
111

Generating Hidden Markov Models from Process Models
Through Nonnegative Tensor Factorization
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Monitoring of industrial processes is a critical capability in industry and in government to ensure reliability
of production cycles, quick emergency response, and national security. Process monitoring allows users to
gauge the progress of an organization in an industrial process or predict the degradation or aging of machine
parts in processes taking place at a remote location. Similar to many data science applications, we usually
only have access to limited raw data, such as satellite imagery, short video clips, event logs, and signatures
captured by a small set of sensors. To combat data scarcity, we leverage the knowledge of Subject Matter
Experts (SMEs) who are familiar with the actions of interest. SMEs provide expert knowledge of the essential
activities required for task completion and the resources necessary to carry out each of these activities. Various
process mining techniques have been developed for this type of analysis; typically such approaches combine
theoretical process models built based on domain expert insights with ad-hoc integration of available pieces of
raw data. Here, we introduce a novel mathematically sound method that integrates theoretical process models
(as proposed by SMEs) with interrelated minimal Hidden Markov Models (HMM), built via nonnegative tensor
factorization. Our method consolidates: (a) theoretical process models, (b) HMMs, (c) coupled nonnegative
matrix-tensor factorizations, and (d) custom model selection. To demonstrate our methodology and its abilities,
we apply it on simple synthetic and real world process models.

Additional Key Words and Phrases: Process modeling, Hidden Markov Models, and Nonnegative Tensor
Factorization with Model Selection

1 INTRODUCTION
Process modeling, which is also called process mining, has been developed to analyze complex
business enterprises that involvemany people, activities, and resources to guide information systems
engineering. Process models typically obtain their structure from workflow logs that describe past
events relating to the enterprise process and specifications of how and which resources have been
used [3, 70].
When we monitor a specific process in real time, its activities and their temporal sequence are

often not directly observable, and in this sense they remain hidden or latent. For instance, if we
are monitoring an industrial process taking place at a remote/inaccessible location (e.g., building
a industrial complex, such as an oil/liquefied gas terminal), we often have access to only a set of
observables or indicators that underlie the activity, not the activity itself. Additionally, observable
data is often scarce, as with remote sensing and event logs. Domain expert specification of the
sequence of activities and their mean durations is useful to augment scarce data which can be used
in statistical analysis.

Process mining requires a statistical framework capable of accommodating both domain expert
specifications and scarce observational data. Given some series of observations from the process, this
statistical framework should allow us to predict what process activity was underway at the time of
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Fig. 1. Flow chart illustrating the pipeline to construct a minimal HMM from a theoretical process model.

the observations and how long it will be before the process is complete. Additionally, the statistical
framework should be able to accurately evaluate the likelihood of competing domain expert process
models based on limited observations. To answer these questions the statistical framework should
describe the dynamics of the underlying activities (which are not directly observable) and how
these hidden activities are related to the available observational data.
One such statistical framework is the Hidden Markov Model (HMM) introduced by Baum et al.

[12]. HMMs are a broadly used method for modeling data sequences and have been successfully
applied in various fields, such as: signal processing, machine learning, speech recognition, hand-
written character recognition, and in many other fields, see e.g., [2, 11, 20, 47, 50, 51, 54, 64, 73]. One
of the well-known problems with HMMs is model selection, that is, how to estimate the optimal
number of its hidden states. The HMM topology and number of hidden states have to be known
prior to its utilization, and various heuristic rules have been proposed to estimate the HMM latent
structure, see e.g., [15]. Thus, the challenge inherent in using HMMs is that we must identify the
minimal number of hidden states induced by the process model. We can then estimate the HMM
parameters that describe the latent dynamics and the observational probabilities associated with
each of the hidden states.
In this paper, we present a new method for building a minimal HMM based on a theoretical

process model proposed by domain experts. Our method integrates: (a) theoretical process models,
(b) HMMs, (c) coupled nonnegative matrix-tensor factorizations, and (d) custom model selection.
The relative relations between these components can be seen in Figure 1.

In summary, our contributions are:

• We demonstrate how to directly use the structure of a theoretical process model to build
an HMM, where combinations of the process model activities are the HMM hidden states.
One problem with this approach is the number of hidden states may not be minimal. Such
misspecification can lead to a poor HMM parameterization, erroneous HMM predictions,
and poor identifiability.
• We show how to build an HMM model via coupled nonnegative matrix-tensor factorization,

based on pairwise co-occurrence events [21, 26] generated from discrete event simulations
[62] of a theoretical process model.
• Using the fact that tensor factorizations (and more specifically tensor ranks [35]) can be
used to derive the optimal (i.e., the minimal) number of HMM states [10, 69], we utilize
here our new method for Nonnegative Matrix Factorization (NMF) and Nonnegative Tensor
Factorization (NTF) model selection [5, 6], and use it to determine the number of the hidden
states based on the stability of the tensor decomposition.
• Finally, we demonstrate the results of our newmethod on synthetic and real world examples.
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2 RELATEDWORKS
In general, not much previous work exists that explores the connection between process modeling
and HMMs. An HMM was proposed to sequence clustering in process mining [22]. In [18], the
authors constructed an HMM for resource allocation, and used an HMM to identify the observations
based on the resources utilized by each activity. HMMs have also been used for the representation
of process mining of parallel business processes [59]. Similarly, HMMs were used for extraction
of activity information recorded in the bank event log, for calculating the fraud probabilities [52]
and for detection of anomalies in business processes [78]. The authors of [29] applied HMMs
for business process management mining for failure detection from event logs. In the area of
healthcare and medicine, HMMs were used for complex healthcare process analysis and detection
of hidden activities [9]. Recently it was demonstrated how to build a semi-Markov model based on
event sequences, [31], and to use it for automatic activity discovery and analysis. Finally, although
there are several works relating minimal HMMs and tensor factorization (see for example [46]
and references therein), to the best of our knowledge, our work is the first one that explores the
connection between theoretical process modeling and tensor factorization. There are numerous
works highlighting the importance of accurate tensor factorizations and the difficulty of nonnegative
tensor factorizations [34, 38, 76, 77]. In this work we simultaneously decompose matrices and
tensors with a joint least squared objective function. This type of minimization objective is often
called coupled matrix-tensor factorization [1, 61], though every instance requires slightly different
formulations as the factorization structures vary between applications.
One necessity of HMMs is the determination of the latent dimension. When using matrix or

tensor factorization to derive HMMs, this dimension is called the rank and is typically denoted
with "k". The rank is typically elusive in practical applications, demanding an estimation derived
exclusively from the data. Despite the absence of a polynomial-time algorithm to ascertain a tensor’s
rank - a task proven to be NP-hard [30] - various heuristic methodologies have been developed for
nonnegative rank estimation. One prominent technique is the core consistency diagnostic, known as
CORCONDIA [16]. This method evaluates deviations from a super-diagonal core-tensor, estimating
the number of components, k, where this deviation reaches a minimum. Despite its intuitive appeal
and widespread application, CORCONDIA lacks a solid theoretical foundation. Particularly for
nonnegative tensor factorization, it encounters challenges when contrasting a nonnegative Tucker
Decomposition with the corresponding nonnegative Canonical Polyadic Decomposition (CPD). For
the complications of these two nonnegative decompositions see [4]. An alternative strategy is the
Bayesian approach, incorporating Automatic Relevance Determination (ARD). Initially devised for
neural networks [39] and subsequently adapted for Bayesian PCA [14], and then to NMF [44, 67],
and tensors [43], ARD is an alternative approach to identify the number of latent dimensions. Other
strategies employ diverse statistical criteria, including minimum description length [37], Akaike
Information Criterion (AIC) [56], and Bayesian Information Criterion (BIC) [63] with partial success.
Determining the optimal nonnegative model - that is, the nonnegative rank - remains a formidable
challenge, with varying approaches often leading to disparate solutions [24]. The methodology
employed in our study hinges on the well-posed nature of the low-rank approximation of the
nonnegative CPD, where the solutions are almost always unique [49]. We determine the number of
latent components, k, by analyzing the stability of the solutions from factorizations across a set
of plausible k values [17]. Our method demonstrated superior efficacy when tested on numerous
synthetic datasets with pre-established latent features [45]. Additionally, our approach leverages
the theorem that a unique NMF solution, for a matrix: X = WH, when X is subjected to minor noise
or perturbations, results in minimal disruptions to the factors W and H [36].
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Our method has seen successful application in various domains, including the decomposition of
the largest human cancer genome data [8], synthetic cancer data [28], microphase separation of
block copolymers, via Nonnegative CPD [7], analysis of international trade flows [68] and exabyte
synthetic data [13], via RESCAL, Nonnegative Tucker decompositions for images [48] as well as
for large set of trajectories of the reaction diffusion equation [74], among others. Our methodology
has also been utilized for model selection in Boolean [23], Quaternonian decompositions [57], and
not-multilinear decompositions[65, 71].

3 PROCESS MODELING, HIDDEN MARKOV MODELS, AND NONNEGATIVE TENSOR
FACTORIZATIONWITH MODEL SELECTION

3.1 Theoretical Process Modeling
Constructing a theoretical process model requires specifying the set of activities making up the
process, the order in which these activities take place, the expected duration of each activity, and the
resources necessary to execute each activity. In this endeavor, we rely on subject matter expertise to
craft the theoretical process model that incorporates insights and observations provided by experts
knowledgeable about the process. We utilize the discrete event simulation tool, Simian simulation
engine [58], to actively simulate a process model.

Simian relies on three main components to define a process model: the precedence constraints,
the activity duration distributions, and the required resources for each activity. Simian takes a
Directed Acyclic Graph (DAG) 𝐺 = (𝑉 , 𝐸) to define the precedence constraints, where the vertex
set𝑉 = {𝑎1, . . . , 𝑎𝑛} represent activities of the process, and the edge set 𝐸 ⊆ 𝑉 2 represent precedent
constraints. For example, if edge (𝑎𝑖 , 𝑎 𝑗 ) ∈ 𝐸, activity 𝑎𝑖 must be have been completed before process
𝑎 𝑗 can be started. Each vertex in the DAG has a distribution of feasible activity durations. Each
simulation picks values from the distribution for the duration of each activity 𝑎𝑖 . We constrain our
models to have exponentially distributed durations, so the duration of activity 𝑎𝑖 ∼ 1

𝛽𝑖
𝑒−𝑥/𝛽𝑖 . Simian

also requires the specification of a set of resources 𝑅𝑖 ⊆ 𝑅 required for the execution of each activity,
where 𝑅 = {𝑟1, . . . , 𝑟𝑚} is a global set of resources. In our study, we assign an infinite quantity of
each resource to 𝑅, ensuring that limited resources will never impede an activity from starting.
Additionally, we assign a probability that each resource will be observed for each combination of
activities simulating the stochastic nature of realistic scenarios. We utilize the resources necessary
for each activity as observable quantities.
A Simian simulation ensures compliance with the activity precedence’s specified by the DAG,

assigns durations to each individual activity, and verifies the availability of required resources for
each activity to begin. In each simulation, Simian provides data regarding the start and end times
of each activity. This information can be organized to create timelines of both the unobservable
process model activities and the observable quantities of resource usage. For complex process
models, every simulation run by Simian will have varying durations for each activity, resulting
in diverse combinations of ongoing activities throughout the process. That is to say, the details
of which activities run in parallel, and for how long, will change from simulation to simulation
due to the sampled duration choices. Thus, we resort to statistical analysis on large ensembles of
simulations to calculate probabilities of transitioning between each resource usage state. For our
statistical analysis we join a collection of Simian simulationss so that the end of each simulation
leads into the beginning of the next simulation, effectively making the process model repeat ad
infinitum.
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Fig. 2. Depiction of an HMM with hidden random variable 𝑋 and observed random variable 𝑌 . 𝑝𝑖 depicts
the initial state probability vector. The transition matrix 𝑇 describes the progression of the hidden random
variable at time 𝑡 to time 𝑡 + 1. The emission matrix 𝐸 describes the probability of each observation based
upon the hidden state at each time.

3.2 Hidden Markov Models
HMMs offer a popular statistical framework for modeling processes that are not directly observable
but for which we can observe related data at discrete time intervals. The observable data is usually
various objects or events we can detect. For instance, if we are in a windowless building, we may not
be able to see what the weather is like outside, but we can observe someone carrying an umbrella
or wearing sunglasses at different times.
Mathematically, an HMM has a set of 𝑁 hidden states, each of which emits observations with

given probabilities. The HMM is defined by three parameters: the transition matrix, the emission
matrix and the initial state probability vector. The𝑁×𝑁 transitionmatrix𝑇 and length𝑁 initial state
vector 𝜋 fully specify the underlying Markov chain. The transition probability matrix, 𝑇 , gives the
probabilities of transitioning from one hidden state to another. The transition matrix incorporates
information about the duration of states and determines the order of states by specifying how
the process transitions between them. We consider the probabilities of transitioning at discrete
homogeneous time intervals. The initial probability vector, 𝜋 , specifies the probabilities that the
process will be in one of the 𝑁 hidden states when the observations begin. The last key parameter
of HMM is the emission probability matrix, 𝐸, that connects the observations with the hidden states.
Assuming there are𝑀 possible observations, 𝐸 is an𝑀 × 𝑁 matrix that specifies the probability
one of the 𝑀 observation configurations is emitted during a given activity (which is one of the 𝑁
hidden states). Figure 2 depicts the transition and emission relations in an HMM.

3.3 Creating Reference Hidden Markov Models from a Theoretical Process Model
While in general, a theoretical process model is not a perfect fit with HMMs, a relation between
groups of simultaneous activities in a process model and hidden states in an HMM can immediately
be drawn. For a given number of activities in a theoretical process model we can upper bound
the number of states in an associated HMM. Given a theoretical process model with 𝑛 activities,
the corresponding HMM will have at most 2𝑛 states so 𝑁 ≤ 2𝑛 . This bound is obtained when a
process model has 𝑛 activities in parallel. In this case, every subset of activities can be achieved
through different combinations of activity durations, generating the power set of the 𝑛 process
model activities. Similarly, with𝑚 resources, there will be at most 2𝑚 combinations of various
resource usage so𝑀 ≤ 2𝑚 .
The additional restrictions detailed in Section 3.1 strengthen the connection between process

models and HMMs. Namely, having exponentially distributed activity durations, in conjunction
with having infinite resources, provides the memory-less Markovian property. These restrictions
make the probability of transitioning from one hidden state to another independent of all previous
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history. Joining multiple Simian runs together corresponds to a repeating process model, and
sampling them throughout at discrete intervals, provides sampling corresponding to an ergodic
HMM. With this joining, every state can transition to every other state given enough time. With
these restrictions, a correspondence between a theoretical process model and an ergodic HMM is
established.

It is simple to obtain empirical estimates of HMMparameters by simulating the process model and
accumulating statistics from discrete time samplings of simulations in a sequential manner. Suppose
we wish to model an industrial process with 𝑛 activities {𝑎1, ..., 𝑎𝑛} and𝑚 resources 𝑅 = {𝑟1, ..., 𝑟𝑚}.
The HMM hidden states, {𝑠1, . . . , 𝑠𝑁 } with 𝑁 ≤ 2𝑛 , consist of all combinations of activities present
in all simulations. The HMM observed states, {ℎ1, . . . ℎ𝑀 } with𝑀 ≤ 2𝑚 , enumerate all combinations
of resources utilized in all simulations. We take 𝜋𝑖 to be the proportion of times the simulated data
stream is in state 𝑠𝑖 . 𝑇𝑖 𝑗 is estimated as the proportion of times the simulations transitioned from 𝑠𝑖
to 𝑠 𝑗 . 𝐸𝑖 𝑗 is taken to be the proportion of times observation type ℎ 𝑗 is seen while the process is in
state 𝑠𝑖 across all simulated runs.
While this can always be done empirically, regardless of restrictions forcing a process model

to adhere to our HMM assumptions, in nice cases an HMM can be constructed from theoretic
principals. Using the mean activity completion times {𝛽1, ..., 𝛽𝑛} the HMM parameters 𝜋 , 𝑇 , and,
𝐸, can be derived using basic properties of continuous time Markov chains. Let Q be am 𝑁 × 𝑁
matrix called the transition rate matrix. For 𝑖 ≠ 𝑗 , the 𝑖 𝑗-th entry of Q is the inverse of the mean
duration of the activity that causes state 𝑖 to transition to state 𝑗 . For 𝑖 = 𝑗 , the 𝑖𝑖-th entry is the
negative of the sum of the other entries in row 𝑖 . It can be shown that 𝑇 can be written as a matrix
exponential [53]:

𝑇 = 𝑒Q(Δ𝑡 ) =
∞∑︁
𝑛=0

1
𝑛!
(Q(Δ𝑡))𝑛 , (1)

where Δ𝑡 is the discrete time interval of interest. In general, we cannot analytically compute matrix
exponentials, but standard numerical approximations exist [25, 41, 60].

An HMM built in this way could precisely quantify the observable dynamics of the process, but
this HMM representation is not unique. There are equivalency classes of HMMs, and two HMMs
whose output processes are statistically indistinguishable belong to the same equivalency class.
Due to the families of equivalent HMMs the determination of a ’true’ HMM is an ill posed problem.
Often, minimal HMMs are sought within the model equivalency class [26]. Preferring HMMs with
a minimal number of hidden states results in stable parameter estimations from limited or scarce
data, and provides clearer and explainable results. Matrix and tensor factorizations are one of the
successful methods in finding minimal HMMs [27].

3.4 Nonnegative Tensor Factorization and Model Selection
We employ a coupled nonnegative matrix-tensor factorization method to estimate HMM parameters.
The coupled factorization simultaneously decomposes a joint probability tensor, 𝑃 (𝑌𝑡−1, 𝑌𝑡 , 𝑌𝑡+1),
and joint probability matrix, 𝑃 (𝑌𝑡 , 𝑌𝑡+1). It is simple to empirically construct these arrays by counting
the number of occurrences of each sequence of events from many Simian runs. The (𝑖, 𝑗, 𝑘) entry
of the the tensor 𝑃 (𝑌𝑡−1, 𝑌𝑡 , 𝑌𝑡+1)𝑖, 𝑗,𝑘 is the proportion of number of occurrences of the (𝑖, 𝑗, 𝑘)
sub-sequence in the observed resources used across all Simian runs. Similarly, 𝑃 (𝑌𝑡 , 𝑌𝑡+1)𝑖, 𝑗 is the
normalized number of occurrences of the (i,j) sub-sequence. The joint probability tensor can be
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approximated with a nonnegative CPD [19, 26],

𝑃 (𝑌𝑡−1 = ℎ𝑖 , 𝑌𝑡 = ℎ 𝑗 , 𝑌𝑡+1 = ℎ𝑘 ) ≈
𝑁∑︁
𝑛=1

𝑃 (𝑋𝑡 = 𝑠𝑛)𝑃 (𝑌𝑡−1 = ℎ𝑖 |𝑋𝑡 = 𝑠𝑛)𝑃 (𝑌𝑡 = ℎ 𝑗 |𝑋𝑡 = 𝑠𝑛)𝑃 (𝑌𝑡+1 = ℎ𝑘 |𝑋𝑡 = 𝑠𝑛) , (2)

where 𝑃 (𝑌𝑡 |𝑋𝑡 = 𝑠𝑛) is the emission matrix for an 𝑁 hidden state Markov model. The joint
probability matrix can similarly be decomposed

𝑃 (𝑌𝑡 = ℎ𝑖 , 𝑌𝑡+1 = ℎ 𝑗 ) ≈
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑃 (𝑌𝑡 = ℎ𝑖 |𝑋𝑡 = 𝑠𝑖 )𝑃 (𝑋𝑡 = 𝑠𝑖 , 𝑋𝑡+1 = 𝑠 𝑗 )𝑃 (𝑌𝑡+1 = ℎ 𝑗 |𝑋𝑡 = 𝑠 𝑗 ) , (3)

where 𝑃 (𝑋𝑡 = 𝑠𝑖 , 𝑋𝑡+1 = 𝑠 𝑗 ) is a joint probability matrix relating the transitions of the 𝑁 hidden
states. To make notation more manageable we apply a change of variables,

T𝑖, 𝑗,𝑘 = 𝑃 (𝑌𝑡−1 = ℎ𝑖 , 𝑌𝑡 = ℎ 𝑗 , 𝑌𝑡+1 = ℎ𝑘 )
𝑀𝑖, 𝑗 = 𝑃 (𝑌𝑡 = ℎ𝑖 , 𝑌𝑡+1 = ℎ 𝑗 )
𝐴𝑖, 𝑗 = 𝑃 (𝑋𝑡 = 𝑠 𝑗 )𝑃 (𝑌𝑡−1 = ℎ𝑖 |𝑋𝑡 = 𝑠 𝑗 )
𝐵𝑖, 𝑗 = 𝑃 (𝑌𝑡 = ℎ𝑖 |𝑋𝑡 = 𝑠 𝑗 )
𝐶𝑖, 𝑗 = 𝑃 (𝑌𝑡+1 = ℎ𝑖 |𝑋𝑡 = 𝑠 𝑗 )
𝐷𝑖, 𝑗 = 𝑃 (𝑋𝑡 = 𝑠𝑖 , 𝑋𝑡+1 = 𝑠 𝑗 ) ,

to concisely express the tensor and matrix approximations,

T ≈ J𝐴, 𝐵,𝐶K, 𝑀 ≈ 𝐵𝐷𝐵⊤ ,

where J𝐴, 𝐵,𝐶K𝑖, 𝑗,𝑘 =
∑𝑁
𝑛=1𝐴𝑖,𝑛 ·𝐵 𝑗,𝑛 ·𝐶𝑘,𝑛 . To identify viable HMMmodels consistent with the joint

probability tensor and matrix, we solve a coupled nonnegative matrix-tensor optimization problem,

minimize
𝐴,𝐵,𝐶,𝐷

1
2
∥T − J𝐴, 𝐵,𝐶K∥2𝐹 +

𝜌

2
∥𝑀 − 𝐵𝐷𝐵⊤∥2𝐹

subject to 𝐴𝑖, 𝑗 ≥ 0,
∑︁
𝑖, 𝑗

𝐴𝑖, 𝑗 = 1

𝐵𝑖, 𝑗 ≥ 0,
∑︁
𝑖

𝐵𝑖, 𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑁

𝐶𝑖, 𝑗 ≥ 0,
∑︁
𝑖

𝐶𝑖, 𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑁

𝐷𝑖, 𝑗 ≥ 0,
∑︁
𝑖, 𝑗

𝐷𝑖, 𝑗 = 1

(4)

where, 𝜌 is a regularization parameter controlling the relative importance of the two terms, the
resulting matrix 𝐵 corresponds to the emission matrix, and the transition matrix can be derived
from 𝐷 by normalizing the rows to sum to 1.

To solve the optimization we employ the multiplicative updates method. Multiplicative updates
are one of many optimization techniques for nonnegative matrix and tensor factorization in the
company of, BFGS-B, alternating direction method of multipliers [66], and many others [33]. While
multiplicative updates do not always have be best convergence, multiplicative updates are simple
to implement and adapt to our nonlinear properties of 𝐵 in 𝑀 ≈ 𝐵𝐷𝐵⊤. Multiplicative updates
alternates updating the various matrices as block coordinates and leverages that nonnegative
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numbers are closed under multiplication to enforce the nonnegative constraint. To minimize our
objective function 𝐽 (𝐴, 𝐵,𝐶, 𝐷) = 1

2 ∥T − J𝐴, 𝐵,𝐶K∥2
𝐹
+ 𝜌

2 ∥𝑀 − 𝐵𝐷𝐵⊤∥2
𝐹
, multiplicative updates

iterates over 𝐴, 𝐵,𝐶, 𝐷 and element-wise multiplies each one with the ratio of the negative and
positive components of the partial derivative. To this end, we compute the partial derivatives of the
objective function with respect to each individual component matrix:

𝜕𝐽

𝜕𝐴
= 𝐴

(
(𝐶⊤𝐶) ⊙ (𝐵⊤𝐵)

)
− unfold(T , 1) (𝐶 ⊗ 𝐵)

𝜕𝐽

𝜕𝐵
= 𝐵

(
(𝐴⊤𝐴) ⊙ (𝐶⊤𝐶)

)
− unfold(T , 2) (𝐶 ⊗ 𝐴) + 𝜌

(
𝐵𝐷⊤𝐵⊤𝐵𝐷 + 𝐵𝐷𝐵⊤𝐵𝐷⊤ −𝑀𝐵𝐷⊤ −𝑀⊤𝐵𝐷

)
𝜕𝐽

𝜕𝐶
= 𝐶

(
(𝐵⊤𝐵) ⊙ (𝐴⊤𝐴)

)
− unfold(T , 3) (𝐵 ⊗ 𝐴)

𝜕𝐽

𝜕𝐷
= 𝐵⊤𝐵𝐷𝐵⊤𝐵 − 𝐵⊤𝑀𝐵 ,

(5)
where ⊗ is the Khatri-Rao product [32], and ⊙ the Hadamard product [40]. With the nonnegative
property of all the factors, all components with negative signs constitute the negative component of
the partial derivative, and the remaining terms the positive component. The probability constraints
of summing to 1 are applied as post-processing by applying appropriate scaling to each of the
factors. The resulting alternating optimization algorithm is displayed in Algorithm 1.

Algorithm 1: Joint Optimization Algorithm

Data: T ∈ R𝐾,𝐾,𝐾+ , 𝑀 ∈ R𝐾,𝐾+ , 𝐴 ∈ R𝐾,𝑁+ , 𝐵 ∈ R𝐾,𝑁+ ,𝐶 ∈ R𝐾,𝑁+ , 𝐷 ∈ R𝑁,𝑁+
Result: T ≈ J𝐴, 𝐵,𝐶K, 𝑀 ≈ 𝐵𝐷𝐵⊤

while not converged do

𝐴← 𝐴
unfold(T , 1) (𝐶 ⊗ 𝐵)
𝐴 ((𝐶⊤𝐶) ⊙ (𝐵⊤𝐵)) ;

𝐵 ← 𝐵
unfold(T , 2) (𝐶 ⊗ 𝐴) + 𝜌 (𝑀𝐵𝐷⊤ +𝑀⊤𝐵𝐷)

𝐵 ((𝐴⊤𝐴) ⊙ (𝐶⊤𝐶)) + 𝜌 (𝐵𝐷⊤𝐵⊤𝐵𝐷 + 𝐵𝐷𝐵⊤𝐵𝐷⊤);

𝐶 ← 𝐶
unfold(T , 3) (𝐵 ⊗ 𝐴)
𝐶 ((𝐵⊤𝐵) ⊙ (𝐴⊤𝐴)) ;

𝐷 ← 𝐷
𝐵⊤𝑀𝐵

𝐵⊤𝐵𝐷𝐵⊤𝐵
;

end
𝐴← 𝐴 diag(∑𝑖 𝐵𝑖, 𝑗 ) diag(

∑
𝑖 𝐶𝑖, 𝑗 );

𝐴← 𝐴∑
𝑖,𝑗 𝐴𝑖,𝑗

;
𝐷 ← diag(∑𝑖 𝐵𝑖, 𝑗 )𝐷 diag(∑𝑖 𝐵𝑖, 𝑗 );
𝐷 ← 𝐷∑

𝑖,𝑗 𝐷𝑖,𝑗
;

𝐵 ← 𝐵 diag(∑𝑖 𝐵𝑖, 𝑗 )−1;
𝐶 ← 𝐶 diag(∑𝑖 𝐶𝑖, 𝑗 )−1;

To determine the optimal/minimal number of hidden states, 𝑁 , we utilize our method that relies
on the stability of factors from slightly perturbed arrays [7]. Specifically, we: a) create an ensemble
of randomly perturbed joint probability tensors and matrices, b) decompose these ensembles, and c)
cluster and measure the stability of the resulting set of factors. A diagram depicting this procedure
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Input:
Tensor T
Matrix𝑀

Resampled Ensemble:
{T1,T2, . . . ,T𝑟 }
{𝑀1, 𝑀2, . . . , 𝑀𝑟 }

Suppose 𝑘 latent dimensions and factor resampled arrays T𝑞 ,𝑀𝑞

𝐴𝑞, 𝐵𝑞,𝐶𝑞, 𝐷1 = minimize
𝐴,𝐵,𝐶,𝐷

1
2 ∥T − J𝐴, 𝐵,𝐶K∥2

𝐹
+ 𝜌

2 ∥𝑀 − 𝐵𝐷𝐵
⊤∥2

𝐹

for 1 ≤ 𝑞 ≤ 𝑟

Collect Factors
{𝐵1, . . . , 𝐵𝑟 }

Cluster factors
into 𝑘 clusters

#1
#2

#3

. . .#k

Check Cluster
Stability

𝑘 = 𝑘 + 1

Fig. 3. Diagram of the steps taken to construct a minimal HMM.

is in Figure 3. The ensemble of perturbed arrays is generated by element-wise perturbing each
component of the arrays𝑋 as𝑋perturbed = 𝑋⊙U(1−𝜖, 1+𝜖) whereU(𝑎, 𝑏) is the uniform distribution
on the interval [𝑎, 𝑏]. Each tensor and matrix pair of this random ensemble is decomposed by
solving the optimization in Equation (4) for each candidate latent dimension, 𝑘 = 1, 2, ..., 𝑁 − 1.
For each candidate latent dimension the emission matrix factors are clustered to remove the
permutation ambiguity of the decompositions. We apply the clustering to the emission matrix,
𝐵 = 𝑃 (𝑌𝑡 |𝑋𝑡 ), as it directly appears in both terms of the objective function and will be identifiable
from the tensor decomposition. The clustering procedure, previously reported in [45, 72], is similar
to applying k-means to the vectors of the emission matrices. The only difference is our custom
clustering requires each cluster to contain exactly one vector from each emission matrix in the
ensemble. Finally after the clustering, silhouettes statistics [55] are used to score the quality of the
clusters and the objective function is used to measure the quality of the decomposition. Silhouette
scores measure the intra-cluster distance compared to the nearest-cluster distance and vary from
[−1, 1] with a value of 1 indicating a perfect clustering and −1 indicating very poor clustering.
The objective function indicates how well the decompositions represent the data with values close
to 0 indicating a better representation. A suitable number of hidden variables is selected from
the candidate dimensions as the candidate with a high average silhouette score and low objective
function value. In practice, we test several candidate hidden dimensions 1 ≤ 𝑘 ≤ 𝑁 − 1 and select a
suitable latent dimension based on cluster stability and fit criteria.

4 NUMERICAL EXPERIMENTS
Numerically constructing a minimal HMM from a given theoretical process model means finding
the transition and emission matrices of an HMM with a minimal number of hidden states. After
we build a minimal HMM, we can use standard HMM algorithms [50] to find from a sequence
of observations: (i) What sequence of states likely produced this observation sequence; (ii) What
state the process is likely in after we have made our observations; and (iii) The likelihood that
the sequence of observations came from that HMM derived from the process model. Below we
demonstrate examples of how to numerically build a minimmal HMM from theoretical process
models via tensor factorization with estimations of the minimal number of states.
To evaluate our procedure to construct minimal HMMs, we used Simian to simulate 1,000,000

runs for each process model and sampled the active processes and observed resources at 20 hour
intervals unless otherwise specified. Our objective function evaluations were carried out with the
regularization parameter 𝜌 = 1, which resulted in approximately equal contributions from the
matrix and tensor residuals to the objective function. Datasets with more disparate norms between
the arrays, or disparate sizes require careful consideration of this metaparameter. From the sequence
of observed resources we construct the joint probability tensor and matrix empirically following
the procedure in Section 3.4. Perturbed ensembles of the tensor and matrix are jointly decomposed
with Algorithm 1 to recover the optimal emission and unnormalized transition matrices for each
candidate latent dimension. The clustering and latent dimension selection method, described in
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Activity 1 Activity 2 Activity 3

(a) Sequential Process Model

Activity 1 Activity 2

Activity 3

Activity 4

(b) Process Model with Two Parallel Activities

Fig. 4. Two example process models where the final activities connect to the first activity causing the process
models to repeat.

Section 3.4 is applied for ensembles of 𝑟 = 1000 perturbations, but the cluster stability is only
evaluated on the 10% of solutions with the lowest objective function to remove poor fits.

For evaluation, we utilized reference HMMs constructed from the process model as described in
Section 3.3. We simulated 𝑇 long runs of the hidden states, 𝑋 𝑟𝑒 𝑓1:𝑇 , and corresponding observations,
𝑌
𝑟𝑒 𝑓

1:𝑇 , from the reference HMM and compared the performance of each HMM at predicting the
sequence of hidden states, 𝑋𝑝𝑟𝑒𝑑1:𝑇 , using the Viterbi [75] algorithm on the sequence of observations.
As the reference HMM and Tensor Factorization (TF) HMMs often have different numbers of hidden
states, we evaluate each model with normalized mutual information,

nmi(𝑋 𝑟𝑒 𝑓1:𝑇 , 𝑋
𝑝𝑟𝑒𝑑

1:𝑇 ) =
𝐷𝐾𝐿 (𝑃 (𝑋 𝑟𝑒 𝑓1:𝑇 , 𝑋

𝑝𝑟𝑒𝑑

1:𝑇 ) |𝑃 (𝑋
𝑟𝑒 𝑓

1:𝑇 ) ⊗ 𝑃 (𝑋
𝑝𝑟𝑒𝑑

1:𝑇 )

𝐻 (𝑋 𝑟𝑒 𝑓1:𝑇 ) + 𝐻 (𝑋
𝑝𝑟𝑒𝑑

1:𝑇 )

where 𝐷𝐾𝐿 the Kullback-Leibler divergence, and 𝐻 the entropy. We additionally report the distance,

dist(𝜆, 𝜆) = E
[
1
𝑇
(log 𝑃𝜆 (𝑌 𝑟𝑒 𝑓1:𝑇 ) − log 𝑃𝜆 (𝑌

𝑟𝑒 𝑓

1:𝑇 ))
]
,

between the best HMM with 𝑘 hidden states, 𝜆, relative to the best HMM with 𝑘 − 1 hidden states,
𝜆, from the reference observed sequences.

4.1 Synthetic Example with Process Model Activities Leading to a Minimal HMM
First we analyzed a small process model, depicted in Figure 4a, with no parallelism. We demonstrate
that the reference HMM and the minimal HMM obtained by tensor decomposition produce the
same results.

The reference HMM can be constructed with mean durations for each activity corresponding to
𝛽1 = 86, 𝛽2 = 91, and 𝛽3 = 163 hours. The resulting duration rate matrix is

Q =
©«
−1/86 1/86 0

0 −1/91 1/91
1/163 0 −1/163

ª®¬ .
With a sampling interval of 20 hours equation 1 provides the transition probability matrices.

Additionally, we assume there are four possible observation types with known emission probabilities
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(a) Silhouette scores and objective function values
for each candidate latent dimension.

(b) Normalized mutual information and distance
scores for each candidate latent dimension.

Fig. 5. Tensor factorization parameter selection and evaluation for simple strictly sequential process.

resulting in the following reference transition and emission matrices

𝑇𝑟𝑒 𝑓 =
©«
0.793 0.185 0.021
0.011 0.804 0.185
0.103 0.012 0.885

ª®¬ 𝐸𝑟𝑒 𝑓 =
©«
0.1 0.15 0.65 0.1
0.05 0.1 0.5 0.35
0.15 0.7 0.05 0.1

ª®¬ .
Figure 5a shows the silhouette scores and objective function values for each candidate latent

dimension. We see that our stability criteria clearly identifies 3 hidden states for the HMM with a
silhouette score close to 1.0 and objective value close to 0.0. The tensor factorization emission and
transition matrices for 𝑘 = 3 are

𝑇𝑇𝐹 =
©«
0.809 0.168 0.023
0.011 0.787 0.202
0.093 0.021 0.886

ª®¬ 𝐸𝑇𝐹 =
©«
0.098 0.149 0.641 0.113
0.046 0.095 0.496 0.363
0.15 0.7 0.05 0.099

ª®¬ .
The distance score in Figure 5b at each latent dimension indicates if there is an advantage of

that latent dimension over the previous latent dimension. We see a large positive value at three,
indicating it is advantageous over a latent dimension of two, and a value close to 0.0 at a latent
dimension of four, indicating that a latent dimension of four is not significantly better than three.
This aligns with the silhouette selection criteria. The normalized mutual information is relatively
high at three, but peaks at a latent dimension of five. The correct selection of a latent dimension
based on the silhouette and relative error demonstrates our ability to construct minimal HMMs
from a theoretical process model with no parallelism.

4.2 Synthetic Example with Process Model Activities That Do Not Lead to a Minimal
HMM

Figure 4b depicts a process model with two activities in series followed by two activities in parallel.
With the parallelism, there are 5 hidden states in the reference HMM corresponding to {Activity 1},
{Activity 2}, {Activity 3 and 4}, {Activity 3}, and {Activity 4}. With this process model, the reference
HMM has two possible states following the state corresponding to {Activity 3 and 4}. Either Activity
3 will end first, so the state will change to {Activity 4} or vice versa. Each simulation of the process
model will have different durations of each activity resulting on both paths being taken. The
assigned mean durations for each activity were 𝛽1 = 86, 𝛽2 = 91, 𝛽3 = 163, and 𝛽4 = 100 hours
resulting in the duration rate matrix,
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(a) Silhouette scores and objective function values
for each candidate latent dimension.

(b) Normalized mutual information and distance
scores for each candidate latent dimension.

Fig. 6. Tensor factorization parameter selection and evaluation for concurrent process.

Q =

©«
−1/86 1/86 0 0 0

0 −1/91 1/91 0 0
0 0 −1/163 − 1/100 1/163 1/100

1/163 0 0 −1/163 0
1/100 0 0 0 −1/100

ª®®®®®¬
.

The transition probability matrix corresponding to sampling at discrete intevals of 20 hours for
the repeating process model and the known emission probability matrix are

𝑇𝑟𝑒 𝑓 =

©«
0.793 0.185 0.020 0.001 0.001
0.001 0.803 0.168 0.011 0.017
0.021 0.001 0.724 0.100 0.154
0.103 0.011 0.001 0.885 0.000
0.161 0.019 0.001 0.000 0.819

ª®®®®®¬
𝐸𝑟𝑒 𝑓 =

©«
0.1 0.15 0.65 0.1
0.05 0.1 0.5 0.35
0.15 0.7 0.05 0.1
0.15 0.7 0.05 0.1
1 0 0 0

ª®®®®®¬
.

Our TF selection criteria identifies four instead of five latent dimensions. This is seen in Figure 6a
with a high silhouette score and low relative error at 𝑘 = 4. For 𝑘 = 4 the TF transition and emission
matrices are

𝑇𝑇𝐹 =

©«
0.755 0.21 0.033 0.002
0.05 0.739 0.2 0.011
0.063 0.022 0.879 0.036
0.147 0.026 0.008 0.82

ª®®®¬ 𝐸𝑇𝐹 =

©«
0.102 0.144 0.651 0.102
0.042 0.093 0.495 0.37
0.15 0.701 0.05 0.099
0.994 0.003 0.001 0.002

ª®®®¬ .
The distance score in Figure 6b also suggests the latent dimension is four. This is the most suitable
selection, since at four the distance score is slightly positive, and at five it is negative. Interestingly
the normalized mutual information continues to grow beyond four and peaks at six. By identifying
a smaller HMM than the reference HMM, this validates that our selection criteria can find minimal
HMMs of process models with parallelism.
In this case, the discrepancy between the reference and TF HMMs latent dimensions is due to

the parallelism and the emission probabilities. From the reference emission probabilities, we imme-
diately see that the emission probabilities between the combinations of process model activities,
{Activity 3 and 4} and {Activity 3} are identical. This equivalence induces a degeneracy in the refer-
ence HMM allowing for an equivalent HMM to be constructed with one fewer hidden states. This
is identified automatically in our coupled nonnegative tensor factorization with model selection
to get a minimal HMM with 𝑘 = 4. The is seen in the minimal HMMs third state approximating
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the emissions of both the reference HMMs states three and four. While this example has an easily
identifiable explanation for the reference HMM not being minimal, with real data this almost never
the case.

4.3 Real Life Example: HMM of a Dutch Bank Loan Application Process Model
To demonstrate our techniques on real data, we looked at a set of event logs for a loan approval
process for a bank in the Netherlands (for the bank data see [42] and references therein). The data set
contains event logs for 13,087 loan applications. Each event log contains the hidden process model
activities (reviewing application at each ti, calling customer for information, etc.). Additionally,
each log contains IDs and timestamps indicating when each bank employee is actively accessing the
application. We sample the the sequence of the 48 unique employee IDs accessing each application
as our our observable resource. The final loan outcome for each log is also included (e.g., acceptance,
rejection).

The true loan application process is very complicated, since there are different paths a loan might
take through the process (e.g. it might get accepted or rejected). Real procedures do not necessarily
adhere to an acyclic process as it is possible to return to an activity previously completed. Also, there
are long time gaps (e.g. breaks, evenings, waiting for customer response, etc.) between activities
and within activities, and there are activities that show up in some runs of the process but not
others (e.g. sometimes an application is investigated for fraud, sometimes it is not). In order to
simplify the modeling, we consider a subset of the loan application data. First, we only consider
loans that made it to final approval (there are 2,446 out of 13,087 such applications).
Of the approved applications, we only consider applications that adhere to the process model

diagram in Figure 7a. The first activity, Handling Leads, refers to bank agents determining whether
the applicant is someone the bank already had a lead on. In the second activity, Complete Application,
the bank employees ensure the completeness of the loan application, seek out additional information
from the customer, and complete any parts of the application required on behalf of the bank. The
Initial Offer, is the bank making an initial offer to patrons. After an initial offer two activities
can happen simultaneously. If the customer is not satisfied with the initial offer, they can ask the
employees to reassess the application. While this reassessment is happening, employees may call
the customer for additional information. Of the 2,446 approved loans, 347 cases match this ordering
of activities.

We further simplify the process by deleting the time gaps between and within activities. These
gaps pertain to when workers were busy with other tasks, nights, weekends, holidays, and other
instances when an application was not actively being handled. By removing these gaps, the resulting
timelines indicate the working-hours necessary for an application to be processed. In the true
process, there are long gaps between when an activity is finished and when the next one is started,
we simplify this and assume that the activities happen one right after the other. In the true process,
part of an activity is completed by one employee, then there is usually a time gap and then another
part of the activity is completed by another employee. We eliminate this time gap between different
parts of the same activity. The total duration spent in each activity is then the sum of the times
between the start and end of each part of each activity. These simplifications are illustrated for
sequential activities in Fig. 7b.

For activities running in parallel, like the last two activities of this process, the simplification is a
little more complex. We again take the total duration of each of the activities running in parallel
to be the sum of the gaps between each start and end time, but we also determine when these
activities would start relative to one another. In the true process there is a gap between the start of
one activity and the start of the other activity that runs parallel with it. We simplify the model by
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Handling
Leads

Complete
Application

Initial
Offer

Assess
Application

Call for
information

(a) Simplified diagram of the repeating loan process model.

(b) Removing time gaps between and within sequential activities

(c) Removing time gaps between and within concurrent activities.

Fig. 7. Diagrams showing the simplified load process and the necessary steps to clean the data.

assuming the activities start at the same time. The activity that finishes first is the one with shorter
duration as determined previously. The simplification for parallel activities is depicted in Fig. 7c.
The scarce real data of only 347 data logs, necessitates the generation of additional data using

Simian. From the 347 simplified timelines with gaps removed, we compute the expected duration
of each activity from the data. Additionally, we use the probability that each of the 48 employeed
accessef the application during each process activity as our probability that each employee will
be observed. These parameters are used with Simian to simulate runs and sample the observed
employee access at 15 minute intervals. The reference transition and emission matrices are also
generated from this data. Using the abundant simulated data, we empirically constructed the joint
probability tensor and joint probability matrices and apply our technique to construct a minimal
HMM.

The silhouette scores and relative errors in Figure 8a clearly indicate six identifiable features, the
same number of latent features as of the reference HMM. The reference and tensor factorization
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(a) Silhouette scores and objective function values
for each candidate latent dimension.

(b) Normalized mutual information and distance
scores for each candidate latent dimension.

Fig. 8. Tensor factorization parameter selection and evaluation for banking process model.

transition matrices are,

𝑇𝑟𝑒 𝑓 =

©«

0.578 0.323 0.084 0.013 0.001 0.001
0.001 0.6 0.314 0.075 0.004 0.007
0.004 0.001 0.629 0.301 0.024 0.041
0.029 0.005 0.001 0.67 0.111 0.184
0.103 0.027 0.004 0.001 0.865 0.0
0.172 0.045 0.008 0.001 0.0 0.774

ª®®®®®®®¬
𝑇𝑇𝐹 =

©«

0.596 0.307 0.089 0.004 0.002 0.004
0.002 0.597 0.31 0.005 0.031 0.054
0.018 0.002 0.64 0.086 0.107 0.147
0.139 0.04 0.03 0.285 0.377 0.129
0.058 0.036 0.001 0.083 0.814 0.009
0.071 0.06 0.003 0.055 0.074 0.737

ª®®®®®®®¬
.

The tensor and matrix factorization errors for 𝑘 = 6 are
1
2
∥T − J𝐴, 𝐵,𝐶K∥2𝐹 ≈ 0.0013,
𝜌

2
∥𝑀 − 𝐵𝐷𝐵⊤∥2𝐹 ≈ 0.0034.

(6)

The emission matrices for this example are not shown due to their significant number of observed
states. The selection of 𝑘 = 6 agrees with the distance score analysis in Figure 8b with a positive
value at six, and approximately zero at seven. The normalized mutual information curve reported in
Figure 8b was computed using the real event logs of observed employee access and process activities.
While normalizedmutual information is higher at seven, at𝑘 = 6 the normalizedmutual information
of approximately 0.3 shows a significant correlation between the hidden states predicted by the
Viterbi algorithm, and the activities underway in the real data at each 15 minute interval. This
exhibits that augmentation of scarce real data with SME informed process models can provide a
way to relate the real data to a constructed minimal HMM. This relation is useful, as in cases where
the reference HMM has many more states than a minimal HMM, it suggests that closer scrutiny of
the process model is necessary to potentially eliminate unnecessary activities. Additionally, the
generation of minimal HMMs for competing process model allows for evaluation of which process
model fits the scarce real data more accurately though the application of the forward algorithm.
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5 CONCLUSION
Here we introduce a new unsupervised machine learning method based on nonnegative tensor
factorization for building minimal HMMs based on a theoretical process model constructed from
domain expert estimations. Our new method is based on our technique for model selection in NMF
and NTF, and gives us the capability to identify the minimal number of states needed in an HMM
resulting from a process model. In the future, this work could furnish the ability to inform SMEs of
unnecessary complexity in their process models, and to compare competing process models. In
this work we demonstated our ability to determine the unknown number of the hidden states in
HMM as well to work with theoretical process models with sequential and parallel activities. The
minimal HMMs built in this way allows us to answer questions of interest using domain expertise
and scarce observational data.
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