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Abstract

In this paper, we present the stability analysis of the perfectly matched layer (PML) in two-
space dimensional layered elastic media. Using normal mode analysis we prove that all interface
wave modes present at a planar interface of bi-material elastic solids are dissipated by the PML.
Numerical experiments in two-layer and multi-layer elastic media corroborate the theoretical
analysis.
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1 Introduction

Wave motion is prevalent in many applications and has a great impact on our daily lives. Examples
include the use of seismic waves [1, 8] to image natural resources in the Earth’s subsurface, to
detect cracks and faults in structures, to monitor underground explosions, and to investigate strong
ground motions from earthquakes. Most wave propagation problems are formulated in large or
infinite domains. However, because of limited computational resources, numerical simulations must
be restricted to smaller computational domains by introducing artificial boundaries. Therefore,
reliable and efficient domain truncation techniques that significantly minimise artificial reflections
are important for the development of effective numerical wave solvers.

A straightforward approach to construct a domain truncation procedure is to surround the
computational domain with an absorbing layer of finite thickness such that outgoing waves are
absorbed. For this approach to be effective, all outgoing waves entering the layer should decay
without reflections, regardless of the frequency and angle of incidence. An absorbing layer with
this desirable property is called a perfectly matched layer (PML) [5, 10, 25, 17, 15, 6, 3, 4, 7].

The PML was first derived for electromagnetic waves in the pioneering work [5, 10] but has
since then been extended to other applications, for example acoustic and elastic waves [17, 15, 6,
3, 4, 7]. The PML has gained popularity because of its effective absorption properties, versatility,
simplicity, ease of derivation and implementation using standard numerical methods. A stable PML
model, when effectively implemented in a numerical solver, can yield a domain truncation scheme
that ensures the convergence of the numerical solution to the solution of the unbounded problem
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[4, 13, 21]. However, the PML is also notorious for supporting fatal instabilities which can destroy
the accuracy of numerical solutions. These undesirable exponentially growing modes can be present
in both the PML model at the continuous level or numerical methods at the discrete level. The
stability analysis of the PML has attracted substantial attention in the literature, see for examples
[17, 15, 6, 3, 4, 7], and [19] for a recent review. For hyperbolic PDEs, mode analysis for PML initial
value problems (IVP) with constant damping and constant material properties yields a necessary
geometric stability condition [6]. When this condition is violated, exponentially growing modes
in time are present, rendering the PML model useless. In certain cases, for example the acoustic
wave equation with constant coefficients, analytical solutions can be derived [7, 11]. In addition,
energy estimates for the PML have recently been derived in physical space [4] and Laplace space
[13, 21], which can be useful for deriving stable numerical methods. However, in general, even if
the PML IVP does not support growing modes, there can still be stability issues when boundaries
and material interfaces are introduced. For the extension of mode stability analysis to boundary
and guided waves in homogeneous media, see [17, 14, 15, 18]. The stability analysis of the PML
in discontinuous acoustic media was presented in [12]. To the best of our knowledge, the stability
analysis of the PML for more general wave media such as the discontinuous or layered elastic solids
has not been reported in literature.

In geophysical and seismological applications, the wave media can be composed of layers of
rocks, soft and hard sediments, bedrock layers, water and possibly oil. In layered elastic media,
the presence of interface wave modes such as Stoneley waves [30, 8], makes the stability analysis
of the PML more challenging. Numerical experiments have also reported PML instabilities and
poor performance for problems with material boundaries entering into the layer and problems with
strong evanescent waves [2]. These existing results have motivated this study to investigate where
the inadequacies of the PML arise.

The main objective of this study is to analyse the stability of interface wave modes for the
PML in discontinuous elastic solids. Using normal mode analysis, we prove that if the PML IVP
has no temporally growing modes, then all interface wave modes present at a planar interface of
bi-material elastic solids are dissipated by the PML. The analysis closely follows the steps taken
in [17] for boundary waves modes, but here we apply the techniques to investigate the stability of
interface wave modes in the PML. Numerical experiments in two-layered isotropic and anisotropic
elastic solids, and a multi-layered isotropic elastic solid corroborate the theoretical analysis.

The remainder of the paper proceeds as follows. In the next section, we present the elastic
wave equation in discontinuous media, define interface conditions and discuss energy stability for
the model problem. In section 3, we introduce the mode analysis for body and interface wave
modes, and formulate the determinant condition that is necessary for stability. The PML model
is derived in section 4. In section 5, we present the stability analysis of the PML in a piecewise
constant elastic medium and formulate the main results. Numerical examples are given in section
6, corroborating the theoretical analysis. In section 7, we draw conclusions.

2 The elastic wave equation in discontinuous media

Consider the 2D elastic wave equation in the two half-planes, Ω1 = (−∞,∞) × (0,∞) and Ω2 =
(−∞,∞)× (−∞, 0)

ρi
∂2ui
∂t2

=
∂

∂x

(
Ai
∂ui
∂x

+ Ci
∂u1

∂y

)
+

∂

∂y

(
Bi
∂ui
∂y

+ CTi
∂ui
∂x

)
, (x, y) ∈ Ωi, i = 1, 2 (1)
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with a planar interface at y = 0 and subject to the smooth initial conditions

ui(x, y, 0) = fi(x, y),
∂ui
∂t

(x, y, 0) = gi(x, y).

At the material interface y = 0, we impose physical interface conditions

u1 = u2, B1
∂u1

∂y
+ CT1

∂u1

∂x
= B2

∂u2

∂y
+ CT2

∂u2

∂x
, (2)

which correspond to continuity of displacement and continuity of traction. For i = 1, 2, we have
the unknown displacement vectors ui = [ui1, ui2]T . The medium parameters are described by the
densities ρi > 0 and the coefficient matrices Ai, Bi, Ci of elastic constants. In 2D orthotropic elastic
media, the elastic coefficients are described by four independent parameters c11i , c22i , c33i , c12i and
the coefficient matrices are given by

Ai =

[
c11i 0
0 c33i

]
, Bi =

[
c33i 0
0 c22i

]
, Ci =

[
0 c12i

c33i 0

]
, i = 1, 2. (3)

Here, the material coefficients c11i , c22i , c33i are always positive, but c12i may be negative for certain
materials. In general, for stability, we require

c11i > 0, c22i > 0, c33i > 0, c11ic22i − c2
12i > 0. (4)

For planar waves propagating along the x-direction and y−direction, the p-wave speed and s-wave
speed are given by

cpxi :=

√
c11i

ρi
, csxi :=

√
c33i

ρi
, cpyi :=

√
c22i

ρi
, csyi :=

√
c33i

ρi
. (5)

In the case of isotropic media, the material properties can be described by using only two Lamé
parameters, µi > 0 and λi, such that c11i = c22i = 2µi+λi, c33i = µi > 0, c12i = λi > −µi, yielding

Ai =

[
2µi + λi 0

0 µi

]
, Bi =

[
µi 0
0 2µi + λi

]
, Ci =

[
0 λi
µi 0

]
, i = 1, 2, (6)

with the wave speeds

cpi :=

√
2µi + λi

ρi
, csi :=

√
µi
ρi
. (7)

In isotropic media, a wave mode propagates with the same wave speed in all directions.
We introduce the strain-energy matrix

Pi =

[
Ai Ci
CTi Bi

]
. (8)

The symmetric strain-energy matrix Pi is positive semi-definite [26]. For i = 1, 2, we define the
mechanical energy in the medium Ωi by

Ei(t) =
1

2

∫
Ωi

ρi(∂ui
∂t

)T (∂ui
∂t

)
+

[
∂ui
∂x
∂ui
∂y

]T
Pi

[
∂ui
∂x
∂ui
∂y

] dxdy. (9)

The following theorem states a stability result for the coupled problem, (1) with (2).
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Theorem 1 The elastic wave equation (1), for i = 1, 2, subject to the interface condition (2) is
energy conserving, that is E1(t) + E2(t) = E1(0) + E2(0) for all t ≥ 0, where the energy Ei(t) is
defined in (9).

Proof 1 Multiply (1) by
(
∂ui
∂t

)T
and integrate over the spatial domain Ωi, yielding

∫
Ωi

ρi

(
∂ui
∂t

)T (∂2ui
∂t2

)
dxdy =

∫
Ωi

[(
∂ui
∂t

)T ∂

∂x

(
Ai
∂ui
∂x

)
+

(
∂ui
∂t

)T ∂

∂y

(
Bi
∂ui
∂y

)

+

(
∂ui
∂t

)T ∂

∂x

(
Ci
∂ui
∂y

)
+

(
∂ui
∂t

)T ∂

∂y

(
CTi

∂ui
∂x

)]
dxdy.

Integrating by parts and summing contributions from both half-planes, i = 1, 2, we obtain

2∑
i=1

∫
Ωi

ρi

(
∂ui
∂t

)T (∂2ui
∂t2

)
dxdy = −

2∑
i=1

∫
Ωi

[(
∂2ui
∂t∂x

)T (
Ai
∂ui
∂x

)
+

(
∂2ui
∂t∂y

)T (
Bi
∂ui
∂y

)

+

(
∂2ui
∂t∂x

)T (
Ci
∂ui
∂y

)
+

(
∂2ui
∂t∂y

)T (
CTi

∂ui
∂x

)]
dxdy

−
∫ ∞
−∞

(
∂u1

∂t

)T (
B1
∂u1

∂y
+ CT1

∂u1

∂x

) ∣∣∣∣
y=0

dx+

∫ ∞
−∞

(
∂u2

∂t

)T (
B2
∂u2

∂y
+ CT2

∂u2

∂x

) ∣∣∣∣
y=0

dx.

The interface terms at y = 0 vanish because of (2). The relation can then be rewritten as

1

2

d

dt

2∑
i=1

∫
Ωi

ρi

(
∂ui
∂t

)T (∂ui
∂t

)
dxdy = −1

2

d

dt

2∑
i=1

∫
Ωi

[
∂ui
∂x
∂ui
∂y

]T [
Ai Ci
CTi Bi

][∂ui
∂x
∂ui
∂y

]
dxdy.

Moving all terms to the left-hand side and identifying the energy gives

d

dt
(E1(t) + E2(t)) = 0.

The time derivative of the energy vanishes, thus E1(t) + E2(t) = E1(0) + E2(0) for all t ≥ 0. The
proof is complete.

We say that the problem is energy-stable if the energy is conserving or dissipating.

3 Mode analysis

Theorem 1 proves energy stability of the elastic wave equation (1) in general media Ωi, for i = 1, 2,
subject to the interface condition (2). However, the theorem does not provide information about the
wave modes that may exist in the medium. In this section, we use mode analysis to gain insights on
the existence of possible wave modes. More precisely, we start by considering a constant-coefficient
problem for the existence of body waves. After that, we analyse interface waves in media with
piecewise constant material property and formulate a stability result in the framework of normal
mode analysis.
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3.1 Plane waves and dispersion relations

To study the existence of body wave modes, we consider the problem (1) in the whole real plane
(x, y) ∈ R2 with constant medium parameters,

ρi = ρ, Ai = A, Bi = B, Ci = C,

for Ωi, i = 1, 2. In this case, there is no interface condition at y = 0, and the material parameters
are constant in the entire domain Ω1 ∪ Ω2.

Consider the wave-like solution

u (x, y, t) = u0e
st+i(kxx+kyy), u0 ∈ R2, kx, ky, x, y ∈ R, t ≥ 0, i =

√
−1. (10)

In (10), k = (kx, ky) ∈ R2 is the wave vector, and u0 ∈ R2 is a vector of constant amplitude called
the polarization vector. By inserting (10) into (1), we have the eigenvalue problem

−s2u0 = P(k)u0, P(k) =
k2
xA+ k2

yB + kxky(C + CT )

ρ
. (11)

The polarisation vector u0 ∈ R2 is an eigenvector of the matrix P(k) and −s2 is the corresponding
eigenvalue. For problems that are energy conserving, the matrix P(k) is symmetric positive definite
for all k ∈ R2. Thus, the eigenvectors u0 of P(k) are orthogonal and the eigenvalues are real and
positive, −s2 > 0.

The wave-mode (10) is a solution of the elastic wave equation (1) in the whole plane (x, y) ∈ R2

if s and k satisfy the dispersion relation

F (s,k) := det
(
s2I + P(k)

)
= 0. (12)

Evaluating the determinant and simplifying further, we obtain

F (s,k) = s4 +
(c11 + c33) k2x + (c22 + c33) k2y

ρ
s2 +

c11c33k
4
x + c22c33k

4
y +

(
c11c22 + c233 − (c33 + c12)2

)
k2xk

2
y

ρ2
= 0.

(13)

In an isotropic medium, with c11 = c22 = 2µ + λ, c33 = µ > 0, c12 = λ > −µ, the dispersion
relation simplifies to

F (s,k) =
(
s2 + c2

p|k|2
) (
s2 + c2

s|k|2
)

= 0, cp =

√
2µ+ λ

ρ
, cs =

√
µ

ρ
, |k| =

√
k2
x + k2

y. (14)

Then, the eigenvalues are given by

−s2
1 = c2

p|k|2, −s2
2 = c2

s|k|2, (15)

which correspond to the P-wave and S-wave propagating in the medium. In linear orthotropic
elastic media, the eigenvalues −s2 also have closed form expressions

−s21 =
1

2ρ

(
(c11 + c33)k2x + (c22 + c33)k2y

)
+

1

2ρ

√(
(c11 + c33)k2x + (c22 + c33)k2y

)2 − 4
((
c11c33k4x + c22c33k4y

)
+
(
c11c22 + c233 − (c12 + c33)2 k2xk2y

))
,

−s22 =
1

2ρ

(
(c11 + c33)k2x + (c22 + c33)k2y

)
− 1

2ρ

√(
(c11 + c33)k2x + (c22 + c33)k2y

)2 − 4
((
c11c33k4x + c22c33k4y

)
+
(
c11c22 + c233 − (c12 + c33)2 k2xk2y

))
.

(16)

Using the stability conditions (4), it is easy to check that the two eigenvalues are strictly pos-
itive, that −s2

j > 0 for j = 1, 2. These two eigenvalues again indicate two body-wave modes,
corresponding to the quasi-P waves and the quasi-S waves.
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Remark 1 The indeterminate s ∈ C that solves the dispersion relation (12) is related to the
temporal frequency. Since Theorem 1 holds for all stable medium parameters, the whole plane
problem (1) conserves energy. Thus, the real part of the roots s must be zero, that is s ∈ C with
Re{s} = 0. Otherwise, if the roots s have non-zero real parts then the energy will grow or decay,
contradicting Theorem 1.

We write s = iω, where ω ∈ R is called the temporal frequency, and introduce

K =

(
kx
|k|
,
ky
|k|

)
, normalized propagation direction,

Vp =

(
ω

kx
,
ω

ky

)
, phase velocity,

S =

(
kx
ω
,
ky
ω

)
, slowness vector,

Vg =

(
∂ω

∂kx
,
∂ω

∂ky

)
, group velocity.

(17)

For the Cauchy problem in a constant coefficient medium, the dispersion relation F (iω,k) = 0
and the quantities K, Vp, S, Vg, defined above give detailed description of the wave propagation
properties in the medium. In addition, they determine a stability property for the corresponding
PML model, which is discussed in section 5.1. In Figure ??, we plot the dispersion relations of two
different elastic solids, showing the slowness diagrams.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) Isotropic elastic solid

-2 -1 0 1 2

-2

-1

0

1

2

(b) Anisotropic elastic solid

When boundaries and interfaces are present, additional boundary and interface wave modes,
such as Rayleigh [29] and Stoneley waves [30, 8], are introduced. In the following, we consider
the problem in two half-planes coupled together at a planar interface and formulate an alternative
procedure to characterise the stability property of interface wave modes.

3.2 Normal modes analysis and the determinant condition

Here, we present the normal modes analysis for interface wave modes in discontinuous media, which
tightly connects to the analysis of the PML in the next section. To begin, we consider piecewise
constant media parameters

ρi > 0, Ai, Bi, Ci,
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for Ωi, i = 1, 2, where Ai, Bi, Ci are given in (3). The material parameters are constant in each
half-plane, but are discontinuous at the interface y = 0, where the equations (1) are coupled by the
interface condition (2). We look for wave solutions in the form

ui (x, y, t) = φi(y)est+ikxx, ‖φi‖ <∞, kx ∈ R, (x, y) ∈ Ωi, t ≥ 0. (18)

The variable s is related to the stability property of the model, which is characterised in the
following lemma.

Lemma 1 The elastic wave equations (1) with piecewise constant media parameters (3) and the
interface condition (2) are not stable in any sense if there are nontrivial solutions of the form (18)
with Re{s} > 0.

If there are nontrivial solutions of the form (18), we can always construct solutions that grow
arbitrarily fast [17], which is not supported by a stable system. Now, we reformulate Lemma (1)
as an algebraic condition, i.e. the so-called determinant condition in Laplace space [23].

For a complex number z = a+ ib, we define the branch of
√
z by

−π < arg (a+ ib) ≤ π, arg (
√
a+ ib) =

1

2
arg (a+ ib).

We insert (18) in the equation (1) and the interface condition (2), and obtain

s2ρiφi = −k2
xAiφi +Bi

d2φi
dy2

+ ikx
(
Ci + CTi

) dφi
dy

, i = 1, 2, (19)

φ1 = φ2, B1
dφ1

dy
+ ikxC

T
1 φ1 = B2

dφ2

dy
+ ikxC

T
2 φ2. (20)

For φi, we seek the modal solution

φi = Φie
κy, Φi ∈ C2, i = 1, 2. (21)

Inserting the modal solution (21) in (19), we have the eigenvalue problem

−s2Φi = Pi(kx, κ)Φi, Pi(kx, κ) =
k2
xAi − κ2Bi − ikxκ(Ci + CTi )

ρi
, i = 1, 2. (22)

The solutions satisfy the condition

Fi (s, kx, κ) := det
(
s2I + Pi(kx, κ)

)
= 0. (23)

We note that if we set κ = iky in Fi (s, kx, κ), we get exactly the same dispersion relation (12) for
the Cauchy problem.

For s with large Re{s} > 0, the roots κi come in pairs and have non-vanishing real parts, [17],
with

κ−ij(s, kx), κ+
ij(s, kx), j = 1, 2. (24)

The following lemma states an important property of the roots.

Lemma 2 The real parts of the roots κ±ij , i, j = 1, 2 in (24) do not change sign for all s with
Re{s} > 0.

7



Proof 2 We note that the roots vary continuously with s. Thus, if the real part of a root κij changes
sign, then for some s with Re{s} > 0 the root is purely imaginary, κij = iky. Because of the
equivalence between the dispersion relations (23) and (12) when κij = iky, a purely imaginary root
corresponds to an exponentially growing mode for the Cauchy problem, which contradicts Theorem
1.

We use the notation (24) to denote the roots with the stated sign convention for all s with
Re{s} > 0. That is, the superscript (+) denotes the root with positive real part and the superscript
(−) denotes the root with negative real part. Because of the condition ‖φi‖ < ∞, the general
solution of (19) takes the form

φ1(y) = δ11e
κ−11yΦ11 + δ12e

κ−12yΦ12, φ2(y) = δ21e
κ+21yΦ21 + δ22e

κ+22yΦ22, (25)

where Φij , i, j = 1, 2 are the corresponding eigenvectors. As an example, in isotropic linear elastic
media, the analytical expressions of the roots and eigenvectors are

κ±i1 = ±

√
k2
x +

s2

c2
si

, κ±i2 = ±
√
k2
x +

s2

c2
pi

, i = 1, 2,

and

Φ11 =

[
i

k̃x
κ−11

1

]
, Φ12 =

[
−ikx
κ−12
1

]
, Φ21 =

[
i
kx
κ+

21

1

]
, Φ22 =

[
−ikx
κ+22
1

]
.

For orthotropic elastic media, the roots can also be expressed in closed form, but the expressions
are much more complicated. We refer the reader to [17] for more details.

The coefficients δ = [δ11, δ12, δ21, δ22]T are determined by inserting (25) into the interface con-
ditions (20), yielding the following equation

C (s, kx)δ = 0, (26)

where the 4× 4 boundary matrix C takes the form

C (s, kx) =

[
Φ11 Φ12 −Φ21 −Φ22

(κ−
11B1 + ikxC

T
1 )Φ11 (κ−

21B1 + ikxC
T
1 )Φ12 −(κ+

12B2 + ikxC
T
2 )Φ21 −(κ+

22B2 + ikxC
T
2 )Φ22

]
. (27)

To ensure only trivial solutions for Re{s} > 0, the coefficients δ must vanish, and thus we require
the determinant condition

F (s, kx) := det (C (s, kx)) 6= 0, ∀Re{s} > 0. (28)

We will now formulate an algebraic definition of stability equivalent to Lemma 1, for the coupled
problem, (1) and (2), with piecewise constant media parameters (3).

Lemma 3 The solutions of the elastic wave equation (1) with piecewise constant media parameters
(3) and the interface condition (2) are not stable in any sense if for some kx ∈ R and s ∈ C with
Re{s} > 0, we have

F (s, kx) := det (C (s, kx)) = 0.

8



The determinant condition is defined for all s with Re{s} > 0. The case when Re{s} = 0 would
correspond to time-harmonic and important interface wave modes, such as Stoneley waves [23, 24].

The energy stability in Theorem 1 states that the coupled problem, (1) and (2), with piecewise
constant media parameters (3) conserves energy. Therefore, similar to Remark 1, the roots s of
F (s, kx) must be zero or purely imaginary, i.e. s ∈ C with Re{s} = 0. We conclude that all
nontrivial and stable interface wave modes, such as Stoneley waves, that solve F (s, kx) = 0, must
have purely imaginary roots, s = iξ with ξ ∈ R. A main objective of the present work is to
determine how the purely imaginary roots s = iξ will move in the complex plane when the PML is
introduced.

4 The perfectly matched layer

We consider the elastic wave equation (1) with the interface conditions (2). Let the Laplace
transform, in time, of u (x, y, t) be defined by

û(x, y, s) =

∫ ∞
0

e−stu (x, y, t) dt, s = a+ ib, Re{s} = a > 0. (29)

We consider a setup where the PML is included in the x-direction only. Without loss of generality,
we assume that we are only interested in the solution in the left half-plane x ≤ 0. To absorb
outgoing waves, we introduce a PML outside the left half-plane and require that the material
properties are invariant in x in PML.

To derive the PML model, we Laplace transform (1) in time, and obtain

ρis
2ûi =

∂

∂x

(
Ai
∂ûi
∂x

)
+
∂

∂y

(
Bi
∂ûi
∂y

)
+
∂

∂x

(
Ci
∂ûi
∂y

)
+
∂

∂y

(
CTi

∂ûi
∂x

)
, (x, y) ∈ Ωi, Re{s} > 0.

(30)
Note that we have tacitly assumed homogeneous initial data. Next, we consider (30) in the trans-
formed coordinate (x̃, y), such that

dx̃

dx
= 1 +

σ(x)

α+ s
=: Sx. (31)

Here, σ(x) ≥ 0 is the damping function and α ≥ 0 is the complex frequency shift (CFS) [25]. For
all s, we have Sx 6= 0 and 1/Sx 6= 0, and the smooth complex coordinate transformation [10],

∂

∂x
→ 1

Sx

∂

∂x
. (32)

The PML model in Laplapce space is

s2ρiûi =
1

Sx

∂

∂x

(
1

Sx
Ai
∂ûi
∂x

)
+

∂

∂y

(
Bi
∂ûi
∂y

)
+

1

Sx

∂

∂x

(
Ci
∂ûi
∂y

)
+

∂

∂y

(
CTi

1

Sx

∂ûi
∂x

)
, i = 1, 2,

(33)
with interface conditions

û1 = û2, B1
∂û1

∂y
+ CT1

1

Sx

∂û1

∂x
= B2

∂û2

∂y
+ CT2

1

Sx

∂û2

∂x
. (34)

Choosing the auxiliary variables

v̂i =
1

s+ σ + α

∂ûi
∂x

, ŵi =
1

s+ α

∂ûi
∂y

, q̂i =
α

s+ α
ûi,

9



we invert the Laplace transformed equation (33) and obtain the PML model in physical space,

ρi

(
∂2ui

∂t2
+ σ

∂ui

∂t
− σα(ui − qi)

)
=

∂

∂x

(
Ai
∂ui

∂x
+ Ci

∂ui

∂y
− σAivi

)
+

∂

∂y

(
Bi
∂ui

∂y
+ CT

i

∂ui

∂x
+ σBiwi

)
,

∂vi

∂t
= −(σ + α)vi +

∂ui

∂x
,

∂wi

∂t
= −αwi +

∂ui

∂y
,

∂qi

∂t
= α(ui − qi).

(35)

Similarly, inverting the Laplace transformed interface conditions (34) for the PML model gives

u1 = u2, B1
∂u1

∂y
+ CT1

∂u1

∂x
+ σB1w1 = B2

∂u2

∂y
+ CT2

∂u2

∂x
+ σB2w2. (36)

In the absence of the PML, σ = 0, the above model problem is energy-stable in the sense of
Theorem 1 for all elastic material parameters. When σ > 0, however, the coupled PML model (35)-
(36) is asymmetric with auxiliary differential equations. Thus, a similar energy-stability cannot be
established in general. To analyse the stability property of the PML model in a piecewise constant
elastic medium, we use the mode analysis discussed in Section 3 to prove that exponentially growing
wave modes are not supported.

5 Stability analysis of the PML model

The stability analysis of the PML will mirror directly the mode analysis described in Section 3.
We will split the analysis into two parts: plane wave analysis for the Cauchy PML problem and
normal modes analysis for the interface wave modes.

5.1 Plane waves analysis

We now investigate the stability of body wave modes in the PML in the whole real plane (x, y) ∈ R2

with constant medium parameters. As before, we consider constant PML damping σ > 0 and
uniformly constant coefficients medium parameters

ρi = ρ, Ai = A, Bi = B, Ci = C,

for Ωi, i = 1, 2, that is there is no discontinuity of material parameters at the interface at y = 0.
Consider the wave-like solution

u (x, y, t) = u0e
st+i(kxx+kyy), u0 ∈ R8, kx, ky, x, y ∈ R, t ≥ 0, (37)

where s ∈ C is to be determined and relates to the stability property of the PML model.

Lemma 4 The PML model (35) is not stable if there are nontrivial solutions u of the form (37)
with Re{s} > 0.

An s with a positive real part, Re{s} > 0 corresponds to a plane wave solution with exponentially
growing amplitude. A stable system does not admit such wave modes.

10



We consider the normalised wave vector K = (k1, k2), with
√
k2

1 + k2
2 = 1 and the normalised

variables
λ =

s

|k|
, ε =

σ

|k|
, ν =

α

|k|
, Sx (λ, ε, ν) = 1 +

ε

λ+ ν
.

Thus, if there are Re{λ} > 0, the PML is unstable.
We insert the plane wave solution (37) in the PML and obtain the dispersion relation

Fε(λ,K) := F

(
λ,

1

Sx (λ, ε, ν)
k1, k2

)
= 0, (38)

where the function F (λ,K) is defined by (13) and (14). The scaled eigenvalue λ is a root of the
complicated nonlinear dispersion relation Fε(λ,K) for the PML and defined in (38). When the
PML damping vanishes, ε = 0 we have Sx = 1, and F0(λ,K) ≡ F (λ,K). As shown in Section 3.1,
the roots of F (λ,K) are purely imaginary and correspond to the body wave modes propagating
in a homogeneous elastic medium. When the PML damping is present ε > 0, the roots λ can be
difficult to determine. However, standard perturbation arguments yield the following well-known
result [16, 6, 3].

Theorem 2 (Necessary condition for stability) Consider the constant coefficient PML, with
ε > 0, ν ≥ 0. Let the elastic medium be described by the phase velocity Vp = (Vpx, Vpy) and
the group velocity Vg = (Vgx, Vgy) defiend in (17). If VpxVgx < 0, then at all sufficiently high
frequencies, |k| → ∞, there are corresponding unstable wave modes with Re{λ} > 0.

For the elastic subdomains Ωi, i = 1, 2, we will consider only media parameters where the
geometric stability condition, VpxVgx > 0, is satisfied and there no growing modes for the Cauchy
PML problem. In particular, it can be shown for isotropic elastic materials that body wave modes
inside the PML are asymptotically stable for all frequencies [15, 17]. In many anisotropic elastic
materials the geometric stability condition and the complex frequency shift α > 0 will ensure the
stability of plane wave modes for all frequencies [3]. Next, we will characterise the stability of
interface wave modes in the PML.

5.2 Stability analysis of interface wave modes

As above, we assume constant PML damping σ ≥ 0 and piecewise constant elastic media parameters
with a planar interface at y = 0. We Laplace transform (35)–(36) in time, perform a Fourier
transformation in the spatial variable x of (35)–(36) and eliminate all PML auxiliary variables. We
have

ρis
2ũi = −k̃2

xAiũi +Bi
d2ũi
dy2

+ ik̃x
(
Ci + CTi

) dũi
dy

, i = 1, 2, (39)

where k̃x = kx/Sx. The Laplace-Fourier transformed interface conditions are

ũ1 = ũ2, B1
dũ1

dy
+ ik̃xC

T
1 ũ1 = B2

dũ2

dy
+ ik̃xC

T
2 ũ2, y = 0. (40)

Note the similarity between (39)–(40) and (19)–(20); the only difference is that we have replaced
kx with k̃x and φi with ũi. When the PML damping vanishes σ = 0, we have Sx ≡ 1 and k̃x ≡ kx.
In this case, the PML model (39)–(40) is equivalent to the original equation (19)–(20), and (39) is
the Laplace-Fourier transformations of equation (1).

We seek modal solutions to (39) in the form

ũi = Φie
κy, Φi ∈ C2, i = 1, 2. (41)

11



Substituting (41) into (39), we obtain(
s2I + Pi(k̃x, κ)

)
Φi = 0, i = 1, 2, (42)

where

Pi(k̃x, κ) = k̃2
xAi − κ2Bi − ik̃xκ(Ci + CTi ), i = 1, 2.

The existence of nontrivial solutions to (42) requires that

Fi

(
s, k̃x, κ

)
:= det

(
s2I + Pi(k̃x, κ)

)
= 0, i = 1, 2. (43)

As above, we note that if we set κ = iky in Fi (s, kx, κ), we get exactly the same PML dispersion
relation (38) for the Cauchy problem. Again, note also the close similarity between (23) and (43).

The roots, κ = κ̃±ij , of the characteristic function Fi

(
s, k̃x, κ

)
are

κ̃−ij(s, kx) = κ−ij(s, k̃x), κ̃+
ij(s, kx) = κ+

ij(s, k̃x), j = 1, 2.

For the proceeding analysis to directly mirror the mode analysis discussed in section 3.2, we will

need the sign consistency between Re
{
κ±ij

}
and Re

{
κ̃±ij

}
. That is for Re{s} > 0, σ ≥ 0 and α ≥ 0

we must have

sign
(

Re
{
κ±ij

})
= sign

(
Re
{
κ̃±ij

})
. (44)

The following lemma, which uses a standard continuity argument, was first proven in [17].

Lemma 5 If the PML Cauchy problem has no temporally growing modes, then for all kx ∈ R and
all s ∈ C with Re{s} > 0 the PML characteristic equation has roots κ̃±ij(s, kx) with

sign
(

Re
{
κ±ij

})
= sign

(
Re
{
κ̃±ij

})
.

Proof 3 As above, we note that the roots vary continuously with s. Thus, if the real part of a root
κ̃ij changes sign, then for some s with Re{s} > 0 the root must be purely imaginary, κ̃ij = iky.
When κij = iky the PML dispersion relations (38) for the Cauchy problem and the characteristic
(43) are equivalent. Therefore a purely imaginary root κij = iky with Re{s} > 0 corresponds to an
exponentially growing mode for the Cauchy PML problem, which contradicts the assumption that
the Cauchy PML problem has no growing wave modes.

Taking into account the boundedness condition, the general solution of (39) is

ũ1(y) = δ11e
κ̃−11yΦ11 + δ12e

κ̃−12yΦ12, ũ2(y) = δ21e
κ̃+21yΦ21 + δ22e

κ̃+22yΦ22, (45)

The coefficients δ = [δ11, δ12, δ21, δ22]T are determined by inserting (45) into the interface conditions
(20). We have the following equation

C (s, k̃x)δ = 0, (46)

where

C (s, k̃x) =

[
Φ11 Φ12 −Φ21 −Φ22

(κ̃−
11B1 + ik̃xC

T
1 )Φ11 (κ̃−

21B1 + ik̃xC
T
1 )Φ12 −(κ̃+

12B2 + ik̃xC
T
2 )Φ21 −(κ̃+

22B2 + ik̃xC
T
2 )Φ22

]
. (47)

Using the determinant condition given in Definition 3, we formulate a stability condition for the
PML in a piecewise constant elastic medium.
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Lemma 6 (Stability condition) The solution to the PML model (39) with piecewise constant
material parameters (3) and interface condition (40) is not stable in any sense if for some kx ∈ R
and s ∈ C with Re{s} > 0, the determinant vanishes,

F (s, k̃x) := det
(
C (s, k̃x)

)
= 0.

The roots of F (s, k̃x) are tightly connected to the roots of F (s, kx) by the homogeneous property
of F . As a consequence, it is enough to analyse the roots of F (s, k̃x) for the stability property of
the PML model. Below, we define the homogeneous property, followed by a theorem for the PML
stability.

Definition 1 Let f(v) be a function with the vector argument v. If f(αv) = αnf(v) for all α 6= 0
and some n ∈ Z, then f(v) is homogeneous of degree n.

Theorem 3 Let F (s, kx) be a homogeneous function of degree n. Assume that F (s, kx) 6= 0 for
all Re{s} > 0 and kx ∈ R. Let k̃x = kx/Sx, where Sx is the PML metric (31). Then the function
F (s, k̃x) has no root s with positive real part, Re{s} > 0.

Proof 4 Consider the homogeneous function F (s, kx), we have

F (s, k̃x) = F

(
s,
kx
Sx

)
=

(
1

Sx

)n
F (sSx, kx) .

Since Sx 6= 0 and 1/Sx 6= 0, we must have

F (s, k̃x) = 0 ⇐⇒ F (s̃, kx) = 0, s̃ = sSx.

Assume that s = a+ ib with a > 0, we have

Re{s̃} =

(
a+

(
a (a+ α) + b2

|s+ α|2

)
σ

)
≥ a > 0.

Thus if F (s̃, kx) = 0 then s̃ with Re{s̃} > 0 is a root. This will contradict the assumption that
F (s, kx) 6= 0 for all Re{s} > 0. We conclude that for s = a + ib with a > 0, we must have
F (s̃, kx) 6= 0 for all σ ≥ 0 and α ≥ 0.

To determine the homogeneity property of F (s, kx) = det(C (s, kx)), we may evaluate the
corresponding determinant of C (s, kx). We have the following result.

Theorem 4 In a piecewise isotropic medium, the determinant F (s, kx) = det (C (s, kx)) given in
(28) is homogeneous of degree two.

Proof 5 Consider the modified boundary matrix C1(s, kx) where we have multiplied the first two
rows of C (s, kx) by s 6= 0, that is

C1(s, kx) =

[
sΦ11 sΦ12 −sΦ21 −sΦ22

(κ−
11B1 + ikxC

T
1 )Φ11 (κ−

21B1 + ikxC
T
1 )Φ12 −(κ+

12B2 + ikxC
T
2 )Φ21 −(κ+

22B2 + ikxC
T
2 )Φ22

]
. (48)

By inspection, every element of C1(s, kx) is homogeneous of degree one. Therefore the determinant
det(C1(s, kx)) of the 4 × 4 matrix C1(s, kx), using cofactor expansion, must be homogeneous of
degree four. Note that

C1(s, kx) = K (s)C (s, kx), K (s) =


s 0 0 0
0 s 0 0
0 0 1 0
0 0 0 1

 .
13



Using the properties of the determinants of products of matrices we have

det(C1(s, kx)) = det (K (s)) det(C (s, kx)) = s2 det(C (s, kx)) = s2F (s, kx).

Since det(C1(s, kx)) is homogeneous of degree four, therefore the determinant F (s, kx) is homoge-
neous of degree two.

We can now state the result that shows that exponentially growing waves modes are not supported
by the PML in a discontinuous elastic medium.

Theorem 5 Consider the PML (39) in a discontinuous elastic medium with the interface condition
(40) at y = 0. Let F (s, kx) be the homogeneous function given in (28). If F (s, kx) 6= 0 for all
Re{s} > 0 and kx ∈ R and the PML Cauchy problem has no temporally growing modes, then there
are no growing interface wave modes in the PML. That is F (s, k̃x) 6= 0 for all Re{s} > 0 and
kx ∈ R.

Proof 6 The proof is identical to the proof of Theorem 3 with degree of homogeneity n = 2.

The following theorem states that interface wave modes are dissipated by the PML.

Theorem 6 Consider the PML (39) in a discontinuous elastic medium with the interface condition
(40) at y = 0. If the PML Cauchy problem has no temporally growing modes then all stable interface
wave modes, that solve F (s, kx) = 0 for all kx ∈ R with s = iξ, are dissipated by the PML.

Proof 7 It suffices to prove that F (s, k̃x) = 0 implies Re{s} ≤ 0 for all kx ∈ R, α ≥ 0 and σ ≥ 0.
We will split the proof into two cases, for α = 0 and α > 0.

When α = 0, we have

F (s, k̃x) = 0 ⇐⇒ F (s̃, kx) = 0, s̃ = sSx =
α+ s+ σ

α+ s
s.

Since F (s0, kx) has purely imaginary roots s0 = iξ, we must have

α+ s+ σ

α+ s
s = iξ, (49)

for some ξ ∈ R. Thus, if α = 0, then s = −σ + iξ and Re{s} = −σ < 0.
When α > 0, we consider

α+ s+ σ

α+ s
s = iξ ⇐⇒ s2 + (α+ σ − iξ)s− iαξ = 0.

If ξ = 0, then the roots are s = 0 and s = −(α + σ) < 0. Clearly the real parts of the roots are
non-positive. If ξ 6= 0, then the roots are given by

s = −(α+ σ − iξ)
2

± 1

2

√
(α+ σ − iξ)2 + i4αξ.

The real parts of the two roots are

Re{s} = −(α+ σ)

2
± 1

2
√

2

√
(α+ σ)2 − ξ2 +

√
((α+ σ)2 − ξ2)2 + 4ξ2(α− σ)2.
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We note that the root with a negative sign has a negative real part,

Re{s} = −(α+ σ)

2
− 1

2
√

2

√
(α+ σ)2 − ξ2 +

√
((α+ σ)2 − ξ2)2 + 4ξ2(α− σ)2 < 0.

For the other root with a positive sign,

Re{s} = −(α+ σ)

2
+

1

2
√

2

√
(α+ σ)2 − ξ2 +

√
((α+ σ)2 − ξ2)2 + 4ξ2(α− σ)2,

if we assume that Re{s} > 0 for α > 0, σ > 0 and ξ ∈ R, then this implies that

(α+ σ) <
1√
2

√
(α+ σ)2 − ξ2 +

√
((α+ σ)2 − ξ2)2 + 4ξ2(α− σ)2.

Squaring both sides of the inequality gives

(α+ σ)2 + ξ2 <
√

((α+ σ)2 − ξ2)2 + 4ξ2(α− σ)2.

Squaring both sides again and simplifying further yields

(α+ σ)2 < (α− σ)2.

This is a contradiction since α > 0 and σ > 0. Thus, for α > 0 and σ > 0, we must have Re{s} < 0.
The roots are moved further by the PML into the stable complex plane.

6 Numerical experiments

In this section, we present some numerical examples to verify the stability analysis performed in
the previous sections and demonstrate the absorption properties of the PML model for the elastic
wave equation with piecewise constant material parameters.

6.1 Two layers

We consider the elastic wave equation in a two-layered medium Ω1 ∪ Ω2, where Ω1 = [0, 4π]2

and Ω2 = [0, 4π] × [−4π, 0]. The material property in each layer is either isotropic or orthotropic
anisotropic elastic solid. For the isotropic case, we use the material parameters ρ1 = 1.5, µ1 = 4.86,
λ1 = 4.8629 in Ω1, and ρ2 = 3, µ2 = 27, λ2 = 26.9952 in Ω2. For the anisotropic material property,
we choose ρ1 = 1, c111 = 4, c121 = 3.8, c221 = 20 and c331 = 2 in Ω1, and the material parameters
in Ω2 are chosen as ρ2 = 0.25 and cij2 = 4cij1 for i, j = 1, 2.

For initial conditions, we set the initial displacements as

u1 = u2 = e−20((x−2π)2+(y−1.6π)2),

and zero initial data for the velocity field and all auxiliary variables. We impose the transformed
interface conditions (36) at the material interface y = 0. We impose characteristic boundary
conditions at the left boundary x = 0, the bottom boundary y = −4π, and the top boundary
y = 4π. Outside the right boundary x = 4π, we use a PML [4π, 4.4π] × [−4π, 4π] closed by the
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characteristic boundary condition at the PML boundaries. Because of the PML, the boundary
conditions must be modified as

Z1y
∂u1

∂t
+B1

∂u1

∂y
+ CT1

∂u1

∂x
+B1σw1 + σZ1y(u1 − q1) = 0, y = 4π, (50)

Zix
∂ui
∂t
−Ai

∂ui
∂x
− Ci

∂ui
∂y

+Aiσvi = 0, x = 0, i = 1, 2, (51)

Zix
∂ui
∂t

+Ai
∂ui
∂x

+ Ci
∂ui
∂y
−Aiσvi = 0, x = 4.4π, i = 1, 2, (52)

Z2y
∂u2

∂t
−B2

∂u2

∂y
− CT2

∂u2

∂x
−B2σw2 + σZ2y(u2 − q2) = 0, y = −4π. (53)

The impedance matrices Zix and Ziy are given by

Zix =

[
ρicpxi 0

0 ρicsxi

]
, Ziy =

[
ρicsyi 0

0 ρicpyi

]
,

and the wave speeds cpxi, cpyi, csxi, csyi are defined in (5).
The PML damping function is

σ (x) =

{
0 if x ≤ Lx,

σ0

(
x−Lx
δ

)3
if x ≥ Lx,

(54)

where the damping strength is

σ0 =
4cp,max

2δ
log

(
1

Ref

)
. (55)

Here, cp,max = max(cp1, cp2), cp1 = max(cpx1, cpy1) and cp2 = max(cpx2, cpy2) are the maximum
pressure wave speeds in Ω1 and Ω2, respectively. The parameter Lx = 4π is the length of the
domain, δ = 0.1Lx is the width of the PML and Ref = 10−4 is the relative PML modeling error.
Additionally, we choose the CFS α = 0.05σ0 in both subdomains.

For the spatial discretisation, we use the SBP finite difference operators with the fourth or-
der accurate interior stencil [28]. The boundary conditions and material interface conditions are
imposed weakly by the penalty technique [20, 9] such that a discrete energy estimate is obtained
when the damping vanishes. For details on the SBP discretisation and stability for the undamped
problem, we refer the reader to [20, 22]. We discretise in time using the classical Runge-Kutta

method with the time step ∆t = 0.2h/
√

maxi(c2
pi + c2

si). As above cpi = max(cpxi, cpyi) are the

maximum pressure wave speeds in Ωi and csi = max(csxi, csyi) are the maximum shear wave speeds
in Ωi.

In Figure 2-3, we plot the numerical solutions at four time points for the isotropic and anisotropic
media, respectively. In both cases, the initial data is a Gaussian in the top layer. At t = 1, we
observe that a wave mode propagates at the same speed in the two spatial directions in the isotropic
medium but at different speeds in the anisotropic medium. The elastic waves have propagated into
the bottom layer at t = 2, where the effects of discontinuous material property are clearly observed.
At t = 5, it is clear that waves coming into the PML are absorbed. In the last panels, we plot the
solution after long time t = 100. Note that the largest amplitude is about 10−5, demonstrating
numerical stability and the effectiveness of PML.
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Figure 2: The solution at four time points t = 1, 2, 3, 100 in a piecewise isotropic medium.

Figure 3: The solution at four time points t = 1, 2, 5, 100 in a piecewise orthotropic medium.

In Figure 4, using the computed numerical solution we plot the l2-norm ‖u‖H =
√∑2

i=1 uTi Hui
in time, where i corresponds to the two layers and H the discrete norm associated with the SBP
operator. We observe that ‖u‖H decays monotonically in both the isotropic and anisotropic media.

Figure 4: The quantity ‖u‖H with for the isotropic (left) and the orthotropic (right) media.
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Figure 5: The maximum error for the isotropic (left) and the orthotropic (right) media. ABC is
absorbing boundary condition.

Layer ρ cs cp Domain

1 1.5 1.8 3.118 [0, 40]× [−10, 0]
2 1.9 2.3 3.984 [0, 40]× [−20,−10]
3 2.1 2.7 4.667 [0, 40]× [−30,−20]
4 3 3 5.196 [0, 40]× [−40,−30]

Table 1: Material properties in the four layers.

Finally, we compare the absorbing property of the PML model with the first order absorbing
boundary conditions (ABC) [27]. We compute a solution in the large domain [0, 4π]× [−4π, 12π],
which is the original domain extended three times in the positive x direction, and regard the part of
the solution in [0, 4π]× [−4π, 4π] as a reference solution. In Figure 5, we plot the PML error defined
as the maximum norm of the difference between the PML solution and the reference solution, and
the ABC error that is defined analogously as the maximum norm of the difference between the
solution computed by using the ABC on all boundaries and the reference solution. We observe that
the PML error is about two order of magnitude smaller than the ABC error in both isotropic and
anisotropic media.

6.2 Four layers

Next we demonstrate extension of the results to multiple elastic layers. We consider the elastic
wave equation in domain Ω = [0, 40]× [−40, 0]. The medium has a four-layered structure and the
material parameters are summarized in Table 1. In each layer, the material property is homogeneous
and isotropic, and the governing equation is (35). At the interface between two adjacent layers,
the material property is discontinuous, and the equations are coupled by imposing continuity of
displacement and traction in the form of (36). At time t = 0, we initialise the displacement fields
as

ui = e−5((x−20)2+(y+15)2), i = 1, 2, 3, 4,

that is, a Gaussian centred in the middle of Layer 2.
We impose a traction free boundary condition at the top boundary y = 0, and the characteristic

boundary condition at the bottom boundary y = −40 and the left boundary x = 0. At the right

18



boundary x = 40, we add a PML in [40, 44] × [−40, 0], where the width δ = 4 is 10% of the
computational domain in x. At the boundaries of the PML, we impose the characteristic boundary
condition. Because of the PML, the boundary conditions must be modified as

B1
∂u1

∂y
+ CT1

∂u1

∂x
+B1σw1 = 0, y = 0, (56)

Zix
∂ui
∂t
−Ai

∂ui
∂x
− Ci

∂ui
∂y

+Aiσvi = 0, x = 0, i = 1, 2, 3, 4, (57)

Zix
∂ui
∂t

+Ai
∂ui
∂x

+ Ci
∂ui
∂y
−Aiσvi = 0, x = 44, i = 1, 2, 3, 4, (58)

Z4y
∂u4

∂t
−B4

∂u4

∂y
− CT4

∂u4

∂x
−B4σw4 + σZ4y(u4 − q4) = 0, y = −40. (59)

More precisely, on the y-boundaries the modified traction includes the auxiliary variable w. In
addition, the time derivative in the characteristic boundary condition introduces a lower order
term, see (59). Similarly, on the x-boundaries, the modified traction includes the auxiliary variable
v.

Inside the PML of all four layers, we choose the damping function σ(x) is given by (54), where
the damping strength σ0 > 0 is given by (55). Here, cp,max = maxi cpi is the largest pressure wave
speed cpi in Ωi, i = 1, 2, 3, 4, Lx = 40, δ = 0.1Lx, and Ref = 10−4 is the relative modeling error.
Additionally, we choose the CFS α = 0.05σ0.

Numerically, we use the same spatial and temporal discretisation as in the previous numerical
example. In Figure 6, we plot the solutions at four time points with grid size h = 0.1. We observe
that at t = 3, the Gaussian has expanded from its centre to the top three layers and the reflections
at the material interfaces are clearly visible. At t = 5, the wave has propagated to all four layers,
and has interacted with the free surface, at y = 0, and the characteristic boundary condition, at
x = 0. The plot at t = 9 shows that the surface wave entering the PML is effectively absorbed.
After a long time until t = 1000, most waves have left the computational domain and the largest
amplitude is only 10−6.

Figure 6: The solution at four time points t = 3, 5, 9 and 1000 with Gaussian initial data and grid
size h = 0.1.

Next, we consider an example driven by seismological sources, an explosive moment tensor point
source F = gM0∇fδ, as the forcing in the governing equation. The moment time function g and
the approximated delta function fδ take the form

g = e−
(t−0.215)2

0.15 , fδ =
1

2π
√
s1s2

e
−
(

(x−20)2

2s1
+

(y+15)2

2s2

)
,

where the parameters s1 = s2 = 0.5h and M0 = 1000. We note that the peak amplitude of F is
located in the middle of Layer 2. With zero initial data for all variables, we run the simulation
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until t = 1000 using the same numerical method, and plot the solutions by h = 0.1 in Figure 7. We
have similar observation as the case with a Gaussian initial data.

Figure 7: The solution at four time points t = 3, 5, 9 and 1000 with single point moment source
and grid size h = 0.1.

To see the stability property of the PML, we plot ‖u‖H in time in Figure 8. The first plot
correspond to the case with Gaussian initial data, and the second plot corresponds to the case with
the single point moment source. It is clear that the PML remains stable after a long time.

Figure 8: The quantity ‖u‖H with h = 0.1 for the Gaussian initial data (left) and the single point
moment source (right).

As before, we compare the absorbing property of the PML model with the ABC. Similar to the
last section, we compute a reference solution in a larger domain that is extended in the positive x
direction three times the length of the original domain. In all computations, we have used a spatial
mesh size h = 0.2. In Figure 9, we plot the PML error and the ABC error, and observe again that
the PML error is about two orders of magnitude smaller than the ABC error for both cases.
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Figure 9: The maximum error for the case with Gaussian initial data (left) and with the single
point moment source (right). ABC is absorbing boundary condition.

7 Conclusion

We have analysed the stability of the PML for the elastic wave equation with piecewise constant
material parameters and interface conditions at material interfaces. The elastic wave equation
and the interface conditions, without the PML, satisfy an energy estimate in physical space. Al-
ternatively, a mode analysis can also be used to prove that exponentially growing modes are not
supported by the elastic wave equation subject to the interface conditions. In particular, the normal
mode analysis in Laplace space for interface waves gives a boundary matrix C (s, kx) of which the
determinant is a homogeneous function F (s, kx) of (s, kx) and does not have any roots s with a
positive real part Re{s} > 0 in the complex plane. When the PML is present, the energy method
is in general not applicable but the normal mode analysis can be used to investigate the existence
of exponentially growing modes in the PML. The normal mode analysis when applied to the PML
in a discontinuous elastic medium yields a similar boundary matrix perturbed by the PML. Our
analysis shows that if the PML IVP does not support growing modes, then the PML moves the
roots of the determinant F (s, kx) further into the stable complex plane. This proves that interface
wave modes present at layered material interfaces in elastic solids are dissipated by the PML. We
have presented numerical examples for both isotropic and anisotropic elastic solids verifying the
analysis, and demonstrating that interface wave modes decay in the PML.
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[3] D. Appelö and G. Kreiss, A new absorbing layer for elastic waves, Journal of
Computational Physics, 215 (2006), pp. 642–660, https://doi.org/https://doi.org/

10.1016/j.jcp.2005.11.006, https://www.sciencedirect.com/science/article/pii/

S0021999105005097.

[4] D. H. Baffet, M. J. Grote, S. Imperiale, and M. Kachanovska, Energy decay and
stability of a perfectly matched layer for the wave equation, Journal of Scientific Computing, 81
(2019), pp. 2237–2270, https://doi.org/https://doi.org/10.1007/s10915-019-01089-9.

[5] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Jour-
nal of Computational Physics, 114 (1994), pp. 185–200, https://doi.org/https://doi.

org/10.1006/jcph.1994.1159, https://www.sciencedirect.com/science/article/pii/

S0021999184711594.
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