
CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

Ruler Rolling

Abstract

At CCCG ’21 O’Rourke proposed a variant of Hopcroft,
Josephs and Whitesides’ (1985) NP-complete problem
Ruler Folding. For normal Ruler Folding, we are
asked to fold a carpenter’s ruler whose segments have
given integer lengths into an interval of at most a given
length, alternating folds between 180 degrees clockwise
and 180 degrees counter-clockwise. For O’Rourke’s vari-
ant, which he called Ruler Wrapping, all folds must
be 180 degrees in the same direction. Gagie, Saeidi and
Sapucaia (2023) noted that if the last straight section
of the ruler must be longest, then Ruler Wrapping
is equivalent to partitioning a string of positive integers
into substrings whose sums are increasing such that the
last substring sums to at most a given amount. They
gave linear-time algorithms for the versions of Ruler
Wrapping both with and without this assumption.
In real life we cannot repeatedly fold a carpenter’s

ruler 180 degrees in the same direction. In this pa-
per we propose the more realistic problem of Ruler
Rolling, in which we repeatedly fold the segments 90
degrees in the same direction and thus fold the ruler into
a rectangle instead of into an interval. We should re-
port all the Pareto-optimal rollings. We note that if the
last straight section of the ruler must be longer than the
third to last — analogously to Gagie et al.’s assumption
— then Ruler Rolling is equivalent to partitioning a
string of positive integers into substrings such that the
sums of the even substrings are increasing, as are the
sums of the odd substrings.
We give a simple dynamic-programming algorithm

that reports all the Pareto-optimal rollings in quadratic
time under this assumption. Our algorithm still works
even without the assumption, but then we are left with a
quadratic number of two-dimensional feasible solutions,
so finding the Pareto-optimal ones and increases our
running time by a logarithmic factor. If we have a nice
objective function, however, we still use quadratic time.

1 Introduction

In 1985 Hopcroft, Joseph and Whitesides [4] introduced
the problem of Ruler Folding: given the lengths of
the segments in a carpenter’s ruler each of whose hinges
can be left straight or folded 180 degrees, with the di-
rections of the folds alternating between clockwise and
counter-clockwise, find the length of the shortest inter-

val into which the ruler can be folded. This is equiv-
alent to considering the segments’ lengths as a string
of positive numbers and assigning each a sign + or −
such that the difference between the minimum and max-
imum partial sums is minimized. They showed that the
decision version of this problem is NP-complete in the
weak sense, via a reduction from Partition, and gave
a pseudo-polynomial time algorithm for it. Călinescu
and Dumitrescu [1] later gave a fully polynomial-time
approximation scheme for it.

At the open-problem session of CCCG ’21,
O’Rourke [5] proposed a variant of Ruler Folding
that he called Ruler Wrapping, for which all the
folded hinges must be folded 180 degrees in the same
direction and we want to find the length of the shortest
interval into which the ruler can be wrapped. Gagie,
Saeidi and Sapucaia [3] noted that if the last straight
section of the ruler must be the longest, then Ruler
Wrapping is equivalent to partitioning a string of pos-
itive integers into substrings whose sums are increasing
such that the last substring sums to at most a given
amount. They gave simple, online and linear-time algo-
rithms for the versions of Ruler Wrapping both with
and without this assumption, based on Knuth’s algo-
rithm [6, 2] for Longest Increasing Subsequence.
As serious folding practitioners [7] know, however, the

segments of a carpenter’s ruler (and all other objects)
have width as well as length, so repeatedly folding them
180 degrees in the same direction is problematic in real
life. Gagie et al. thus had difficulty even illustrating
their solutions and eventually resorted to triangles, as
shown in Figure 1. In this paper we propose the more
realistic problem of Ruler Rolling, for which all the
folded hinges must be folded 90 degrees in the same
direction and we thus fold the ruler into a rectangle
instead of into an interval. Since a tall and thin rolling
may be sometimes better and sometimes worse than a
short and wide one, we want to list all the pairs (h,w)
such that the ruler can be rolled into a rectangle of
height h and width w but cannot be rolled into a one of
height h′ and width w′ with either h′ < h and w′ ≤ w
or h′ ≤ h and w′ < w. In other words, we want the
pairs corresponding to Pareto-optimal rollings.

We consider rolling rulers into rectangles instead of
triangles because if the last straight section of the ruler
must be longer than the third to last — analogously
to Gagie et al.’s assumption — then Ruler Rolling
is equivalent to partitioning a string of positive integers

ar
X

iv
:2

21
0.

01
95

4v
5

 [
cs

.D
S]

 4
 A

pr
 2

02
4

36th Canadian Conference on Computational Geometry, 2024

(5, 5)
(11, 6)

(14, 9) (18, 7) (26, 8)

(32, 14)

(35, 9)
(34, 8)

(0, 0)

(43, 9)

5

y

x

3 4 8 6 2 1 8 56

(5, 5)
(11, 6)

(14, 9) (18, 7) (26, 8)

(32, 14)

(35, 9)
(34, 8)

(0, 0)

(43, 9)

(48, 13)

5

y

x

3 4 8 6 2 1 8 56

5
65

34

8 1

2

6
8

8

1

65 2

6

34

85

Figure 1: Gagie et al.’s [3] Figures 3 and 4. When drawing their solutions as intervals (top) became awkward, they
eventually resorted to triangles (bottom). The purple triangle is the optimal wrapping when the last straight section
of the ruler can be as short as or shorter than the previous one, and the yellow triangle is the optimal wrapping
when it must be longer.

into substrings such that the sums of the even substrings
are increasing, and the sums of the odd substrings are
increasing. (We do not know of quite such a nice equiva-
lence in the case of triangular rollings.) We give a simple
online dynamic-programming algorithm that reports all
the Pareto-optimal rollings in quadratic time under this
assumption. Our algorithm still works without the as-
sumption, but then it is not online and we are left with a
quadratic number of feasible two-dimensional solutions,
so finding the Pareto-optimal ones and discarding the
others increases our running time by a logarithmic fac-
tor. The running time drops back to quadratic, however,
if we have a scalar objective function that can be com-
puted in constant time and respects Pareto optimality
in the sense that it assigns the same score to rollings
with the same dimensions and assigns a better score to
one rolling than to another if the former is shorter and
not wider or thinner and not taller than the latter. In-
tuitively, this is because the objective function projects
all the solutions onto a line, and then we can find the
minimum in time linear in the number of solutions and
quadratic in the number of segments in the ruler.

In Section 2 we present our algorithm under the as-
sumption that the last straight section of the ruler must
be longer than the third to last. More specifically, we as-
sume the last segment is vertical and extends strictly be-
low any other. In Section 3 we prove our algorithm’s cor-
rectness. In Section 4 we discuss the challenges of drop-
ping our simplifying assumption. possibly in favour of
a nice objective function. We leave as an open problem
finding a quadratic-time algorithm for Ruler Rolling
with no assumptions at all. In Section 5 we discuss some
other future work.

2 Algorithm

Suppose we are given the sequence L = ℓ1, . . . , ℓn of
the lengths of the n segments in a carpenter’s ruler and
asked to return all pairs (h,w) such that the ruler can be
rolled with 90-degree folds in the same direction into a
rectangle of height h and width w with the last segment
vertical and extending strictly below every other, but
cannot be rolled thus into a rectangle of height h′ and
width w′ with either h′ < h and w′ ≤ w or h′ ≤ h and

CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

w′ < w. For an example, let us consider the ruler in
Gagie et al.’s paper with L = 5, 6, 3, 4, 8, 6, 2, 1, 8, 5.
To solve this problem, we build incrementally a table

with n + 1 rows numbered from 0 to n, in which row
i stores si =

∑i
j=1 ℓj and the pairs for the ruler with

segment lengths ℓ1, . . . , ℓi, with the last of those seg-
ments vertical and extending strictly below every other.
Since we obtain the pairs for this ruler before looking at
the following segments’ lengths, our algorithm is online.
For our example, the last row of the table is row 10 and
contains the pairs

(48, 0) (34, 3) (30, 4) (16, 6) (14, 8) (13, 9) (5, 25) ,

corresponding to the rollings shown in Figure 2. We
note that the pair (13, 9) could also correspond to a
rolling with only 4 folds — consider partitioning L =
5, 6, 3, 4, 8, 6, 2, 1, 8, 5 into 5, 6 and 3 and 4, 8 and 6, 2, 1
and 8, 5 — but the rolling with 5 folds shown in the
figure is the one we find with our algorithm.
If we want the last segment to be horizontal instead

of vertical then we can reverse the pairs, which rotates
the rollings. It follows that, if we can find in O(n2) time
the dimensions of the Pareto-optimal rollings with the
last segment vertical and extending strictly below every
other, then we can find in O(n2) time the dimensions of
the Pareto-optimal rollings with the last segment either
horizontal or vertical and extending beyond every other
in the relevant direction.
To solve the problem with the last segment vertical,

we keep the pairs in each row sorted in decreasing order
by first component and increasing order by second com-
ponent. The first six rows of the table for our example
are below:

s0 = 0 (0, 0)
s1 = 5 (5, 0)
s2 = 11 (11, 0) (6, 5)
s3 = 14 (14, 0) (9, 5) (3, 11)
s4 = 18 (18, 0) (13, 5) (7, 6) (4, 14)
s5 = 26 (26, 0) (12, 3) (8, 7)

The first row of the table always contains s0 = 0 and
(0, 0). To compute row i efficiently for i > 0, we first
set si = si−1 + ℓi. For 0 ≤ j < i, we then

1. find the last pair (h,w) in row j such that sj +w <
si,

2. delete from the end of row i any pairs whose second
components are greater than h,

3. append the pair (si − sj , h) to row i.

In our example, we would compute row 6 as

s6 = 32 (32, 0) (18, 3) (14, 7) (6, 12)

with (27, 5) and (21, 6) appended after (32, 0) but then
deleted again before we append (18, 3).

Implemented näıvely, our algorithm takes O(n3) time.
As i increases, however, the position of the last pair
(h,w) in row j such that sj +w < si, is non-decreasing.
We can implement each row as a doubly-linked list and
delete each pair whenever the next pair (h,w) in the
row has sj +w < si, charging each pair’s deletion to its
insertion. We also charge each pair’s deletion in step 2
to its insertion. For each j we append only one pair to
row i in step 3, so steps 1 and 2 take amortized constant
time, and overall we use O(n2) time.

Readers may notice that, since s3 + 11 < si for i ≥ 5
and the 3 in the pair (3, 11) in row 3 is less than the
5 and 6 in the last pairs (5, 0) and (6, 5) in rows 1 and
2 — and they must be the last pairs in their rows for
this observation to work — when computing rows 6 to
10 we can skip looking at rows 1 and 2, since the pairs
we generate with them will always be deleted at least
when we append the pair we generate with row 3. We
do not see how to use this observation to improve our
worst-case bound, however.

The prefix of our table shown above is shown below on
the left but without the pairs that are deleted or ignored
after we have computed row 5. When we compute row
6, we delete the pair (26, 0) from row 5, as shown below.

s0 = 0 (0, 0)
s1 = 5
s2 = 11
s3 = 14 (3, 11)
s4 = 18 (7, 6) (4, 14)
s5 = 26 (26, 0) (12, 3) (8, 7)

s0 = 0 (0, 0)
s1 = 5
s2 = 11
s3 = 14 (3, 11)
s4 = 18 (7, 6) (4, 14)
s5 = 26 (26, 0) (12, 3) (8, 7)
s6 = 32 (32, 0) (18, 3) (14, 7) (6, 12)

Continuing like this, the pairs left before we compute
row 10 are shown in Table 1, with the ones we delete
then crossed out.

We note that, even when we delete pairs from the
beginnings of lists, they may be useful if we later want
to find the actual Pareto-optimal rollings themselves.
To see why, consider Table 2, which shows all the pairs
we generate for our example. There are boxes around
the pairs — some of which are deleted or crossed out in
Table 1 — that are partial solutions leading to the pair
(13, 9) in row 10 that corresponds to the Pareto-optimal
sixth rolling from the left in Figure 2. As usual with
dynamic programming, we can find the actual rollings
efficiently if we keep a pointer from each pair to the one
from which we generated it.

36th Canadian Conference on Computational Geometry, 2024

5

8

1
2

6

8

4

3

6

5

Figure 2: The best rollings we can get for the ruler in Gagie et al.’s paper with L = 5, 6, 3, 4, 8, 6, 2, 1, 8, 5, with
the last segment vertical and extending strictly below every other (so the first numbers in L are the lengths of the
innermost segments in the spirals).

s0 = 0 (0, 0)
s1 = 5
s2 = 11
s3 = 14 (3, 11)
s4 = 18 (4, 14)
s5 = 26 (8, 7)
s6 = 32 (14, 7) (6, 12)
s7 = 34 (8, 8) (2, 32)
s8 = 35 (17, 4) (9, 8) (3, 32) (1, 34)
s9 = 43 (43, 0) (29, 3) (25, 4) (9, 8) (8, 17)
s10 = 48 (48, 0) (34, 3) (30, 4) (22, 8) (16, 6) (14, 8) (13, 9) (5, 25)

Table 1: The pairs left before we compute row 10, with the ones we delete then crossed out.

3 Proof of correctness

We prove the correctness of our algorithm by induction
on the row number. Row 0 is always the same and stores
s0 = 0 and (0, 0). Assume that we have computed rows
0 to i − 1 ≥ 0 correctly and now we want to compute
row i. Any Pareto-optimal rolling W of the ruler with
segments lengths ℓ1, . . . , ℓi either has a last folded hinge
at distance sj from the beginning of the ruler, for some

positive j < i, or has no folded hinges, in which case we
generate its pair from (0, 0). Without loss of generality,
assume W has a folded hinge.

The side of W that ends with the ith segment has
length si − sj so — since we require this ith and last
segment to be vertical and extend below every other —
the height of W is also si − sj . If we cut off that whole
side and rotate W 90 degrees counter-clockwise, then
we obtain a rolling for the ruler with segment lengths

CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

s0 = 0 (0, 0)

s1 = 5 (5, 0)

s2 = 11 (11, 0) (6, 5)

s3 = 14 (14, 0) (9, 5) (3, 11)

s4 = 18 (18, 0) (13, 5) (7, 6) (4, 14)

s5 = 26 (26, 0) (21, 5) (15, 6) (12, 3) (8, 7)

s6 = 32 (32, 0) (18, 3) (14, 7) (6, 12)
s7 = 34 (34, 0) (20, 3) (16, 4) (8, 8) (2, 32)

s8 = 35 (35, 0) (21, 3) (17, 4) (9, 8) (3, 32) (1, 34)

s9 = 43 (43, 0) (29, 3) (25, 4) (17, 8) (11, 14) (9, 8) (8, 17)

s10 = 48 (48, 0) (34, 3) (30, 4) (22, 8) (16, 6) (14, 8) (13, 9) (5, 25)

Table 2: All the pairs we compute, with boxes around the ones — some of which are deleted or crossed out in Table 1
— that are partial solutions leading to the pair (13, 9) in row 10 that corresponds to the Pareto-optimal sixth rolling
from the left in Figure 2.

5

8

1 2 6

8
8

1

2

6
4

3

6

5

5

6

3 4

Figure 3: If we cut off the left size of the sixth rolling
in Figure 2, which has pair (13, 9), and rotate that
rolling 90 degrees counter-clockwise, then we obtain a
rolling with pair (9, 8) for the ruler with segment lengths
5, 6, 3, 4, 8, 6, 2, 1.

ℓ1, . . . , ℓj in which the jth and last segment is vertical
and extends below every other. For example, if we cut
off the left size of the sixth rolling in Figure 2, which has
pair (13, 9), and rotate that rolling 90 degrees counter-
clockwise then, as shown at the top and right of the
figure, we obtain a rolling with pair (9, 8) for the ruler
with segment lengths 5, 6, 3, 4, 8, 6, 2, 1. Without loss
of generality we can assume this new rolling is Pareto-
optimal — if it is not, there must be another that is and
generates W , or W itself could not be Pareto-optimal
— so the pair for it is in row j. If this pair is (h,w), then
the height of W is h, and W ’s pair is the one (si−sj , h)
we would generate for ℓ1, . . . , ℓi from (h,w).

The last thing left for us to show is that we do in fact
consider (h,w) in row j when building row i. There are
three possible reasons we might not:

1. sj + w ≥ si and so we have not reached (h,w) yet

in row j;

2. (h,w) is followed by another pair (h′, w′) in row j
with sj + w′ < si and so we have already deleted
(h,w);

3. (h,w) is the last pair in row j and some pair
(h′′, w′′) in a later row j′ < i has h′′ ≤ h and
sj′ + w′′ < si, so we ignore (h,w).

If reason 1 holds then, even if we considered (h,w),
the part of W between the last folded hinge and the
ith segment would be shorter than the opposite side
of W , so the ith segment would not extend below ev-
ery other, as required. If reason 2 holds then, since we
keep the pairs in decreasing order by first component,
h′ < h and so from (h′, w′) we generate a rolling with
the same height as W and smaller width, contradict-
ing W ’s Pareto-optimality. Similarly, if reason 3 holds,
then we generate a rolling with height si − sj′ < si − sj
and width h′′ ≤ h, again contradicting W ’s Pareto-
optimality. Summing up, we have the following theo-
rem:

Theorem 1 Given the lengths of the n segments in
a carpenter’s ruler, in O(n2) time we can return all
Pareto-optimal pairs (h,w) such that the ruler can be
rolled into a rectangle of height h and width w with the
last segment extending strictly beyond every other in the
relevant direction.

4 Assumption

The pairs we insert into other rows and never delete
but do not consider when computing row n, correspond

36th Canadian Conference on Computational Geometry, 2024

85 1
2

5 6 3 4 8 6

85

5 6 3 4 8 6 2
1

Figure 4: The rollings corresponding to the pairs (2, 32)
and (1, 34), left in rows 7 and 8, which do not have the
last segment extending beyond every other.

to rollings in which the last segment does not extend
strictly below every other. In our example, these are
(2, 32) in row 7, (3, 32) and (1, 34) in row 8, and (9, 8)
and (8, 17) in row 9. The pairs (2, 32) and (1, 34) are
particularly interesting since, not only are they Pareto-
optimal without our assumption, but (2, 32) dominates
(3, 32) in row 10 and both (2, 32) and (1, 34) dominate
(34, 3) in row 10 when reversed. The corresponding
rollings are shown in Figure 4 (rotated 90 degrees as
an example of how this can save space!).

Since our algorithm runs in O(n2) time and generates
O(n2) pairs in total, in O(n2 log n) time we can easily
find the ones that are Pareto-optimal without our as-
sumption — but then our algorithm is not online and
not quadratic. On the other hand, if we have a scalar ob-
jective function that can be computed in constant time
and assigns the same score to rollings with the same di-
mensions and assigns a better score to one rolling than
to another if the former is shorter and not wider or thin-
ner and not taller than the latter, than

• we are safe to delete the pairs that we delete, since
they are dominated by other pairs;

• we can evaluate the objective function on all O(n2)
pairs that remain in our linked lists and find and
report the ones with the best score in O(n2) time.

In other words, with such an objective function our run-
ning time drops back to quadratic. We leave as an open
problem finding a quadratic-time algorithm for Ruler
Rolling with no assumptions at all.

Theorem 2 Given the lengths of the n segments in a
carpenter’s ruler, in O(n2 log n) time we can return all
Pareto-optimal pairs (h,w) such that the ruler can be
rolled into a rectangle of height h and width w. If we
have a scalar objective function that can be computed
in constant time and assigns the same score to rollings
with the same dimensions and assigns a better score to
one rolling than to another if the former is shorter and
not wider or thinner and not taller than the latter, than
we use O(n2) time.

Figure 5: Rollings in which we change from increasing to
decreasing sums (left) and change the folding direction
(right).

5 Future work

Apart from finding an algorithm for Ruler Rolling
that runs in quadratic time without assumptions, we
think the most interesting open problem regarding
Ruler Rolling is determining whether quadratic time
is necessary in the worst case. We conjecture that it is
necessary, at least for online algorithms, although we
seem able to use much less time in practice when we
skip looking at rows unnecessarily, as described in Sec-
tion 2.

To test our algorithm’s running time in prac-
tice — with the assumption that the last
straight section is longer than the third to last
— we implemented two versions of it (avail-
able at https://github.com/kevinlyu1006/

Ruler-Wrapping-Problem-Implementation), one
unoptimized and the other with skipping. Skipping
clearly provided a dramatic speedup, as shown in Fig-
ure 6 in the appendix. During testing, we noticed that
as the upper bound on the segment length increased,
the run-time of the version with skipping decreased, as
shown in Figure 7 in the appendix, although there was
no significant speedup for the unoptimized version

In the full version of this paper we will also discuss
rolling rulers into triangles, and the versions of Ruler
Rolling in which we can switch from increasing to de-
creasing sums or change the folding direction from clock-
wise to counter-clockwise and back, as illustrated in Fig-
ure 5. The former version reduces fairly easily to Ruler
Rolling but Hopcroft et al.’s reduction from Parti-
tion to Ruler Folding can fairly easily be modified
to reduce to the latter version, so it too is NP-complete.

https://github.com/kevinlyu1006/Ruler-Wrapping-Problem-Implementation
https://github.com/kevinlyu1006/Ruler-Wrapping-Problem-Implementation

CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

References

[1] G. Călinescu and A. Dumitrescu. The carpenter’s ruler
folding problem. Combinatorial and Computational Ge-
ometry, 52:155, 2005.

[2] M.L. Fredman. On computing the length of longest in-
creasing subsequences. Discrete Mathematics, 11(1):29–
35, 1975.

[3] T. Gagie, M. Saeidi and A. Sapucaia. Ruler wrapping.
International Journal of Computational Geometry and
Applications, 33(1&2): 3–12, 2023.

[4] J. Hopcroft, D. Joseph and S. Whitesides. On the move-
ment of robot arms in 2-dimensional bounded regions.
SIAM Journal on Computing, 14(2):315–333, 1985.

[5] J. O’Rourke. Personal communication. 2021.

[6] D.E. Knuth. The Art of Computer Programming, volume
3. Addison-Wesley, 1973.

[7] B. Parker. St. Mark’s team tops in paper-folding. The
Boston Globe, April 10th, 2011. http://archive.

boston.com/news/local/articles/2011/04/10/st_

marks_school_team_breaks_paper_folding_record .

Appendix

1 2 3 4 5
0 · 100

3 · 105

6 · 105

9 · 105

1.2 · 106

1.5 · 106

log10 n

R
u
n
-t
im

e
(m

s)

unoptimized
with skipping

Figure 6: The run-times of our unoptimized implemen-
tation (red circles) and of our implementation with
skipping (blue squares). Each point indicates the av-
erage over 10 trials with n pseudo-randomly chosen in-
tegers from 1 to 100 in each trial. (We note that all but
the leftmost two red circles are almost or totally hidden
behind the corresponding blue squares.)

0 1 2 3
0 · 100

2 · 104

4 · 104

6 · 104

8 · 104

1 · 105

log10 l

R
u
n
-t
im

e
(s
)

Figure 7: The average run-time in practice decreases
as the upper bound on the segment length increases.
Each point indicates the average over 10 trials with n =
100000 pseudo-randomly chosen integers from 1 to the
segment-length upper bound (l) in each trial.

http://archive.boston.com/news/local/articles/2011/04/10/st_marks_school_team_breaks_paper_folding_record
http://archive.boston.com/news/local/articles/2011/04/10/st_marks_school_team_breaks_paper_folding_record
http://archive.boston.com/news/local/articles/2011/04/10/st_marks_school_team_breaks_paper_folding_record

	Introduction
	Algorithm
	Proof of correctness
	Assumption
	Future work

