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The quench dynamics of the Hubbard model in tilted and harmonic potentials is discussed within
the semiclassical picture. Applying the fermionic truncated Wigner approximation (fTWA), the dy-
namics of imbalances for charge and spin degrees of freedom is analyzed and its time evolution is
compared with the exact simulations in one-dimensional lattice. Quench from charge or spin density
wave is considered. We show that introduction of harmonic and spin-dependent linear potentials
sufficiently validates fTWA for longer times. Such an improvement of fTWA is also obtained for the
higher order correlations in terms of quantum Fisher information for charge and spin channels. This
allows us to discuss the dynamics of larger system sizes and connect our discussion to the recently
introduced Stark many-body localization. In particular, we focus on a finite two-dimensional system
and show that at intermediate linear potential strength, the addition of a harmonic potential and
spin dependence of the tilt, results in subdiffusive dynamics, similar to that of disordered systems.
Moreover, for specific values of harmonic potential, we observed phase separation of ergodic and non-
ergodic regions in real space. The latter fact is especially important for ultracold atom experiments
in which harmonic confinement can be easily imposed, causing a significant change in relaxation
times for different lattice locations.

I. INTRODUCTION

The search for robust quantum many-body systems
which show no thermalization or whose thermalization is
very slow, has become a focus of a number of theoretical
and experimental investigations (see e.g. [1–10] and ref-
erences therein). The best known example in closed sys-
tems that show robust non-ergodic behavior is the many-
body localized (MBL) phase [11–14]. MBL systems are
considered as potential models for quantum memory de-
vices [2, 15] and are relevant for quantum computational
problems [16]. MBL behavior comes from the interplay
of a disorder and interactions and such systems have al-
ready been realized experimentally on many platforms
like ultracold atoms in optical lattices, trapped ions and
superconducting qubits [17–21]. However, it has been
recently shown that MBL features can also be observed
in the systems without quenched disorder but showing a
linear and weak harmonic potential [22]. Another possi-
bility is to add a weak disorder potential to a tilted lat-
tice [23]. Such a phenomenon has been named the Stark
many-body localization (SMBL) and some of its features
have already been investigated experimentally [24–27].

Focusing on the one-dimensional dynamical behavior
of SMBL we have to mention the non-decaying charac-
ter of the imbalance function [22, 23, 28], the appear-
ance of logarithmic-in-time growth of entanglement en-
tropy, quantum Fisher information (QFI) and quantum
mutual information [22, 25, 28–32], non-ergodic behav-
ior of the squared width of the excitation [33] and aver-
age participation ratio which is directly related to the
return probability [23]. For two-dimensional systems,
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much less is known about a possible SMBL behavior. It
seems that the absence of rare regions can lead to non-
ergodic behavior in the thermodynamic limit [23]. How-
ever, strongly non-ergodic polarized regions [34], which
can lead to the SMBL phase in the thermodynamic limit
of one-dimensional systems, are less relevant in two di-
mensions. Therefore the existence of SMBL in higher
dimensional systems can be questioned [35]. This con-
clusion is consistent with the experimental observation
that the presence of defects in polarized regions can lead
to subdiffusive behavior [27]. Moreover, going beyond
the linear potential e.g. by adding harmonicity to the
lattice, can lead to various dynamical types of behavior
depending on the lattice location. Such an analysis, for
one-dimensional systems, has recently been given in the
context of SMBL [29–31] leaving two-dimensional sys-
tems unexplored.

In this work, we focus on the disorder-free quantum
evolution of the weakly polarized initial states and point
out dynamical similarities with disordered systems in one
and two dimensions. We give an approximate descrip-
tion of the quench dynamics from density waves with a
short wavelength which evolve under a wide range of tilt
strength (density waves with a short wavelength corre-
spond to the weakly polarized initial states which can be
more easily delocalized [35]). In contrast to the recent
studies of quantum dynamics in two dimensions [27, 35]
we mostly assume that the field gradient is applied at
an irrational angle in order to remove the equipotential
directions [23]. In particular, we show that a finite two-
dimensional lattice system with relatively weak harmonic
potential and sufficiently strong tilt exhibits subdiffusive
dynamical behavior similar to that known for disordered
systems [36, 37]. We achieve this by analyzing the quan-
tum dynamics of the Hubbard model which can be di-
rectly experimentally realized [9, 19, 27, 38–41]. In our
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numerical study, we exploit fermionic truncated Wigner
approximation (fTWA) to deal with system of larger sizes
[37, 42–46]. Such an analysis is possible because fTWA
gives a reliable description in the parameter space in
which together with the tilt potential, a harmonic poten-
tial has been added to the lattice and a spin dependence
of the linear field has been taken into account. The im-
portance of the spin-dependent local potential has been
previously linked to the full MBL in the disordered Hub-
bard system because it is responsible for the localization
of the spin degrees of freedom [47]. Here we observe a
similar effect for spin dynamics on a tilted lattice and
demonstrate that the prediction of fTWA dynamics is
highly enhanced in this limit.

To discuss the dynamics of a Hubbard model on the
tilted lattice we focus our analysis on the imbalance and
QFI for charges and spins. Both observables are related
to the on-site density measurements and are experimen-
tally accessible [17, 19, 20, 24, 38, 40, 48]. Imbalance and
QFI were chosen because both are well-established indi-
cators of non-ergodicity. Moreover QFI can distinguish
the Wannier-Stark localization from SMBL through a
logarithmic-in-time type growth in the SMBL phase [25].
In this work, we show that in two dimensions QFI ex-
hibits a slow logarithmic-like growth which is similar to
the QFI behavior of disordered systems [17, 37, 49–51]
and recently studied tilted triangular ladder [25]. More-
over, we discuss the way in which harmonic potential
together with spin-dependent tilt causes a change in the
charge imbalance decay from diffusive to subdiffusive be-
havior for intermediate strength of linear potential. In-
terestingly for spins we show that the decay of imbalance
is even more pronounced and changes from superdiffusive
to subdiffusive behavior. It is worth stressing that due to
the approximation made in studying dynamical behavior,
we cannot conclude about a possibility of a transition to
SMBL phase in two dimensions. However, we can in-
dicate certain dynamical features which are difficult to
handle by other computational methods.

Finally, the fTWA method also enables us to discuss
the appearance of phase separation of ergodic and non-
ergodic long-lived phases in a two-dimensional lattice,
which is an extension of previous theoretical studies per-
formed for one-dimensional lattices [29–31].

The manuscript is constructed as follows. In Sec. II,
the fTWA method is shortly discussed. In Sec. III,
the benchmark of fTWA method against exact diago-
nalization (ED) in one-dimensional Hubbard system is
provided together with the mean square error analysis
(MSE) for imbalances and QFI. It is realized for the
charge and spin density wave initial conditions and the
roles of harmonic and spin-dependent linear potentials
are described. The two-dimensional analysis of the many-
body dynamics in tilted lattices is given in Sec. IV. The
paper ends with a summary of the obtained results (Sec.
V).

II. FTWA FOR THE HUBBARD MODEL IN
DISORDERED-FREE POTENTIALS

Before we define the semiclassical dynamics within
fTWA we begin with writing the Hubbard Hamiltonian
in terms of the creation ĉ†iσ and annihilation ĉiσ operators

H = −
∑
ij, σ

Jij ĉ
†
iσ ĉjσ +U

∑
i

n̂i↑n̂i↓+
∑
i,σ

∆(i, σ)n̂iσ, (1)

where the operator ĉ†iσ (ĉiσ) creates (annihilates)
fermionic particle at position i with spin σ ∈ {↑, ↓},
n̂iσ = ĉ†iσ ĉiσ is the density operator, Jij is the hop-
ping energy, ∆(i, σ) is the spin-dependent on-site po-
tential and U is the on-site interaction energy between
two spin species. Throughout this work it is assumed
that Jij is non-zero for the nearest neighbour sites only
for which we set Jij = J . Then, instead of solving the
Schrödinger equation, approximated quantum dynamics
in fTWA is obtained by equating Hamilton equations of
motion with the addition of quantum fluctuation encoded
in the initial conditions through the Wigner function W
[42, 52]. Equations of motion for the Hubbard take the
form [37, 42]

i
dρmσnσ
dt

= −
∑
k

(Jnkρmσ,kσ − Jkmρkσ,n σ)

+ ρmσnσ [∆(n, σ)−∆(m,σ) + U (ρn−σn−σ − ρm−σm−σ)] ,
(2)

where ρmσnσ are phase space variables corresponding to
fermionic bilinears Ênσmσ =

(
ĉ†nσ ĉmσ − ĉ†mσ ĉnσ

)
/2 (ρnσmσ

are obtained by the Wigner-Weyl quantization procedure
[42]). Here the so-called ρ representation of Hamiltonian
H was used [37, 42]. In order to obtain the expectation
value of a given observable, e.g. Ô, trajectories are sam-
pled from the initial Wigner functionW (ρ0) and summed
up according to the following procedure〈
Ô(t)

〉 fTWA
≈

∫
OW (ρ(t))W (ρ0)dρ0 = 〈OW (t)〉cl , (3)

where OW is a Weyl symbol of Ô, ρ(t) =
{ρiσjσ′(t) : i, j ∈ {1, 2, ..., N} , σ, σ′ ∈ {↑, ↓}}, N is the
number of sites, ρ0 = ρ(t = 0). Initial conditions en-
coded in the Wigner function W (ρ0) are obtained by ap-
proximating W (ρ0) as multivariate Gaussians and read-
ing off its first and second moments from matching the
semiclassical and quantum expectation values [42].

Except for non-interacting systems, fTWA gives an ac-
curate description of general systems only in the early
times [52]. However, in the next section, we numerically
show that slight modification of the linear potential leads
to the improvement of the long-time fTWA predictions.
In one-dimensional systems, we consider the following
form of the onsite potential

∆(j, σ) = ∆1 (δσ↓ +Aδσ↑) j + ∆2(j − j0)2, (4)
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where ∆1 (∆2) is the strength of linear (harmonic) po-
tential, A introduce a spin dependence to the linear po-
tential for any A 6= 1. In this work a weak spin depen-
dence (A = 0.9) is considered as in the recent experiment
by S. Scherg et al. [9]. In Sec. IV we assume a two-
dimensional system and then the potential is modified
correspondingly.

Throughout the paper, the interaction strength is set
to U/J = 1 and open boundary conditions are assumed.

III. THE ROLE OF HARMONIC POTENTIAL
AND SPIN DEPENDENCE OF THE LINEAR

FIELD

To benchmark the fTWA method, we compare the re-
sults of semiclassical simulations with those of ED in
a finite one-dimensional system at half-filling (8 lattice
sites are investigated). The role of harmonic potential
and spin dependence of the linear field is stressed by us-
ing the imbalance functions and QFI. We chose these
quantities because they are accessible experimentally in
trapped atoms and ions experiments and are useful in
a discussion of ergodicity breaking in different systems
[17, 19, 20, 24, 38, 40, 48].

The imbalance function measures the distribution of
charges (densities) and spin degrees of freedom at a given
time. Assuming that the system starts from a charge
density wave (CDW) where the even sites are doubly oc-
cupied and the odd ones are empty, the imbalance IC is
defined as

IC =
1

N

(〈
Ĉe

〉
−
〈
Ĉo

〉)
, (5)

with

Ĉe/o =
∑

i∈even/odd sites

ĉi, (6)

where ĉi = n̂i↑ + n̂i↓ is the local charge density, N is the
number of fermions, Ĉe and Ĉo are the operators of the
total charge on even and odd sites, respectively.

Correspondingly, for the spin degrees of freedom, the
imbalance function IS can be defined in the following way

IS =
1

N

(〈
Ŝe

〉
−
〈
Ŝo

〉)
, (7)

with

Ŝe/o =
∑

i∈even/odd sites

ŝi, (8)

where ŝi = n̂i↑ − n̂i↓ is the local spin magnetization, Ŝe
and Ŝo are the operators of the total spin magnetizaton (z
component) on even and odd sites, respectively. In order
to study the dynamics of the spin degrees of freedom we
chose the initial spin density wave (SDW), i.e. even (odd)
sites containing fermions with spins up (down).

Moreover, to efficiently discuss a quantitative differ-
ence between fTWA and ED, the mean square error
(MSE) is analyzed, given by the formula

MSE(IC/S) =
1

Ns + 1

Ns∑
j=0

(
IED
C/S(j∆t)− I fTWA

C/S (j∆t)
)2
,

(9)
where ∆t = 0.01/J is the time step after which data are
numerically collected, Ns∆t = 300/J is the total time of
simulations, C and S indices correspond to the charge
and spin channel, respectively. Correspondingly, IED

C/S

and I fTWA
C/S stand for the imbalances calculated by using

the ED and fTWA methods.
In Fig. 1 we plot the time dependences of the imbal-

ances IC and IS in the fTWA and ED simulations. We
first focus on the role of spin dependence of the linear
potential. It is easily seen that for a spin-independent
potential, A = 1 (see Fig. 1 a and d), delocalization of
spin degrees of freedom takes place (Fig. 1 d). A similar
behavior was previously observed in the context of the
spin-independent disordered systems [47, 54–58]. In our
simulations, this happens at times of the order of O(tJ)
and makes the fTWA to completely fail to describe the
many-body quantum dynamics in the intermediate and
large linear potential strength limit (see also the growth
of MSE(IS) function in Fig. 2 b). In Fig. 1 e, we show
that introduction of a weak spin dependence of the lin-
ear potential, i.e. A = 0.9, forbids spin delocalization
within the analyzed times and recovers the approximate
predictability of fTWA.

Having established an efficient description of the spin
channel, we focus on the role of harmonic potential in
our semiclassical dynamics by setting ∆2/J = 0.5 (see,
Fig. 1 c and f). Then the situation is reversed to that
of the spin channel. We observe enhancement of fTWA
prediction in the charge channel which is explicitly seen
in MSE(IC) for intermediate and large linear potential
strength (see, Fig. 2 a).

In our studies we also look at the QFI which is a higher
order correlation function in comparison to imbalance
(QFI is proportional to the variance of Ĉe−Ĉo or Ŝe−Ŝo).
For pure initial states analyzed here, i.e. for CDW and
SDW, the corresponding normalized QFI for charges fC
and spins fS has the form [59–62]

fC =
4

N

[〈(
Ĉe − Ĉo

)2〉
−
〈
Ĉe − Ĉo

〉2]
, (10)

fS =
4

N

[〈(
Ŝe − Ŝo

)2〉
−
〈
Ŝe − Ŝo

〉2]
. (11)

Similarly as in the imbalance case we focus on the three
regimes: (i) with spin-independent tilt (A = 1) and with-
out a harmonic potential (∆2 = 0), see Fig. 3 a and d,
(ii) with spin-dependent tilt (A = 0.9) and without a
harmonic potential (∆2 = 0), see Fig. 3 b and e, (iii)
with spin-dependent tilt (A = 0.9) and with a harmonic



4

Figure 1: Time dependences of imbalance functions for charges (Fig. a-c) and spins (Fig. d-f). In each plot different strengths
of the linear potential ∆1/J are taken, i.e. ∆1/J = 1, 4, 6, 12 from the bottom to top. The dashed lines indicate the fTWA,
while solid lines correspond to the ED results. The first column (a and d) corresponds to A = 1, ∆2 = 0, the second column
(b and e) to A = 0.9, ∆2 = 0, and the third column (c and f) to A = 0.9, ∆2/J = 0.5. Simulations are performed for
the one-dimensional system with 8 sites and with the CDW (a-c) or SDW (d-f) initial conditions. The other parameters are
U/J = 1, j0 = 4, the number of trajectories used in fTWA is 1000 or higher. Preliminary results of (a) were obtained in [53].

Figure 2: Dependence of the mean square error MSE(IC/S) on the linear potential strength ∆1/J (for MSE(IC/S) definition, see
Eq. (9)). MSE(IC) and MSE(IS) are calculated for charge (a) and spin (b) imbalance, respectively. Different parameter ranges
are considered, circles correspond to A = 1, ∆2/J = 0, triangles to A = 0.9, ∆2/J = 0 and crosses to A = 0.9, ∆2/J = 0.5.
In the inset of (b) we plotted the same data as in (b) but with an additional logarithmic scale in the vertical axis. The other
parameters are the same as in Fig. 1.
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Figure 3: Time dependence of QFI for charges (Fig. a-c) and spins (Fig. d-f). In each plot different strengths of the linear
potential ∆1/J are taken, i.e. ∆1/J = 6, 9, 12 from the top to bottom (direction of increasing values of ∆1/J is marked by
the arrow in Fig. a). The other parameters are the same as in Fig. 1.

Figure 4: Dependence of the MSE(fC/S) on the linear potential strength ∆1. MSE(fC) and MSE(fS) are calculated for charge
(a) and spin (b) QFI, respectively. Different parameter ranges are considered, circles correspond to A = 1, ∆2/J = 0, triangles
to A = 0.9, ∆2/J = 0 and crosses to A = 0.9, ∆2/J = 0.5. In the inset of (b) we plotted the same data as in (b) but with an
additional logarithmic scale in the vertical axis. The other parameters are the same as in Fig. 1.
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potential (∆2 = 0.5), see Fig. 3 c and f. The predictabil-
ity of fTWA for QFI in (i) case is even worse than for
the imbalance function. The abrupt increase in QFI at
later times is not properly described in terms of semi-
classical description. However introduction of the spin-
dependent tilt and a harmonic potential substantially im-
proves the fTWA method. This conclusion is better illus-
trated in Fig. 4 where MSE(fC/S) is plotted (definition
of MSE(fC/S) corresponds to that given in Eq. (9) for
imbalance). We observe that fC is mostly improved for
the case A = 0.9 and ∆2 = 0.5, while for fS the highest
enhancement of the fTWA method is observed in the case
of the spin-dependent linear potential. The latter behav-
ior is consistent with that of the imbalance function for
a spin channel (cf Fig. 1 d, f).

Interestingly, in the systems with a spin-dependent lin-
ear field and with an additional harmonic potential ((iii)
regime), the MSE of imbalance functions and QFI show
a peak at the intermediate value of the linear potential
strength. It means that fTWA gives the best prediction of
quantum dynamics for weak and strong tilts. Such a fea-
ture was previously also observed for disordered systems
when the disorder strength was varied [37, 63]. Moreover,
we also noticed that in the (iii) regime and charge chan-
nel, fTWA imbalances decay faster than the correspond-
ing ones in ED, which suggests that fTWA dynamics can
be regarded as an upper bound for relaxation rates. This
situation is similar to that of disordered systems studied
recently for spinless interacting fermions [64].

IV. SEMICLASSICAL DYNAMICS OF A
TWO-DIMENSIONAL SYSTEM

After benchmarking fTWA against the exact simula-
tions, we focus our analysis on the system sizes that are
beyond the reach of ED. Using the advantage offered by
the fTWA method, that is the fact that it can be easily
extended to higher dimensional systems, we focus on the
system with a square lattice. It is worth mentioning that
higher dimensional lattices have a higher coordination
number and we expected that performance of fTWA, as
a semiclassical method, would be improved.

In Sec. III it was shown that the predictability of
fTWA for the case with spin-independent linear poten-
tial can be questioned for longer times (especially as far
as the spin degrees of freedom are concerned). However,
we decided to include this case in our two-dimensional
simulations in order to show that the slowing down of
dynamical behavior through the spin dependence of the
linear potential is also clearly observed in the semiclas-
sical picture in two dimensions (similarly like in the ED
case analyzed for Hubbard chain in the previous section).

For a two-dimensional lattice system, the on-site po-
tential ∆(j, σ) which was introduced in Sec. II, has to be

generalized to the two spatial directions, i.e.

∆(j, σ) = ∆1x (δσ↓ +Aδσ↑) jx + ∆2x(jx − jx,0)2

+ ∆1y (δσ↓ +Aδσ↑) jy + ∆2y(jy − jy,0)2 (12)

where j = (jx, jy) is now a vector indicating the loca-
tion of a given lattice site (the jx and jy are the Carte-
sian coordinates in the x and y directions, respectively).
The coordinates jx,0 and jy,0 denote the center of the
harmonic potential. In order to avoid lattice directions
for which there is no potential change, throughout most
of the work, we assume that the strengths of linear po-
tentials in the x and y directions are ∆1x = ∆1 and
∆1y =

√
2∆1, respectively [23]. However, for simplicity,

the harmonic potential strength satisfies the condition
∆2x = ∆2y = ∆2. In Eq. (12) we also assumed that
the spin dependence of the linear potential given by the
parameter A is the same for x and y lattice dimensions.

Firstly we analyze the behavior of imbalances IC and
IS at long times for 6 × 6 lattice. We set the initial
conditions in the form of stripes (see inset in Fig. 5 c)
which are directly accessible in ultracold atom experi-
ments [38, 40]. In the striped CDW initial state every
second stripe is doubly occupied and the others are empty
(in striped SDW every second stripe contains fermions
with spin up and the other sites are filled with fermions
with spin down). The choice of such initial conditions
needs a comment because the definitions of IC and IS
given in Sec. III have to be updated. Instead of Eq. (6)
and (8), we introduce the following definitions of Ĉ and
Ŝ operators

Ĉe/o =
∑

i∈Xe/o

ĉi, Ŝe/o =
∑

i∈Ye/o

ŝi, (13)

where Xe (Ye) and Xo (Yo) denote the sets of sites that
are initially doubly occupied (fermions with spin up) and
empty (fermions with spin down), respectively.

The outcome of the numerical simulations of IC and
IS are presented in Fig. 5 in which the results of three
physical situations corresponding to those in Fig. 1 are
plotted. In the simulations parameters are chosen in such
a way that the imbalance function without a tilt potential
decays near zero suggesting ergodic behavior within the
analyzed time scales. In each of the three cases (i-iii, see
Sec. III), as expected, imbalance dynamics for IC and IS
are slowing down when the strength of tilt is increased.
We also observe that the relaxation of imbalances, after
introducing a harmonic and spin-dependent linear po-
tential, becomes slower for weak and intermediate tilts.
To be more specific, in the charge channel and with the
spin-independent linear potential (A = 1), nearly diffu-
sive dynamics of densities is observed at longer times,
i.e. IC ∼ t−γ where γ = 1 (Fig. 5 a). After introduc-
ing the spin dependence of the linear field (A = 0.9), the
subdiffusive behavior appears (γ < 1) which is further
strengthened by a harmonic potential (Fig. 5 b and c).
It is worth noting that the subdiffusive behavior was also
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Figure 5: Time dependences of charge (Fig. a-c) and spin (Fig. d-f) imbalance functions. In each plot, different strengths of
the linear potential ∆1/J are taken, i.e. ∆1/J = 1, 3, 4, 5, 6, 9, 12 from the bottom to top (direction of increasing values of
∆1/J is marked by the arrow in Fig. a). The first column (a and d) corresponds to A = 1, ∆2 = 0, the second column (b and e)
to A = 0.9, ∆2 = 0, the third column (c and f) to A = 0.9, ∆2/J = 0.5. Simulations are performed for a finite two-dimensional
system with 6 × 6 sites and with the striped CDW (a-c) or SDW (d-f) initial conditions. The structure of stripe-like initial
conditions is presented in the inset of Fig. (c). The other parameters are U/J = 1, jx,0 = jy,0 = 0, the number of trajectories
used in fTWA is around 100.

observed for two-dimensional interacting systems with
a sufficiently strong disorder [36, 37]. For the spin de-
grees of freedom, the situation is more complex due to
spin dependence of the linear potential. For the spin-
independent tilt, spin transport is superdiffusive and ap-
proach diffusive when the spin dependence is imposed (5
d and e). Introduction of a harmonic potential makes the
spin dynamics become subdiffusive, similarly like in the
charge case. This is especially visible for higher values of
the linear potential strength, see Fig. 5 c and f. Interest-
ingly, the subdiffusive behavior of spin degrees of freedom
was also observed in the disordered two-dimensional Hub-
bard model [37]. It is also worth mentioning, that some
delocalization features of the initial striped CDW state
with short-wavelength have been also recently reported
in Ref. [35]. This is consistent with our studies, however,
in Ref. [35], different tilt direction and shorter time scales
have been analyzed, therefore, direct comparison needs
further investigation which we left for future studies.

It is important to mention that the fitting curves t−γ
in Fig, 5 were obtained for the long-time limit and for
three fixed values of ∆1/J . It is straightforward to no-
tice that in Fig. 5 a and b there are significant devia-
tions from these fitting curves at later times. It can be
accounted for by significant finite-size effects in the dy-
namics, which is faster in the system without a harmonic
potential, see Appendix VII. In Appendix VII we also
explain that the finite size effects can be neglected in the
cases when fTWA gives the lowest errors and when it
mimics the behavior of disordered systems.

We also investigate fC and fS focusing on the limit
in which fTWA satisfactorily describes the long-time dy-
namics, i.e. when the spin dependence (A = 0.9) and
the harmonic potential (∆2 = 0.5) are introduced. The
results are presented in Fig. 6 for charge and a spin
channels. Interestingly, in both situations we observe a
logarithmic-like growth of QFI, which is slower for higher
values of the linear potential. Here again as for imbal-
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Figure 6: Time dependence of QFI for charges (a) and spins (b). The other parameters and denotation are the same as in Fig.
5, however here, increasing values of ∆1/J correspond to the curves from the top to bottom (direction of increasing values of
∆1/J is marked by the arrow in Fig. a).

Figure 7: Density plots of charge distribution for 8× 8 square lattice at different times tJ = 0 (left), tJ = 10 (center), tJ = 300
(right). In simulations ∆1x = ∆1y = ∆1 is chosen and around 100 fTWA trajectories are used in each plot. The other
parameters are U/J = 1, A = 0.9, ∆1/J = −6, ∆2/J = 2, j0x = j0y = 2.

ances, the dynamics of QFI is similar to that of strongly
disordered systems in one and two dimensions [37, 50, 51]
or that of tilted triangular ladders [25]. In Appendix VII
we also show that the finite-size effects do not play a
significant role in the logarithmic growth and can be ne-
glected.

In the end of this section we also look at the compe-
tition between the linear (∆1) and harmonic (∆2) po-
tentials in the parameter range in which additional har-
monicity of the lattice leads to the appearance of long-
lived ergodic and non-ergodic regions. Fig. 7 presents
the density plot of charge distribution on the lattice.
At the expenses of shorter time analysis, we increase
the size of the lattice to 8 × 8 and set the lowest value
of harmonic potential at the lattice center. To pre-
cisely catch the density decay on the individual sites we
choose a checkerboard-like structure of the initial CDW-

like state in which only charge channel is analyzed. In
the presented simulations the linear potential is three
times stronger than the harmonic and we simply choose
∆1x = ∆1y = ∆1. We observed that within the ana-
lyzed time scales, charges represented by doubly occu-
pied sites, did not decay at the corners of the lattice.
The corresponding phase separation has been also re-
cently observed in the one-dimensional system in which
the effective local field was used for explanation of such
behavior [26, 29–31].

V. SUMMARY AND OUTLOOK

In this work we show that for a certain range of
parameters, the fTWA method can efficiently simulate
quantum-many body dynamics for the tilted Hubbard
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Figure 8: Imbalance IC , IS and QFI fC , fS functions for different lattice sizes: 4 × 4 - dashed lines, 6 × 6 - solid lines. In each
figure the plots are made for the two values of tilt strength ∆1/J = 4 (dark blue), ∆2/J = 5 (light blue). The first row (Fig.
a-d) represents the dynamics evaluated from the striped CDW initial condition, while the second row (Fig. e-f) represents
the dynamics evaluated from the striped SDW initial condition. U/J = 1 and about 100 fTWA trajectories where used for a
simulation of each line.

Figure 9: Charge imbalance IC (Fig. a) and QFI fC (Fig.
b) for different values of the linear potential ∆1/J . Solid
lines inside envelopes representing original data are obtained
by filtering high frequency oscillation and fTWA noise. The
data presented in (a) and (b) correspond to Fig. 5 c and
Fig. 6 a for chosen values of ∆1/J .

model. This is the case when a harmonic and spin-
dependent linear potentials are imposed. Interestingly
we observe also that this improvement appears for higher-
order correlation functions like QFI suggesting that this
strictly non-meanfield result is very efficiently described
by the quantum fluctuation included in fTWA.

These results enable us to discuss the many-body dy-
namics of the disorder-free two-dimensional square lat-
tice. We show that quantum evolution of charge and spin

degrees of freedom exhibits subdiffusive behavior which
is similar to that of disorder systems [36, 37] (however,
in two-dimensional disordered systems a behavior some-
what faster than a power law one can be expected due
to rare regions [14, 65–67]). Moreover, disorder-like dy-
namical behavior is also recovered for QFI which show
a logarithmic-like growth [37, 50, 51]. Next focusing our
study on the on-site density dynamics, we show that the
harmonic potential induces lattice locations at which the
ergodic or non-ergodic type of behavior is observed. This
result complements the recent studies in one dimension
in which phase separation of ergodic and non-ergodic re-
gions has been observed [26, 29–31].

It is also worth pointing out that the spin dependence
of the linear potential, controlled in our simulations by a
parameter A, was similar to that of the recent experimen-
tal work in Ref. [9]. This suggests that the fTWAmethod
can become an efficient tool for the theoretical prediction
of real experimental data for larger system sizes.

In future studies it will be interesting to investigate
other types of initial conditions like domain walls in two
dimensions [35] or other types of tilts that modify the
lattice directions for which potential changes can be small
[23]. Moreover the harmonic potential strength analyzed
in this work can induce anomalously slow dynamics in
different parts of the lattice locations therefore it will be
also interesting to look at the dynamics locally and test
the local effective potential theory in the semiclassical



10

picture [29–32].
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VII. APPENDIX: FINITE-SIZE EFFECTS

In Fig. 8 we present the finite-size effects for the im-
balance function and QFI. Within the considered system
sizes, we only see qualitative difference in these effects for
the charge channel without an imposed harmonic poten-

tial (Fig. 8 a, b). Interestingly, in the limit of disorder-
like behavior observed for the two-dimensional system,
Fig. 8 c, d, g, h, the finite-size effects seem unimportant
in the presented discussion.

VIII. HIGH FREQUENCY OSCILLATIONS AND
NOISE

The dynamics presented in Figs. 9 was filtered from
high frequency oscillations coming from inherit quantum
dynamics on the tilted lattice and from spurious fTWA
noise coming from sampling of the initial Wigner func-
tion. The spurious fTWA noise can be removed taking
more fTWA trajectories, however, the application of fil-
tering is less numerically costly than the simulation of
more trajectories. We checked that addition of more
fTWA trajectories does not change the filtered signal.
To filter the obtained data a Kaiser window was used.
An examplary original signal and its form after filtering
are presented for IC and fC in Fig. 9.
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