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Abstract

Time-dependent Partial Differential Equations with given initial con-

ditions are considered in this paper. New differentiation techniques of

the unknown solution with respect to time variable are proposed. It is

shown that the proposed techniques allow to generate accurate higher

order derivatives simultaneously for a set of spatial points. The cal-

culated derivatives can then be used for data-driven solution in differ-

ent ways. An application for Physics Informed Neural Networks by the

well-known DeepXDE software solution in Python under Tensorflow back-

ground framework has been presented for three real-life PDEs: Burgers’,

Allen-Cahn and Schrodinger equations.

1 Introduction

Time-dependent Partial Differential Equations (PDEs) arise frequently in real-
life applications: e.g., diffusion process of liquid flows (see, e.g., [18]), heat
distribution in time (see, e.g., [21]), simulations of nonlinear wave dynamics
(see, e.g., [28]), groundwater flow dynamics (see, e.g., [4]), quantum dynamics
(see, e.g., [8]), computational mechanics (see, e.g., [15]), etc. These applications
are very important from both theoretical and practical points of view. For
instance, groundwater flow simulations can be used to predict hydro-geological
risks, which are crucial for infrastructures located in seismic or unstable regions
(see, e.g., [1, 14]. High precision efficient simulations and modeling in this
case can be used to predict different risks arising in this field. In this case,
numerical models can be used to describe fluid dynamics: e.g., diffusion equation
or Burgers’ equations (see, e.g., [2]).

In order to solve difficult nonlinear PDEs, there exist different approaches:
e.g., finite element method (FEM, see, e.g., [13]) or Isogeometric analysis (IGA,
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see, e.g., [5, 19]). Recently, a wide interest to deep learning has led to another ap-
proach for solving challenging PDEs: data-driven solution by Phisics-Informed
Neural Networks (PINNs, see, e.g., [6, 12, 20]).

Neural networks are usually called as universal approximators allowing one
to approximate any function with any given accuracy if there is sufficient data.
For this reason, they can be used for the approximation of the solution to differ-
ential equations if there is enough information or data about the solution (e.g.,
sufficiently large data set on boundary and initial conditions and sufficiently
large data set of collocation points, i.e., the points inside the domain, which
are used to maintain the PDE dynamics minimizing the loss function defined
through the equation without initial or boundary conditions, see, e.g., [20]).

However, in practice the information about the solution of the PDE can
be very low: only initial and boundary conditions on a limited (e.g., onedimen-
sional) domain. In this case, too large set of collocation points can lead to a bias
of the solution into the dynamics of the PDE without taking into account real
values of the solution and, thus, to a small accuracy with respect to the exact
solution. Thus, deterministic methods can be used with the PINNs to obtain
additional high precision data to train or tune the deep learning models (see,
e.g., [20]). As it has been shown in [16], high precision derivatives for PDEs can
also improve the performance of the simulation without necessity of elaboration
of complex analytical formulae. In this paper, to overcome the above mentioned
issues related to lack of data, new differentiation techniques are proposed for
the time-dependent PDEs. The proposed schemes allow to generate much more
data about the solution of the PDE giving so much more additional information
to the neural networks for data-driven solution.

PINNs are used usually to solve two kinds of problems related to differential
equations: data-driven solution and data-driven discovery (see, e.g., [20]). More
specifically, there can be considered the following nonlinear Partial Differential
Equation (PDE):

Ut = N [U, λ], U = U(t, x), t ∈ [t0, tend], x ∈ D, (1)

where the data-driven solution consists of approximation of the solution U(t, x)
using the data points on the initial and boundary conditions given all the pa-
rameters λ of the model, while the discovery problem consists of approximation
of the model parameters λ given the values of U(t, x) at some points. In this
paper, the data-driven solution problem is considered.

Data-driven solution consists of approximation of the unknown solution
U(t, x) by neural networks using the (noisy) observations of the function U(t, x).
The loss function, usually, is defined by combinations of the given data and
collocations points: e.g., as L(t, x) = ||V (t, x) − U(t, x)||Γu

+ ||fV (t, x)||Γf
,

where U(t, x) and V (t, x) are the real and approximated solutions, respectively,
fV (t, x) = Vt − N [V, λ], while || · ||Γ is some norm (e.g., Euclidean) over the
set Γ, which consists of the respective values (t, x) used to define the loss func-
tion. Collocation points (t, x) ∈ [t0, tend]×D can be chosen as many as needed,
since they are used only to guarantee the PDE (1) for the approximated solu-
tion V (t, x) without taking into account real values of U(t, x). Differentiation of
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V (t, x) can be performed, e.g., using Automatic Differentiation (for instance, by
Tensorflow). Known observations of U(t, x) can be given, frequently, by initial
condition and/or boundary conditions (in the latter case, the respective loss
function is also defined). Sometimes, the known observations of the solution
U(t, x) can be given as a set of (noisy) measurements without any analytical
and/or software code. In this paper, we consider the case when the initial
value condition is given by a function g(x), x ∈ D, which can be also given by
computational procedures, e.g., as a “black box” without analytical formulae.

It becomes clear, for the above mentioned issues, that the availability of
the high precision data is crucial for the accuracy of the solution to PDEs
using PINNs. However, in the case when there is no additional data, except the
initial and boundary conditions, it can be difficult to tune the neural network to
produce the results with high precision. In that case, the available data is limited
only by the values at t = t0 and, probably, by boundary conditions, which cannot
give all necessary information about the solution (e.g., its dynamics around the
initial time at t > t0), even if some additional information can be obtained using
PINNs along with deterministic algorithms for PDEs (see, e.g., [20]). Derivatives
of U(t, x) at the initial time t0 can provide an important information, which can
be used to tune better the neural networks: e.g., adding another loss function

on the derivatives Ld(t, x) =
∑n

i=1 ||
∂iV
∂ti

(t0, x) − ∂iU
∂ti

(t0, x)||Γx
, or trying to

obtain a higher precision approximation of U(t, x) around t0 (e.g., by the Taylor
expansion) to use it for fine-tuning the network.

However, since the initial condition is given only at the fixed time t0, it
is impossible to differentiate it directly, e.g., by Automatic Differentiation, to
obtain high precision derivatives. In the papers [10, 11], several algorithms for
computation of the higher order derivatives with respect to the time variable
have been proposed for Ordinary Differential Equations (ODEs). There are two
most important drawbacks regarding the algorithms presented there. The first
one is related to the using of the right-side function of the ODE for computation
of the derivatives. In particular, the function f(y) from the (autonomous) ODE
y′(t) = F (y) should be available to be calculated at any concrete fixed numerical
value of y. However, this is not the case of PDEs, since the right-side function
N [U, λ] can depend also on the derivatives Ux and Uxx of the (unknown) solution
U(t, x) and cannot be calculated for a fixed numerical value of U . For this
reason, the algorithms proposed in [10, 11] cannot be used directly to calculate
the higher order derivatives of U with respect to t.

The second issue in the above mentioned algorithms consists in the using of a
software for working with infinite and infinitesimal quantities (e.g., Levi-Civita
field [7, 25], the Infinity Computer [23, 24], Nonstandard analysis [22], etc.).
The Infinity Computer was used in the above mentioned papers for dealing with
infinite and infinitesimal quantities. It can be described briefly as the computer
system, which is based on the positional numeral system with the infinite radix
① (defined as the number of elements of the set of natural numbers, i.e., ① = |N|,
see, e.g., [24], section 4.1). A number C on the Infinity Computer is represented
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as follows (see [24], section 4.3):

C = c0①
p0 + c1①

p1 + ... + cn①
pn , (2)

where ci 6= 0, i = 0, ..., n, are finite floating-point numbers called grossdigits,
while pi, i = 0, ..., n, are called grosspowers and can be finite, infinite1, and
infinitesimal of the same form (2) presented in the decreasing order: p0 >
p1 > ... > pn. However, according to its description in the papers [11, 24] and
patents [23], it can work only under the standard floating-point arithmetic, i.e.,
only with finite floating-point grossdigits. For this reason, it is difficult to use
this methodology to work with neural networks, e.g., using Tensorflow, where
the approximations are made using tensors instead of single points x.

In this paper, a new technique is proposed to calculate the derivatives of
the unknown solution U(t, x) at the initial time t0. The algorithms require
using of the software for working with infinitesimal quantities. The required
software solution, which can be used not only with floating-point numbers, but
with tensors and/or even symbolic expressions, is also presented. The proposed
techniques are incorporated with data-driven solution to PDEs using PINNs by
Tensorflow.

The rest of the paper is structured as follows. Section 2 describes the software
solution used to deal with infinitesimal numbers and the respective arithmetic.
Section 3 presents new differentiation techniques embedded in data-driven solu-
tion of PDEs. Section 4 presents the results of the proposed techniques for sev-
eral real-life problems with known solutions and derivatives. Section 5 presents
the results of application of the proposed schemes for data-driven solution by
PINNs defined through the DeepXDE software for several real-life problems.
Finally, Section 6 concludes the paper.

2 Developed software solution for infinitesimal

quantities

There exist several different approaches to work numerically with infinite and in-
finitesimal numbers: Non-Archimedean fields (e.g., Levi-Civita field, see [7, 25]),
the Infinity Computer (see, e.g., [24]), Dual and Hyper-Dual numbers (see, e.g.,
[27]), Labeled Sets and Numerosities (see, e.g., [3]), etc. All these methodologies
are successfully used in different fields, in particular, in differentiation (see, e.g.,
[7, 11, 16]). Each of them has its own advantages and limitations, which are
briefly described in [16], and their detailed comparison is out of scope of the
present paper.

All the approaches listed above can be briefly described as follows. A num-
ber C representable in a framework for working numerically with infinite and

1It should be noted that only finite grosspowers are used so far at all sources related to
numerical computations, since there is not defined a procedure to compare different numbers
with infinite and/or infinitesimal grosspowers as it has been shown in [9], Fact 6.11. For
this reason, the versions of the Infinity Computer described in the references cited above are
similar to the Levi-Civita field implementations, see, e.g., [25] and [11]
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infinitesimal numbers can be defined as

C = c0Hp0
+ c1Hp1

+ ...cnHpn
, (3)

where ci, i = 0, ..., n, are standard floating-point numbers, while Hpi
, i = 0, ...n,

are finite, infinite, or infinitesimal numbers in the form Hp = h1h2...hk, where
k is the number of “axis” of the approach (e.g., k = 1 and Hp = ①

p for the
Infinity Computer, k = 1 and Hp = εp for the Levi-Civita field, k > 1 and
Hp = εq11 εq22 ...εqkk , q1 + q2 + ...qk = p, for hyper-dual numbers). For instance, a
number C can be representable in the Levi-Civita field as follows:

C = c0ε
p0 + c1ε

p1 + ... + cnε
pn , (4)

where ci 6= 0 and pi, i = 0, 1, ..., n, are finite floating-point numbers, pi are
ordered in increasing order: p0 < p1 < ... < pn (see, e.g., [26]). Since in this
paper, only derivatives with respect to t are considered, then there is no sense
to use hyper-dual numbers, which can be useful for a mixed differentiation due
to different “axis” of the infinitesimal base. The Infinity Computer with finite
powers of ① can also be considered as a particular case of Non-Archimedean
fields, e.g., of the Levi-Civita field, since it is easy to see that one can obtain
the number in the Infinity Computing form (2) just by fixing ε = ①

−1 in (4).
However, it should be noted that, in general, the Infinity Computer and the
Levi-Civita field are two different approaches (see, e.g., [24], footnote 10). For
this reason, in this paper, the Levi-Civita field is considered as the main used
approach for dealing with infinite and infinitesimal numbers and no further
considerations refer to the Infinity Computer methodology.

However, since, usually, in data-driven solution, the main data types are
tensors instead of single floating-point numbers, then it can be useful to adapt
the methodology to work efficiently with tensors. In particular, it is required to
represent a tensor G in the following form:

G = G0ε
p0 + G1ε

p1 + ... + Gnε
pn , (5)

where Gi, i = 0, ..., n, are tensors of the same dimensions, while pi, i = 0, ..., n,
are floating-point numbers written down in a strictly increasing order. Obvi-
ously, the tensor G can be also written down in different formats, e.g., as

G = Gε,0 + Gε,1 + ... + Gε,n,

where Gε,i is a tensor with every element of the form (4). However, in this case,
it can be difficult to use efficiently modern frameworks for working with tensors
(e.g., Tensorflow https://www.tensorflow.org/or Pytorch https://pytorch.org/),
since the data types within each tensor are re-defined, while the form (5) allows
to use the advantages of such the frameworks within the Levi-Civita software
solution, because it is much simpler to re-define just four main arithmetic op-
erations, than to create another efficient framework for dealing with tensors.

In this paper, a simplified software solution for working with finite and in-
finitesimal numbers similar to the Levi-Civita field has been developed. It is
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based on the Python list comprehensions2 and every quantity C in this frame-
work is represented as follows:

C = C0ε
0 + C1ε

1 + ... + Cnε
n, (6)

where Ci, i = 0, ..., n, are quantities of the same type and dimensions as C
(and can be equal to zero of the same type). Standard finite tensors Cfinite can
be represented in this form simply by C0 = Cfinite and Ci = 0 for all i > 0.
In other words, the number C can be represented simply by the vector of the
coefficients [C0, C1, ..., Cn]. Arithmetic operations between the quantities can
be simply defined as follows.

Let A and B be two quantities of the same dimensions in the form (6)
represented by the vectors [A0, ..., An] and [B0, ..., Bn], respectively. Then, A+B
is another number of the form (6) represented by the vector [A0 + B0, A1 +
B1, ..., An +Bn]. The subtraction is defined in the same way, thus, its definition
is omitted.

The result of multiplication A×B can also be obtained and represented by
the following vector:

[A0 ×B0, A0 ×B1 + A1 ×B0, A0 ×B2 + A1 ×B1 + A2 ×B0, ..., An ×Bn],

where Ai×Bk is the element-wise multiplication in the case of tensors. Division
can also be defined in a similar way, so its definition is omitted. It should be
noted that both multiplication and division should truncate the results after
a given number of elements (e.g., after n−th element) to preserve the same
number of elements within the vector.

Two important and necessary operations can also be added: multiplication
and division by the infinitesimal εk, k > 0. These operations just result in
shifting the coefficients to the right (multiplication) or to the left (division).
In particular, if A is represented by [A0, A1, ..., An], then A× εk is represented
by [0, ..., 0, A0, A1, ..., An−k], where the first k elements are equal to zero of
the same type as A (e.g., zero tensor), and the last elements are truncated to
preserve the same dimension of the array. Similarly, A/εk is represented by
[Ak, Ak+1, ..., An, 0, ..., 0], where the first k elements have been truncated, while
the last k are set to 0. It should be noted that, similarly to fixed-point arith-
metic, the presented methodology cannot be used for general purpose problems
due to truncations resulting in above mentioned multiplications and divisions.
However, this methodology is sufficient for illustration purposes to deal with
differentiation problems, where there is no necessity of working with infinite
quantities. For more complex problems, there should be constructed a software,
e.g., similar to the floating-power simulator from [11], adapted to work with
tensors.

It is important to note that there should not arise infinite values in differenti-
ation, if the functions under consideration are differentiable. However, there can

2It is clear that faster tools can be used instead of lists, e.g., Numba. Python lists are used
for illustration purposes only.
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be necessary to hold intermediate infinite values: for example, if g(x) = 1.5x2,
then g(ε) = 1.5ε2, which is infinitesimal. If g(x) is constructed through complex
computational procedures, there can be a situation when g(x) is defined as, e.g.,
g(x) = (3x2/2x4)/x−4, where g(ε) = (3ε2/2ε4)/ε−4 = 1.5ε−2/ε−4 = 1.5ε2, i.e.,
it is necessary to work with infinite values ε−4 and ε−2 as well. In this case, it
is possible to add also several negative powers of ε in (6) and to reserve several
elements in the respective vector form. In this paper, however, it is supposed
that all functions are well-defined and there won’t arise situations of this kind
just for simplicity.

3 Proposed differentiation methods for PDEs

Let us consider the following nonlinear PDE:

Ut = F (U,Ux, Uxx, t, x), U = U(t, x), t ∈ [t0, tend], x ∈ D ⊂ R
N , (7)

with the following initial conditions:

U(t0, x) = g(x), x ∈ D, (8)

and some boundary conditions. Here, U(t, x) is the unknown solution of the
PDE (possibly, multidimensional vector function U : R+×R

N −→ RM , M ≥ 1),
t and x are independent variables denoted as time and spatial variables, respec-
tively, t0 < tend are two real-valued numbers, D is the spatial domain, e.g., a
hyperinterval D = [a, b] ⊂ RN . Without loss of generality, let us consider t0 = 0
and tend = T, where T ∈ R, T > 0. Let us also consider the univariate case
N = 1, i.e., the variable x is univariate, just for simplicity and without loss of
generality (it will be easy to see that the algorithms are easily generalizable to
the case N > 1).

Note also that the equation of the higher than the first order with respect to
time can also be transformed into (7) by increasing the dimension and substi-
tuting Ut = V, Vt = F (U, V, Ux, Vx, Uxx, Vxx, t, x) (for the second order equation
Utt = F (U,Ux, Uxx, t, x)), adding so additional functions and equations (see the
Wave equation as an example in the next section).

In the present paper, the problem of numerical computation of the higher

order derivatives ∂kU
∂tk

, k = 1, 2, 3, ..., of U(t, x) at the initial time t = 0 is
considered. The boundary conditions are not used in the presented algorithms,
thus they can be given in any format (e.g., Dirichlet, Neumann, Cauchy, etc.).

The main idea of the proposed algorithm consists of using the initial solution
U(0, x) = g(x) for reconstruction of the Taylor expansion with respect to t of
U(t, x) around t = 0 simultaneously for all available (fixed) values x = X (e.g.,
generating k values x1, x2, ..., xk randomly within D and then sending them to
g(x) in tensor form X using Tensorflow). The equation (7) at t = 0 becomes:

Ut|t=0,x=X = F (g(X), g′(X), g′′(X), 0, X), (9)

If the explicit formulae of g(x) are available, then it is possible to calcu-
late its derivatives with respect to x by any available method (e.g., analytically,
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symbolically, or by automatic differentiation). Otherwise, if the analytical for-
mulae are not available, the derivatives of g(x) can be obtained by automatic
differentiation or by other techniques, e.g., using hyper-dual numbers.

The equation (9) allows to obtain the first derivative Ut at t = 0 and x = X .
This additional information allows to generate the first-order Taylor expansion
of U(t,X) for small t. In particular, given the infinitesimal value h, the first-
order approximation u1 of U(h,X) can be obtained as follows

u1 = U(0, X) + Ut|t=0,x=X · h = g(X) + F (g(X), g′(X), g′′(X), 0, X) · h. (10)

After computation of u1, one can also calculate the value F (u1, u
′

1, u
′′

1 , h,X),
where u′

1 and u′′

1 denote, respectively, the first and the second derivatives of u1

with respect to x at t = 0 and x = X . These two derivatives can be again
calculated using, e.g., automatic differentiation of u1, since it is calculated from
F (g(X), g′(X), g′′(X), 0, X), which, in its turn, is calculated from the function
g(X), for which the automatic differentiation can be applied.

Since the value h is represented in the form (6) (or, more generally, in the
form (4)), then u1 and F (u1, u

′

1, u
′′

1 , h,X) are also written down in the same
form. Just for simplicity, hereinafter, the value h = ε from (6) represented by
the vector [0, 1, 0, ..., 0] is used. In this case, u1 is already defined in this form
with the tensors C0 = g(X), C1 = F (g(X), g′(X), g′′(X), 0, X) and all Ci, i > 1,
are zero tensors, while the value F (u1, u

′

1, u
′′

1 , h,X) will be also written down in
powers of ε:

F (u1, u
′

1, u
′′

1 , h,X) = F1,0ε
0 + F1,1ε

1 + ... + F1,nε
n, (11)

where F1,i are tensors of the same dimension. It is easy to extract the value
F1,1 from (11), that is the first-order Lie derivative of F (...) with respect to t
at t = 0 and x = X . Since the function F defines the first-order derivative of
U(t, x) at t = 0, x = X , then its first-order Lie derivative defines the second-
order time derivative of U . For this reason, it is possible to re-construct the
Taylor expansion of U up to the second derivative obtaining so the value u2 as
follows:

u2 = U(0, X) + Ut|t=0,x=X · h +
1

2!
F1,1 · h

2 = u1 +
1

2!
F1,1 · h

2, (12)

Since h = ε and represented by [0, 1, 0, ..., 0], then h2 = ε2 is represented by the
vector [0, 0, 1, 0, ..., 0]. Thus, the respective vector representation of u2 can be
also obtained: [g(X), F (g(X), g′(X), g′′(X), 0, X), 12F1,1, 0, ..., 0], i.e., the first
two coefficients C0 and C1 are the same as in u1, the coefficient C2 is equal to
1
2F1,1 and the rest is zero. It should be noted that in (10) and (12), the value
h is used instead of explicit ε just to distinguish the infinitesimal number h
represented by the vector [0, 1, 0, ..., 0] in the form (6) and the infinitesimal base
ε, which is used in (6) and is not explicitly stored in the computer memory.

Given the value u2, again, the value F (u2, u
′

2, u
′′

2 , h,X) can be calculated:

F (u2, u
′

2, u
′′

2 , h,X) = F2,0ε
0 + F2,1ε

1 + ... + F2,nε
n, (13)
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from where, similarly, the coefficient F2,2 can also be extracted, which represents
the second-order Lie derivative of F divided by 2!, i.e., the third-order time
derivative of U at t = 0 and x = X . Extracting F2,2 from (13) and multiplying it
by 2!, one can obtain the third-order approximation u3: u3 = u2+ 1

3! ·2!·F2,2·h
3 =

u2 + 1
3F2,2.

It is easy to see that the coefficients F2,0 and F2,1 coincide with the values
F1,0 and f1,1, respectively, since the first two coefficients in u1 and u2 coincide.
Every iteration of the procedure described above improves the order of the
approximation of U(h,X) and allows to obtain the required derivatives of U(t, x)
at t = 0 and x = X , so it becomes easy to define the Algorithm 1.

Algorithm 1 Differentiation of U(t, x) from (7) w.r.t. time t

Input

1: The problem (7) with the initial condition (8) linked to an automatic dif-
ferentiation technique (or any other similar) with respect to x.

2: The set (e.g., in tensor form) X ⊂ D of fixed points within the domain D.
3: The software for working with infinitesimal numbers (e.g., the presented

Levi-Civita field solution for the numbers from (6)) and the respective num-
ber n of infinitesimal parts to work with from (6) or from (4) in general.

4: The infinitesimal h = 1ε1 in the respective vector form [0, 1, 0, ..., 0].
Result

5: The tensor of the derivatives ∂iU
∂ti

(t, x) |t=0,x=X , i = 0, 1, ...,K, K ≤ n.
Main procedure

6: u← g(X) + F (g(X), g′(X), g′′(X), 0, X) · h
7: u′ ← g′(X), u′′ ← g′′(X)
8: for i = 2, 3, ...,K do

9: Calculate the first and second order derivatives u′

i and u′′

i of the coeffi-
cient of εi−1 at u with respect to x at x = X :

10: u′ = u′ + u′

iε
i,

11: u′′ = u′′ + u′′

i ε
i

12: Calculate F (u, u′, u′′, h,X) up to the coefficient of εi−1:
13: F (ui, u

′

i, u
′′

i , h,X) = F0ε
0 + F1ε

1 + ... + Fi−1ε
i−1.

14: Save the derivative ∂iU
∂ti

(t, x) |t=0,x=X ← (i − 1)! · Fi−1.
15: Update u← u + 1

i
· Fi−1 · h

i.
16: end for

Return the obtained derivatives ∂iU
∂ti

(t, x) |t=0,x=X or the Taylor expansion
u of U(t, x) at t = h and x = X .

Remark 1. Since the values in the form (6) can be represented by the
vectors, then it is not necessary to re-calculate the derivatives of the coefficients
with respect to x of the coefficients of εl in u for l ≤ i: they are already
calculated at the previous steps. The vector form of the values u, u′ and u′′ is
very useful here for this reason (only the last component is differentiated and
updated every time).

Remark 2. There is also produced the Taylor expansion u = C0ε
0 +C1ε

1+
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...+CKεK of U(h,X), where C0 = g(X) and Ci = (i−1)!
i! Fi−1, i = 1, ...,K, which

can also be useful in practice for several reasons. Since, u is represented by the
vector, then it is easy to substitute the value ε by any other finite or infinitesimal
value s obtaining so different approximations of U(s,X) for different s close to
0. For instance, having the Taylor expansion u up to the 10-th derivative, it
is possible to calculate the value U(0.1, X) just multiplying element-wise the
vector [C0, C1, ..., CK ] by the vector [1, 0.1, 0.12, ..., 0.1K ]. This issue allows to
obtain high precision approximations of U for t > 0 generating so additional
data values and improving the performance of the respective PINNs. In the next
sections, there will be presented several examples of such the improvements.

Remark 3. The accuracy can be lower for the highest derivatives (e.g.,
of the order 10), if the absolute value of the derivative is high (see, e.g., the
Wave equation in the next section with large values of the parameter C). This
occurs due to the limitations of the floating-point arithmetic and due to the use
of factorials in the computation of the derivatives: the i−th derivative of U is
obtained multiplying the coefficient Fi−1 by (i − 1)! (see the lines 11-12 of the
Algorithm 1). This issue will be studied in the future work in order to develop
a more efficient algorithm of computations without involving the factorials and,
thus, without loosing the accuracy even for the highest derivatives.

It should be noted that the proposed techniques are referenced with the
initial condition U(0, x) = g(x). However, in data-driven solution, the initial
condition function g(x) can unknown. The set of values U(0, xi) = gi can be
given instead. In this case, the algorithms presented in this paper can also be
used, e.g., as follows. First, the function g(x) can be approximated by another
differentiable neural network using both initial and boundary conditions. Then,
the derivatives with respect to x (required to calculate the derivatives with
respect to t) can be calculated, e.g., using Tensorflow Autodiff, allowing so to
calculate the time derivatives as well (time derivatives cannot be calculated in
the same way by Autodiff, since the initial conditions are defined for only one
time value t = 0).

4 Numerical experiments on benchmarks with

known solutions

Numerical experiments have been carried out in Jupyter notebooks using Google
Colab Pro. The software has been written in Python 3.7.14. Autodiff of Ten-
sorflow (version 2.8.2) has been used for the computation of the derivatives of
U with respect to x.

For each test problem, the derivatives up to the order 10 have been cal-

culated ∂iU
∂ti

(t, x), i = 0, 1, ..., 10, at the time t0 = 0 on 50 different points xi

chosen uniformly within the interval D excluding the points, where the solution
U(t0, x) is too small, just to avoid divisions by 0 in the relative error compu-
tations. All computations have been performed in tensor form for all 50 points
simultaneously, i.e., X = tensorflow.Variable(x, dtype = ’float64’), where x is
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the array of 50 different points.
Once all 10 derivatives have been obtained, the Normalized Root Mean

Square Error (NRMSE) has been calculated for each derivative with respect
to the exact derivatives (known analytically for each test problem):

NRMSE(ytrue, yapprox) =
1

N

||ytrue − yapprox||2
yMAX
true − yMIN

true + 1
, (14)

As it has been already mentioned before, the error of the computation of the
highest derivatives cannot be a unique metric to determine the quality of the ob-
tained information. For this reason, the Taylor expansion at t = 0.01, 0.05, 0.1,
has been also calculated using the obtained value u being the Taylor approxima-
tion of U(ε,X) around t = 0 and x = X . The NRMSE has been also calculated
with respect to the exact value of the solution (the exact solution U(t, x) is also
known for each test problem).

4.1 Heat equation

Let us consider the following PDE from [21]:

Ut = αUxx, x ∈ [0, L], t ∈ [0, 1], (15)

with the periodic initial condition:

U(0, x) = sin (
nπx

L
), x ∈ [0, L], n = 1, 2, ..., (16)

where α = 0.4 is the thermal diffusivity constant, L = 1 is the length of the
bar, n = 1 is the frequency of the sinusoidal initial conditions. The Dirichlet
boundary conditions are given as follows:

U(t, 0) = U(t, L) = 0, t ≥ 0. (17)

The exact solution of (15) is known:

U(t, x) = e
−n2π2αt

L2 · sin (
nπx

L
), (18)

from where it is also possible to calculate the exact derivatives of U with respect
to time:

∂iU

∂ti
(t, x) = (

−n2π2α

L2
)i · U(t, x). (19)

The Heat equation (15) is quit simple, but allows to study well the proposed
algorithm. The respective values of the NRMSE for the first 10 derivatives are
presented in Table 1 (column Heat). As it can be seen, the obtained errors
are of the same order as the machine precision, giving so a lot of additional
information about the dynamics of the model.

The NRMSE values of the Taylor expansion at the time t1 = 0.01, 0.05, 0.1
and the same X have been also calculated with respect to the exact solution.
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Diff. order Heat
Diffusion Diffusion

Wave
Derivatives Taylor coeff.

0 0 0 9.23e-30 0
1 1.70e-16 2.33e-16 2.33e-16 0
2 3.00e-16 2.89e-15 1.45e-15 2.37e-16
3 3.55e-16 4.69e-14 7.82e-15 0
4 3.98e-16 4.37e-13 1.82e-14 3.10e-16
5 4.23e-16 3.97e-12 3.31e-14 0
6 9.77e-16 2.46e-11 3.42e-14 3.32e-16
7 6.88e-16 4.20e-10 8.34e-14 0
8 6.47e-16 2.65e-09 6.57e-148 4.01e-16
9 8.05e-16 3.06e-08 8.42e-14 0
10 6.61e-16 3.61e-07 9.94e-14 4.31e-16

Table 1: The obtained NRMSE values for the first 10 derivatives of the Heat
equation, Diffusion Equation (including the Taylor coefficients NRMSE) and
Wave Equation. All errors are of the same order than the machine precision
(≈ 2.2 · 10−16), except the Diffusion equation, for which the Taylor coefficients
are accurate instead.

One can see from Table 2 (column Heat) that the results have been calculated
with a high accuracy (e.g., the NRMSE at t1 = 0.01 is smaller than the machine
precision, while the one at t1 = 0.05 is of the same order than the machine
precision) giving so additional information about the solution U(t, x), which
was unknown a priori. The graph of both the obtained Taylor solution and the
exact analytical one at t = 0.1 for 500 uniform points x ∈ D is presented in
Figure 1(a).

t1 Heat Diffusion Wave
0.01 7.75e-17 3.03e-17 1.08e-16
0.05 3.63e-16 3.25e-17 1.01e-16
0.1 6.63e-13 4.22e-17 2.16e-15

Table 2: The obtained NRMSE values for the Taylor expansion of the Heat,
Diffusion and Wave equations at t1 = 0.01, 0.05, 0.1. The obtained approxi-
mations have a high accuracy being so useful candidates for an additional data
for PINNs.

4.2 Diffusion equation

Let us consider the following PDE from [21]:

Ut = Uxx − e−t(sin (πx) − π2 sin (πx)), x ∈ [−1, 1], t ∈ [0, 1], (20)

with the initial condition:

U(0, x) = sin (πx), x ∈ [−1, 1]. (21)
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Figure 1: The obtained Taylor approximation using 10 derivatives (red) and
the exact solution (blue) of the Heat, Diffusion and Wave equations at t = 0.1.
Both the solutions coincide up to a very small error for all three test problems.

The Dirichlet boundary conditions are given as follows:

U(t,−1) = U(t, 1) = 0, t ≥ 0. (22)

The exact solution of (15) is known:

U(t, x) = e−t · sin (πx), (23)

from where it is also possible to calculate the exact derivatives of U with respect
to time:

∂iU

∂ti
(t, x) = (−1)i · U(t, x). (24)

The equation (20) is a bit more complicated, than the previous one, due
to the presence of the arguments t and x explicitly in the function F . For
this reason, it also becomes an important illustrative example for the proposed
algorithm. The respective values of the NRMSE for the first 10 derivatives are
presented in Table 1 (columns Diffusion Derivatives and Diffusion Taylor coeff.).
As it can be seen, the accuracy decreases with the order of the derivatives.
This can be easily explained by the inefficient use of the factorials and by the
limitations of the floating-point arithmetic.

The latter fact can be substantiated by the following computations. Let
us study directly the coefficients Ci of the Taylor expansion u from the Algo-
rithm 1 without multiplying them by the respective factorials, i.e., for h = ε
in Algorithm 1: u = C0ε

0 + C1ε
1 + ... + Cnε

n, where Ci is the tensor of the
respective dimension (equal to the i−th time derivative divided by i! at t = 0
and x = X). Let us then calculate the NRMSE for each coefficient Ci with

respect to the exact values 1
i!

∂iU
∂ti

(0, X) (all these computations are made using
decimal type to maintain the precision). The results are presented in the last
column of Table 1.

One can see that the accuracy in computation of the derivatives was lost
just due to the limitations of the floating-point numbers, while the accuracy
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in direct coefficients of the Taylor expansion is much higher. The latter fact
can also be substantiated by Table 2 (column Diffusion), where the NRMSE
values of the Taylor expansion at the time t1 = 0.01, 0.05, 0.1 and the same X
have been also calculated with respect to the exact solution. One can see from
Table 2 that the results have been calculated up to machine precision at all
three points giving so a lot of additional information about the solution U(t, x),
which was unknown a priori also in this case. The graph of both the obtained
Taylor solution and the exact analytical one at t = 0.1 for 500 uniform points
x ∈ D is presented in Figure 1(b).

4.3 Wave propagation equation

Let us consider the following second-order PDE from [28]:

Utt = C2 · Uxx, x ∈ [0, 1], t ∈ [0, 1], C > 0, (25)

with the initial condition:

U(0, x) = sin (πx) + sin (Aπx), x ∈ [0, 1], A > 0,
Ut(0, x) = 0.

(26)

The Dirichlet boundary conditions are given as follows:

U(t, 0) = U(t, 1) = 0, t ≥ 0. (27)

The exact solution of (15) is known:

U(t, x) = sin (πx) cos (Cπt) + sin (Aπx) cos (ACπt), (28)

from where it is also possible to calculate the exact derivatives of U with respect
to time:

∂iU

∂ti
(t, x) = (Cπ)i sin (πx)f1(t) + (ACπ)i sin (Aπx)f2(t), (29)

where


















f1(t) = cos (Cπt), f2(t) = cos (ACπt), if i%4 = 0,

f1(t) = − sin (Cπt), f2(t) = − sin (ACπt), if i%4 = 1,

f1(t) = − cos (Cπt), f2(t) = − cos (ACπt), if i%4 = 2,

f1(t) = sin (Cπt), f2(t) = sin (ACπt), if i%4 = 3,

(30)

The main difference of this problem with respect to the previous ones consists
of the order of the equation (25). Since the Algorithm 1 has been proposed for
the first order equations only, then it should be transformed increasing so the
dimension of the problem Yt = F (Y, Yx, Yxx, t, x), where Y = (U, V ), V = Ut,
i.e. Y : R+ × RN −→ R2:

{

Ut = V,

Vt = C2 · Uxx,
(31)
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and the respective initial and boundary conditions.
Here, the values of the parameters A and C are fixed equal both to 1 just

for simplicity. The obtained results are presented in Table 1 (column Wave).
One can see that the derivatives have been calculated with a high accuracy (of
the same order than the machine precision). It should be noted that the errors
for the odd orders are equal to zero, since f1(t) and f2(t) in (25) are both equal
to zero at t = 0.

The NRMSE values of the Taylor expansion at the time t1 = 0.01, 0.05, 0.1
and the same X have been also calculated with respect to the exact solution.
One can see from Table 2 that the results have been again calculated with a high
accuracy giving so a lot of additional information about the unknown solution
U(t, x). The graph of both the obtained Taylor solution and the exact analytical
one at t = 0.1 for 500 uniform points x ∈ D is presented in Figure 1(c).

5 Applications for PINNs

As it can be seen from the previous section, the proposed algorithm allows to
obtain a new information about the dynamics of the model described by the
PDE. Let us study how this new information allows to improve the quality of
the PINNs for data-driven solution of the PDEs. The schemes proposed in this
section are not unique, but just the simplest ones allowing already to increase
the accuracy of the solution.

First of all, the PINNS from the well-known DeepXDE library written in
Python with Tensorflow (see, https://github.com/lululxvi/deepxde and
[17]) have been used to solve the PDEs. The library DeepXDE has been cho-
sen for its simplicity, since it allows to define different types of the initial and
boundary conditions without changing the code of the PINNs. However, the
proposed techniques can also be used for other libraries, e.g., from [12].

For each test problem, the first N derivatives at t = 0 for 100 randomly
chosen points x have been calculated. Then, the Taylor approximations using
the obtained derivatives have been calculated at t = 0.01, 0.02, 0.03, 0.04 and
0.05 for the same values x obtaining so 500 additional approximations of U(t, x).
The obtained additional values have been added as the Point set conditions into
the DeepXDE solver. Comparison with two versions with and without the
additional conditions has been then performed.

For each test problem, forward PINNs have been generated with the follow-
ing parameters: 5 inner layers with 64 neurons each; 8000 collocation (domain)
points for minimizing the loss function on the PDE, 400 points on the boundary
conditions, 800 points at t = 0 by initial conditions. First, each model has
been compiled using Adam optimizer with 15000 iterations (epochs). Then,
the training continued with L-BFGS algorithm until stopping criterion. The L2

norm has been calculated on 50 random points x ∈ D at some time t1 (cho-
sen similarly for all test problems). All remaining parameters and options have
been set to their default values. Loss functions have been set directly using the
internal DeepXDE options (deepxde.icbc classes for the initial and boundary
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conditions) without setting the formulae explicitly.
For each test problem, the PINN with the above mentioned parameters

has been compiled and trained. Then, in order to study the usefulness of the
proposed techniques, the PINN with the same parameters and additional con-

ditions has been also defined. In particular, N first derivatives ∂iU
∂ti

(0, X) have
been calculated at 100 randomly chosen points X . Then, the Taylor expansions
at t = 0.01, 0.02, ..., 0.05, have been constructed using the calculated deriva-
tives. The obtained 500 Taylor values have been added as additional conditions
to the model as deepxde.icbc.PointSetBC. After that, the model has been com-
piled and trained in the same way with the same parameters. The results
are presented for each test problems in the following subsections. The Python
code for the main PINN implementation and visualizations has been taken from
https://deepxde.readthedocs.io/en/latest/demos/pinn_forward.html. The
obtained results and models configurations can be also found in https://github.com/maratsmuk/DiffPDE_PINNs

for transparency and illustration aims only.

5.1 Burgers Equation

The first problem under consideration was the well-known Burgers’ equation
(see, e.g., [2]).

∂U

∂t
= −U

∂U

∂x
+ ν

∂2U

∂x2
, (32)

where ν = 0.01
π

is the constant and with the following initial and boundary
conditions:

U(t,−1) = U(t, 1) = 0,
U(0, x) = − sin(πx),

x ∈ [−1, 1], t ∈ [0, 1], U = U(t, x) ∈ R.
(33)

First, the Dirichlet boundary conditions and standard initial conditions have
been generated. The best train loss of the standard model has been obtained:
8.13e − 08. The L2 norm of the obtained solution at t = 0.1 and 50 random
points x has also been calculated: 4.183e − 05 with the mean residual 0.0002.
The plot of the obtained solution is presented in Figure 2(a).

Then, the first 7 derivatives have been calculated at t = 0. The obtained
Taylor approximations have been calculated for 100 random points x at t = 0.01,
0.02, ..., 0.05. The obtained 500 values have been added as additional conditions
to the model, which was re-initialized, compiled and trained with the same
parameters. The final obtained loss has become 8.38e − 08. The obtained L2

norm at t = 0.1 has become better: 3.612e−05 with the mean residual 0.000227.
The plot of the obtained solution is also presented in Figure 2(b). The obtained
L2 norm has become better with almost the same number of epochs (31321
epochs against 31347 for the standard scheme) showing so a promising behavior
of the proposed scheme.
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Figure 2: The obtained solutions by PINNs using the standard model (left)
and with additional conditions by the proposed scheme (right) of the Burgers’
equation.

5.2 Allen-Cahn Equation

The second problem under consideration was the well-known Allen-Cahn equa-
tion (see, e.g., [20]):

∂U
∂t

= d∂2U
∂x2 + 5(U − U3), (34)

where d = 0.0001 and with the following initial and boundary conditions:

U(t,−1) = U(t, 1),
Ux(t,−1) = Ux(t, 1),
U(0, x) = x2 cos(πx),

x ∈ [−1, 1], t ∈ [0, 1], U = U(t, x) ∈ R,

(35)

First, the Periodic boundary conditions for both U and Ux and standard
initial conditions have been generated. The best train loss of the standard
model has been obtained: 6.45e− 04. The L2 norm of the obtained solution at
t = 0.1 and 50 random points x has also been calculated: 0.0584 with the mean
residual 0.0073. The plot of the obtained solution is presented in Figure 3(a).

Then, the first 7 derivatives have been calculated at t = 0. The obtained
Taylor approximations have been calculated for 100 random points x at t = 0.01,
0.02, ..., 0.05. The obtained 500 values have been added as additional conditions
to the model, which was re-initialized, compiled and trained with the same
parameters. The final obtained loss has become 7.37e − 06. The obtained
L2 norm at t = 0.1 has become much better: 0.0017 with the mean residual
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Figure 3: The obtained solutions by PINNs using the standard model (left)
and with additional conditions by the proposed scheme (right) of the Allen-
Cahn equation. One can see that the standard model failed to approximate
the solution correctly, while additional data by the proposed scheme allowed to
improve the accuracy a lot.

0.00146. The plot of the obtained solution is also presented in Figure 3(b). One
can see from Figure 3 that the standard model was not able to approximate the
solution U(t, x) correctly within the given iterations. Moreover, the overfitting
has clearly arisen around the initial solution. The proposed scheme, instead, has
allowed to obtain a much better solution without overfitting, due to additional
data obtained from the calculated derivatives.

5.3 Nonlinear Schrodinger Equation

Finally, the well-known Nonlinear Schrodinger equation has also been studied
(see, e.g., [20]):

i
∂h

∂t
= −0.5

∂2h

∂x2
− |h|2h, (36)

where is a complex valued function and with the following initial and boundary
conditions:

h(0, x) = 2sech(x),
h(t,−5) = h(t, 5),

hx(t,−5) = hx(t, 5),
x ∈ [−5, 5], t ∈ [0, π/2], h(t, x) = U(t, x) + iV (t, x) ∈ C.

(37)
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In order to train the model, the function h has been considered as a two-
dimensional function h = (U, V ), which was represented by the neural network
with two outputs. The equation (36) has been defined as a system of two PDEs
for the real and imaginary parts, respectively, allowing one to calculate the

derivatives ∂ih
∂ti

(0, X) and to compile and train the respective models.
First, the Periodic boundary conditions for both h and hx and standard

initial conditions have been generated separately for the real and imaginary
parts of h. The best train loss of the standard model has been obtained: 3.05e−
06. The L2 norm of the obtained solution at t = 0.1021 (the closest to 0.1
time value available in the data set) and 50 random points x has also been
calculated: 0.00145, 0.00405 and 0.0013 for the real part, imaginary one and
for the absolute function |h|, respectively. The plots of the obtained solution is
presented in Figure 4(a) and (b).

Then, the first 5 derivatives have been calculated at t = 0. The obtained
Taylor approximations have been calculated for 100 random points x at t = 0.01,
0.02, ..., 0.05. The obtained 500 values for real and imaginary parts of h have
been added as additional conditions to the model, which was re-initialized, com-
piled and trained with the same parameters. The final obtained loss has become
9.55e − 06 (a bit bigger that for the standard model due to many additional
conditions). The obtained L2 norm at t = 0.1021 has become better: 0.000696,
0.00356 and 0.000641 for the real part, imaginary one and for the absolute func-
tion |h|, respectively. The plot of the obtained solution is also presented in
Figure 4(c) and (d). Again, the proposed scheme allowed to obtain a better
solution within the same number of iterations (≈ 31000 iterations for both the
models).

6 Conclusion

A new higher order differentiation method has been proposed for time-dependent
PDEs. The proposed technique allows to obtain the derivatives with a high
precision allowing so to obtain a lot of additional data that can be used for data-
driven solution by PINNs. This additional information can be used in different
ways, e.g., defining the additional loss functions directly on the derivatives or
by adding a high precision Taylor expansion to generate data points inside the
domain.

A well-known DeepXDE software has been used for data-driven solution of
several real-life problems under Tensorflow background framework. A way to
add new additional data points to the PINN model has been presented in this
context. The results have shown that the performance of the deep learning
models can be improved in this case.

It should be noted that the proposed applications of the differentiation tech-
niques presented in this paper have only illustrative purposes. It is already clear
that the proposed methods allow to obtain much more data on the dynamics
of the system. Since, data is the key value for the neural networks and deep
learning, this additional data can be used in different ways in order to improve
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Figure 4: The obtained solutions by PINNs using the standard model (top,
figures (a) and (b)) and with additional conditions by the proposed scheme
(bottom, figures (a) and (b)) of the nonlinear Schrodinger equation.
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both the performance and accuracy. Other, more sophisticated models, loss
functions and PINNs using the proposed differentiation schemes as well as more
efficient differentiation method is the subject of the future works.
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