
) 

The corresponding quantum circuit can be designed as in Figure 2(a), where 𝐻′ =
√2

2
(

1 1
1 −1

) and 

𝑆 = (
1 0
0 𝑖

) . Since sin(𝐻̂𝜏) =
𝑖

2
(𝑒−𝑖𝐻̂𝜏 − 𝑒𝑖𝐻̂𝜏)  and cos(𝐻̂𝜏) =

1

2
(𝑒−𝑖𝐻̂𝜏 + 𝑒𝑖𝐻̂𝜏) , two controlled-

evolution gates with the opposite evolution time are used to build the sin(𝐻̂𝜏)  and cos(𝐻̂𝜏) 
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operators in Σ. The hollow(solid) circle in the controlled-evolution gate indicates that the evolution 

operator is acted only if the control qubit is 0(1). The ancillary qubit is initialized as 0, and we have: 

|𝑇1⟩ =
1 + 𝑖

2
|0⟩ ⊗ |𝜑0⟩ +

1 − 𝑖

2
|1⟩ ⊗ |𝜑0⟩                                                                (5𝑎) 

|𝑇2⟩ =
1 + 𝑖

2
|0⟩ ⊗ 𝑒−𝑖𝐻𝜏|𝜑0⟩ +

1 − 𝑖

2
|1⟩ ⊗ 𝑒𝑖𝐻𝜏|𝜑0⟩                                              (5𝑏) 

|𝑇3⟩ = |0⟩ ⊗ sin(𝐻̂𝜏) |𝜑0⟩ + |1⟩ ⊗ cos(𝐻̂𝜏) |𝜑0⟩ = (
sin(𝐻̂𝜏) |𝜑0⟩

cos(𝐻̂𝜏) |𝜑0⟩
)               (5𝑐) 

 

 

Figure 2. (a) Quantum circuit for the Σ operator. (b) Quantum circuit architecture for preparing the normalized 

sinn(𝐻̂𝜏) |𝜑0⟩ state. The 𝑞0 (in the green box) is used as the ancillary qubit, and the 𝑞1 ⋯ 𝑞𝑛 (in the cyan box) 

are register qubits. This color code is also applied in Figures 3.  

 

After the |𝑇3⟩ state is prepared, a measuring gate on the ancillary qubit is used to extract the target 

state. If the auxiliary qubit collapses to the 0 state, the register qubits will collapse to the normalized 

sin(𝐻̂𝜏) |𝜑0⟩ state. The quantum circuit architecture for performing the sinn(𝐻̂𝜏) operator can be 

seen in Figure 2(b). The reference state |𝜑0⟩ is prepared by the 𝑈ref circuit. There are many ways to 

prepare the reference state. The simplest choice is the HF state, and only 𝑁𝑒 𝑋 gates (𝑋 = (
0 1
1 0

)) 

are needed to construct the 𝑈ref circuit, where 𝑁𝑒 is the number of electrons in the Hamiltonian. 

These 𝑋 gates act on the 𝑁𝑒 qubits produce the lowest energy spatial-spin orbitals. Furthermore, the 

VQE calculation can be implemented to obtain a set of optimized parameterized quantum circuits. 

Even though the accuracy of the VQE result may not reach the required accuracy, the VQE-state is 
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closer to the ground state than the HF state. Using VQE state as the reference state in the PSHO 

algorithm, the power required to converge to the ground state may be less than that of the HF state. In 

this paper, unless otherwise specified, the HF state is used as the reference state by default. Then repeat 

Σ and measuring circuits for n times. If auxiliary qubit collapses to the 0 state in each sampling, the 

normalized |𝜑𝑛⟩ state is successfully prepared in the register qubits, and the energy can be evaluated 

accordingly.  

The probability of successfully preparing the normalized |𝜑𝑛⟩ state can be calculated as follows. 

For n = 1, with the initial state is |𝜑0⟩, the probability for sampling the 0 state on the auxiliary qubit 

is ⟨𝜑0| sin2(𝐻̂𝜏) |𝜑0⟩ . After the successful collapse, the register qubit state changes into 𝑑1|𝜑1⟩ , 

where 𝑑1 = ⟨𝜑0| sin2(𝐻̂𝜏) |𝜑0⟩
−

1

2  is the normalization coefficient. Acting the Σ  operator and 

measuring circuits again, the probability for sampling the 0 state is |𝑑1|2⟨𝜑1| sin2(𝐻̂𝜏) |𝜑1⟩ =

|𝑑1|2⟨𝜑0| sin4(𝐻̂𝜏) |𝜑0⟩. Similarly, for the ith time, the register qubits state changes into 𝑑𝑖−1|𝜑𝑖−1⟩, 

where 𝑑𝑖−1 = ⟨𝜑0| sin2(𝑖−1)(𝐻̂𝜏) |𝜑0⟩
−

1

2 , and the success probability is 

|𝑑𝑖−1|2⟨𝜑𝑖−1| sin2(𝐻̂𝜏) |𝜑𝑖−1⟩ = |𝑑𝑖−1|2⟨𝜑0| sin2𝑖(𝐻̂𝜏) |𝜑0⟩. In order to obtain the normalized |𝜑𝑛⟩ 

state, each sampling in auxiliary qubit must be 0 state. Therefore, the probability of constantly 

collapsing to 0 state n times is the product of the probability of collapse to the zero state in each step, 

and is given by: 

𝑃00⋯0 = ⟨𝜑0| sin2(𝐻̂𝜏) |𝜑0⟩ ⋅ |𝑑1|2⟨𝜑1| sin2(𝐻̂𝜏) |𝜑1⟩ ⋯ |𝑑𝑛|2⟨𝜑𝑛−1| sin2(𝐻̂𝜏) |𝜑𝑛−1⟩

= ⟨𝜑0| sin2(𝐻̂𝜏) |𝜑0⟩ ⋅
⟨𝜑0| sin4(𝐻̂𝜏) |𝜑0⟩

⟨𝜑0| sin2(𝐻̂𝜏) |𝜑0⟩
⋯

⟨𝜑0| sin2n(𝐻̂𝜏) |𝜑0⟩

⟨𝜑0| sin2(𝑛−1)(𝐻̂𝜏) |𝜑0⟩

= ⟨𝜑0| sin2n(𝐻̂𝜏) |𝜑0⟩

          (6) 

It is obvious that the probability for preparing the desired state in the register qubits decreases 

exponentially with the increase of n, which makes this direct scheme not practical.  

2.3 Indirect Method for Implementing PSHO 

The normalized energy of the |𝜑𝑛⟩ state is:  

𝐸(|𝜑𝑛⟩) =
⟨𝜑𝑛|𝐻̂|𝜑𝑛⟩

⟨𝜑𝑛|𝜑𝑛⟩
=

⟨𝜑0|𝐻̂ sin2n(𝐻̂𝜏) |𝜑0⟩

⟨𝜑0| sin2n(𝐻̂𝜏) |𝜑0⟩
                                           (7) 

Substitute sin(𝐻̂𝜏) =
𝑖

2
(𝑒−𝑖𝐻̂𝜏 − 𝑒𝑖𝐻̂𝜏) into Eq. 7, we have: 
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𝐸(|𝜑𝑛⟩) =

⟨𝜑0| (
𝑖
2

)
2𝑛

⋅ 𝐻̂ ⋅ (𝑒−𝑖𝐻̂𝜏 − 𝑒𝑖𝐻̂𝜏)
2𝑛

|𝜑0⟩

⟨𝜑0| (
𝑖
2)

2𝑛

⋅ (𝑒−𝑖𝐻̂𝜏 − 𝑒𝑖𝐻̂𝜏)
2𝑛

|𝜑0⟩

=
∑ (−1)2𝑛−𝑘 ⋅ 𝐶2𝑛

𝑘 ⋅ ⟨𝜑0|𝐻̂𝑒𝑖𝐻̂𝜏⋅(2𝑛−2𝑘)|𝜑0⟩2𝑛
𝑘=0

∑ (−1)2𝑛−𝑘 ⋅ 𝐶2𝑛
𝑘 ⋅ ⟨𝜑0|𝑒𝑖𝐻̂𝜏⋅(2𝑛−2𝑘)|𝜑0⟩2𝑛

𝑘=0

       (8) 

For the sake of convenience, the numerator of Eq. 8 is denoted as 𝐴𝑛, while the denominator is 𝐵𝑛. 

Here we explore the feasibility of evaluating each term of 𝐴𝑛 and 𝐵𝑛 individually on quantum device. 

For the term in the denominator of Eq. 8, due to 𝐶2𝑛
𝑘 = 𝐶2𝑛

2𝑛−𝑘, the kth term has the same coefficient 

as the 2n-kth term and can be paired together. We have:  

(−1)2𝑛−𝑘 ⋅ 𝐶2𝑛
𝑘 ⋅ ⟨𝜑0|𝑒𝑖𝐻̂𝜏⋅(2𝑛−2𝑘)|𝜑0⟩ + (−1)2𝑛−(2𝑛−𝑘) ⋅ 𝐶2𝑛

2𝑛−𝑘 ⋅ ⟨𝜑0|𝑒𝑖𝐻̂𝜏⋅(2𝑛−2(2𝑛−𝑘))|𝜑0⟩

= (−1)𝑘 ⋅ 𝐶2𝑛
𝑘 ⋅ ⟨𝜑0|𝑒𝑖𝐻̂𝜏⋅(2𝑛−2𝑘) + 𝑒𝑖𝐻̂𝜏⋅(2𝑘−2𝑛)|𝜑0⟩

= (−1)𝑘 ⋅ 2𝐶2𝑛
𝑘 ⋅ ⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩

        (9) 

Substitute Eq. 9 into 𝐵𝑛 (denominator of Eq. 8), we have:  

𝐵𝑛 = ∑ (−1)𝑘 ⋅ 2𝐶2𝑛
𝑘 ⋅ ⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩

𝑛−1

𝑘=0
+ 𝐶2𝑛

𝑛 ⋅ (−1)𝑛                                (10) 

Using the same derivation, 𝐴𝑛 (numerator of Eq. 8) can be written as: 

𝐴𝑛 = ∑ (−1)𝑘 ⋅ 2𝐶2𝑛
𝑘 ⋅ ⟨𝜑0|𝐻̂ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩

𝑛−1

𝑘=0
+ 𝐶2𝑛

𝑛 ⋅ (−1)𝑛⟨𝜑0|𝐻̂|𝜑0⟩        (11) 

Therefore, the problem is transformed into the estimations of the ⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩ and 

⟨𝜑0|𝐻̂ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩ terms on quantum computers. Using Σ operator circuit in Figure 2(a) 

and setting evolution time as 𝜏(𝑛 − 𝑘), the output |𝑇3⟩ state is: 

|𝑇3⟩ = |0⟩ ⊗ sin[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩ + |1⟩ ⊗ cos[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩ = (
sin[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩

cos[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩
)     (12) 

For the |𝑇3⟩ state, the expectation value of −𝑍̂ ⊗ 𝐼 and −𝑍̂ ⊗ 𝐻̂ are:  

⟨𝑇3|−𝑍̂ ⊗ 𝐼|𝑇3⟩ = ⟨𝜑0| cos2[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩ − ⟨𝜑0| sin2[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩

= ⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩
                      (13𝑎) 

⟨𝑇3|−𝑍̂ ⊗ 𝐻̂|𝑇3⟩ = ⟨𝜑0|𝐻̂ ⋅ cos2[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩ − ⟨𝜑0|𝐻̂ ⋅ sin2[𝐻̂𝜏(𝑛 − 𝑘)] |𝜑0⟩

= ⟨𝜑0|𝐻̂ ⋅ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩
          (13𝑏) 

They are identical to the kth term of 𝐴𝑛 and 𝐵𝑛, respectively. Therefore, the normalized energy of the 

|𝜑𝑛⟩ state can be determined by the following scheme. Take k value from 0 to 𝑛 − 1 and substitute 

it into the quantum circuit diagram of Figure 3, then measure the expectation value of −𝑍̂ ⊗ 𝐻̂ and 

−𝑍̂ ⊗ 𝐼  for the output state, so that the ⟨𝜑0|𝐻̂ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩  and 

⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩ terms can be evaluated. The last term in 𝐴𝑛 is 𝐶2𝑛
𝑛 ⋅ (−1)𝑛⟨𝜑0|𝐻̂|𝜑0⟩, 
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in which ⟨𝜑0|𝐻̂|𝜑0⟩ can be calculated on classical computers easily. Substituting all of them into Eq. 

10 and Eq. 11, 𝐴𝑛 and 𝐵𝑛 can be determined.  

 

Figure 3. Quantum circuit architecture for calculating ⟨𝜑0|𝐻̂ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩ and 

⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩ terms. For the former, the expectation operator should be set as −𝑍̂ ⊗ 𝐻̂, for the 

latter that should be −𝑍̂ ⊗ 𝐼. 

 

Compared with the direct method in Section 2.2, the indirect method described in this section does 

not suffered from the problem that the sampling number increases exponentially with the power. 

Multiple sampling is also required in the indirect method, but the sampling number is only related to 

the number of Pauli strings in the Hamiltonian and the measuring accuracy, not the power. Therefore, 

the indirect method has more practical application potential than the direct method. In the numerical 

simulation of Section 3, we will use the indirect method to perform the PSHO calculations. Before that, 

it is necessary to analyze the systematic errors in the final result, which arise from the Suzuki-Trotter 

decomposition of the time-evolution operators and the sampling accuracy. The former can be reduced 

by using higher order Suzuki-Trotter decomposition, while the latter one can be reduced by increasing 

the number of samples. However, the systematic error cannot be completely eliminated. Even when 

the error is small, the 𝐶2𝑛
𝑘  coefficient increases factorially with n, the influence of the error on the 

final result will be dramatically amplified with the increase of the power. For the ease of the error 

analysis, the total error in evaluating ⟨𝜑0|𝐻̂ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩  and 

⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩ are denoted as Δ𝑘 and 𝛿𝑘, respectively. The accurate 𝐴𝑛
′  and 𝐵𝑛

′  can 

be expressed as:  

𝐴𝑛
′ = ∑ (−1)𝑘 ⋅ 2𝐶2𝑛

𝑘 ⋅ ⟨𝜑
0
|𝐻̂ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑

0
⟩

𝑛−1

𝑘=0

+ (−1)𝑛𝐶2𝑛
𝑛 ⟨𝜑

0
|𝐻̂|𝜑

0
⟩ + ∑ (−1)𝑘 ⋅ 2𝐶2𝑛

𝑘 Δ𝑘

𝑛−1

𝑘=0

     (14𝑎) 

𝐵𝑛
′ = ∑ (−1)𝑘 ⋅ 2𝐶2𝑛

𝑘 ⋅ ⟨𝜑
0
| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑

0
⟩

𝑛−1

𝑘=0

+ (−1)𝑛𝐶2𝑛
𝑛 + ∑ (−1)𝑘 ⋅ 2𝐶2𝑛

𝑘 𝛿𝑘

𝑛−1

𝑘=0

                             (14𝑏) 

According to Eq. 1, Eq. 8 and Eq. 9, we have: 
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𝐴𝑛
′ = (−1)𝑛 ∑ 22𝑛|𝑐𝑗|

2
𝐸𝑗 sin2n(𝐸𝑗𝜏)

𝑗
+ ∑ (−1)𝑘 ⋅ 2𝐶2𝑛

𝑘 Δ𝑘

𝑛−1

𝑘=0
                    (15𝑎) 

𝐵𝑛
′ = (−1)𝑛 ∑ 22𝑛|𝑐𝑗|

2
sin2n(𝐸𝑗𝜏)

𝑗
+ ∑ (−1)𝑘 ⋅ 2𝐶2𝑛

𝑘 𝛿𝑘

𝑛−1

𝑘=0
                         (15𝑏) 

The first term on the right-hand side of Eq. 15 is denoted as the information term, while the second 

is denoted as the error term. The information term itself can be accurately calculated, but the 

introduction of error term cause the deviation from the accurate results. Only if the information term 

is much larger than the error term the result will not have obvious deviation. The upper limit of the 

error term in 𝐵𝑛
′  is:  

∑ (−1)𝑘 ⋅ 2𝐶2𝑛
𝑘 𝛿𝑘

𝑛−1

𝑘=0
≤ |𝛿𝑚𝑎𝑥| ⋅ ∑ 2𝐶2𝑛

𝑘
𝑛−1

𝑘=0
= |𝛿𝑚𝑎𝑥| ⋅ (∑ 𝐶2𝑛

𝑘
𝑛−1

𝑘=0
+ ∑ 𝐶2𝑛

2𝑛−𝑘
𝑛−1

𝑘=0
)

= |𝛿𝑚𝑎𝑥| ⋅ (∑ 𝐶2𝑛
𝑘

2𝑛

𝑘=0
− 𝐶2𝑛

𝑛 ) = |𝛿𝑚𝑎𝑥| ⋅ (22𝑛 − 𝐶2𝑛
𝑛 )

           (16) 

where the |𝛿𝑚𝑎𝑥| is denoted as the absolute maximum error in {𝛿𝑘|𝑘 = 0,1, ⋯ 𝑛 − 1}, which can be 

far less than 1 by increasing the order of Suzuki-Trotter decomposition and the number of samples. 

According to Eq.15a and Eq.16, when the maximum of |sin(𝐸𝑖𝜏)| is close to 1, the scaling factors of 

the information and error terms are almost identical, both of which are approximately 22𝑛. Strictly 

speaking, since 𝐶2𝑛
𝑛  should to be subtracted from 22𝑛, the scaling factor of the error term will be 

slightly less than 22𝑛. Similarly, the upper limit of the error term in 𝐴𝑛
′  is |Δ𝑚𝑎𝑥| ⋅ (22𝑛 − 𝐶2𝑛

𝑛
), and 

the scaling factors of the information terms in 𝐴𝑛
′  and 𝐵𝑛

′  are equal. Therefore, in order to ensure the 

reliability of the PSHO calculations, the setting of 𝜏 should ensure that the maximum |sin(𝐸𝑖𝜏)| is 

close to 1. Only with this choice, the information term is always far greater than the error term. When 

the |sin(𝐸𝑚𝑎𝑥𝜏)| is obviously less than 1, the scale of the error term will gradually approach and even 

exceed the information term with the increase of power. The smaller the |sin(𝐸𝑚𝑎𝑥𝜏)| is, the faster 

the error term exceeds the information term.  

It is worth mentioning that there are some other recent works which is also nonunitary operation 

methods, such as the cooling method55,56, the filtering method57,58, and the quantum power method59. 

By using the Fourier transformation, the cooling method is to expand the imaginary time evolution 

operator into the integral form of the time evolution operator over time. The time evolution operator 

can be implemented on quantum devices easily. However, the time in the integral expansion is 

continuous, which means that the time evolution should be performed separately at all times. Therefore, 

it should be executed many times. In order to avoid this problem, the idea of quantum Monte Carlo is 

employed. Different evolve-times are selected by finite sampling, and the imaginary time evolution is 
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approximated by the linear combination of these different time evolutions. The idea of quantum Monte 

Carlo is also used in the filtering method, but the executed nonunitary operator is not the imaginary 

time evolution operator, but the filter function of Hamiltonian operator. This filtering operator can filter 

out energies outside the desired energy interval. All of these methods are different from the PSHO 

method, not only in the selection of nonunitary operators, but also in the implementation of nonunitary 

operators on quantum devices. Furthermore, it is well known that the quantum Monte Carlo method 

suffer from the notorious sign problem, which makes the sampling variance exponentially increase 

with the system size, and the cooling and filtering methods may suffer the sign problem too.  

In the quantum power method, the ground state can be evaluated by simulate the Hamiltonian power 

operator (𝐻̂𝑛) on a reference state. For the 𝐻̂ operator, we have 𝐻̂ = lim
Δ→0

𝑖

2Δ
(𝑈̂(Δ) − 𝑈̂(−Δ)), where 

the 𝑈̂(Δ)  represents the Δ -time evolution ( 𝑈̂(Δ) = 𝑒−𝑖𝐻̂Δ ). Thus the 𝐻̂𝑛  operator can be 

approximated by a linear combination of time evolution operators formally given by 𝐻̂𝑛 =

(
𝑖

2Δ
)

𝑛
∑ 𝐶𝑛

𝑘[𝑈̂(Δ)]
𝑛−2𝑘𝑛

𝑘=0 , where 𝐶𝑛
𝑘 is binomial expansion coefficient. Each ⟨𝜑0|[𝑈̂(Δ)]

𝑛−2𝑘
|𝜑0⟩ 

term can be evaluated on quantum devices easily (by Hadamard test) and the classical computer 

perform the multiplications and sum. It can be seen that the quantum power method shares the similar 

spirit of our PSHO method. Compared with the sinn(𝐻̂𝜏) operator, the 𝐻̂𝑛 operator can separate 

different eigenstates further. In the vast majority of cases, we have |
𝐸0

𝐸1
| > |

sin(𝐸0𝜏)

sin(𝐸1𝜏)
|, which means that 

the 𝐻̂𝑛|𝜑0⟩  state converges to the ground state faster than the sinn(𝐻̂𝜏) |𝜑0⟩  state with power 

increasing. However, PSHO can calculate any eigenstates, while the quantum power method can only 

calculate the ground state, because 𝐻̂𝑛 operator can only filter out the state with the lowest energy. In 

contrast, the sinn(𝐻̂𝜏) operator can filter out various eigenstates by varying the time parameter 𝜏. 

Moreover, the quantum power method faces a potential problem. That is, in order to ensure that the 

time evolution expansion approximates to the Hamiltonian operator, the time step Δ must be very 

small. According to the above analysis on error, when Δ → 0, the scale of the error term will gradually 

exceed the information term with the increase of power, and the calculation result is no longer reliable. 

Therefore, although the quantum power method requires a lower power than the PSHO method to 

achieve the same accuracy, the calculation results of the quantum power method may become 

inaccurate with the increase of power.  

 



15 

3. Numerical Simulation Results and Discussion 

In this section, we present numerical results to validate the proposed algorithm. Before that, it is 

necessary to explain how to decompose the time evolution operator into executable quantum circuits 

and analyze the errors caused by the transformation, and this is discussed in section 3.1. In Section 3.2, 

we demonstrated the effect of different 𝜏 on the final results, which confirmed our analysis in Section 

2.3. In Section 3.3, we calculate the ground state energy for the H4 and LiH molecules by the proposed 

indirect PSHO methods. In Section 3.4, we calculate lower-order excited states energies for the H4 

molecule. In Section 3.5, we discuss the feasibility of implementing the PSHO algorithm on quantum 

devices based on previous theoretical analysis and numerical simulation results, and compare it with 

the current popular VQE method. All of the quantum simulations are implemented in MindQuantum, 

which is a general framework to build and simulate various quantum circuits.60 The PySCF package is 

used to calculate the molecular orbitals.61,62 The OpenFermion package is used to convert fermion 

operators to qubit operators by the JW transformation.63  

3.1 Suzuki-Trotter Decomposition 

In the indirect method for PSHO, two controlled-evolution gates with opposite evolution time are 

required. The Hamiltonian can be mapped into a series of Pauli strings: 𝐻̂ = ℎ̂1 + ℎ̂2 + ⋯ + ℎ̂𝑍, and 

the first-order (𝑈̂1(𝜏))and second-order  (𝑈̂2(𝜏)) Suzuki-Trotter decomposition can be written as:64–

66  

𝑈̂1(𝜏) = 𝑒−𝑖ℎ̂1𝜏𝑒−𝑖ℎ̂2𝜏 ⋯ 𝑒−𝑖ℎ̂𝑍𝜏                                                                     (17𝑎) 

𝑈̂2(𝜏) = 𝑒−
𝑖ℎ̂1𝜏

2 𝑒−
𝑖ℎ̂2𝜏

2 ⋯ 𝑒−𝑖ℎ̂𝑍𝜏 ⋯ 𝑒−
𝑖ℎ̂2𝜏

2 𝑒−
𝑖ℎ̂1𝜏

2                                         (17𝑏) 

The second-order Suzuki-Trotter decomposition satisfies time inversion symmetry, that is 

[𝑈̂2(𝜏)]
†

= 𝑈̂2(−𝜏) and 𝑈̂2(𝜏)𝑈̂2(−𝜏) = 𝑈̂2(−𝜏)𝑈̂2(𝜏) = 𝐼, while it is not satisfied in the first-order 

decomposition. Given that sin(𝐻̂𝜏) =
𝑖

2
(𝑒−𝑖𝐻̂𝜏 − 𝑒𝑖𝐻̂𝜏), if the 𝑈̂1(𝜏) circuit is used to approximate 

the 𝑒−𝑖𝐻̂𝜏  and 𝑒𝑖𝐻̂𝜏  operators, the approximated sin(𝐻̂𝜏)  operator no longer satisfies hermiticity. 

But the hermiticity can still be maintained in the 𝑈̂2(𝜏) circuit. Therefore, in the present study, the 

second-order Suzuki-Trotter decomposition is used to approximate the time-evolution operators (𝑒−𝑖𝐻̂𝜏) 

in numerical simulations. According to the previous studies65–67, the second-order Suzuki-Trotter 

decomposition satisfies: 
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𝑒−𝑖𝐻̂𝜏 = (𝑒−
𝑖ℎ̂1Δ

2 𝑒−
𝑖ℎ̂2Δ

2 ⋯ 𝑒−𝑖ℎ̂𝑍Δ ⋯ 𝑒−
𝑖ℎ̂2Δ

2 𝑒−
𝑖ℎ̂1Δ

2 )

𝜏
Δ

+ 𝑂(𝜏 ⋅ Δ2)                        (18)
 

where 𝜏 should be divisible by Δ. We calculated the errors in the Suzuki-Trotter decomposition with 

different Δ and 𝜏 by numerical simulations. Figure 4 exhibits the deviation of ⟨𝜑0|𝐻̂ cos(2𝐻̂𝜏) |𝜑0⟩ 

and ⟨𝜑0| cos(2𝐻̂𝜏) |𝜑0⟩ from their exact values, in which the Hamiltonian is for the H4 molecular 

chain with the bond length of 1.0Å using the STO-3G basis set. Different Δ  values are set for 

evaluating by quantum computers. If 𝜏 is not divisible by Δ, the evolution circuit can be decomposed 

as: 

(𝑒−
𝑖ℎ̂1Δ

2 𝑒−
𝑖ℎ̂2Δ

2 ⋯ 𝑒−𝑖ℎ̂𝑍Δ ⋯ 𝑒−
𝑖ℎ̂2Δ

2 𝑒−
𝑖ℎ̂1Δ

2 )

⌊
𝜏
Δ

⌋

(𝑒−
𝑖ℎ̂1𝜏0

2 𝑒−
𝑖ℎ̂2𝜏0

2 ⋯ 𝑒−𝑖ℎ̂𝑍𝜏0 ⋯ 𝑒−
𝑖ℎ̂2𝜏0

2 𝑒−
𝑖ℎ̂1𝜏0

2 ) 

where ⌊
𝜏

Δ
⌋ is the integer part of 

𝜏

Δ
, and 𝜏0 = 𝜏 − Δ ⋅ ⌊

𝜏

Δ
⌋. As can be seen in Figure 4, all curves with 

different Δ share a similar appearance. All deviation curves show an obvious oscillation trend, and the 

scale of all extreme points increase linearly with the evolution time. Different Δ values determine the 

slope of this linear scaling relationship. A larger value of Δ results in a more obvious increase of the 

deviation with the evolution time.  
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Figure 4. Deviation of evaluated ⟨𝜑0|𝐻̂ cos(2𝐻̂𝜏) |𝜑0⟩ (solid circle) and ⟨𝜑0| cos(2𝐻̂𝜏) |𝜑0⟩ (hollow circle) 

values from their exact value. The results are for the H4 molecular chain with 1.0Å bond length (STO-3G basis set). 

Y-axis represents deviation, and X-axis represents different 𝜏 values. The solid line in figures is obtained by cubic 

B-spline interpolation, which is a good visual guide. Different Δ values are used for the second-order Suzuki-

Trotter decomposition: (a) Δ = 0.01, (b) Δ = 0.02, (c) Δ = 0.05, (d) Δ = 0.1, (e) Δ = 0.2, (f) Δ = 0.5.  
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In order to further explore the influence of Δ on the deviation, a quantitative analysis is given in 

Figure 5. As can be seen in Figure 5(a), for each deviation curve, the envelopes of these curves are 

linearly fitted and the slopes are calculated. Each curve has two envelope lines, namely, the upper and 

lower ones. The absolute values of the slopes obtained by fitting the two envelopes are almost identical. 

The deviation scaling factor can be defined by the average of the absolute values of the two slopes. 

Figure 5(b) shows the relationship between the deviation scaling factor and Δ. The quadratic curve 

with 𝑦 = 𝑎𝑥2  form is used to fit the scatter points in the figure. The fitted curves are perfectly 

consistent with sampling points, and the fitting error is within 2 × 10−5. which is consistent with the 

conclusions in the literature.  

 

 

Figure 5. (a) Take Figure 4(a) as an example to illustrate the method of calculating the deviation scaling factor, 

where two black(blue) solid lines are obtained by linear fitting upper and lower envelopes. (b) The deviation scaling 

factor as a function of Δ. The solid circles are the calculated result by sampling different Δ value, in which the 

black solid circle is the deviation scaling factor of ⟨𝜑0|𝐻̂ cos(2𝐻̂𝜏) |𝜑0⟩, and the blue solid circle is for 

⟨𝜑0| cos(2𝐻̂𝜏) |𝜑0⟩. The solid lines are obtained by quadratic fitting with the fitting curve is 𝑦 = 𝑎𝑥2.  

 

Now we analyze the cost in simulating a controlled-evolution circuit under a fixed deviation. Since 

the deviation (𝜀) can be expressed as 𝜀 = 𝑂(𝜏 ⋅ Δ2). The number of transformed Pauli string terms (ℎ̂𝑖) 

in a Hamiltonian is 𝑂(𝑁4), where 𝑁 is the number of spatial-spin orbitals (which is equal to the 

number of qubits in Jordan-Wigner encoding). The depth of each controlled 𝑒−𝑖ℎ̂𝑖Δ circuit is 𝑂(𝑁), 

so the gate cost in simulating the controlled 𝑒−𝑖𝐻̂Δ  operator is 𝑂(𝑁5) . The controlled 𝑒−𝑖𝐻̂Δ 
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operator should be repeated 
𝜏

Δ
  times. According to the analysis above, the total gate cost (𝑁𝐺  ) in 

simulating the controlled 𝑒−𝑖𝐻̂𝜏 circuit with deviation within 𝜀 is: 

𝑁𝐺 =
𝜏

Δ
⋅ 𝑂(𝑁5) = 𝑂 (√

𝜏

𝜀
⋅ 𝑁5)                                                                  (19)

 

It is worth noting that Eq. 19 does not take into consideration of the measurement statistical error, 

so 𝑁𝐺  in Eq. 19 is the lower limit of the total gate cost. In the actual implementation of the PSHO 

method, if the precision is 𝜀0, the precision 𝜀 substituted into Eq. 19 should be less than 𝜀0. Because 

measurement sampling will introduce some statistical error. Given a total error 𝜀0, the precision 𝜀 

substituted into Eq. 19 depends on the number of quantum measurements. The more measurement 

numbers, the smaller the measurement statistical error, which makes the maximum Trotter 

decomposition precision closer to 𝜀0, thus the number of quantum gates will be reduced. Therefore, 

the actual number of required gates to simulate the controlled 𝑒−𝑖𝐻̂𝜏 circuit is more than (or close to) 

that estimated in Eq. 19. 

 

3.2 Error Analysis in the Indirect Implementation of PSHO 

According to the analysis in Section 2.3, when |sin(𝐸𝑚𝑎𝑥𝜏)| is close to 1, the numerical error is 

not significant, and the PSHO calculation is very accurate. However, if |sin(𝐸𝑚𝑎𝑥𝜏)| deviates far 

from 1, the error will be large, and the PSHO result is not accurate at all. It is clear that |sin(𝐸𝑚𝑎𝑥𝜏)| 

is directly determined by 𝜏. In this section, we demonstrated the effect of different 𝜏 values on the 

final results in the ground state calculation with the indirect PSHO method. The numerical simulation 

system is the H4 molecular chain with the bond length of 1.0Å (STO-3G basis set). To better estimate 

the errors, for all of ⟨𝜑0|𝐻̂ cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩  and ⟨𝜑0| cos[𝐻̂𝜏 ⋅ 2(𝑛 − 𝑘)] |𝜑0⟩  values 

estimated on quantum computers, only six decimal places are kept. The dropped decimal part is 

equivalent to the error, which will affect the final results.  

Figure 6 presents the ground energies for the H4 molecular with the bond length of 1.0Å calculated 

by the indirect PSHO method. The accurate FCI/STO-3G ground state energy is 𝐸0 = −2.166 hartree 

and we have |
𝜋

2𝐸0
| = 0.725. As can be seen in Figure 6(a)(b), when 𝜏 is 0.85, the 𝐸(|𝜑𝑛⟩) does not 

converge to 𝐸0. As the 𝜏 value decreases, the convergence becomes better. When 𝜏 is less than or 

equal to 0.6, 𝐸(|𝜑𝑛⟩) does not converged to a fixed value with the increase of power. In order to 
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further explore the influence of 𝜏 on 𝐸(|𝜑𝑛⟩), Figure 6(c)(d) plot 𝐸(|𝜑𝑛⟩) vs 𝜏 for different power 

n. Obviously, with 𝜏 is in the range of 0.62 to 0.8, a plateau is emerged in the curve, in which the 

calculated energies are accurately converged to 𝐸0 and not dependent on the value of τ. When τ is 

greater than 0.75, |sin(𝐸0𝜏)|  is no longer the maximum, but 𝐸(|𝜑𝑛⟩)  still converges to 𝐸0 . The 

main reason for this result is that the reference state is a Hartree-Fock (HF) state, which does not 

overlap with some of the lower order excited states. According to Eq. 1, even if |sin(𝐸1𝜏)| is the 

maximum, due to 𝑐1 = 0, the overlap of the first excited state with the |𝜑𝑛⟩ state is always 0. In other 

words, even if the |sin(𝐸0𝜏)| is not the maximum, but all of eigenstates with larger |sin(𝐸𝑖𝜏)| do 

not overlap with the reference states, so the ground state is still dominant in |𝜑𝑛⟩. According to Figure 

6(d), with 𝜏 is less than 0.62, the error becomes significantly large.  

 

 

Figure 6. (a) Normalized energy (Y-axis, unit: hartree) of |𝜑𝑛⟩ state (𝐸(|𝜑𝑛⟩)) as a function of power (X-axis) with 

different 𝜏  values. Different colors represent different 𝜏  values, which have been marked in the legend. (b) is 

enlarged view of (a) with the ordinate changes to 𝐸(|𝜑𝑛⟩) − 𝐸0. (c) Normalized energy (Y-axis, unit: hartree) of 
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|𝜑𝑛⟩ state (𝐸(|𝜑𝑛⟩)) as a function of 𝜏 (X-axis) with different powers. Different colors represent different powers, 

which have been marked in the legend. (d) is to (c) what (b) is to (a). Moreover, the horizontal dotted line is the 

position of 𝐸0, and the vertical dotted line is the position of |
𝜋

2𝐸0
|. All results are for the H4 molecular chain with 

1.0Å bond length (STO-3G basis set). 

 

Figure 7 presents the error analysis for the normalization-coefficient based PSHO method described 

in Section 2.1. In Figure 7(a)(b), the Y-axis is 𝑄𝑛 defined in Eq. 3. Similar with the energy based 

PSHO method, the curve appears abnormal oscillations when 𝜏 is 0.4 or 0.45. When 𝜏 is 0.5 or 0.55, 

the oscillation in the curve decays, but 𝑄𝑛 still does not converge. 𝑄𝑛 is converged when 𝜏 is in the 

range of 0.6 to 0.8. In order to further explore the errors associated with different 𝜏, Figure 7(c)(d) 

present 𝐸𝑛
′  as a function of 𝜏, where the definition of 𝐸𝑛

′  is in Eq. 4. In order to correctly converge 

to the ground state energy, the value of 𝜏 must be less than |
𝜋

2𝐸0
|. When 𝜏 is between 0.62 and 0.72, 

the energy converges satisfactory, and a plateau is formed. The final converged energy is stable and not 

dependent on the value of 𝜏. Until 𝜏 is less than 0.62, the errors become large with the decreasing of 

𝜏 and increasing of the power. These simulation results indicate that our analysis in Section 2.3 is 

correct. In order to suppress the error, the 𝜏 should be close to |
𝜋

2𝐸0
|, and the final converged energy 

should not depend on the value of 𝜏.  
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Figure 7. (a) 𝑄𝑛 (Y-axis) as a function of power (X-axis) with different 𝜏 values. For the definition of 𝑄𝑛, see Eq. 

3. Different colors represent different 𝜏 values, which have been marked in the legend. (b) is enlarged view of (a). 

(c) 𝐸𝑛
′  (Y-axis, unit: hartree) as a function of 𝜏 (X-axis) with different powers. Different colors represent different 

powers, which have been marked in the legend. (d) is enlarged view of (c) with the ordinate changes to 𝐸𝑛
′ − 𝐸0. All 

results are for the H4 molecular chain with 1.0Å bond length (STO-3G basis set). 

 

3.3 Indirect PSHO Method for Ground State Calculation 

According to the discussion in Section 2.3 and numerical results in Section 3.2, the 𝜏 value should 

be set close to |
𝜋

2𝐸0
| to suppress the errors in the indirect PSHO method. However, for an arbitrary 

molecular system, 𝐸0  is unknown. The ground state energy can be determined by the following 

scheme. The initial reference state |𝜑0⟩ is set as HF state (|𝜑HF⟩), and set the initial 𝜏 as |
𝜋

2𝐸HF
|. Since  

|𝐸HF| < |𝐸0|, |𝐸0𝜏0| >
𝜋

2
, as can be seen in Figure 1(c), |sin(𝐸0𝜏)| is generally not the maximum, 

the sinn(𝐻̂𝜏) |𝜑HF⟩ state may converge to other excited states, so the evaluated normalized energy is 

higher than 𝐸0 . Reducing 𝜏  gradually, and calculate the normalized energy (or normalization 
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coefficient) of the sinn(𝐻̂𝜏) |𝜑HF⟩ state with various 𝜏 by the indirect PSHO method. The ground 

state energy can be evaluated by Eq. 2 or Eq. 3. With 𝜏 decreases, the calculated energy will converge 

until the error appears. The converged energies can be regarded as the ground state energy. When the 

power is not large enough, the calculation results may deviate from the FCI results, but as the power 

increases, the energy will converge to the FCI energy.  

For the H4 molecule system, the converged energies with different powers are calculated and shown 

in Figure 8(a)(b). Compared with the energy-based PSHO method, the normalization-coefficient based 

PSHO method requires less sampling number, but its accuracy is inferior to that of the energy-based 

PSHO method. In particular, the energy-based PSHO method gives the energy close to FCI with the 

power greater than 20, whereas for the normalization-coefficient based PSHO method, the power 

should be greater than 30 to achieve the same accuracy. In order to further analyze the calculation 

errors, the energy difference (Δ𝐸 = 𝐸PSHO − 𝐸FCI) is displayed in Figure 8(e). For the H4 molecular 

chain system at equilibrium geometry, the HF state overlaps with the ground state significantly, i.e. 𝑐0 

is close to 1. In order to reach the chemical accuracy, the minimum power n required in energy based 

and normalization-coefficient based PSHO methods are 10 and 20, respectively. With the bond 

stretched, 𝑐0  is decreasing gradually, and the minimum power n required to achieve chemical 

accuracy is increasing. For the energy based PSHO method, the power of 50 can ensure the calculated 

energies are within chemical accuracy for all bond lengths. However, for the same power in the 

normalization-coefficient based method, the errors exceed the chemical accuracy.  
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Figure 8. Simulation results for the ground state calculation of H4(a)(b) and LiH(c)(d) molecule systems with different 

bond length, in which the lines are the results of the FCI method. The unit in Y-axis is hartree. Calculation results in 

(a)(c) are obtained by the energy based PSHO method, and results in (b)(d) are from the normalization-coefficient 

based PSHO method. Energy difference (Δ𝐸 = 𝐸PSHO − 𝐸FCI) is also calculated for H4(e) and LiH(f) systems, where 

the meanings of solid circle and hollow box are consistent with those in (a)(b)(c)(d). The horizontal dotted line is the 

line of chemical accuracy (0.0016 hartree).  

 

For the LiH molecule, as can be seen in Figure 8(c)(d), the power required to achieve the chemical 

accuracy is much higher than that of H4. This is mainly because the eigenvalues are close to each other, 
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which causes the convergence to be slow. Take the ground state (𝐸0) and the first excited state (𝐸1) as 

an example. Their relative ratio is |
𝐸1

𝐸0
|, which is close to 1. According to the analysis in Section 2.1, in 

the sinn(𝐻̂𝜏) |𝜑0⟩  state, the relative proportion of the first excited state to the ground state is: 

|𝑐1|2 sin2n(𝐸1𝜏)

|𝑐0|2 sin2n(𝐸0𝜏)
. The closer |

𝐸1

𝐸0
| is to 1, the slower the relative proportion decreases, and a greater power 

is required to eliminate the first excited state. The corresponding calculation errors can be seen in 

Figure 8(f). When the LiH molecule is at the equilibrium geometry, a power of 100 for PSHO can reach 

the chemical accuracy. For the bond stretched systems, even the power of 1000 cannot reach the 

chemical accuracy. With the same power, the accuracy for the energy based PSHO method is higher 

than that of the normalization-coefficient based PSHO method.  

In fact, the required power for reaching chemical accuracy can be reduced by offsetting a positive 

constant term in the Hamiltonian matrix. Take the ground state (𝐸0) and the first excited state (𝐸1) as 

an example. Suppose that the offset of the Hamiltonian matrix is 𝜀 , the ground state and the first 

excited state for the offset Hamiltonian is 𝐸0 + 𝜀 and 𝐸1 + 𝜀 respectively. Due to 𝐸0 < 0 and 𝐸1 <

0, the relative ratio |
𝐸1+𝜀

𝐸0+𝜀
| deviates away from 1 with the increase of 𝜀. Of course, 𝜀 cannot be too 

large. For example, if |𝐸1 + 𝜀| > |𝐸0 + 𝜀|, then the sinn(𝐻̂𝜏) |𝜑0⟩ state no longer converges to the 

ground state. Therefore, assuming that the highest order eigenstate which has nonnegligible overlap 

with reference state is |Ψ𝑖⟩ , its corresponding energy is 𝐸𝑖 . The offset should ensure |𝐸0 + 𝜀| >

|𝐸𝑖 + 𝜀|. Given that 𝐸0 < 0 and 𝐸𝑖 < 0, the upper limit of 𝜀 is |
𝐸0+𝐸𝑖

2
|. Within this range, increasing 

𝜀 is beneficial to accelerate the convergence. Simulation results with 𝜀 = 5.0 can be seen in Figure 

9. Compared the no-offset results in Figure 8(f), offset significantly improves the accuracy of 

calculation results. For the LiH at the bond length of 2.9Å, the minimum powers required to achieve 

chemical accuracy in the energy based and normalization-coefficient based PSHO methods are 600 

and 1000, respectively. However, even for the energy based PSHO method with power is 1000, the 

result is still slightly exceeded the chemical accuracy with the no-offset Hamiltonian.  
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Figure 9. Simulation results for the LiH molecule with the offset is set to 5.0. Y-axis is the energy difference (Δ𝐸 =

𝐸PSHO − 𝐸FCI). The legends of solid circle and hollow box in the figure are consistent with those in Figure 8. 

 

3.4 Indirect PSHO Method for Excited States Calculation 

For the excited states calculations, it is necessary to set the appropriate value of 𝜏 to converge to 

the targeted excited state. Similar with the ground state calculation, except that 𝜏 is gradually increase 

from |
𝜋

2𝐸0
|. According to analysis in Section 2.1, when 𝜏 > |

𝜋

2𝐸0
| or |𝐸0𝜏| >

𝜋

2
, the PSHO calculation 

will converge to the excited state that gives the maximum |sin(𝐸𝑖𝜏)| value. The energy of each excited 

state can be determined by the trend of the convergences for these curves. It is worth noting that some 

lower-order excited states may not overlap with the HF state. Therefore, it is necessary to use some 

other configurations as the reference states. Because the convergence of the energy based PSHO 

method is higher than that of the normalization-coefficient based PSHO method, only the energy based 

PSHO method is discussed in this section.  

Figure 10 presents the results for the H4 molecular chain system at the equilibrium geometry (bond 

length = 0.9 Å). Suppose that the ground state energy 𝐸0  has been determined by the PSHO 

calculation,  𝜏 is changing from |
𝜋

2𝐸0
| to |

5𝜋

4𝐸0
|. As shown in Figure 10, many plateaus are formed 

when 𝜏 increasing from |
𝜋

2𝐸0
| to |

5𝜋

4𝐸0
|, and each plateau corresponds to the energy of an excited state. 

As the power increases, the plateaus in the 𝐸(|𝜑𝑛⟩)-𝜏 plots are more obvious. Different reference 

states produce different plateaus. For example, the first excited state cannot be obtained by the HF state, 

the reference state should be set to |11011000⟩. In Figure 10(c), when 𝜏 is close to |
𝜋

𝐸0
|, the curve 
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tends to give a plateau when increasing the power. However, because the power is not large enough, 

the plateau is not obvious enough to obtain the corresponding eigenenergy. The curves in Figure 10(a)(c) 

show a rough monotonicity, that is, the normalized energy increases monotonically with 𝜏, and so is 

the energy of each plateau. This is consistent with the analysis in Figure 1(c). With the increase of 𝜏, 

the final state will converge to each excited state in order. However, an anomaly appears in Figure 

10(b). When 𝜏 is near |
𝜋

𝐸0
|, the curve rises sharply to positive and then falls back with the increase of 

𝜏. This is mainly because the PSHO method can only filter out the states with the largest absolute value 

of sin(𝐸𝑖𝜏). If there is an eigenstate with positive energy in the reference state, the final state can 

converge to this state when τ takes a certain value. 

 

 
Figure 10. (a)(b)(c) Normalized energy (Y-axis, unit: hartree) of |𝜑𝑛⟩ state as a function of 𝜏 (X-axis) with different 

powers. Different colors represent different powers, which have been marked in (a) legend. The difference in (a)(b)(c) 

figures is that different reference states are used, where the HF state (|11110000⟩) is used in (a), |11011000⟩ state 

is used in (b) and |01111000⟩ state is used in (c). (d) Normalized energy of |𝜑100⟩ state as a function of 𝜏 (X-

axis) with different reference states. The result is for the H4 molecular chain system at equilibrium geometry (0.9Å 
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bond length). The horizontal solid lines in these figures are eigenvalues of the system calculated by FCI method.  

 

It is worth noting that there seems to show a platform around 𝜏 = 0.875 |
𝜋

𝐸0
| (the ordinate is around 

-1.2) in Figure 10(a). If we look Figure 10(a) closely, we find that this is not a plateau. The real platform 

is that the energy-τ curve tends to be horizontal with the increase of power. However, around -1.2, with 

the increasing power, the curve first becomes horizontal, and then becomes steep in the opposite slope 

direction, and does not converge to a plateau. The reason for this phenomenon may be due to the fact 

that two eigenstates are on both sides of the curve (around 𝜏 = 0.8 |
𝜋

𝐸0
| and 𝜏 = 0.95 |

𝜋

𝐸0
|). When the 

power is large enough, platforms will appear on both sides, and the previous trick plateau (around 𝜏 =

0.875 |
𝜋

𝐸0
| ) evolves into a slope line connecting the two real platforms. Strictly speaking, the 

normalized energy in Figure 10(a) curve does not increase monotonically with 𝜏. The reason is same 

as that in Figure 10(b). In Figure 10(a), the power is not high so that the curve non-monotonic tendency 

is not obvious. In Figure 10(d), the power is set as 100, and many single excited configurations are 

used as reference states. Some curves show the abnormal oscillations in certain ranges of 𝜏. It is worth 

noting that the energies of the plateaus perfectly match with the energies of the excited states.  

As mentioned above, the energies of excited states can be obtained by taking the values of the 

plateaus with different reference states. However, the number of configurations is factorially dependent 

on the number of spin orbitals, and it is impractical and unnecessary to using all configurations as the 

reference states. In general, the overlap between the lower-excitation configurations and the lower-

order eigenstates is nonnegligible. In the present study, only the HF state and all of the single excited 

configurations are considered. As can be seen in Figure 11, all PSHO energies for excited states are in 

good agreement with the FCI results. The majority of eigenenergies can be calculated with the PHSO 

method, but there are still a few missing eigenstates. This is mainly due to the fact that these missing 

states do not overlap with the employed reference states. To obtain these states, the reference state can 

be extended to configurations of double or higher excitations.  
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Figure 11. Ground and excited-state energies of H4 molecule systems with different bond length. The lines are the 

results of the FCI method, and the dots are from the PSHO method. Different colors represent different eigenvalues, 

which is marked in the legend. 

 

3.5 Feasibility Discussion 

The purpose of developing quantum computing algorithm is to transform classical computing 

problems with exponential complexity into the tasks of polynomial complexity. The eigenstate 

calculations of a molecular system are of exponential complexity on classical computers. In the PSHO 

method, the number of qubits increases linearly with the size of the molecular system. The circuit depth 

and measurement number are related to the power. The power is linearly related to the time of the 

𝑒±𝑖𝐻̂𝜏 operator. According to Eq. 19, The circuit depth is linearly related to the square root of power, 

and the measurement number is linearly related to the power, as shown in Eq. 10 and Eq. 11. Therefore, 

in order to analyze the computational complexity of the PSHO method, it is necessary to determine the 

minimum power to ensure the convergence of a PSHO calculation. 

In the case of |𝐸0𝜏| <
𝜋

2
, the relative fraction of all excited states in |𝜑𝑛⟩ is exponentially decayed 

with the power n increasing, but this exponential decreasing rate is not as rapid as 2−𝑛. Here we are 

concerned about the “relative fraction”. According to the discussion in Section 3.3, the closer |
𝐸1

𝐸0
| is 

to 1, the slower the relative proportion decreases, and a greater power is required to eliminate the first 

excited state. To alleviate the high power problem, in the last paragraph of section 3.3, we proposed 
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that the convergent power can be reduced by offsetting a positive constant term in the Hamiltonian. 

The energy-shift can amplify relative gaps between different eigenstates. However, subjected to the 

highest order eigenstate with non-zero overlap with reference state, the energy-shifting must meet a 

specific requirement. Therefore, the energy-shifting method has limited effect for the power reduction. 

Here are a couple of questions we need to address for the PSHO method: what is the minimum power 

required for the convergence with the increased system size? Whether it is increasing exponentially 

with the system size? The energy gaps between different eigenstates are not directly related to the size 

of the system, so it is difficult to determine how the power scales with respect to the size of the system. 

However, we can analyze the problem from other perspective. For the Hamiltonian concerned in 

quantum chemistry, its corresponding Hilbert space is exponentially scale with the system size. 

However, the state we care about only covers a minimal subspace in the Hilbert space. Take the ground 

state as an example. Generally speaking, most of the configurations are not involved in the ground state. 

Therefore, it is reasonable to believe that, eigenstates which have non-zero overlap with a specific 

reference state is also in a minimal subset of the whole eigenstate set. In the PSHO method, taking 

appropriate energy shift and 𝜏  value to make all 𝐸𝑖𝜏  values are in the interval of [−
𝜋

2
, 0] . The 

number of states in this interval will not scale exponentially with the system size, and the average gap 

between states will not decrease exponentially. For any two eigenstates, their sin(𝐻̂𝜏)  operator 

eigenvalues are not infinitely close. Therefore, we believe that the minimum power will not increase 

exponentially with the increase of system size.  

The above analysis assumes that all eigenvalues are evenly distributed, in which energy gaps of each 

adjacent eigenstates are equal. However, we know that this not true for the real system. The 

convergence rate of PSHO depend on the energy spectrum distribution. For the energy spectrum of 

hydrogen atom, we know that the lower the energy level, the greater the energy gap, and the higher the 

energy level, the smaller the energy gap. We believe that similar trend also holds in molecular systems. 

Generally, we only focus on some eigenstates at low energy levels, so the minimum power required for 

calculating eigenstates in PSHO method may be lower than the above analysis for the evenly distributed 

eigenvalues.  

For the ground state calculation, 𝜏 has to be chosen such that |𝐸0𝜏| <
𝜋

2
, which means that 𝜏 will 

be very small for large energies. Too small 𝜏 may cause some difficulties for the implementation of 

PSHO on the actual quantum devices. There are two methods to address this issue. The first one is the 
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energy-shifting method mentioned in the last paragraph section 3.3. Giving that the ground state energy 

is generally negative in quantum chemistry, the positive energy-shifting on the Hamiltonian makes the 

shifted ground state energy closer to 0, so that the value of 𝜏 does not have to be too small. The second 

method is changing the |𝐸0𝜏| <
𝜋

2
  constraint to |𝐸0𝜏| <

𝜋

2
+ 𝑚𝜋 , where 𝑚 = 0,1,2 ⋯ . When the 

|𝐸0| is large, too small 𝜏 can be prevented by increasing the value of 𝑚. However, increasing the 𝑚 

may cause the PSHO state converge to other excited states, instead of the ground state. When 

|sin(𝐸𝑖𝜏)| of an excited state is closer to 1 than |sin(𝐸0𝜏)|, the PSHO state will converge to the 𝐸𝑖 

state. 

From the above analysis, we can see that the PSHO method might not be applicable to all 

Hamiltonians. Based on some assumptions, we only theoretically demonstrate that the convergence 

power does not increase exponentially with the size of the system. It is difficult to derive the exact 

growth trend of power. However, we still believe that the PSHO method has advantages in solving 

some systems that are difficult to calculate by other methods. Compared with the popular VQE 

algorithm, PSHO does not require a parameterized ansatz circuit, and the complex nonlinear 

optimizations are avoided. In VQE, ansatz circuit construction and parameter optimization greatly 

affect the result accuracy. Moreover, the measurement statistical error in VQE affects not only the 

energy estimation but also the gradient determination, so the PSHO method is more robust than VQE. 

In terms of quantum resource cost, the number of qubits in PSHO is only one more than that of VQE. 

For the circuit depth, it is also an open question how deep an ansatz needs to be in VQE to represent 

the ground state. This often depends on the specific system. Thus, it is difficult to compare their circuit 

depth. For the measurement numbers, both VQE and PSHO method need to calculate the expectation 

value of Hamiltonian, and their measurement numbers are the same. However, VQE needs to estimate 

energy and all parameter gradients and perform it multiple times because of the iterative optimizations. 

The circuit in Figure 3 should be implemented 𝑛  (power) times in PSHO, and the measurement 

number will increase 𝑛 times. It is difficult to determine the number of parameters and iterations. 

Thus, it is also difficult to compare their measurement numbers.  

It needs to be clarified that although PSHO method has some theoretical advantages over VQE, the 

purpose of developing the PSHO method is not to replace VQE method, but to be a complementary 

method with VQE. As in many classical quantum chemical methods, each method has its own pros and 

cons. For some systems, such as LiH at the equilibrium geometry, the VQE method can easily obtain 

the accurate ground state energy. However, for some non-equilibrium systems or excited states 
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calculations, it may be difficult to construct the ansatz that can effectively prepare the eigenstate. For 

these cases, the PSHO method may be a useful alternative. If the VQE ansatz circuits are too complex 

to be optimized, one can also try the PSHO method. Moreover, it is also a good idea to combine VQE 

with PSHO method. As we mentioned in Section 2.2, using VQE state as the reference state in the 

PSHO algorithm, the power required to converge to the ground state may be less than that of the HF 

state. These are worthy of further studies in the future.  

 

4. Conclusions 

In this paper, we introduce a new hybrid classical-quantum algorithm, named as power of sine 

Hamiltonian operator (PSHO), to evaluate the normalized energy of the sinn(𝐻̂𝜏) |𝜑0⟩  state. By 

increasing the power n, the normalized sinn(𝐻̂𝜏) |𝜑0⟩ state will converge to the |Ψ𝑖⟩ state with the 

maximum |sin(𝐸𝑖𝜏)| value in |𝜑0⟩. The PSHO method can be used to determine eigenvalues of a 

given Hamiltonian (𝐻̂ ). PSHO can be implemented via a direct or indirect algorithm. The direct 

algorithm attempts to prepare the normalized sinn(𝐻̂𝜏) |𝜑0⟩ states on a quantum register. Since the 

probability of successfully preparing the target state decreases exponentially with the increase of power, 

the computational cost of the direct algorithm is prohibitively high. Nevertheless, the quantum circuit 

in the direct method lays a solid foundation for the indirect algorithm. The indirect algorithm can 

calculate the normalized energy without prepare the corresponding quantum state, where each paired 

term in its algebraic expansion can be evaluated independently. It is necessary to suppress the errors in 

the indirect PSHO method. For the ground state calculation, the 𝜏 should be close to |
𝜋

2𝐸0
|. Since 𝐸0 

is unknown, the initial 𝜏 value can be set to |
𝜋

2𝐸HF
|. Gradually reduce the value of 𝜏 and increase the 

power until the evaluated energy converges. For the excited states calculation, the 𝜏  should be 

gradually increased from |
𝜋

2𝐸0
|. The energy of each plateau in the energy-𝜏 plot corresponds to an the 

energy of an eigenstate. In addition, even only the normalization coefficient of the sinn(𝐻̂𝜏) |𝜑0⟩ 

state is obtained, the eigenenergies can be extracted from the normalization coefficients. Compared 

with the energy based PSHO method, the normalization-coefficient based PSHO method requires less 

sampling number, but its accuracy is inferior to that of the energy based PSHO method. The 

performance of PSHO is demonstrated by numerical simulations. For the H4 molecular chain, the 
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PSHO calculated energies agree well with those of FCI. For the LiH molecule, the power required to 

achieve chemical accuracy is much larger that for H4, but it can be highly reduced by offsetting the 

Hamiltonian. It is difficult to derive how the minimum power required for convergence scales with 

respect to the size of the system. But we theoretically demonstrate that the power does not increase 

exponentially with the system size based on some assumptions. It is difficult to compare quantum 

resource cost of VQE and PSHO, and PSHO does not need the design of ansatz circuits and the complex 

nonlinear optimizations. Compared with nonunitary imaginary time evolution method, the indirect 

PSHO method avoids the difficulty that nonunitary operators cannot be directly transformed into 

quantum circuits. This work extends the quantum algorithms for the eigenstates calculations and 

broadens the applications of quantum computing in quantum chemistry.   
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