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Abstract. Trivial choreographies are special periodic solutions of the
planar three-body problem. In this work we use a modified Newton’s
method based on the continuous analog of Newton’s method and a high
precision arithmetic for a specialized numerical search for new trivial
choreographies. As a result of the search we computed a high precision
database of 462 such orbits, including 397 new ones. The initial condi-
tions and the periods of all found solutions are given with 180 correct
decimal digits. 108 of the choreographies are linearly stable, including 99
new ones. The linear stability is tested by a high precision computing of
the eigenvalues of the monodromy matrices.
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1 Introduction

A choreography is a periodic orbit in which the three bodies move along one
and the same trajectory with a time delay of T/3, where T is the period of
the solution. A choreography is called trivial if it is a satellite (a topological
power) of the famous figure-eight choreography [1,2]. Trivial choreographies are
of special interest because many of them are expected to be stable like the figure-
eight orbit. About 20 new trivial choreographies with zero angular momentum
and bodies with equal masses are found in [3,4,5], including one new linearly
stable choreography, which was the first found linearly stable choreography after
the famous figure-eight orbit. Many three-body choreographies (345) are also
found in [6], but they are with nonzero angular momentum and an undetermined
topological type.

In our recent work [7] we made a purposeful (on a small domain of initial
conditions) numerical search for figure-eight satellites (not necessarily choreogra-
phies). For numerical search we used a modification of Newton’s method with a
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larger domain of convergence. The three-body problem is well known with the
sensitive dependence on the initial conditions. To overcome the obstacle of deal-
ing with this sensitivity and to follow the trajectories correctly for a long time,
we used as an ODE solver the high order multiple precision Taylor series method
[8,9,10]. As a result we found over 700 new satellites with periods up to 300 time
units, including 45 new choreographies. 7 of the newly found choreographies are
shown to be linearly stable, bringing the number of the known linearly stable
choreographies up to 9.

This work can be regarded as a continuation of our recent work [7]. Now
we make a specialized numerical search for new trivial choreographies by using
the permuted return proximity condition proposed in [4]. We consider the same
searching domain and the same searching grid step as in [7]. Considering pretty
long periods (up to 900 time units), which are much longer than those in the
previous research, allows us to compute a high precision database of 462 trivial
choreographies, including 397 new ones. 99 of the newly found choreographies
are linearly stable, so the number of the known linearly stable choreographies
now rises to 108.

2 Differential equations describing the bodies motion

The bodies are with equal masses and they are treated as point masses. A planar
motion of the three bodies is considered. The normalized differential equations
describing the motion of the bodies are:

r̈i =

3∑
j=1,j 6=i

(rj − ri)
‖ri − rj‖3

, i = 1, 2, 3. (1)

The vectors ri, ṙi have two components: ri = (xi, yi), ṙi = (ẋi, ẏi). The system
(1) can be written as a first order one this way:

ẋi = vxi, ẏi = vyi, v̇xi =

3∑
j=1,j 6=i

(xj − xi)
‖ri − rj‖3

, v̇yi =

3∑
j=1,j 6=i

(yj − yi)
‖ri − rj‖3

, i = 1, 2, 3

(2)
We solve numerically the problem in this first order form. Hence we have a vector
of 12 unknown functionsX(t) = (x1, y1, x2, y2, x3, y3, vx1, vy1, vx2, vy2, vx3, vy3)

>.
Let us mention that this first order system actually coincides with the Hamilto-
nian formulation of the problem.

We search for periodic planar collisionless orbits as in [3,4]: with zero angular
momentum and symmetric initial configuration with parallel velocities:

(x1(0), y1(0)) = (−1, 0), (x2(0), y2(0)) = (1, 0), (x3(0), y3(0)) = (0, 0)

(vx1(0), vy1(0)) = (vx2(0), vy2(0)) = (vx, vy)

(vx3(0), vy3(0)) = −2(vx1(0), vy1(0)) = (−2vx,−2vy)
(3)

The velocities vx ∈ [0, 1], vy ∈ [0, 1] are parameters. We denote the periods of the
orbits with T . So, our goal is to find triplets (vx, vy, T ) for which the periodicity
condition X(T ) = X(0) is fulfilled.
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3 Numerical searching procedure

The numerical searching procedure consists of three stages. During the first stage
we search for candidates for correction with the modified Newton’s method, i.e.
we compute initial approximations of the triplets (vx, vy, T ). In what follows we
will use the same notation for vx, vy, T and their approximations. We introduce
a square 2D searching grid with stepsize 1/4096 for the parameters vx, vy in the
same searching domain as in [7] (the domain will be shown later in Section 5).
We simulate the system (2) at each grid point (vx, vy) up to a prefixed time
T0 = 300. For an ODE solver we use the high order multiple precision Taylor
series method [8,9,10] with a variable stepsize strategy from [11]. Because we
concentrate only on choreographies (that is why we call this search specialized),
we take as in [4] the candidates to be the triplets (vx, vy, T ) for which the cyclic
permutation return proximity function Rcp (the minimum):

Rcp(vx, vy, T0) = min
1<t≤T0

‖P̂X(t)−X(0)‖2

is obtained at t = T/3 and is less than 0.1. We also set the constraint that Rcp

has a local minimum on the grid for vx, vy. Here P̂ is a cyclic permutation of
the bodies’ indices. Using cyclic permutation return proximity instead of the
standard return proximity, reduces three times the needed integration time at
the first stage (now we obtain candidates with periods T up to 900).

During the second stage we apply the modified Newton’s method, which has
a larger domain of convergence than the classic Newton’s method. Convergence
during this stage means that a periodic orbit is found. The following linear
algebraic system with a 12 × 3 matrix for the corrections ∆vx, ∆vy, ∆T has to
be solved at each iteration step [12].

∂x1

∂vx
(T ) ∂x1

∂vy
(T ) ẋ1(T )

∂y1

∂vx
(T ) ∂y1

∂vy
(T ) ẏ1(T )

∂x2

∂vx
(T ) ∂x2

∂vy
(T ) ẋ2(T )

∂y2

∂vx
(T ) ∂y2

∂vy
(T ) ẏ2(T )

∂x3

∂vx
(T ) ∂x3

∂vy
(T ) ẋ3(T )

∂y3

∂vx
(T ) ∂y3

∂vy
(T ) ẏ3(T )

∂vx1

∂vx
(T )− 1 ∂vx1

∂vy
(T ) v̇x1(T )

∂vy1

∂vx
(T ) ∂vy1

∂vy
(T )− 1 v̇y1(T )

∂vx2

∂vx
(T )− 1 ∂vx2

∂vy
(T ) v̇x2(T )

∂vy2

∂vx
(T ) ∂vy2

∂vy
(T )− 1 v̇y2(T )

∂vx3

∂vx
(T ) + 2 ∂vx3

∂vy
(T ) v̇x3(T )

∂vy3

∂vx
(T ) ∂vy3

∂vy
(T ) + 2 v̇y3(T )



∆vx∆vy
∆T

 =



x1(0)− x1(T )
y1(0)− y1(T )
x2(0)− x2(T )
y2(0)− y2(T )
x3(0)− x3(T )
y3(0)− y3(T )
vx1(0)− vx1(T )
vy1(0)− vy1(T )
vx2(0)− vx2(T )
vy2(0)− vy2(T )
vx3(0)− vx3(T )
vy3(0)− vy3(T )



(4)

For the classic Newton’s method we correct to obtain the next approximation
this way:

vx := vx +∆vx, vy := vy +∆vy, T := T +∆T
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For the modified Newton’s method based on the continuous analog of Newton’s
method [13] we introduce a parameter τk : 0 < τk ≤ 1, where k is the number of
the iteration. Now we correct this way:

vx := vx + τk∆vx, vy := vy + τk∆vy, T := T + τk∆T

Let Rk be the residual ‖X(T )−X(0)‖2 at the k-th iteration. With a given τ0,
the next τk is computed by the following adaptive algorithm [13]:

τk =

min(1, τk−1Rk−1/Rk), Rk ≤ Rk−1,

max(τ0, τk−1Rk−1/Rk), Rk > Rk−1,
(5)

The value τ0 = 0.2 is chosen in this work. We iterate until the value Rk at
some iteration becomes less than some tolerance or the number of the iterations
becomes greater than some number maxiter to detect divergence. The modified
Newton’s method has a larger domain of convergence than the classic Newton’s
method, allowing us to find more choreographies for a given search grid. To
compute the matrix elements in (4), a system of 36 ODEs (the original 12 differ-
ential equations plus the 24 differential equations for the partial derivatives with
respect to the parameters vx and vy) has to be solved. The high order multiple
precision Taylor series method is used again for solving this 36 ODEs system.
The linear algebraic system (4) is solved in linear least square sense using QR
decomposition based on Householder reflections [14].

During the third stage we apply the classic Newton’s method with a higher
precision in order to specify the solutions with more correct digits (180 correct
digits in this work). This stage can be regarded as some verification of the found
periodic solutions since we compute the initial conditions and the periods with
many correct digits and we check the theoretical quadratic convergence of the
Newton’s method.

During the first and the second stage the high order multiple precision Taylor
series method with order 154 and 134 decimal digits of precision is used. During
the third stage we make two computations. The first computation is with 242-nd
order Taylor series method and 212 digits of precision and the second computa-
tion is for verification - with 286-th order method and 250 digits of precision. The
most technical part in using the Taylor series method is the computations of the
derivatives for the Taylor’s formula, which are done by applying the rules of au-
tomatic differentiation [15]. We gave all the details for the Taylor series method,
particularly we gave all needed formulas, based on the rules of the automatic
differentiation in our work [16].

4 Linear stability investigation

The linear stability of a given periodic orbit X(t), 0 ≤ t ≤ T, is determined by
the eigenvalues λ of the 12× 12 monodromy matrix M(X;T ) [17]:

Mij [X;T ] =
∂Xi(T )

∂Xj(0)
, M(0) = I
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The elements Mij of the monodromy matrix M are computed in the same way
as the partial derivatives in the system (4) - with the multiple precision Taylor
series method using the rules of automatic differentiation (see for details [16]).
The eigenvalues of M come in pairs or quadruplets: (λ, λ−1, λ∗, λ∗−1). They are
of four types:

1) Elliptically stable - λ = exp(±2πiν), where ν > 0 (real) is the stability
angle. In this case the eigenvalues are on the unit circle. Angle ν describes the
stable revolution of adjacent trajectories around a periodic orbit.

2) Marginally stable - λ = ±1.
3) Hyperbolic - λ = ± exp(±µ), where µ > 0 (real) is the Lyapunov exponent.
4) Loxodromic - λ = exp(±µ± iν), µ, ν (real)
Eight of the eigenvalues of M are equal to 1 [17]. The other four determine

the linear stability. Here we are interested in elliptically stable orbits, i.e. the
four eigenvalues to be λj = exp(±2πiνj), νj > 0, j = 1, 2. For computing the
eigenvalues we use a Multiprecision Computing Toolbox [18] for MATLAB [19].
First the elements of M are obtained with 130 correct digits and then two com-
putations with 80 and 130 digits of precision are made with the toolbox. The
four eigenvalues under consideration are verified by a check for matching the
first 30 digits of them and the corresponding condition numbers obtained by the
two computations (with 80 and 130 digits of precision).

5 Numerical results

To classify the periodic orbits into topological families we use a topological
method from [20]. Each family corresponds to a different conjugacy class of the
free group on two letters (a, b). Satellites of figure-eight correspond to free group
elements (abAB)

k for some natural power k. For choreographies the power k can
not be divisible by 3 (see [3]). We use "the free group word reading algorithm"
from [21] to obtain the free group elements. Together with the triplet (vx, vy, T ),
we compute the scale-invariant period T ∗. T ∗ is defined as T ∗ = T |E|

3
2 , where E

is the energy of our initial configuration: E = −2.5+ 3(vx
2 + vy

2). Equal T ∗ for
two different initial conditions means two different representations of the same
solution (the same choreography). Some of the choreographies are presented by
two different initial conditions.

We found 462 trivial choreographies in total (including Moore’s figure-eight
orbit and old choreographies, and counting different initial conditions as different
solutions). 397 of the solutions are new (not included in [3,4,5,7]). For each found
solution we computed the power k and the four numbers (vx, vy, T, T

∗) with
180 correct digits. This data can be seen in [22] together with the plots of the
trajectories in the real x− y plane.

As a result of computing the eigenvalues of the monodromy matrices we
obtain that 108 of the choreographies are linearly stable (99 new ones). These 108
choreographies correspond to 150 initial conditions (some of the choreographies
are presented by two different initial conditions and have the same T ∗). All
stability angles ν1,2 with 30 correct digits for the linearly stable solutions are
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given in a table in [22]. The distribution of the initial condition points can be
seen in Fig. 1 (the black points are the linearly stable solutions, the white points
– the unstable ones (more precisely, not confirmed to be linearly stable)). The
searching domain is the same as in [7] and consists of the rectangle [0.1, 0.33]×
[0.49, 0.545] plus the domain with the curved boundary. The three points out of
the searching domain are previously found solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6
Vx

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Vy

.

. .

Fig. 1. Initial velocities for all found solutions, black points are the linearly stable
solutions, white points - unstable (more precisely, not confirmed to be linearly stable)

Analyzing the linear stability data, we observe 13 pairs of solutions with
the same power k and very close T ∗, where one is linearly stable and the other
is of hyperbolic-elliptic type. The pairs have the following property: "The sta-
bility angle of the elliptic eigenvalues of the hyperbolic-elliptic type solution is
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very close to the larger stability angle of the linearly stable solution, the smaller
stability angle of the linearly stable solution is close to zero and the larger hy-
perbolic eigenvalue of the hyperbolic-elliptic type solution is greater than one
but very close to one". For example, there exists a pair of solutions with ν1 =

0.255011944221133753875666925693, ν2 = 2.19223274459622941216216635818e − 05

and ν = 0.255011941995861150357102898351, λ = 1.00013775153254718967585223182.
The initial conditions and the periods for this pair can be seen in Table 1. The
solutions are those with numbers 119 and 120 in [22]. The trajectories of the
three bodies in the real x − y plane can be seen in Fig. 2 and Fig. 3. A table
with the linear stability data for all the 13 pairs can be seen in [22].

N vx vy T T ∗ k

119 0.41817368353651279e0 0.54057212735770067e0 0.52133539095545824e3 0.600424230253006803e3 65

120 0.26562094559259036e0 0.5209803403964781e0 0.33548942966568876e3 0.600424230253006829e3 65

Table 1. Data with 17 correct digits for a pair of linearly stable and hyperbolic-elliptic
solutions

-1.5 -1 -0.5 0 0.5 1 1.5
x

-1

-0.5

0

0.5

1

y

.

.

Fig. 2. Linearly stable solution (solution 119 from Table 1)
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-1.5 -1 -0.5 0 0.5 1 1.5
x

-1

-0.5

0

0.5

1

y

.

.

Fig. 3. Hyperbolic-elliptic type solution (solution 120 from Table 1)

The extensive computations for the numerical search are performed in "Nes-
tum" cluster, Sofia, Bulgaria [23], where the GMP library (GNU multiple preci-
sion library) [24] for multiple precision floating point arithmetic is installed.

6 Conclusions

A modified Newton’s method with high precision is successfully used for a spe-
cialized numerical search of new trivial choreographies for the planar three-body
problem. Considering pretty long periods (up to 900) allows us to compute a
high precision database of 462 solutions (397 new ones). 99 of the newly found
solutions are linearly stable, bringing the number of the known linearly stable
trivial choreographies from 9 to 108.
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