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Abstract
Drug synergy arises when the combined im-
pact of two drugs exceeds the sum of their in-
dividual effects. While single-drug effects on
cell lines are well-documented, the scarcity of
data on drug synergy, considering the vast ar-
ray of potential drug combinations, prompts a
growing interest in computational approaches
for predicting synergies in untested drug pairs.
We introduce a Graph Neural Network (GNN )
based model for drug synergy prediction, which
utilizes drug chemical structures and cell line
gene expression data. We extract data from
the largest available drug combination database
(DrugComb) and generate multiple synergy
scores (commonly used in the literature) to
create seven datasets that serve as a reli-
able benchmark with high confidence. In con-
trast to conventional models relying on pre-
computed chemical features, our GNN-based
approach learns task-specific drug representa-
tions directly from the graph structure of the
drugs, providing superior performance in pre-
dicting drug synergies. Our work suggests that
learning task-specific drug representations and
leveraging a diverse dataset is a promising ap-
proach to advancing our understanding of drug-
drug interaction and synergy.

Data and Code Availability For this study, we
used the drug combination dataset from the Drug-
Comb (Zheng et al., 2021) database (version 1.5) and
we retrieved untreated cell line features from cancer-
rxgene1. From the raw data, we constructed new
datasets based on the majority voting schemes as de-

1. https://www.cancerrxgene.org/gdsc1000//GDSC1000_WebResources//Data/preprocessed/

Cell_line_RMA_proc_basalExp.txt.zip

scribed in the paper. The code is publicly available
at this repository.

Institutional Review Board (IRB) This re-
search did not require IRB approval.

1. Introduction

Treatments targeting complex diseases, such as can-
cer, frequently lead to acquired drug resistance due to
patient-specific variability. For instance, drugs tar-
geting only one key component of growth or pro-
liferation pathways may lead to selective pressure
and activation of a compensatory mechanism (Avner
et al., 2012), thus making this treatment suboptimal.
However, during multi-target inhibition with reduced
stringency, drug resistance is less likely. Therefore,
the implementation of combination therapy might
improve patient treatment as different drugs may tar-
get distinct pathways or genes, likely leading to de-
creased cancer cell survival. In addition to the in-
creased efficacy, combination therapy often reduces
toxicity and decreases the likelihood of treatment re-
sistance compared to monotherapy (i.e., single drug)
treatments (Mokhtari et al., 2017).

Due to advancements in high-throughput screen-
ing (HTS), the number of drug screening datasets
has been growing in recent years (see Appendix A).
Meanwhile, a variety of algorithms have been devel-
oped for drug synergy prediction. However, these
models come with several limitations: 1) Multi-
ple synergy scoring methods have been developed,
though each one has its biases and drawbacks. Yet,
the majority of studies rely only on one synergy score,
i.e., Loewe or Bliss, thus making them biased towards
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the assumptions of the synergy score they are us-
ing (Wooten et al., 2021). 2) Most prediction models
only utilize a single dataset, which limits the number
of drug and cell line combinations a model can learn
on. Additionally, this also limits the extent to which
the model can be generalized to unknown drugs and
unutilized cell lines. 3) Commonly, existing models
take advantage of pre-computed chemical properties
of drugs. However, with the wider adoption of Graph
Neural Networks (GNN s) in recent years, it has be-
come more advantageous to learn task-specific repre-
sentations of drugs in the form of graphs (i.e., chem-
ical structures where atoms are nodes and bonds are
edges).
To this end, we propose a Graph Neural Net-

work (GNN ) based model, DDoS (Drug-Drug
combination Synergy model), which offers multiple
advantages: 1) It is trained on four different drug syn-
ergy scores (Loewe, Bliss, HSA, ZIP), as well as three
distinct majority voting-based combinations of those
four scores. Hence, it is trained on labels with much
higher synergy consensus (or confidence) compared to
single score-based labels. 2) It includes samples from
DrugComb, which is a collection of 34 distinct drug
synergy datasets, in order to learn on a wide variety
of drugs and cell lines. 3) It learns task-specific drug
representations, instead of relying on generalized pre-
computed chemical features of drugs. 4) It outper-
forms state-of-the-art baseline models when tested on
seven distinct benchmark datasets.

2. Literature review

The availability of larger HTS datasets has enabled
model development for improved drug combination
synergy predictions. These models utilize genomic in-
formation of cell lines and physicochemical properties
of drugs, or drug-cell interactions for the prediction
of optimal drug combinations. Commonly used mod-
els include RandomForest, SupportVectorMachine,
GradientBoostingMachine, and NaiveBayes (Kumar
and Dogra, 2021). However, more recently Deep
Learning models have shown to be advantageous at
managing large amounts of data and learning useful
representations that often lead to an improved pre-
diction performance. Most of the deep learning mod-
els developed for drug synergy prediction tasks are
focused on one question: What is the ideal data rep-
resentation for both modalities, drugs, and cell lines?
Initially, deep learning models focused on using a

predefined set of chemical features to represent the

drugs. For instance, DeepSynergy (Preuer et al.,
2018) applied a feed-forward neural network (FFNN )
on the vector concatenating the two drug and cell line
representations, which outperformed previous tradi-
tional machine learning models. The model was
trained on the Merck dataset. MatchMaker (Kuru
et al., 2020), on the other hand, proposed to use
chemical features of each drug from the DrugComb
database and concatenated it with cell line gene ex-
pression features as input to drug-specific subnet-
works (DSNs). The DSNs learn a representation for
each drug separately conditioned on cell line gene ex-
pressions.

Furthermore, to improve the cell line representa-
tion by incorporating multi-omics data, AuDNNsyn-
ergy (Zhang et al., 2021) trained three autoencoders
using the gene expression, copy number variations,
and genetic mutation data of tumor samples from
The Cancer Genome Atlas (TCGA) to generate lower
dimensional representations. The physicochemical
features of individual drugs and the encoded omics
data of individual cancer cell lines are used as the
input features to a feed-forward neural network that
predicts the synergy score. Similar works also include
Synpred (Preto et al., 2022).

Recently, there are more models reported in the lit-
erature aimed at incorporating the graph structure of
the drugs instead of using predefined physicochemical
properties. Wang et al. (2022) proposed DeepDDS
which uses the molecular graphs of two drugs and
gene expression profiles of one cancer cell line that
was treated by these two drugs. They tested GNNs,
GAT, and GCN, to extract features from these drugs.
Sun et al. (2020) proposed graph convolutional net-
works and deep sets to learn better discriminative
convolutional layers compared to conventional GCN,
and achieved permutation invariant prediction while
capturing complicated interactions. This work was
mainly focused on identifying better graph network
architecture that can model drug-drug interaction.
Similarly, Deepdrug (Yin et al., 2022) works on iden-
tifying the best GNN structure for drug-drug inter-
action.

3. Model

Consider a training dataset D = {xi, yi}Ni=1, com-
prising of N samples, where xi denotes a triplet
(Drug A, Drug B, and a Cell line), and yi ∈
{synergistic, antagonistic} represents the class label
indicating whether the two drugs exhibit synergy
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against the specified cell line. The objective is to
learn a function fθ(xi) → yi that can predict, for
a given new triplet, whether the given pair of drugs
demonstrate synergy against the provided cell line.
To learn such a function, we first represent the

drugs using their molecular graph and apply a graph
neural network to map them to their latent represen-
tations. Concurrently, we use attention-based feed-
forward network to learn a representation for the cell
line characterized by its landmark genes. Leveraging
a graph neural network, we aim to learn task-specific
representations of the drugs, facilitating the accurate
prediction of synergistic or antagonistic interactions
in the given context. More precisely, our model con-
sists of three main parts (see Fig 1):

1. A Graph Neural Network (GNN ) model for cal-
culating drug feature representation vectors.

2. A Gene Rescaling model for rescaling gene ex-
pression features, to optimize gene features rep-
resentation.

3. A Classifier model (feed-forward neural network
followed by a LogSoftmax function) to compute
a probability distribution over the two classes
using the learned representation vectors of the
GNN and Gene Rescaling models.

3.1. Graph Neural Network model

To better capture the drug-drug interaction, we rep-
resent drugs as graphs based on their chemical struc-
tures. A drug with Na atoms is represented by a
graph G = (V, E), Na = |V|, where V represents the
set of nodes (atoms) and E as the set of edges (bonds).
We then construct a node matrixH ∈ RNa×d where d
is the number of features used to describe each atom,
and an adjacency matrix A ∈ RNa×Na where aij ∈ A
is one if there is a bond between atom i and atom j,
and zero otherwise.
The graph neural network consists of multiple lay-

ers which signifies the “depth” of the network. Par-
ticularly, a layer l ∈ {1, . . . , L} can be viewed as the
l-hop neighborhood of a node (atom), i.e., the sub-
graph of all atoms reachable within l steps. Every
node, i.e., atom, vi ∈ V is initially represented by a
node feature vector hl

i ∈ Rd at layer l, and its neigh-
bors are defined by Ni = {vj ∈ V | aij = 1}. The
representation of each node hl

i is updated at layer l+1
by aggregating the representations of its neighbors:

hl+1
i = ϕ(ξ({hl

j | vj ∈ Ni})), (1)

where ϕ, ξ are differentiable functions and ξ is
permutation invariant (i.e., generally order invari-
ant). Specifically, we utilize the GATv2 opera-
tor (Brody et al., 2021) for updating each hl

i (see
Eq 2). This operator provides two advantages, com-
pared to the more commonly used implementation
of GAT (Velickovic et al., 2017): 1) the aggregation
function ξ is based on the weighted average of neigh-
bors learned representations using attention instead
of treating all neighbors with equal importance, and
2) every node can attend to any other node with dy-
namic attention while the original GAT is limited to
static attention.

hl+1
i = ϕ(αi,iWhl

i +
∑
j∈Ni

αi,jWhl
j), (2)

where the attention coefficients αi,j are computed
as:

αi,j =
exp

(
a⊤LeakyReLU

(
[Whl

i ∥Whl
j ]
))∑

k∈Ni∪{i} exp
(
a⊤LeakyReLU

(
[Whl

i ∥Whl
k]
)) , (3)

a ∈ R2d′
,W ∈ Rd′×d are learned parameters, ϕ

is the ELU activation function and || denotes vector
concatenation.

Subsequently, layer-specific graph representations
gl are generated by aggregating (i.e., global mean
pooling) the updated node representations hl

i at layer
l:

gl =
1

Na

Na∑
i=1

hl
i, ∀ l ∈ {1, 2, . . . , L} (4)

where the number of GNN layers L is a hyperpa-
rameter. The final representation of the graph, z,
is obtained as the weighted sum of the layer-specific
graph representations where the weights are deter-
mined by the attention scores obtained between each
layer-specific representation and a learnable global
context vector c.

ψl =
exp (score(c,gl))∑L
j=1 exp (score(c,g

j))
(5)
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Figure 1: DDoS model architecture. 1) The model accepts samples of triplets (Drug A, Drug B, Cell
Line Gene Expression) represented by two atomic feature matrices, two adjacency matrices, and
one gene expression vector. 2) The atomic and adjacency matrices of each drug are input into a
GNN model, producing drug feature representations za and zb separately. Simultaneously, gene
expression features undergo rescaling via the Gene Rescaling model, resulting in a representation
vector ze. 3) the vectors za, zb, and ze are concatenated and fed into a classifier model, determining
the probability of synergy for a given sample.

score(c,gl) =
c⊤gl

√
d′

(6)

z =

L∑
l=1

ψlgl (7)

where d′ is the embedding dimension of the graph’s
learned representation gl at layer l. Therefore, for
each Drug A and Drug B in an input sample triplet,
two separate drug representation vectors are com-
puted, za and zb, respectively.

3.2. Gene Rescaling Model

Each gene expression vector contains gene expression
measurements for 908 distinct landmark genes. We
use normalized expression levels of landmark genes to
represent the cell line which we refer to as gene ex-
pression vector ue. To learn a good representation of
the cell line, we first embed each gene to a c dimen-
sional space Rc, which results in a set of gene vector
uembed = {e1, e2, · · · , eT } where T is the number of
genes and ei ∈ Rc.

A global context vector r ∈ Rc whose parameters
are optimized during training is then applied to each
of the gene embedding vectors. Given the embedding
vector ei for i-th gene, a score is learned by calculat-
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ing the pairwise similarity between the context vector
r and the gene embedding vector ei. Subsequently,
these scores are normalized by Softmax and generate
the T dimensional weight vector ζ = [ζ1, ζ2, . . . , ζT ]
which is used to learn the final representation of the
cell line.

ζi =
exp (score(r, ei))∑T
j=1 exp (score(r, ej))

, (8)

score(r, ei) =
r⊤ei√
l

(9)

The final representation of the cell line is given by
the weighted sum of embedded gene vectors:

ze =

T∑
t=1

ζtet where ze ∈ Rc (10)

3.3. Classifier Model

The feature representation vectors denoted as za and
zb for Drug A and Drug B respectively along with
the rescaled gene expression feature vector ze are con-
catenated together to form a unified representation.
Subsequently, this concatenated vector is fed into the
Classifier model, which consists of a feed-forward neu-
ral network (FNN ) that outputs the log probability
distribution over whether a sample (triplet) is more
likely to be synergistic or not.

3.4. Objective function

With a total of N samples D = {xi, yi}Ni=1 where xi

represents the input triplet (Drug A, Drug B, Cell
Line), and yi ∈ {0, 1} represents the class label, we
use the negative log-likelihood which is equivalent to
binary cross-entropy as the loss function. For each
i-th sample, the loss is computed based on its true
label yi and the corresponding predicted probability
fθ(xi), representing the probability of the i-th sample
having a class label y = 1. This is expressed as:

L(xi,yi; θ) = −[yi log fθ(xi)+ (1− yi) log(1− fθ(xi)]

Consequently, the overall loss, denoted as L(D; θ), is
calculated with an additional L2 regularization term
applied to the model parameters, represented as:

L(D; θ) =
1

N

N∑
i=1

L(xi,yi; θ) + λ∥θ∥l2 (11)

where λ serves as a hyper-parameter, determining the
strength of the regularization effect on the model pa-
rameters.

For model training, we utilized a GNN -specific for-
mat of mini-batching, in which graph adjacency ma-
trices are stacked in a diagonal fashion. This creates
a giant graph that contains multiple isolated sub-
graphs. In our graph-based setting, common mini-
batching approaches would be suboptimal, as they
would likely result in unnecessary memory consump-
tion.

4. Experiment setup and results

4.1. Benchmark datasets

We obtained the drug combination dataset from the
DrugComb (Zheng et al., 2021) database2 (version
1.5). This dataset comprises an initial set of 1,432,351
samples (i.e., Drug A, Drug B, Cell Line) combi-
nation triplets. These samples are drawn from 34
distinct studies, including notable sources such as
NCI-ALMANAC (Holbeck et al., 2017b), O’NEIL
(Merck) (O’Neil et al., 2016b) and CLOUD (Liccia-
rdello et al., 2017). For each of the samples, we con-
sider the chemical structures of the drugs, the gene
expression profiles of untreated cell lines, and four dif-
ferent synergy scores: Loewe, Bliss, HSA, ZIP (see
Appendix section B).

The initial dataset underwent the following steps:
Triplets with corresponding identifiers in the gene ex-
pression features table were selected. Samples with
missing values in drug or cell line identifiers, ab-
sent synergy scores, or duplicated triplets were fil-
tered out. Subsequently, synergistic and antagonis-
tic classes (i.e. labels) were defined for each synergy
score using thresholding based on the SynergyFinder
software’s documentation3, applying recommended
thresholds (≥ 10 for synergy and ≤ −10 for antago-
nism) individually to the four synergy scores.

Each computed synergy score has inherent biases
and limitations due to varied calculation assump-
tions. For instance, the Loewe synergy score, relying
on the Dose Equivalence Principle (DEP framework),
artificially inflates synergy scores through a Hill-
slope dependent bias (Wooten et al., 2021). To ad-
dress this, we created three majority-voting datasets
(Majority-4, Majority-3, Majority-2). Samples are
categorized as positive or negative based on whether

2. https://drugcomb.org/

3. https://synergyfinder.fimm.fi/synergy/synfin_docs/#datanal
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at least all, three, or two out of the four synergy score
measures vote them as such. This approach ensures
consistent categorization across thresholded scores,
enhancing confidence in identifying synergy or antag-
onism. The resulting seven datasets, detailed in Ta-
ble 1, were utilized for both model training and eval-
uation. Notably, in Majority-2, instances exceed the
minimum required for each synergy measure dataset,
as inclusion is based on consistent labels from any
two synergy measures.

Dataset # Samples Positive Labels # Drugs # Cell Lines
Loewe 166′608 ≈ 15% 2′148 169
Bliss 126′619 ≈ 49% 1′869 169
HSA 109′691 ≈ 30% 1′190 167
ZIP 89′868 ≈ 40% 1′811 167
Majority-4 26′031 ≈ 50% 895 153
Majority-3 64′168 ≈ 36% 987 163
Majority-2 110′340 ≈ 40% 1′673 167

Table 1: Benchmark datasets

Drug molecule graph representation For each
drug in the DrugComb database, a chemical repre-
sentation string (SMILES) was included. Using the
RDKit cheminformatics software package (Landrum,
2016) we then extracted the following features for
each atom in the chemical structure of a drug: 1)
Atomic number: Number of protons found in the nu-
cleus of this atom. 2) Chirality (chiral tag): Whether
they are superimposable on their mirror image or
not. 3) Degree of the atom in the molecule including
Hs (hydrogen atoms). The degree of an atom is de-
fined to be its number of directly-bonded neighbors.
The degree is independent of bond orders. 4) Formal
charge. 5) Total number of Hs (explicit and implicit)
on the atom. 6) Number of radical electrons. 7)
Hybridization of the atom. 8) Whether the atom is
aromatic or not. 9) Whether the atom is in the ring
or not.

Therefore, for a given chemical structure of a drug
with Na atoms we constructed a Na × 9 node feature
matrix, where Na is the number of atoms (nodes) of
the chemical structure graph. Additionally, we con-
structed for each drug an Na ×Na binary adjacency
matrix A, which contained the structural information
of each chemical compound. Particularly, this matrix
has a value of 1 at each position where two atoms are
forming a bond, otherwise it is 0s.

Cell line representation For this study, we re-
trieved untreated cell line features from cancerrx-

gene4. This includes the RMA normalized basal ex-
pression profiles for all the cell lines included in the
raw data by Iorio et al. (2016), which contains tran-
scriptional profiles of roughly 1′000 human cancer cell
lines (E−MTAB−3610 in ArrayExpress). For each
cell line, the normalized expression levels of 17′737
genes were included, out of which we selected 908
landmark genes. The latter were accessed from the
L1000 (Subramanian et al., 2017) project 5. See Sup-
plementary Files for all included genes. Hence, each
cell line is represented by a feature vector of length
908. See Appendix section E for all included genes.

4.2. Model evaluation

Baseline models We compared various baseline
models, including classical machine learning and
deep learning models. To assess the advantage of
the graph-based representation over hand-engineered
physicochemical features, we conducted comparisons
with DeepSynergy (Preuer et al., 2018). Moreover,
we also compared it against the vanilla GNN-based
model, which employs the commonly utilized GAT
operator, to test if the introduced attention-based
graph network boosts model performance. Finally,
we also compared it against DeepDDs (Wang et al.,
2022).

Model evaluation We evaluated our proposed
model performance on the seven processed datasets as
shown in Table 1 (four given synergy scores and three
combined majority voting scores). We used standard
binary classification metrics, AUC and AUPR. AUC
is the Area Under the True Positive Rate-False Pos-
itive Rate Curve, while AUPR is the Area Under
the Precision-Recall Curve. Although the majority
of datasets we assessed exhibit a balanced distribu-
tion (refer to Table 1), it’s noteworthy that the Loewe
dataset comprises only around 15% positive (syner-
gistic) labels. In instances of prevalent class imbal-
ances, the AUPR evaluation score is considered to be
a more equitable metric.

In the model training process, we adopted a Strat-
ified 5-Folds cross-validation strategy. This method
ensures that the test split maintains a balanced rep-
resentation of samples for each class, preserving the
proportionality of class distributions in each train-
test split. Additionally, 10% of the training partition
of each fold was reserved for validation and hyperpa-
rameter tuning. We initially selected random hyper-

4. https://www.cancerrxgene.org/gdsc1000//GDSC1000_WebResources//Data/preprocessed/

Cell_line_RMA_proc_basalExp.txt.zip

5. https://clue.io/
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Model DDoS GNN-GAT DeepDDS DeepSynergy Logistic R. Decision T. KNN Gradient B.
ZIP 0.948 0.914 0.930 0.859 0.690 0.836 0.845 0.784
Loewe 0.777 0.597 0.698 0.544 0.371 0.567 0.524 0.510
Bliss 0.930 0.886 0.905 0.807 0.611 0.785 0.775 0.707
HSA 0.921 0.865 0.891 0.789 0.607 0.732 0.746 0.709
Majority-4 0.964 0.932 0.933 0.854 0.703 0.837 0.845 0.844
Majority-3 0.963 0.917 0.956 0.825 0.593 0.792 0.806 0.751
Majority-2 0.953 0.903 0.921 0.807 0.575 0.770 0.771 0.701

Table 2: AUPR scores for different models and datasets.

Model DDoS GNN-GAT DeepDDS DeepSynergy Logistic R. Decision T. KNN Gradient B.
ZIP AUC 0.950 0.918 0.932 0.864 0.671 0.763 0.830 0.780
Loewe 0.929 0.861 0.902 0.836 0.748 0.718 0.789 0.817
Bliss 0.951 0.915 0.929 0.849 0.656 0.749 0.808 0.752
HSA 0.956 0.921 0.936 0.874 0.718 0.766 0.836 0.810
Majority-4 0.973 0.947 0.948 0.889 0.745 0.821 0.874 0.877
Majority-3 0.978 0.948 0.972 0.889 0.697 0.800 0.866 0.830
Majority-2 0.968 0.933 0.943 0.867 0.664 0.765 0.826 0.777

Table 3: AUC scores for different models and datasets.

parameter values for the training of each model on
a random fold (out of 5 folds). Subsequently, we re-
peated the training of each model on all 5 folds based
on the best-performing hyperparameters of the ini-
tial random fold. Finally, the trained models (on all
5 folds) were tested on the corresponding test split.

4.3. Results

We compared DDoS (our model) to six baseline
models on seven derived datasets, four of which
are based on individual drug synergy scores and
three with combined scores. As shown in Tables 2
and 3, our model outperforms the baseline mod-
els. When compared to DeepSynergy (i.e. a deep
learning model), our model has better performance
on all seven datasets when comparing both AUPR
and AUC scores. Furthermore, when comparing our
model to other classical machine learning baseline
models, we observed similar and larger gap (i.e., dif-
ferences in scores) using both metrics (AUPR and
AUC). Lastly, our model still outperforms a GNN-
based models (GNN-GAT ) and DeepDDS on all
seven datasets in both AUC and AUPR scores (Ta-
ble 2 and 3). The difference in performance ranges
from 3 to 18 points in AUPR, and from 3 to 6 points
in AUC scores respectively favoring our model.

For further model evaluation, we generated four
additional benchmark datasets, one for each of the
four synergy scores (Loewe, Bliss, HSA, ZIP). These
datasets differ from the reported benchmark dataset

above, by including the additive triplets in their re-
spective non-synergistic class (negative class), i.e.,
triplets which have synergy values between the two
specified thresholds, −10 and 10 (see Benchmark
datasets section for more details). Those datasets are
vastly more imbalanced since the new non-synergistic
class includes a large number of additional samples.
Therefore, those resulting Loewe, Bliss, HSA and ZIP
datasets include 5.3%, 13.8%, 6.5% and 11.9% posi-
tive (synergistic) labels, respectively. This imbalance
would be challenging for models’ performance when
using AUPR metric. Our model still outperforms the
DeepSynergy baseline model on those four additional
datasets as reported in Table 4.

Different train/test split Conventional train-
test data splits may fall short of an ideal scenario,
merely ensuring the exclusion of triplets (drug A,
drug B, and cell line) observed in the training set from
the test set. However, they do not guarantee the ab-
sence of certain drugs or cell lines in the training set.
To address this limitation, we expanded our model
training to incorporate various data split strategies.
Specifically, we excluded all triplets containing cer-
tain cell lines or drugs from the training set. This
meticulous approach ensures that the training data is
devoid of any triplets involving the cell lines/drugs on
which the model is being trained. As table 5 shows,
our model demonstrates its ability to predict on the
cell lines or drugs that are fully unseen during the
training process. This indicates the robustness of our
model in handling scenarios with a more controlled
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ZIP Loewe Bliss HSA
Model AUPR AUC AUPR AUC AUPR AUC AUPR AUC
DDoS 0.795 0.951 0.406 0.900 0.824 0.948 0.522 0.915
DeepSynergy 0.574 0.891 0.235 0.835 0.587 0.878 0.297 0.829

Table 4: Model evaluation scores for additional datasets with additive samples.

and stringent data split, providing a more reliable
evaluation of its predictive capabilities.

4.4. Case Studies

To further validate our model, we examined the top
20 novel synergistic predictions of drug-drug-cell line
combinations (from the test set), ranked by the high-
est synergy probability from our DDoS model. For
consistency with previous studies, we considered the
top “false positives” of the Loewe dataset and inves-
tigated how strongly these predictions are supported
by the remaining synergy scores, i.e., Bliss, ZIP and
HSA. In Table 6 we list those triplets along with an
indication of how many of the three scores have a pos-
itive score for each triplet. We discovered that 75%
of the top triplets have at least one other synergy
score (Bliss, ZIP, HSA) supporting those predictions
(i.e. confirming synergism) while in nearly 50% of
the cases, all three scores have this indication, high-
lighting the efficacy of our model by representing all
synergy scores (i.e. less biased toward one vs. the
other).

5. Calibration analysis

In our study, we also conducted a calibration analy-
sis to compare the predicted probabilities of synergy
against the observed frequencies of actual synergistic
outcomes. Figure 2 showcases the calibration curve
derived from the results of our trained model, specif-
ically for the ZIP synergy score. This model was
trained using a leave-some-drugs-out approach, as de-
tailed in Table 5. The figure illustrates five distinct
calibration plots, each corresponding to one of the
five models obtained through 5-fold cross-validation.
These plots serve to visually assess the accuracy of
our probabilistic predictions in relation to the true
synergistic interactions observed. Please note that
this analysis corresponds to the model that exhibited
relatively lower performance, as indicated in Table 5.
This outcome is primarily attributed to our “leave-
drugs-out” training and testing strategy, wherein cer-
tain drugs were omitted from the training set, allow-

ing the model to be evaluated on previously unseen
drugs. Consequently, for the other models, which are
detailed in Table 3, we anticipate a more robust cal-
ibration performance, as they were not subjected to
this specific train-test data split approach.

Figure 2: Calibration Analysis

6. Conclusion

Our drug synergy prediction model, DDoS, employs
an end-to-end architecture to learn task-specific rep-
resentations of drugs and cell lines. In contrast,
the prevailing approaches rely on task-agnostic, pre-
computed chemical characteristics of drugs (Preuer
et al., 2018), (Zhang et al., 2021), (Kuru et al., 2020),
coupled with suboptimal representations of gene ex-
pression features. By leveraging aGNN -based model,
we extract task-specific drug chemical representa-
tions, while gene expression vectors are dynamically
rescaled during model training. Our approach DDoS
has demonstrated clear advantages, as evidenced by
the improved performance observed in our reported
experiments.

For model training, we utilized data from a large
drug combination database which contains nearly
1.5M drug-drug-cell line combination triplets and
four distinct drug synergy scores. Conversely, the
baseline model, DeepSynergy, was originally trained
only on 23′062 samples Preuer et al. (2018). Thus,
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ZIP Loewe Bliss HSA
Split Strategy AUPR AUC AUPR AUC AUPR AUC AUPR AUC
Cell Lines 0.764 ±0.052 0.713±0.045 0.508±0.027 0.831 ±0.027 0.652± 0.063 0.649± 0.041 0.697±0.057 0.799±0.025
Drug 1 0.886±0.038 0.843±0.001 0.460±0.023 0.822±0.001 0.807±0.026 0.815 ± 0.034 0.725±0.039 0.855 ±0.012
Drug 2 0.894± 0.020 0.855±0.001 0.507±0.029 0.822 ±0.020 0.805±0.025 0.807 ± 0.014 0.714 ± 0.015 0.855 ±0.014

Table 5: Performance evaluation of our DDoS model across various train-test split strategies: the ‘Cell Lines’
row represents the model’s performance when specific cell lines are excluded from the training set
and used for testing. Similarly, the “Drug 1” row signifies the model’s evaluation when certain
drugs from the Drug 1 set are omitted during training.

Rank Drug A Drug B Cell Line Indication

1 Erlotinib 7-ethyl-10-hydroxycamptothecin NCIH520 ***
2 Dimesna Temozolomide T98G -
3 Crizotinib Actinomycin d SK-MEL-2 -
4 Uramustine Actinomycin d M14 -
5 391210-10-9 Deforolimus OCUBM ***
6 Crizotinib Mithramycin SK-MEL-2 ***
7 Sunitinib 891494-63-6 NCIH2122 ***
8 Geldanamycin 915019-65-7 OCUBM ***
9 Foscarnet sodium Temozolomide T98G -
10 Vemurafenib Mithramycin RPMI-8226 ***
11 Paclitaxel Lapatinib RPMI7951 ***
12 Actinomycin d Antibiotic ad 32 M14 ***
13 Geldanamycin Topotecan A375 -
14 Crenolanib Ncgc00162423-03 L-1236 **
15 Antibiotic ay 22989 Adm hydrochloride KM12 **
16 Docetaxel Lenalidomide RVH-421 **
17 Docetaxel Zm 336372 WM115 ***
18 1032350-13-2 Nilutamide SK-MEL-28 **
19 Cyclophosphamide Temozolomide T-47D **
20 Vandetanib Mithramycin HL-60(TB) *

Table 6: Case studies - Top 20 “false positives” predictions of the Loewe dataset, ranked by the model
probability of synergistic outcome. The number of ∗ indicates how many of the HSA, ZIP, and

Bliss scores support each prediction.

our model was able to learn from the most complete
drug combination dataset to date, including thou-
sands of drugs and hundreds of cell lines. Moreover,
due to the different underlying assumptions of drug
synergy scores, each score includes its distinct biases
and limitations. This leads to multiple different la-
bels (synergistic or not) assigned to the same sam-
ples, depending on which synergy score is utilized.
Thus, only a fraction of samples are characterized
as synergistic by all four scores simultaneously (see
Majority-4 dataset in Table 1). By combining these
scores through majority voting, we constructed and
trained on three high-confidence datasets in addition
to the four individual drug synergy scores.

Despite the multiple advantages, our solution also
encompasses some limitations. The cell line features
we utilized are only based on gene expression data.
For a more informative representation, further cell
line characteristics can be included, e.g., mutations,
copy number variations, pathways, drug targets, and
more. Additionally, majority voting-based combi-
nations of synergy scores alleviate some of the bi-
ases of each score. Ideally, improved single-drug syn-
ergy scores would provide these advantages. Further-
more, the binary classification task (synergistic vs.
non-synergistic) could be expanded to include further
classes and make predictions on the efficacy and po-
tential toxic effects of drug combinations. Moreover,
since the dataset predominantly comprises drugs and
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cell lines related to cancer treatments, conducting ex-
periments for other complex diseases (e.g., viral infec-
tions) would mitigate the cancer-specific bias in our
model.

Future outlook Detecting synergistic effects
among approved drugs holds clinical significance,
as drug repurposing can streamline the expensive
and lengthy process of developing new drugs. Often,
novel drugs may not demonstrate efficacy in clinical
trials despite thorough preclinical safety testing.
In the future, integrating in silico drug synergy
discovery with ex vivo testing of selected anti-cancer
drug combinations in patient-derived 3D organoid
models could significantly enhance the clinical
translatability of this approach.
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Appendix A. Database

Notable examples include the NCI-ALMANAC
dataset (Holbeck et al., 2017b) which contains 103
FDA-approved drugs tested in 60 different cell lines
(NCI-60) (Holbeck et al., 2017a) and the large oncol-
ogy dataset produced by Merck &Co (O’Neil et al.,
2016a) which is composed of 38 drugs tested in 39
different cell lines from 6 different tissue types. Fur-
thermore, databases like DrugComb (Zheng et al.,
2021) have collected and curated drug combination
synergy data from 34 different sources, thus compris-
ing 8′397 different drugs, 2′320 cell lines, and 739′964
drug combinations in total.

Appendix B. Drug synergy reference
scores

Drug synergy refers to a quantification of drug inter-
action (Geary, 2013), i.e., how much excess drug re-
sponse (e.g., tumor cell death) is observed compared
to the expectation (that is, no excess). Thus, the
reference synergy scores (Loewe, Bliss, HSA, ZIP)
provide a percentage of excess response, or reduced
response in the antagonistic setting.

Loewe Additivity Model The Loewe additivity
model is based on the concepts of sham combination
and dose equivalence. Therefore, the expected ef-
fect yLoewe can be defined as if a drug was combined
with itself, i.e., yLoewe = y1(x1 + x2) = y2(x1 + x2),
where y1 and y2 indicate the drug responses of drug
1 and drug 2, respectively. This model considers the
dose-response curves of individual drugs, where the
expected effect must satisfy:

x1
x1Loewe

+
x2

x2Loewe

= 1, (12)

where x1, x2 are drug doses and x1Loewe ,x
2
Loewe are

the doses of drug 1 and 2 alone that produce yLoewe.
By using 4-parameter log-logistic (4PL) curves to de-
scribe dose-response curves the following parametric
form of previous equation is derived:

x1

m1(
yLoewe−E1

min

E1
max−yLoewe

)
1
λ1

+
x2

m2(
yLoewe−E2

min

E2
max−yLoewe

)
1
λ2

= 1,

(13)
where Emin, Emax ∈ [0, 1] are minimal and maxi-

mal effects of the drug, m1, m2 are the doses of the
drug that produce the midpoint effect of Emin+Emax,
also known as relative EC50 or IC50, and λ1(λ1 > 0),

λ2(λ2 > 0) are the shape parameters indicating the
sigmoidicity or slope of dose-response curves. A nu-
merical nonlinear solver can be then used to deter-
mine yLoewe for (x1, x2).

Bliss independence model The Bliss indepen-
dence model is based on a stochastic process. It as-
sumes that each drug has different response in a par-
ticular scenario and that they elicit their effects in-
dependently. Therefore, the combination response is
based on the probability of those independent events.
Hence, the Bliss score formula is as follows:

yBliss = y1 + y2 − y1y2, (14)

where yBliss represents the Bliss response. y1 and
y2 indicate the drug responses of drug 1 (D1) and
drug 2 (D2), respectively.

Highest Single Agent Model The highest single
agent model (HSA) states that the effect of the ex-
pected combination effect is equal to the maximum
effect of each individual drug at specific concentra-
tions. Thus, the formula representing the model is:

yHSA = max(y1, y2), (15)

where y1 and y2 are the monotherapy (single drug)
effect of drug 1 (D1) and drug 2 (D2), respectively.

Zero Interaction Potency (ZIP) The Zero In-
teraction Potency calculates the expected effect of
two drugs under the assumption that they do not
potentiate each other, i.e., both assumptions of the
Loewe model and the Bliss model are met:

yZIP =
( x1

m1
)λ1

1 + ( x1

m1
)λ1

+
( x2

m2
)λ2

1 + ( x2

m2
)λ2

−
( x1

m1
)λ1

1 + ( x1

m1
)λ1

( x2

m2
)λ2

1 + ( x2

m2
)λ2

(16)

where x1, x2, m1, m2, λ1 and λ2, are defined in
the Loewe model section.

B.1. Optimization

The hyperparameters utilized for the training of all
models are, Batch size: 300, Epochs: 100, Graph
embedding dimension: 100, Number of GNN layers
(L): 5, Dropout: 0.3, Learning rate: 0.0003, Weight
decay: 0.0, Hidden layer 1 size: 4096, Hidden layer 2
size: 1024.
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Table 7: Model Hyperparameters
Training Parameters

Batch Size 300
Number of Epochs 50
Base Learning Rate 3× 10−4

Max Learning Rate Multiplier 5
L2 Regularization 1× 10−5

Loss Weight 1.0
Margin Value 1.0

Network Architecture

Embedding Dimension 300
GNN Type “gatv2”
Number of Layers 5
Graph Pooling {“mean”, “max”}
Input Embedding Dimension None
Gene Embedding Dimension 1
Number of Attention Heads 2
Number of Transformer Units 1
Dropout Probability 0.3
MLP Embedding Factor 2
Pooling Mode “attn”
Distance Option “cosine”

Expression Model Parameters

Expression Dimension 64
Expression Input Size 908
Hidden Layer 1 Size {29, 210, 211, 212}
Hidden Layer 2 Size {29, 210}

Appendix C. Hyper parameter tuning

We employed random search to tune the hyperpa-
rameters, constrained by our computational resource
limits. To manage these constraints effectively, we
fixed the majority of the hyperparameters to prede-
termined values. However, we selectively varied a few
key hyperparameters within specific ranges. For ex-
ample, one such hyperparameter was set to explore
values within the set {512, 1024, 2048, 4096} as it is
presented in Table 7.

Appendix D. Explainability

To gain a better understanding of which genes in the
cell line representation are more relevant for the pre-
diction of drug synergy, we also implemented SHAP
analysis (Lundberg and Lee, 2017). For this exper-
iment, to keep the model simple and focus on the
cell line representations, we used one of our base-
lines, DeepSynergy, which is a feed-forward neural
network. We modified it so that for the cell line rep-
resentation it uses the the expression values of 908
landmark genes as we did for our model. We trained

it using Majority-4 datasets and calculated the SHAP
values.

The input features for which we measured their im-
pact on the model performance are nine atomic fea-
tures of the drug chemical structures (for two drugs
in each sample) and the expression values of 908 land-
mark genes for the cell line of the sample. Thus, the
total number of features is equal to 926. We utilized
the GradientSHAP implementation from the Captum
library (Kokhlikyan et al., 2020) for the computa-
tion of (approximate) SHAP values and convergence
deltas. The top 10 important genes, according to
their mean absolute SHAP values, are illustrated in
Figures 3 and 4. Their impact on the model out-
put has a lower range (0.008 - 0.011) compared to
the chemical features range (0.01 - 0.40). However,
the total (i.e., summed, as SHAP values are additive)
impact of cell line features is larger than the total im-
pact of drug features (5.486 vs. 1.782, respectively).
Consequently, as the number of cell line features is
much larger than the number of drug features (908
vs. 9, respectively), the individual feature impacts
are smaller, but the total impact is larger for the
cell lines. Nevertheless, specific drug features have
a considerable impact by themselves, thus indicating
which characteristics of drugs could potentially be
prioritized for the selection of synergistic drug com-
binations.

Appendix E. List of landmark genes

AARS, ABCC5, ABCF1, ABHD4, ABHD6, ABL1, ACAA1, ACAT2, ACBD3,

ACD, ACLY, ACOT9, ADAM10, ADAT1, ADH5, ADI1, ADO, ADRB2,

AGL, AKAP8, AKAP8L, AKR7A2, AKT1, ALAS1, ALDH7A1, ALDOA,

AMDHD2, ANKRD10, ANO10, ANXA7, APBB2, APOE, APP, APPBP2,

ARFIP2, ARHGAP1, ARHGEF12, ARHGEF2, ARID4B, ARID5B, ARL4C,

ARNT2, ARPP19, ASAH1, ASCC3, ATF1, ATF5, ATF6, ATG3, AT-

MIN, ATP11B, ATP1B1, ATP2C1, ATP6V0B, ATP6V1D, AURKA, AU-

RKB, AXIN1, BACE2, BAD, BAG3, BAMBI, BAX, BCL2, BCL7B, BDH1,

BECN1, BHLHE40, BID, BIRC2, BIRC5, BLCAP, BLMH, BLVRA, BMP4,

BNIP3, BNIP3L, BPHL, BRCA1, BTK, BZW2, C2CD2, C2CD2L, C2CD5,

C5, CAB39, CALM3, CALU, CAMSAP2, CANT1, CAPN1, CASC3, CASK,

CASP10, CASP2, CASP3, CASP7, CAST, CAT, CBLB, CBR1, CBR3,

CCDC85B, CCDC86, CCDC92, CCL2, CCNA1, CCNA2, CCNB1, CCND1,

CCND3, CCNE2, CCNF, CCNH, CCP110, CD320, CD40, CD44, CDC20,

CDC25A, CDC25B, CDC42, CDC45, CDCA4, CDH3, CDK1, CDK19, CDK2,

CDK4, CDK5R1, CDK6, CDK7, CDKN1B, CDKN2A, CEBPD, CEBPZ,

CENPE, CEP57, CERK, CETN3, CFLAR, CGRRF1, CHAC1, CHEK1,

CHEK2, CHIC2, CHMP6, CHN1, CHP1, CIAPIN1, CIRBP, CISD1, CLIC4,

CLPX, CLSTN1, CLTB, CLTC, CNDP2, CNOT4, CNPY3, COASY, COG2,

COG4, COG7, COL1A1, COL4A1, COPB2, COPS7A, CORO1A, CPNE3,
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Figure 3: SHAP analysis for gene features Figure 4: SHAP analysis for drug features

Figure 5: SHAP Analysis over the cell line features

CPSF4, CREB1, CREG1, CRELD2, CRK, CRKL, CRTAP, CRYZ, CSK,

CSNK1A1, CSNK1E, CSNK2A2, CSRP1, CTNNAL1, CTNND1, CTTN,

CXCL2, CXCR4, CYB561, CYTH1, DAG1, DAXX, DCK, DCTD, DCUN1D4,

DDB2, DDIT4, DDR1, DDX10, DDX42, DECR1, DENND2D, DERA, DFFA,

DFFB, DHDDS, DHRS7, DHX29, DLD, DMTF1, DNAJA3, DNAJB1,

DNAJB2, DNAJB6, DNAJC15, DNM1, DNM1L, DNMT1, DNMT3A, DNT-

TIP2, DPH2, DRAP1, DSG2, DUSP11, DUSP14, DUSP22, DUSP3, DUSP4,

DUSP6, DYNLT3, DYRK3, E2F2, EAPP, EBNA1BP2, EBP, ECD, ECH1,

EDEM1, EDN1, EED, EFCAB14, EGF, EGFR, EGR1, EIF4EBP1, EIF5,

ELAC2, ELAVL1, ELOVL6, EML3, ENOPH1, ENOSF1, EPB41L2, EPHA3,

EPHB2, EPN2, EPRS, ERBB2, ERBB3, ETFB, ETS1, ETV1, EVL, EX-

OSC4, EXT1, EZH2, FAH, FAIM, FAM20B, FAM57A, FAM69A, FAS, FAT1,

FBXL12, FBXO11, FBXO21, FBXO7, FCHO1, FDFT1, FEZ2, FGFR2,

FGFR4, FHL2, FIS1, FKBP14, FKBP4, FOS, FOSL1, FOXJ3, FOXO3,

FOXO4, FPGS, FRS2, FSD1, FUT1, FYN, FZD1, FZD7, G3BP1, GAA,

GABPB1, GADD45A, GADD45B, GALE, GAPDH, GATA2, GATA3, GDPD5,

GFOD1, GFPT1, GHR, GLI2, GLOD4, GLRX, GMNN, GNA11, GNA15,

GNAI1, GNAI2, GNAS, GNB5, GNPDA1, GOLT1B, GPATCH8, GPC1,

GRB10, GRB7, GRN, GRWD1, GSTZ1, GTF2A2, GTF2E2, GTPBP8,

H2AFV, HADH, HAT1, HDAC2, HDAC6, HEATR1, HEBP1, HERC6,

HERPUD1, HES1, HIST1H2BK, HIST2H2BE, HK1, HLA-DRA, HMG20B,

HMGA2, HMGCR, HMGCS1, HMOX1, HN1L, HOMER2, HOOK2, HPRT1,

HS2ST1, HSD17B10, HSPA1A, HSPA4, HSPA8, HSPD1, HTATSF1, HTRA1,

HYOU1, IARS2, ICAM1, ICAM3, ICMT, ID2, IDE, IER3, IFNAR1,

IFRD2, IGF1R, IGF2BP2, IGF2R, IGFBP3, IGHMBP2, IKBKAP, IK-

BKB, IKBKE, IKZF1, IL13RA1, IL1B, IL4R, ILK, INPP1, INPP4B, IN-

SIG1, INTS3, IPO13, IQGAP1, ISOC1, ITFG1, ITGAE, ITGB1BP1,

ITGB5, JMJD6, JUN, KAT6A, KAT6B, KCNK1, KCTD5, KDM3A, KDM5A,

KDM5B, KEAP1, KIAA0100, KIAA0355, KIAA0753, KIAA0907, KIF14,

KIF20A, KIF2C, KIF5C, KIT, KLHDC2, KLHL21, KLHL9, KTN1, LAGE3,

LAMA3, LAP3, LBR, LGALS8, LGMN, LIG1, LIPA, LOXL1, LPAR2, LP-

GAT1, LRP10, LRPAP1, LRRC41, LSM5, LSM6, LSR, LYN, LYRM1,

MACF1, MALT1, MAMLD1, MAN2B1, MAP2K5, MAP3K4, MAP4K4,

MAP7, MAPK13, MAPK1IP1L, MAPK9, MAPKAPK2, MAPKAPK3, MAP-

KAPK5, MAST2, MAT2A, MBNL1, MBNL2, MBOAT7, MBTPS1, MCM3,

MCOLN1, ME2, MEF2C, MELK, MEST, MFSD10, MICALL1, MIF, MKNK1,

MLEC, MLLT11, MMP1, MMP2, MOK, MPC2, MPZL1, MRPL19, MRPS16,

MRPS2, MSH6, MSRA, MTA1, MTF2, MTFR1, MTHFD2, MUC1, MVP,

MYBL2, MYC, MYCBP, MYCBP2, MYL9, MYLK, MYO10, NARFL,

NCAPD2, NCK2, NCOA3, NENF, NET1, NFATC3, NFATC4, NFE2L2,

NFIL3, NFKB2, NFKBIA, NFKBIB, NFKBIE, NIPSNAP1, NISCH, NIT1,

NMT1, NNT, NOL3, NOLC1, NOS3, NOSIP, NOTCH1, NPC1, NPDC1,

NPEPL1, NPRL2, NR1H2, NR2F6, NR3C1, NRAS, NRIP1, NSDHL,

NT5DC2, NUCB2, NUDCD3, NUDT9, NUP133, NUP85, NUP88, NUP93,

NUSAP1, NVL, ORC1, OXA1L, OXCT1, OXSR1, P4HA2, P4HTM, PAC-

SIN3, PAF1, PAFAH1B1, PAFAH1B3, PAICS, PAK1, PAK4, PAK6, PAN2,

PAPD7, PARP1, PARP2, PAX8, PCBD1, PCCB, PCK2, PCM1, PCMT1,

PCNA, PDGFA, PDHX, PDIA5, PDLIM1, PDS5A, PECR, PEX11A, PFKL,

PGM1, PGRMC1, PHGDH, PHKA1, PHKB, PHKG2, PIGB, PIH1D1,

PIK3C2B, PIK3C3, PIK3CA, PIK3R3, PIK3R4, PIN1, PIP4K2B, PKIG,

PLA2G15, PLA2G4A, PLCB3, PLEKHJ1, PLEKHM1, PLK1, PLOD3, PLP2,

PLS1, PLSCR1, PMAIP1, PMM2, PNKP, PNP, POLB, POLE2, POLG2,

POLR1C, POLR2I, POLR2K, POP4, PPARD, PPARG, PPIC, PPIE, PPOX,

PPP1R13B, PPP2R3C, PPP2R5A, PPP2R5E, PRAF2, PRCP, PRKACA,

PRKAG2, PRKCD, PRKCQ, PRKX, PROS1, PRPF4, PRR15L, PRR7,

PRSS23, PSIP1, PSMB8, PSMD10, PSMD4, PSME1, PSMF1, PSMG1,

PSRC1, PTGS2, PTK2, PTK2B, PTPN1, PTPN12, PTPN6, PTPRC, PT-

PRF, PTPRK, PUF60, PWP1, PXN, PYCR1, PYGL, RAB11FIP2, RAB21,

RAB27A, RAB31, RAB4A, RAD51C, RAD9A, RAE1, RAI14, RALA, RALB,

RALGDS, RAP1GAP, RASA1, RB1, RBKS, RBM15B, RBM6, REEP5,

RELB, RFC2, RFC5, RFNG, RFX5, RGS2, RHEB, RHOA, RNF167, RNH1,

RNMT, RNPS1, RPA1, RPA2, RPA3, RPIA, RPL39L, RPN1, RPS5, RPS6,
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RPS6KA1, RRAGA, RRP12, RRP1B, RRP8, RRS1, RSU1, RTN2, RU-

VBL1, S100A13, S100A4, SACM1L, SCAND1, SCARB1, SCCPDH, SCP2,

SCRN1, SCYL3, SDHB, SENP6, SERPINE1, SESN1, SFN, SGCB, SH3BP5,

SHC1, SIRT3, SKIV2L, SKP1, SLC11A2, SLC1A4, SLC25A13, SLC25A14,

SLC25A4, SLC25A46, SLC27A3, SLC2A6, SLC35A1, SLC35A3, SLC35B1,

SLC35F2, SLC37A4, SLC5A6, SMAD3, SMARCA4, SMARCC1, SMARCD2,

SMC1A, SMC3, SMC4, SMNDC1, SNAP25, SNCA, SNX11, SNX13, SNX6,

SNX7, SOCS2, SORBS3, SOX4, SPAG4, SPAG7, SPDEF, SPEN, SPP1, SPR,

SPRED2, SPTAN1, SPTLC2, SQRDL, SQSTM1, SRC, SSBP2, ST3GAL5,

ST6GALNAC2, ST7, STAMBP, STAP2, STAT1, STAT3, STAT5B, STK10,

STK25, STMN1, STX1A, STX4, STXBP1, STXBP2, SUPV3L1, SUV39H1,

SUZ12, SYK, SYNE2, SYNGR3, SYPL1, TARBP1, TATDN2, TBC1D9B,

TBP, TBPL1, TBX2, TBXA2R, TCEA2, TCEAL4, TCERG1, TCFL5,

TCTA, TCTN1, TERF2IP, TERT, TES, TESK1, TEX10, TFAP2A, TFDP1,

TGFB3, TGFBR2, THAP11, TIAM1, TICAM1, TIMELESS, TIMM17B,

TIMM22, TIMM9, TIMP2, TIPARP, TJP1, TLE1, TLK2, TLR4, TM9SF2,

TM9SF3, TMCO1, TMED10, TMEM109, TMEM2, TMEM5, TMEM50A,

TMEM97, TNFRSF21, TNIP1, TOMM34, TOP2A, TOPBP1, TOR1A,

TP53, TP53BP1, TP53BP2, TPD52L2, TPM1, TRAK2, TRAM2, TRAP1,

TRAPPC3, TRAPPC6A, TRIB1, TRIB3, TRIM13, TRIM2, TSC22D3,

TSEN2, TSKU, TSPAN3, TSPAN4, TSPAN6, TSTA3, TUBB6, TXLNA,

TXNDC9, TXNL4B, TXNRD1, UBE2A, UBE2C, UBE2J1, UBE2L6, UBE3B,

UBE3C, UBQLN2, UBR7, UFM1, UGDH, USP1, USP14, USP22, USP6NL,

USP7, UTP14A, VAPB, VAT1, VAV3, VGLL4, VPS28, VPS72, WASF3,

WDR61, WDR7, WDTC1, WFS1, WIPF2, WRB, XBP1, XPNPEP1, XPO7,

YKT6, YME1L1, YTHDF1, ZDHHC6, ZFP36, ZMIZ1, ZMYM2, ZNF131,

ZNF274, ZNF318, ZNF395, ZNF451, ZNF586, ZNF589
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