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First-passage times provide invaluable insight into fundamental properties of stochastic processes.
Yet, various forms of gating mask first-passage times and differentiate them from actual detection
times. For instance, imperfect conditions may intermittently gate our ability to observe a system of
interest, such that exact first-passage instances might be missed. In other cases, e.g., certain chemical
reactions, direct observation of the molecules involved is virtually impossible, but the reaction event
itself can be detected. However, this instance need not coincide with the first collision time since
some molecular encounters are infertile and hence gated. Motivated by the challenge posed by such
real-life situations we develop a universal—model-free—framework for the inference of first-passage
times from the detection times of gated first-passage processes. In addition, when the underlying laws
of motions are known, our framework also provides a way to infer physically meaningful parameters,
e.g. diffusion coefficients. Finally, we show how to infer the gating rates themselves via the hitherto
overlooked short-time regime of the measured detection times. The robustness of our approach and
its insensitivity to underlying details are illustrated in several settings of physical relevance.

Introduction.—The importance of first-passage pro-
cesses is recognized universally across scientific disci-
plines, owing to their ubiquity and wide-ranging applica-
tions [1–7]. How long does it take for a chemical reaction
to be triggered? Or what is the time taken for an order
to be executed in the stock market? These disparate ex-
amples fall under the purview of first-passage processes,
where the first-passage time is now established as an in-
dispensable tool to quantify the time taken for a given
task to be completed.

In several practically relevant scenarios, however, the
completion of a task also relies on additional constraints.
For example, for a chemical reaction to be triggered, two
reactants must collide. Additionally, the collision must
be fertile, i.e., the reactants must be in a reactive inter-
nal state during collision. This internal state acts like
a “gate”: a reaction can only happen when the gate is
“open”, i.e. the molecules are in their reactive inter-
nal state. The macroscopic kinetics of these so called
gated reactions has a history spanning over four decades
now [8–20], and more recently, the study of single-particle
gated reactions has gained interest [21–31].

While the terminology of ‘gating’ is unique to reaction
kinetics, numerous examples fall under the wide umbrella
of gated processes. An important one is that of inter-
mittently observed stochastic time-series, where the un-
derlying cause for intermittent observations can include
energy costs of continuous observations, imperfect detec-
tion conditions, or simply, a faulty sensor [32–36]. Irre-
spective of the reasons behind such intermittent obser-
vations, an important consequence is that key features
of the time-series can be missed. In particular, in the
increasingly relevant field of extreme and record statis-
tics of time-series, a crucial quantity is the time taken to
cross a specific threshold for the first time. However, in-

FIG. 1. Instances highlighting the need for inference in gated
first-passage processes. (a) Detection of threshold crossing
under intermittent sensing. Consider single particle tracking
of a photoblinking particle. The first-passage properties of
the particle can be mischaracterized as the particle can cross
the threshold while being in its invisible state. (b) Gated
chemical reaction or target search. Imagine a situation where
tracking of the particle is not possible, and the only observable
is the reaction time. For such processes, we show how the first-
passage time distribution, and other relevant observables, can
be inferred from detection times.

termittent detection of the time-series can lead to a gross
mischaracterization of the statistics of such events [37–
41]. In such cases, the relevant quantity is the first de-
tection time, which denotes the first time the time-series
is observed above the threshold [39].

Figure 1 exemplifies two instances where gating arises
naturally: (a) Single-particle tracking of an intermit-
tently observed particle, which transitions between a visi-
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ble state and an invisible state. For example, a wide class
of fluorophores undergo photoblinking [42–51]. Other
reasons for such gating can be the intermittent loss of
focus on a moving particle in 3-dimensions [52] or slow
frame acquisition rate [53]; (b) A gated chemical reaction
or target search, where tracking of the particle is not
possible, and the reaction time is the only measurable
quantity. Such instances may arise in cellular signalling
driven by narrow escape [54, 55] and among fluorescent
probes [56].

In both examples illustrated in Fig. 1, the first-passage
time statistics carry invaluable information, but are in-
accessible to direct measurement. In such scenarios, a
crucial challenge is to reliably infer these statistics and
other fundamental properties of interest.

In this Letter, we address this challenge and solve it.
First, we show how the first-passage time density can be
inferred from gated observations via a model-free formal-
ism, which upon specification of the underlying laws of
motions can be further used to infer physically meaning-
ful parameters (e.g., the diffusion coefficient). Second,
using the joint knowledge of the gated (observed) and
ungated (inferred) first-passage time densities, we estab-
lish that the overlooked short-time regime of the gated
detection time distribution can be leveraged to obtain
the gating rates.

Modeling gated processes.—We start by modeling a
gated process consisting of two independent components.
First, an underlying process Xn0(t), initially at n0, mod-
eled as a continuous-time Markov process. Second, a gate
modeled by a two-state continuous-time Markov process,
that intermittently switches between an ‘open’ active (A)
state and a ‘closed’ inactive (I) state. This gate accounts
for the additional constraint that needs to be satisfied for
the task of interest to be completed. The gate switches
from state A to I at rate α, and from I to A at β. For
σ0, σ ∈ {A, I}, we define pt(σ|σ0) to be the probability
that the gate is in state σ at time t, given that it was
in state σ0 initially (see SI for an explicit formula [57]).
Also, let πA = β/λ and πI = α/λ denote the equilibrium
occupancy probabilities of states A and I respectively,
where λ = α+ β is the relaxation rate to equilibrium.

The central quantity of interest in our Letter is the
first-passage time Tf (m|n0), which is the time taken for
Xn0

(t) to reach state m for the first time, and we denote
its probability density by Ft(m|n0). In many scenarios
the first-passage time is not directly measurable, and in-
stead we can only measure the detection time Td(n0, σ0),
of a reaction or threshold crossing event. We denote by
Dt(n0, σ0) the probability density of Td(n0, σ0), which is
the first time the underlying process is detected in some
target-set Q, given that the initial state of the composite
process (underlying + gate) is initially at {n0, σ0}.

In this work, we focus on two widely applicable set-
tings: (i) the detection of threshold crossing events of
a 1-dimensional intermittent time-series with nearest-

neighbor transitions, where Q denotes all states above a
certain threshold m and Td(n0, σ0) is the first time when
Xn0

(t) ≥ m while the detector is active (A), and (ii)
gated reactions or target search on an arbitrary network
in discrete space or in arbitrary dimension in continuous
space. Here, Q is typically a single target state/point
m, and Td(n0, σ0) denotes the first time the underlying
process Xn0

(t) is at m, while the gate is open (A).
First-passage times from gated observations.— We be-

gin our analysis by noting that for n0 6∈ Q we have

Dt(n0,σ0) = Ft(m|n0)pt(A|σ0) +∫ t

0

Ft′(m|n0)pt′(I|σ0)Dt−t′(m, I) dt′, (1)

where the probability for a detection event occurring at
time t has two contributions: (i) the detection time co-
inciding with the first-passage time, and (ii) the gate be-
ing closed during the first-passage event (I), and detec-
tion happening strictly after this moment in time. The
Laplace transform of Eq. (1), can be expressed in com-
pact form as [57]

D̃s(n0,σ0) =
[
πA + πID̃s(m, I)

]
F̃s(m|n0) (2)

+ 1(σ0)(1− πσ0
)
[
1− D̃s(m, I)

]
F̃s+λ(m|n0),

where λ = α+ β, and 1(σ0) takes values +1 or −1 when
σ0 = A or I, respectively. By explicitly writing down
the equations for σ0 = A and I, and further eliminating
F̃s+λ(m|n0) from the equations, we arrive at [57]

F̃s(m|n0) =
πAD̃s(n0, A) + πID̃s(n0, I)

πA + πID̃s(m, I)
, (3)

which is our first result. Equation (3) asserts that the
first-passage density can be obtained exactly in terms of
detection time densities and the gating rates. In [57], we
further show that Eq. (3) holds even when the underly-
ing process in not Markovian, and instead is a renewal
process. However, inference of the first-passage time den-
sity Ft(m|n0), requires the detection statistics with initial
conditions {n0, A}, {n0, I}, {m, I} and the equilibrium
probabilities πA and πI . Such information may not be
accessible in experimentally realizable scenarios where,
e.g., it may not be possible to initialize a gated molecule
in a specific internal state σ0 = A or I, and the values of
πA and πI may also be unknown.

In such situations, the most practically realizable ini-
tial condition is the equilibrium σ0 ≡ E, where the gate
is in the active state A with probability πA, and in the
inactive state I with probability πI . Note that this ini-
tial condition is naturally achieved if the system is sim-
ply allowed to equilibriate. Interestingly, the detection
time density starting from the initial condition (n0, E)
is given by Dt(n0, E) = πA · Dt(n0, A) + πI · Dt(n0, I),
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whose Laplace transform is the numerator standing on
the right-hand side of Eq. (3). Further noting that the
Laplace transform of Dt(m,E) = πA · δ(t) +πI ·Dt(m, I)
gives the denominator on the right-hand side, we obtain
an elegant reinterpretation of Eq. (3):

F̃s(m|n0) =
D̃s(n0, E)

D̃s(m,E)
. (4)

Strikingly, Eq. (4) asserts that the first-passage time den-
sity can be inferred from the detection statistics, even
without the explicit knowledge of πA and πI , or control
over the initial state of the gate.

The usefulness and validity of Eq. (4) is demonstrated
in Fig. 2, with the help of three case studies of wide
interest and applicability. First, a Markovian birth-
death process which has been extensively used to model
threshold activated reactions [58–61] and the dynamics
of chemical reactions on catalysts [62, 63]. Second, the
paradigmatic continuous-space diffusion in a 1D confine-
ment. Third, a gated chemical reaction/target search
modeled by a non-Markovian continuous-time random
walk (CTRW) [64, 65] on a network [66], which is e.g.,
used to model the motion of reactants, cells, or organisms
in complex environments [30, 66–72]. In all of these set-
tings, we show that the first-passage time distributions
inferred from Eq. (4) using a procedure described in [57]
(circles) are in excellent agreement with the true first-
passage time distributions. We stress that this inference
was performed solely using detection time histograms ob-
tained from gated simulations, without assuming knowl-
edge of their analytical expressions or model specific de-
tails (e.g. the network structure and the waiting time
distribution in the CTRW example). However, when an-
alytical expressions are available, like in the case of the
birth-death process [39], one can directly perform the in-
ference through Laplace inversion of Eq. (4) [57].

Before moving forward, we note that Eq. (4) is reminis-

cent of the seminal renewal formula F̃s(m|n0) = P̃s(m|n0)

P̃s(m|m)

which relates, in Laplace space, the first-passage time
density and the probability density Pt(ni|nj) of finding
the underlying process in state ni at time t, given its
initial state nj [1]. Clearly, the right-hand side of this
formula and that of Eq. (4) are equal. In fact, we can
obtain an even more general relation – considering two
different initial states n0 and n′0, and after some algebra,
we uncover the fundamental relation [57]

D̃s(n0, E)

D̃s(n′0, E)
=
P̃s(m|n0)

P̃s(m|n′0)
, (5)

asserting that the ratio of the detection time densities (in
Laplace space), starting from any two initial states n0

and n′0, is independent of the gating rates α and β. Note
that this is true despite the fact that the detection time
densities themselves depend on the gating rates. We re-
mark that Eq. (5) holds in both settings: when Dt(n0, E)
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FIG. 2. Inference of first-passage time distributions from
gated observations. We consider the three different settings
mentioned in the text and legend. Solid and dashed lines de-
note ungated first-passage time distributions obtained from
theory and simulations, respectively. Circles are inferred us-
ing Eq. (4) from histograms of simulated gated detection
times [57].

corresponds to gated target search and to the detection
of threshold crossing events under intermittent sensing.

Inferring the mean first-passage time.—The Laplace
transform in Eq. (4) allows us to obtain all moments of
the first-passage time in terms of moments of the de-
tection time. Equation (4) further implies that all cu-
mulants of the first-passage time can be expressed as
differences between cumulants of detection times. For
example, the mean first-passage time is given by

〈Tf (m|n0)〉 = 〈Td(n0, E)〉 − 〈Td(m,E)〉. (6)

While simple, Eq. (6) carries utmost importance in prac-
tical scenarios, where reliably estimating the full prob-
ability distribution is not a viable option, and only the
mean can be accurately measured. Apart from setting
an important time-scale for a wide class of chemical re-
actions in confinement, where the mean reaction time
can be used to infer full reaction time statistics [73], the
mean first-passage time can also shed light on fundamen-
tal properties of the system at hand [74, 75].

Inferring the diffusion coefficient.—We now illustrate
how one can utilize our framework to infer physically
meaningful parameters like the diffusion coefficient D.
Importantly, we show that this can be done even when
the actual motion of the particle cannot be tracked.
Imagine a scenario like that depicted in Fig. 1(b), namely
we inject an unobservable particle—whose detection is
possible only upon reaction—at a known location x0.
Assume that the internal state of the particle is initially
equilibrated (σ0 = E); and further assume that it is freely
diffusing inside an effectively one-dimensional box [0, L]
with reflecting boundaries and a gated target located at
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FIG. 3. Inference of the diffusion coefficient. Equation (7)
is used to infer the diffusion coefficient of an unobservable
particle that is injected at a known location x0 = 0 into a box
[0, 5µm] with reflecting boundaries. The initial internal state
is equilibrated σ0 = E, and a gated point target is located at
m = 4µm, with gating rates α = β = 102s−1.

x0 < m < L. Utilizing Eq. (6) we find that [57]

D =
1

2

m2 − x2
0

〈Td(x0, E)〉 − 〈Td(m,E)〉
. (7)

Equation (7) asserts that the diffusion coefficient can be
inferred from the difference in the measurable detection
times 〈Td(x0, E)〉 and 〈Td(m,E)〉.

To corroborate this finding, we simulate the aforemen-
tioned scenario and test it for a wide range of possible
diffusion coefficients (Fig. 3). As implied by Eq. (6), the
difference in the detection times is independent of the
transition rates, the box size L, and the target size (the
same equation will hold for threshold crossing). It is thus
up to the experimentalist to tune these parameters such
that the detection times can be measured with sufficient
accuracy. Here we set α = β = 102s−1 and L = 5µm.
For each value of D, the corresponding mean detection
times were estimated from averages of N = 102 and 103

simulations, and the diffusion coefficient was inferred via
Eq. (7). The errors bars were estimated by repeating this
procedure 102 times and noting the standard deviation.
In Fig. 3 we plot the ratio between the inferred values
and the actual ones. We find this estimation procedure
robust, even when the number of measurements is rela-
tively small (N = 102). For the parameters used here,
the estimation is especially accurate for smaller diffusion
coefficients, where mean detection times are longer.

Inferring the gating rates.—Equation (4) states that
the first-passage time density can be inferred from its
gated counterparts, even without any prior knowledge of
the gating rates α and β or control over the initial internal
condition. We will now illustrate how the inferred first-
passage time distribution can be used together with the
observed detection time distribution to infer the gating
rates, thus providing insight into the dynamics of the
gating process.

To proceed, we shift our focus to short-time asymp-
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FIG. 4. Inference of the gating rates α (panel a) and β (panel
b) from the short-time asymptotics of Eq. (8) and (9) respec-
tively. Results are for the birth-death model used in Fig. 2,
and various values of α and β. Details of the model and pa-
rameter values are given in [57].

totics analysis which, despite several recent applica-
tions in stochastic thermodynamics [76–78] and chemi-
cal kinetics [79, 80], has not yet been used to further
our knowledge on gated processes. In the short-time
limit, the dominant contribution to Dt(n0, E) comes
from trajectories where the detection occurs upon first
arrival. This insight translates to the limiting equa-
tion πA = limt→0Dt(n0, E)/Ft(m|n0). Similarly, the
short-time asymptotics of Dt(m,E) is given by πI =
β−1 limt→0Dt(m,E), owing to the fact that when the
underlying process starts on m, the dominant contribu-
tion to detection comes from events where the gate opens
before the particle leaves the target or falls below the
threshold.

These limiting representations of the probabilities πA
and πI , along with their normalization, allows us to ob-
tain the gating rates as follows

α = lim
t→0

Dt(m,E)Ft(m|n0)

Dt(n0, E)
, (8)

β = lim
t→0

Dt(m,E)Ft(m|n0)

Ft(m|n0)−Dt(n0, E)
. (9)

Equations (8) and (9) are corroborated in Fig. 4, for
the birth-death process with parameters described in [57].
Furthermore, in [57] we also show that these relations
hold even for an arbitrary (non-equilibrium) initial con-
dition of the gate. We then derive simpler inference rela-
tions for the gating rates, which are obtained at the cost
of perfect control over σ0. Finally, we discuss the widely
applicable case of simple diffusion and derive inference
relations for α and β, which only differ by a factor of 2
from Eqs. (8) and (9).

Discussion.—Using the unified framework of gated
first-passage processes, we demonstrated how the first-
passage time distribution can be inferred from gated
measurements, and using these quantities, key features
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of the process can be extracted. The exact results ob-
tained in this Letter can help inform statistical infer-
ence frameworks designed to deal with situations per-
taining to imperfect observation conditions, including
sparsely sampled time-series or missing data problems.
The asymptotic results presented in this Letter moreover
provide a systematic approach to the inference of gat-
ing rates which, depending on the accessible timescales
of the problem, can be improved upon by considering
higher-order corrections to the asymptotics.
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106, 014103 (2022).

[76] B. Das, S. K. Manikandan, and A. Banerjee, Phys. Rev.
Research 4, 043080 (2022).

[77] S. K. Manikandan, S. Ghosh, A. Kundu, B. Das,
V. Agrawal, D. Mitra, A. Banerjee, and S. Krishna-
murthy, Communications Physics 4, 258 (2021).

[78] J. Van der Meer, B. Ertel, and U. Seifert, Phys. Rev. X
12, 031025 (2022).

[79] A. L. Thorneywork, J. Gladrow, Y. Qing, M. Rico-Pasto,
F. Ritort, H. Bayley, A. B. Kolomeisky, and U. F. Keyser,
Science Advances 6, eaaz4642 (2020).

[80] X. Li and A. B. Kolomeisky, The Journal of Chemical
Physics 139, 10B606 1 (2013).



S1

Supplemental Material for “Inference from gated first-passage times”

This Supplemental Material provides further discussion and derivations which support our findings reported in the
Letter, and provides details of the models and simulations used to validate our results.

S1. DYNAMICS OF THE GATE: EXPLICIT FORMULA FOR pt(σ|σ0)

The gate is modelled as a two-state Markov process, which switches from state A to I at rate α, and from I to A at
rate β. For σ0, σ ∈ {A, I}, we define pt(σ|σ0) to be the probability that the gate is in state σ at time t, given that it
was in state σ0 initially, and let πA = β/λ and πI = α/λ denote the equilibrium occupancy probabilities of states A
and I respectively, where λ = α+ β is the relaxation rate to equilibrium. The internal dynamics propagator pt(A|A)
is thus governed by the following differential equation

dpt(A|A)

dt
= −αpt(A|A) + β (1− pt(A|A)) , (S1)

and from normalization we have pt(I|A) = 1− pt(A|A). Similarly,

dpt(A|I)

dt
= −αpt(A|I) + β (1− pt(A|I)) , (S2)

and pt(I|I) = 1− pt(A|I). The solutions for these differential equations are

pt(A | I) = πA(1− e−λt),
pt(I | I) = πI + πAe

−λt,
pt(A | A) = πA + πIe

−λt,
pt(I | A) = πI(1− e−λt).

(S3)

It is evident that in the long time limit, these probabilities tend to the corresponding equilibrium occupancy proba-
bilities, i.e, limt→∞ pt(A|A) = limt→∞ pt(A|I) = πA and limt→∞ pt(I|A) = limt→∞ pt(I|I) = πI .

S2. FIRST-PASSAGE TIMES FROM GATED MEASUREMENTS: DERIVATION OF EQS. (2-4) OF THE
MAIN TEXT

We recall that Eq. (1) of the main text states

Dt(n0, σ0) = Ft(m|n0)pt(A|σ0) +

∫ t

0

Ft′(m|n0)pt′(I|σ0)Dt−t′(m, I)dt′, (S4)

where n0 denotes the initial state of the underlying process, and m denotes the target state (in the context of gated
target search), or a threshold (in the context of gated threshold crossing). It is to be noted that Eq. (S4) is valid when
n0 6= m in gated target search, and n0 < m for the threshold crossing problem. Setting σ0 = A we plug in Eq. (S4)
the relevant expressions from Eq. (S3). Then, moving to Laplace space, the Laplace transform of the first term on
the right-hand side reads

L{Ft(m|n0)pt(A|A)} =

∫ ∞
0

Ft(m|n0)
(
πA + πIe

−λt) e−stdt = πAF̃s(m|n0) + πI F̃s+λ(m|n0), (S5)

and the second term, which is a convolution (denoted by ∗ for brevity), reads

L{
[
Ft(m|n0)πI(1− e−λt)

]
∗Dt(m, I)} = L{Ft(m|n0)πI(1− e−λt)}L{Dt(m, I)} (S6)

= πI

(
F̃s(m|n0)− F̃s+λ(m|n0)

)
D̃s(m, I).
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Put together, we have

D̃s(n0, A) = πAF̃s(m|n0) + πI F̃s+λ(m|n0) + πI

(
F̃s(m|n0)− F̃s+λ(m|n0)

)
D̃s(m, I), (S7)

or

D̃s(n0, A) =
(
πA + πID̃s(m, I)

)
F̃s(m|n0) + πI

(
1− D̃s(m, I)

)
F̃s+λ(m|n0). (S8)

Similarly, the corresponding equation for σ0 = I reads

D̃s(n0, I) =
(
πA + πID̃s(m, I)

)
F̃s(m|n0)− πA

(
1− D̃s(m, I)

)
F̃s+λ(m|n0). (S9)

It is easy to see that Eqs. (S8) and (S9) can be written in compact form as

D̃s(n0,σ0) =
[
πA + πID̃s(m, I)

]
F̃s(m|n0) + 1(σ0)(1− πσ0)

[
1− D̃s(m, I)

]
F̃s+λ(m|n0), (S10)

where 1(σ0) takes values +1 or −1 when σ0 = A or I, respectively, yielding Eq. (2) of the main text. Furthermore, the

term containing F̃s+λ(m|n0) can be eliminated from Eqs. (S8) and (S9) by multiplying them by πA and πI respectively,
and adding the two resulting equations. This allows us to write

F̃s(m|n0) =
πAD̃s(n0, A) + πID̃s(n0, I)

πA + πID̃s(m, I)
, (S11)

which identifies with Eq. (3) in the main text and completes our proof that the first-passage time density Ft(m|n0)
can be expressed in terms of the gated detection time densities, and the gate steady-state probabilities πA and πI . We
note that the detection time density of an underlying process initially in state n0 and with a gate initially equilibrated,
Dt(n0, E), is nothing but a weighted average of detection time densities starting from an active and inactive gate
respectively: Dt(n0, E) = πADt(n0, A) + πIDt(n0, I). Similarly, Dt(m,E) = πAδ(t) + πIDs(m, I). This allows us to
write Eq. (S11) as

F̃s(m|n0) =
D̃s(n0, E)

D̃s(m,E)
(S12)

which can be identified with Eq. (4) from the main text. In Fig. S1, we consider the example of the birth-death
process discussed in the main text. We show that the first-passage time distribution inferred from a numerical
Laplace inversion of the ratio of the detection time densities on the right hand side of Eq. (S12) (yellow circles) agrees
with the true first-passage time distribution.

A. Extension to renewal processes

In the above derivation we assumed that the underlying spatial process is a continuous-time Markov process.
However, this modelling assumption can be relaxed, and our results can be shown to be valid even when the underlying
process is modelled as a renewal process.

To see this, we use as a starting point the following renewal structure [1]

Td(n0, σ0) = Tf (m|n0) +

{
0, if σTf (m|x0) = A

Td(m, I), otherwise,
(S13)

where Td(n0, σ0), Td(m, I), and Tf (m|n0) denote random variables whose densities have been denoted by Dt(n0, σ0),
Dt(m, I), and Ft(m|n0) in the main text. By σTf (m|x0) = A in the above equation, we mean that the random variable
denoting the state of the gate takes value A at time Tf (m|n0), given that its state initially was σ0. Equation (S13)
is valid even when the underlying spatial process is an arbitrary renewal process [1] and thus allows us to relax the
Markovian assumption.

Taking a Laplace transform of Eq. (S13), and rearranging, we get

D̃s(n0, σ0) =
[
πA + πID̃s(m, I)

]
F̃s(m|n0) + 1(σ0)(1− πσ0

)
[
1− D̃s(m, I)

]
F̃s+λ(m|n0), (S14)

which is the same as Eq. (2) in the main text. Hence, Eq. (3) in the main text follows for renewal processes as well,
using the exact same procedure.
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FIG. S1. First-passage time distribution for the birth-death process used in the text for three different values of the threshold.
Solid lines denote the true first-passage time distribution and symbols (yellow circles) denote the inferred distribution from a
numerical Laplace inversion of the ratio of the detection time densities on the right hand side of Eq. (S12). The parameter
values chosen for the birth-death process are N = 10 and k+ = k− = 1.

S3. INFERENCE OF FIRST-PASSAGE TIMES FROM DATA BASED ON EQ. (4)

Equation (4) in the main text (Eq. (S12) in the SI) allows us to represent the first-passage time distribution purely
in terms of the observable detection time distributions. In this section, we show that this equation can be used to
infer the first-passage time distribution directly from detection times data. This is of utmost importance, since in
many practically relevant scenarios, analytical expressions for the detection time distributions are not known as we
might not know the laws of motion or specific parameter values of the underlying process. First, we note that in the
time domain Eq. (S12) can be written as a convolution

Dt(n0, E) =

∫ t

0

Ft′(m|n0)Dt−t′(m,E) dt′. (S15)

This suggests that the problem of inferring the first-passage time distribution from gated detection times can be viewed
as a deconvolution problem. In practice, when detection time data are obtained from simulations/experiments, we
discretize the detection time distributions by binning the data in histograms. Thus, we discretize Eq. (S15), and
recast it as a matrix equation

Dt(n0, E) = Dt(m,E)Ft(m|n0), (S16)

where Dt(m,E) is a matrix, which is interpretted as an operator that acts on the vector Ft(m|n0) by performing a
convolution and giving the vector Dt(n0, E) as output. More specifically, we have

D0(n0, E)
D∆(n0, E)
D2∆(n0, E)
D3∆(n0, E)

...
DN∆(n0, E)


︸ ︷︷ ︸

Dt(n0, E)

= ∆



D0(m,E) 0 0 0 . . . 0
D∆(m,E) D0(m,E) 0 0 . . . 0
D2∆(m,E) D∆(m,E) D0(m,E) 0 . . . 0
D3∆(m,E) D2∆(m,E) D∆(m,E) D0(m,E)

...
...

...
. . .

DN∆(m,E) D(N−1)∆(m,E) D(N−2)∆(m,E) . . . . . . D0(m,E)


︸ ︷︷ ︸

Dt(m,E)



F0(m|n0)
F∆(m|n0)
F2∆(m|n0)
F3∆(m|n0)

...
FN∆(m|n0)


︸ ︷︷ ︸

Ft(m|n0)

,

(S17)
where ∆ is the histograms’ bin width and N +1 as the total number of bins. Evidently, Dt(m,E) is a lower-triangular,
Toeplitz, matrix whose entries are densities obtained from the histogram of Dt(m,E), scaled by a factor of ∆. Thus,
we can write

Ft(m|n0) = Dt(m,E)−1Dt(n0, E), (S18)
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FIG. S2. Illustration of the deconvolution method to infer the first-passage statistics from gated detection time data, using the
example of a diffusing particle confined in a 1D box. (a) The deconvoluted first-passage time density overlaps almost perfectly
with the FPT histogram computed from ungated simulations. (b) A log-log plot shows that there are numerical errors when
estimating very small probabilities (the noisy green tail). However, by taking logarithmic bins and assigning the mean value
of the densities within each bin to be the density for that bin, we show in panel (c) that the full circles (depicting the mean
values of the values in each bin) match the FPT histogram well.

implying that the problem of inferring the first-passage time distribution reduces to a problem of inverting a lower
diagonal Toeplitz matrix with a non-zero determinant. In the main text, we demonstrated the validity and robustness
of this approach using three distinct examples – a birth-death process, CTRW on network, and 1D confined diffusion,
where we performed inference from detection time histograms generated from 106 detection events. Further expanding
on the diffusion example, in Fig. S2, we demonstrate the deconvolution method to infer the first-passage statistics
from gated detection time data. In panel (a), we clearly note that the deconvoluted first-passage time density shows
an excellent agreement with the first-passage time histogram computed from ungated simulations. A corresponding
log-log plot in panel (b) reveals some numerical errors in the tail of the inferred first-passage time distribution. In
panel (c), we plot the inferred density after a logarithmic binning and we can see that the full circles (depicting
the mean values of the values in each bin) match the true first-passage time histogram very well. The logarithmic
binning helps in reducing the numerical errors from the tails, however it does not completely remove them. An
alternate method to perform this inference could involve parametric inference which uses domain-specific knowledge
(e.g., exponential tail of first-passage time distributions in confined systems) to improve upon this inference method.

S4. MODELS USED FOR SIMULATIONS PRESENTED IN MAIN TEXT

A. The birth-death process

In this section of the Supplemental Material, we describe the birth-death process (BDP) used in the main text of
our paper to produce Figs. 2 and 4.

We considered a BDP on a state space S ∈ {0, 1, 2, · · · , N}, with transition rates

W+(j) = k+(N − j), (S19)

W−(j) = k−j, (S20)

which govern the rate of transitioning from state j to states j + 1 and j − 1 respectively, with j ∈ {0, 1, 2, · · · , N}.
Clearly, states 0 and N act as reflecting boundaries, as W−(0) = W+(N) = 0.

Let us define Ft(m|n0) to be the probability distribution of the time the BDP reaches state m for the first time,
starting from state n0. Ft(m|n0) is called the first-passage time density, and it is known that Ft(m|n0) obeys a
Phase-type distribution [2, 3], whose Laplace transform is easy to compute.

More explicitly, taking the example of n0 = 0, we note that Ft(m|0) can be simply expressed as

Ft(m|0) = k+(N −m+ 1)
[
exp(W(m)t)

]
m,1

. (S21)
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where W(m) is the m ×m matrix obtained by retaining only the first m columns and m rows of the N + 1 ×N + 1
transition matrix W containing all zeros, except where

Wi+1,i = k+(N + 1− i) and Wi,i+1 = k−i,

for i ∈ {1, 2, . . . , N}, and Wi,i are chosen so that the columns of W add up to zero.
Alternatively, one can also use the renewal method to determine the Laplace transformed first-passage distribution

as

F̃s(m|n0) =
P̃s(m|n0)

P̃s(m|m)
, (S22)

where P̃s(i|j) is the Laplace transform of the propagator Pt(i|j), which denotes the probability of finding the BDP in
state i ∈ S at time t, given that the system started from state j ∈ S initially. The propagator Pt(i|j) can be obtained
for any BDP (see Eq. (2.4) in Ref.[4]).

The parameters chosen for the production of Fig. 2 in the main text are N = 10, m = 9, k+ = 0.5, k− = 1, α = 2,
and β = 0.5. For Fig. 4, the parameters are N = 10, and k+ = k− = 1, for various values of m and gating rates α
and β.

B. Diffusing particle in a closed interval with one reflective boundary and one absorbing boundary

We start by computing the Green’s function C(x, t | x0), namely, the conditional probability density function to find
the particle at position x at time t, given that the initial position is x0, and given a reflective boundary at 0 and
an absorbing boundary at m. The initial condition is C(x, t = 0|x0) = δ (x− x0) by definition, and the boundary

conditions we require are a Neumann boundary condition ∂C(x,t|x0)
∂x

∣∣
x=0

= 0 and a Dirichlet boundary condition
C(x = m, t|x0) = 0.

Laplace transforming the diffusion equation, we obtain

sC̃(x, s|x0) = Dd
2C̃(x, s|x0)

dx2
, (S23)

which is a second-order, linear, homogeneous differential equation. It has a general solution

C̃(x, s|x0) =

{
C̃−(x, s|x0) = c1(s)ex

√
s
D + c2(s)e−x

√
s
D , x < x0

C̃+(x, s|x0) = c3(s)ex
√

s
D + c4(s)e−x

√
s
D . x > x0

(S24)

Similarly, Laplace transforming the boundary conditions we obtain

dC̃(x, s|x0)

dx

∣∣
x=0

= 0, (S25)

and

C̃(m, s|x0) = 0. (S26)

Finally, the initial condition is translated to two matching conditions at the initial position of the particle, one for
the continuity of the Laplace transform of the probability density

C̃+(x0, s|x0) = C̃−(x0, s|x0), (S27)

and one for the Laplace transform of the fluxes

− 1 = D
[dC̃+(x, s|x0)

dx

∣∣
x=x0

− dC̃−(x, s|x0)

dx

∣∣
x=x0

]
, (S28)

which is obtained by integrating both sides of the Laplace transformed diffusion equation (Eq. (S23)) over an infinites-
imally small interval surrounding the initial position. Note that the 1 on the left-hand side comes from the Laplace
transform of the delta function initial condition.
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FIG. S3. The network used for simulations of gated target search by a CTRW, with the red and green nodes denoting the
initial position of the CTRW and the target respectively. For the CTRW on this network, the waiting time distribution was
taken to be uniform on the interval [0, 0.2], whereas the gating rates were chosen to be α = β = 1.

Imposing the above conditions produces a system of four equations with four unknowns, from which we can obtain
ci(s) (1 ≤ i ≤ 4)



c1(s) =
sech(m

√
s
D ) sinh(

√
s
D (m−x0))

2
√
Ds ,

c2(s) =
sech(m

√
s
D ) sinh(

√
s
D (m−x0))

2
√
Ds ,

c3(s) =
(tanh(m

√
s
D )−1) cosh(x0

√
s
D )

2
√
Ds ,

c4(s) =
e
m
√

s
D sech(m

√
s
D ) cosh(x0

√
s
D )

2
√
Ds .

(S29)

The Laplace transform of the first-passage probability density function is given by

T̃f (m, s) = − DdC̃+(x, s|x0)

dx

∣∣∣∣∣
x=m

= sech

[
m

√
s

D

]
cosh

[
x0

√
s

D

]
(S30)

The Laplace transform is a moment generating function, and so the mean first-passage time is given by

〈Tf 〉 = −dT̃f (m, s)

ds

∣∣∣∣
s=0

=
m2 − x2

0

2D
. (S31)

The parameter values chosen for the production of Fig. 2 in the main text are L = 2, D = 1
2 , x0 = 0.2, m = 1.6,

and gating rates α = β = 0.5.

C. Continuous-time random walk (non-Markovian) on a network

A continuous-time random walk (CTRW) on a network is a mathematical framework for modeling the random
movement of particles or agents on a network over time. CTRWs on networks have found numerous applications in
various fields, including physics, biology, sociology, and computer science. In this model, a random walker, jumps
successively from a node of the network to one of its neighbouring nodes after waiting for a random time, drawn from
its waiting time distribution. For a comprehensive review, refer to [5].

For the production of Fig. 2 in the main text, we simulated a CTRW on the network depicted in Fig. S3 – an
Erdös-Rényi random network with 40 nodes, where each pair of nodes is connected with probability of 0.1. For the
CTRW on this network, the waiting time distribution was taken to be uniform on the interval [0, 0.2], whereas the
gating rates were chosen to be α = β = 1.
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S5. THE CONNECTION BETWEEN THE DETECTION TIMES AND PROPAGATORS: DERIVATION
OF EQ. (5) IN THE MAIN TEXT

Equation (4) in the main text (Eq. (S12)) asserts that the first-passage time density can be inferred from the
detection statistics, even without the explicit knowledge of πA and πI , or control over the initial state of the gate.
Moreover, Eq. (S12) is reminiscent of the seminal renewal formula

F̃s(m|n0) =
P̃s(m|n0)

P̃s(m|m)
, (S32)

which relates, in Laplace space, the first-passage time density and the propagator Pt(ni|nj) denoting the probability
of finding the underlying process in state ni at time t, given its initial state nj . By equating the two expressions we
obtain

D̃s(n0, E)

D̃s(m,E)
=
P̃s(m|n0)

P̃s(m|m)
, (S33)

which remarkably holds for both settings: when Dt(n0, E) corresponds to gated target search or detection of threshold
crossing events under intermittent sensing.

To explore further, consider the first detection time densities, starting from two arbitrary initial conditions n0 and
n′0. From (S33), we have the two equations,

D̃s(n0, E)

D̃s(m,E)
=
P̃s(m|n0)

P̃s(m|m)
and

D̃s(n
′
0, E)

D̃s(m,E)
=
P̃s(m|n′0)

P̃s(m|m)
(S34)

whose ratio is simply given by

D̃s(n0, E)

D̃s(n′0, E)
=
P̃s(m|n0)

P̃s(m|n′0)
, (S35)

which is Eq. (5) in the main text. In fact, this equality can be easily extended to give

D̃s(n0, E)

D̃s(n
′
0, E)

=
P̃s(m|n0)

P̃s(m|n
′
0)

=
F̃s(m|n0)

F̃s(m|n′0)
. (S36)

S6. INFERRING THE GATING RATES α AND β

A. Derivation of Eqs. (8-9)

In this section, we provide a detailed derivation and discussion of our short-time asymptotic calculations, which
allow us to infer α and β from the detection time densities in the form of Eqs. (8) and (9) in the main text.

For σ0 = E, we have the relation,

Dt(n0, E) = πAFt(m|n0) + πI

∫ t

0

Ft′(m|n0)Dt−t′(m, I)dt′, (S37)

which can be obtained from Eq. (S4), by noting that Dt(n0, E) = πADt(n0, A) + πIDt(n0, I). Furthermore, we have
Dt(m,E) = πAδ(t) + πIDt(m, I). Evidently, the short-time behaviour of Dt(m,E) is governed by that of Dt(m, I),
which can in turn be expressed as

Dt(m, I) ' β(1−∆(t)) (S38)

where ∆(t) → 0 in the t → 0 limit. For example, in the case of gated chemical reactions where m denotes a target
state, the short-time expression for Dt(m, I) is

Dt(m, I) ' βe−βte−γmt (S39)
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where γm denotes the rate at which the reactant escapes the target state m. Equation (S39) expresses the fact that the
dominant contribution to reaction events in the short-time limit comes from the events where the gate opens before the
reactant leaves the target state m. Using the approximation e−λt ' 1−λt, it is easy to see that ∆(t) = (β+γm)t+o(t),
and in the t→ 0 limit, we have

lim
t→0

Dt(m, I) = β. (S40)

Equation (S40) asserts that Dt(m, I) tends to a constant (β) in the short-time limit. Similarly, the second term of
the right-hand side in Eq. (S37) can be safely ignored in the short-time limit, yielding

Dt(n0, E) ' πAFt(m|n0). (S41)

From here, we have

πA = lim
t→0

Dt(n0, E)

Ft(m|n0)
, (S42)

which appeared in the main text. In a similar vein, the short-time asymptotics of Dt(m,E) can be expressed as

Dt(m,E) ' πIDt(m, I). (S43)

Using Eq. (S40), we arrive at

πI = lim
t→0

1

β
Dt(m,E), (S44)

which appeared in the main text.
We are now in the position to derive relations for the inference of α and β from Eqs. (S42) and (S44). To obtain

these relations, we will use two identities: (i) πA +πI = 1, and (ii) πAα = πIβ. While the first identity is trivially the
normalization of occupancy probabilities, the latter can be seen as a statement of detailed balance for the two-state
Markov process which models our gate.

Writing Eq. (S44) as πI β = limt→0Dt(m,E), and using πAα = πIβ, we have

πA α = lim
t→0

Dt(m,E), (S45)

where, πA can be further substituted from Eq. (S42), to obtain Eq. (8) in the main text

α = lim
t→0

Dt(m,E)Ft(m|n0)

Dt(n0, E)
. (S46)

To obtain the corresponding inference relation for β, we note that Eq. (S44) gives

β =
1

πI
lim
t→0

Dt(m,E), (S47)

where πI = α
α+β . This gives us

β =
α+ β

α
lim
t→0

Dt(m,E), (S48)

which can be further simplified to obtain

β =

(
1 +

β

α

)
lim
t→0

Dt(m,E). (S49)

Substituting for α in the above equation from Eq. (S46), we get

β = lim
t→0

Dt(m,E)Ft(m|n0)

Ft(m|n0)−Dt(n0, E)
, (S50)

which is Eq. (9) from the main text.
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B. Inference for arbitrary initial condition of the gate

In this subsection, we demonstrate that Eqs. (S46) and (S50) hold more generally, and we can relax the condition
that the gate is initially equilibriated.

Consider a situation where we do not have information about the initial conditions of the gate. Let us denote by
pA and pI the unknown probabilities for the gate to be initially active A and inactive I respectively, for pA ∈ (0, 1)
and pI = 1 − pA. Note that we do not assume that pA = πA and pI = πI . Following the intuition developed for
Eq. (S42) and Eq. (S44), we have the following short-time asymptotic relations,

pA = lim
t→0

Dt(n0)/Ft(m|n0) (S51)

and

pI =
1

β
lim
t→0

Dt(m), (S52)

where we have dropped the notation for gate initialization (Dt(n0) denotes the detection time density given that the
initial state of the underlying process is n0, and the initial preparation of the gate is unknown). The normalization
of probabilities dictates that pA + pI = 1. So, adding up the above two equations, we get,

1 = lim
t→0

(
1

β
Dt(m) +

Dt(n0)

Ft(m|n0)

)
(S53)

yielding:

β =
Ft(m|n0) Dt(m)

Ft(m|n0)−Dt(n0)
(S54)

which is the same as Eq. (9) from the main text. Similarly, Eq. (8) can be derived in this even more general setting.

C. Inference in the presence of control over gate initialization

In this subsection, we discuss the possibility of inferring α and β in the case where we can control the initial state
of the gate σ0. Using the fact that pt(A|A) = πA + πIe

−λt and pt(I|A) = πI − πIe−λt, we have

Dt(n0, A) = Ft(m|n0)(πA + πIe
−λt) +

∫ t

0

Ft′(m|n0)
(
πI(1− e−λt

′
)
)
Dt−t′(m, I)dt′.

In the limit of short-time (t→ 0), we can write e−λt ' 1− λt, which gives us

Dt(n0,A) ' Ft(m|n0)− πIλtFt(m|n0), (S55)

where we neglect the second term. It is a matter of simple algebra to see that

α = lim
t→0

Ft(m|n0)−Dt(n0, A)

t · Ft(m|n0)
. (S56)

Equation (S56) asserts that the early deviations of Dt(n0, A) from Ft(m|n0) can be leveraged to obtain the gating
rate α corresponding to deactivation of the gate. On the other hand, Eq. (S40) is sufficient to infer β as

β = lim
t→0

Dt(m, I). (S57)

In Fig. S4, we corroborate the validity of Eqs. (S56) and (S57) using the birth-death process described in Sec. of
this SI (also used in the main text).
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FIG. S4. Inference of the gating rates α and β from short-time asymptotics for the birth-death process (defined in Sec. S4.A)
with k+ = 0.1, k1 = 1, and N = 10. (a) A plot demonstrating that early deviations of the detection time distribution from
the first-passage time distribution, as captured by Eq. (S56), can be used to infer the numerical value of α. (b) Inference of β
through the short-time asymptotic behaviour of Dt(m, I) given by Eq. (S57). It is clear that the short-time asymptotics of the
detection time distributions can be leveraged to infer the gating rates in gated first-passage processes.

D. Inference in the case of diffusion

An important quantity in the inference of α and β from the detection time distributions is the short-time asymptotics
of Dt(m, I). This quantity was derived in Eq. (S40) using the fact that, at short-times, the dominant contribution to
detection events comes from trajectories where the gate opens before the underlying process escapes the target-region
(i.e., for detection of threshold crossing events, it means that the time-series has not dropped below the threshold,
and for gated chemical reactions, it corresponds to the particle not escaping the target site before the opening of the
gate). However, in continuous-space Markov processes this underlying assumption does not hold, since the process
can leave and return to the target region multiple times during an infinitesimally small time interval. This means
that the second term on the right-hand side of Eq. (S37) can no longer be ignored.

Let us consider the example of a freely diffusing particle in 1-dimension, whose position at time t we denote by
Xn0(t) given that it starts from position n0. We define Td(n0, I) to be the time taken for the particle to be detected
in a location Xn0(t) ≥ m, given that initially, the gate is in state σ0 = I. While Eq. (S42) is valid even in this setting,
Eq. (S44) is not. Thus, in order infer α and β, our goal is to compute the short-time asymptotics of the probability
density Dt(m, I) of the random variable Td(m, I).

We note that the dominant contribution to Dt(m, I) at short-times comes from the events where detection happens
as soon as the gate opens. Note that, in this time, owing to the continuous nature of the process, Xm(t) could have
dropped below the threshold m and crossed it subsequently several times. Thus, instead of looking at the first time
when it drops below the threshold, the more meaningful question to ask in this setting is: what is the probability
that Xm(t) ≥ m when the gate opens? Owing to the symmetry of the free diffusion problem, the answer is clearly 1

2 .
This observation allows us to write

lim
t→0

Dt(m, I) =
β

2
, (S58)

and thus

lim
t→0

Dt(m,E) = πI lim
t→0

Dt(m, I) = πI
β

2
. (S59)

Rearranging, we get the analogue of Eq. (S44) for continuous processes as

πI =
2

β
lim
t→0

Dt(m,E), (S60)

where we remark that the right-hand side of Eq. (S60) differs from the right-hand side of Eq. (S44) only by a factor
of 2. This relation can be utilized along with Eq. (S42) to obtain

β = lim
t→0

2 Dt(m,E)Ft(m|n0)

Ft(m|n0)−Dt(n0, E)
, (S61)
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and following the same steps as in the previous sections, we get

α = lim
t→0

2 Dt(m,E)Ft(m|n0)

Dt(n0, E)
. (S62)

This completes our derivation of the inference relations for α and β for the case of continuous Markov processes.
It is to be noted that though Eq. (S58) was derived for the detection of Xm(t) above m, we expect it to be valid
at short-times for detection in any finite sized interval [m,m + ∆] as well. The reason is that at short times the
probability that the process Xm(t) crosses above m + ∆ is negligible. Thus, finite-size effects do not play a role at
this level. Clearly, the threshold crossing problem is recovered in the ∆→∞ limit.
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