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The biaxial phase in nematic liquid crystals has been elusive for several decades after its prediction
in the 1970s. A recent experimental breakthrough was achieved by Liu et al. [PNAS 113, 10479
(2016)] in a liquid crystalline medium with magnetic nanoparticles (MNPs). They exploited the
different length-scales of dipolar and magneto-nematic interactions to obtain an equilibrium state
where the magnetic moments are at an angle to the nematic director. This tilt introduces a second
distinguished direction for orientational ordering or biaxiality in the two-component system. Using
coarse-grained Ginzburg-Landau free energy models for the nematic and magnetic fields, we provide
a theoretical framework which allows for manipulation of morphologies and quantitative estimates
of biaxial order.

I. INTRODUCTION

Liquid crystal (LC) phases are mesomorphic states be-
tween ordinary liquids and crystals. The constituent
molecules translate freely as in a liquid while exhibiting
long-range orientational order. The simplest LCs are ne-
matic liquid crystals (NLCs), where constituent particles
are often rod-like or disc-shaped. The NLC molecules
typically orient along a preferred direction n called the
director. They exhibit uniaxial order if the molecular
alignment is only about n. Alternatively, there can be
an additional distinguished (secondary) director k (per-
pendicular to n) for orientational ordering. These are
referred to as biaxial nematic liquid crystals (BNLCs),
and were predicted by Freiser in 1970 [1]. BNLCs have
been the subject of much experimental and theoretical
research [2–8]. They are believed to offer significantly
improved response times and better viewing characteris-
tics in displays, optical switching and optical imaging as
compared to their uniaxial counterparts [7, 8].

The working principle behind LC applications is the
Fréedericksz transition, where the light transmissibility
changes when the NLC molecules go from an ordered
state to a disordered state [7–10]. In BNLCs, it was
predicted that this transition could occur along more
than one direction. However, the experimental detec-
tion of thermotropic BNLCs was elusive until 2004, when
three groups independently demonstrated the existence
of the biaxial phase [11–13]. It was observed that the
Fréedericksz transition about the secondary director is
energetically favorable, yielding light transmission that
can potentially be switched on and off more abruptly [7–
10, 14]. These experiments also revealed that the switch-
ing time is at least an order of magnitude faster in BNLCs
(∼ 1 ms) as compared to uniaxial NLCs (∼ 15 ms) [8, 14].
Despite these major advances on the experimental side,
the biaxial phase remains a challenge because the order-
ing of molecules along the secondary director is fragile
and easily destroyed by thermal fluctuations [7, 8]. So
the quest for a robust biaxial phase continues.

A breakthrough in this direction is provided by the re-

cent experiments of Liu et al., where they achieved the
elusive biaxial phase by immersing magnetic nanoparti-
cles (MNPs) in an NLC medium [15]. These fascinating
ferronematics (FNs) were first proposed theoretically in
1970 by Brochard and de Gennes with the purpose of
enhancing the magnetic response in NLCs for magneto-
optic effects [16]. Unfortunately, in experimental sam-
ples, MNPs flocculated within tens of minutes due to
dipole-dipole interactions [17]. It was only four decades
later, in 2013, that Mertelj et al. designed the first
such stable suspension using barium hexaferrite magnetic
nanoplatelets in pentylcyanobiphenyl (5CB) LCs [17, 18].
They overcame the challenges of flocculation by cleverly
choosing the shape and composition of the MNPs, and a
homeotropic MNP-NLC coupling.

In their experiments with FNs, Liu et al. [15] lever-
aged the different length-scales of dipolar and magneto-
nematic interactions to obtain an equilibrium state where
the magnetic moment of the MNPs is at an angle to the
nematic director n. Such a coupling introduced an addi-
tional direction of order (k) in the perpendicular plane
at no additional cost, see the schematic in Fig. 1. Subse-
quently, the authors confirmed the presence of biaxial or-
der from the absorption spectrum and magnetic hystere-
sis studies. This development opens up newer horizons
for applications of NLCs, and these require theoretical
guidance. In this paper, we provide the requisite frame-
work to study biaxial order in FNs. We will demonstrate
how the magneto-nematic coupling introduces biaxiality
in the system, even though it is absent in the pure NLCs.
We also provide quantitative evaluations of biaxiality as
a function of the coupling strength, which will be useful
for experimentalists.

This paper is organized as follows. In Sec. II, we intro-
duce the order parameters and coarse-grained free energy
for FNs. In Sec. III, we present results for the ordering
kinetics of FNs, and the development of biaxiality. In
Sec. IV, we conclude with a summary and discussion.
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II. COARSE-GRAINED FREE ENERGY FOR
FERRONEMATICS

FNs are described in terms of two order parameters:
(i) the Q-tensor, which contains information about the
orientational order of the NLCs, and (ii) the magneti-
zation vector M, which gives the average orientation of
the magnetic moments of the MNPs. The Q-tensor is
symmetric and traceless, and is given by [19]:

Qij = Sninj + Tkikj − (S + T̃ )
δij
3
. (1)

Here, the scalar order parameter S measures the uniaxial
degree of order about the leading eigenvector or the di-
rector n. Further, T̃ is the magnitude of the biaxial order
about the secondary director k. (A system with only uni-

axial order has T̃ = 0. For such a system, the isotropic
phase corresponds to S = 0, and the nematic phase has
S 6= 0.) Taking into account the requirements of symme-
try and tracelessness, the Q-tensor can be expressed in
terms of five independent parameters as follows:

Q =

−q1 + q2 q3 q4
q3 −q1 − q2 q5
q4 q5 2q1

 . (2)

To obtain the nematic directors and S, T̃ , we choose
a frame of reference in which Q is diagonal. This pro-
vides us the three eigenvalues (λ3 > λ2 > λ1), and the
corresponding eigenvectors n, k, l. The largest eigen-
value λ3 = S, and the corresponding eigenvector is the
primary direction of order n [19, 20]. We will use a
standard measure of biaxial order about the secondary
director k: T = (λ2 − λ1)/λ3 [7, 8, 20], which is pro-

portional to T̃ . Naturally, λ1 = λ2 if the system is uni-
axial. The degree of biaxiality can also be defined as
B2 = {1 − 6Tr(Q3)2/[Tr(Q2)3]} [21, 22], where B2 = 0
for the uniaxial state and B2 = 1 for a state with maxi-
mum biaxiality. This definition of biaxiality also exploits
the difference between two eigenvalues to determine bi-
axial order, similar to T .

We use the Landau-de Gennes (LdG) approach to write
down the phenomenological free energy for this compos-
ite system. This is a functional of the order parameter
fields Q(r) and M(r) and has three contributions [23–28]:

G[Q,M ] =

∫
dr

{
A

2
Tr(Q2) +

C

3
Tr(Q3) +

B

4
[Tr(Q2)]2

+
L

2
|∇Q|2 +

α

2
|M |2 +

β

4
|M |4 +

κ

2
|∇M |2

−γµ0

2

3∑
i,j=1

QijMiMj

 . (3)

The first four terms in Eq. (3) represent the Ginzburg-
Landau (GL) free energy for the nematic component with
Landau coefficients A, B, C, L having their usual mean-
ing. The next three terms correspond to the GL free

energy for the magnetic component. In the GL frame-
work, the gradient terms |∇Q|2 and |∇M|2 are essen-
tial to capture the effects of elastic interactions [29–33].
They penalise local variations in the order parameters
– this surface tension results in the motion of domain
boundaries in coarsening kinetics.

The magnitudes of the Landau coefficients determine
the scales of order parameter, length and time in the sys-
tem. For example, A = A0(T −TN ) and α = α0(T −TM )
depend on the quench temperature T and the critical
temperatures TN , TM . (Here, A0, α0 are material-
dependent constants.) A direct estimate of the coeffi-
cients can be obtained from experimentally determined
quantities like the latent heat, order parameter magni-
tudes, susceptibilities, etc. [30, 33]. However, the cur-
rent experimental data on FNs is not adequate to pro-
vide accurate estimates of these coefficients. The utility
of the LdG framework lies primarily in predicting uni-
versal behaviors, e.g., power laws and their exponents,
scaling variables, etc.

The effect of dopant particles in LCs has been mod-
eled in several previous studies [34–37]. These models
describe the coupling of the dipole moment of ferroelec-
tric particles with the NLCs at a molecular level. The
induced field due to the impurity atoms acts like an
aligning field, and enhances orientational order in the
NLCs. On a similar footing, the last term in Eq. (3)
is the phenomenological magneto-nematic coupling de-
fined as a dyadic product of Q and M and the parame-
ter γ is the strength of the coupling. It is related to the
shape and size of the MNPs and their interaction with the
NLCs. This cubic magneto-nematic coupling term [24]
enforces the specific orientations of the magnetic and ne-
matic components essential for the emergence of biaxial
order in the system [15, 38]. A more accurate description
of the free energy can be obtained by incorporating dipo-
lar and quadrupolar interactions. This may be required
for studies of phase transitions and critical phenomena.
As discussed in Ref. [26], these terms may be ignored for
dilute ferronematic suspensions.

In their experiments, Liu et al. demonstrated that bi-
axial order emerges only when n and M are tilted at
an angle. By manipulating the surface functionaliza-
tion, they could achieve a tilt angle up to 90◦. (Their
optical absorbance measurements to detect the biaxial
phase were carried out for a limited range from 10◦-65◦.)
Motivated by these experiments, we choose γ < 0 for
simplicity, which corresponds to a tilt angle of 90◦. In
principle, it is possible to modify the coupling term in
Eq. (3) such that n and M are at an arbitrary angle,
but this makes the expression considerably more compli-
cated. The emergence of biaxiality (or the presence of
two distinguished directions) in the NLCs for non-zero
values of γ < 0 can be understood from the schematic
in Fig. 1: Choosing M along the positive x-axis, the
LC molecules can align in two orthogonal directions, say
along the y-axis and z-axis.
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k l

FIG. 1. Schematic depicting the orientations of nematic
(blue) and magnetic (red) particles for the coupling limit
γ < 0.

In Ref. [26], the authors studied pattern formation in
d = 2 micron-sized ferronematic wells. There, the choice
of γ > 0 allowed creation of domain walls in the magneti-
zation profile, and stable nematic defects whose location
could be manipulated by the magneto-nematic coupling.
The present study is a generalization of this framework
to d = 3 to observe the elusive biaxiality.

A few comments regarding the FN free energy are in
order: (i) The state which minimizes the nematic free
energy with terms up to order [Tr(Q2)]2 is always uniax-
ial. The inclusion of higher-order terms such as [Tr(Q2)]3

is necessary for biaxial order in the pure nematic system
[39, 40]. (ii) Liu et al. proposed the Frank-free-energy ap-
proach to model FNs, which only accounts for the elastic
free energy. This simplified framework could not provide
a theoretical understanding of the observed biaxiality.
The LdG free energy approach is more generic. It in-
cludes the Landau free energy, in addition to the elastic
energies. These additional terms are important to iden-
tify the state that the LCs would prefer to be in, e.g.,
uniaxial, biaxial or isotropic [19, 23]. Further, a quanti-
tative estimate of the biaxial order T is straightforward
from the Q-tensor.

III. ORDERING KINETICS OF
FERRONEMATICS

A. Time-dependent Ginzburg-Landau Equations

To obtain the free energy minimum, we study the dis-
sipative dynamics of the FN using the coupled time-
dependent Ginzburg-Landau (TDGL) equations:

∂ψ

∂t
= −Γψ

δG[Q,M]

δψ
, (4)

where ψ denotes Q or M. The terms on the right of
Eq. (4) are the functional derivatives of the free energy

functional G[Q,M] [31, 32, 41]. This formulation ensures
the relaxation of the system to a stable fixed point via
the process of domain growth.

A dimensionless form of the TDGL equations can be
obtained by introducing the re-scaled variables Q = aQ′,
M = bM′, r = ζr′, t = ηt′. The appropriate values
of the scale factors are: a =

√
|A|/2B, b =

√
|α|/β,

ζ =
√
κ/|α|, η = Γ−1M

√
2B/A. We drop the primes to

obtain the dimensionless evolution equations:

1

Γ

∂q1
∂t

= ξ1
[
±3q1 − q23q1 + C̄(6q21 − 2q22 − 2q23 + q24 + q25)

+l∇2q1
]

+ c0(−M2
1 −M2

2 + 2M2
3 ), (5)

1

Γ

∂q2
∂t

= ξ1
[
±q2 − q2q2 + C̄(4q1q2 + q24 − q25) + l∇2q2

]
+c0(M2

1 −M2
2 ), (6)

1

Γ

∂q3
∂t

= ξ1
[
±q3 − q2q3 + C̄(−4q1q3 + 2q4q5) + l∇2q3

]
+2c0M1M2, (7)

1

Γ

∂q4
∂t

= ξ1
[
±q4 − q2q4 + C̄(2q1q4 + 2q2q4 + 2q3q5)

+l∇2q4
]

+ 2c0M1M3, (8)

1

Γ

∂q5
∂t

= ξ1
[
±q5 − q2q5 + C̄(2q1q5 − 2q2q5 + 2q3q4)

+l∇2q5
]

+ 2c0M2M3, (9)

∂M1

∂t
= ξ2

[
±M1 − |M|2M1 +∇2M1

]
+ c0[(q2 − q1)M1

+q3M2 + q4M3], (10)

∂M2

∂t
= ξ2

[
±M2 − |M|2M2 +∇2M2

]
+ c0[−(q1 + q2)M2

+q3M1 + q5M3], (11)

∂M3

∂t
= ξ2

[
±M3 − |M|2M3 +∇2M3

]
+ c0[2q1M3

+q4M1 + q5M2]. (12)

Here,

ξ1 =
2Aβ

α

√
A

2B
, ξ2 = α

√
2B

A
, C̄ =

C

2
√

2AB
,

l =
Lα

2Aκ
, c0 =

γµ0

2
, Γ =

αΓQ
βΓM

√
2B

A
,

q2 = 3q21 + q22 + q23 + q24 + q25 . (13)

The ± sign indicates whether the quench temperature
is below (+) or above (−) the critical temperature, say
TN and TM for the components Q and M, respectively.
In this paper, we will study the case with T < TN , TM .
Thus, we consider Eqs. (5)-(12), i.e., both Q and M pre-
fer the ordered state in the absence of coupling (c0 = 0).
The parameters ξ1 and ξ2 depend on the magnitudes of
Q and M, l is proportional to the relative elastic con-
stant, and C̄ determines the order of the transition. The
parameter c0 is the magneto-nematic coupling strength,
and Γ determines the relative time-scales for Q and M
during the evolution process. Eq. (13) provides the values
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n⊥M
n⊥M

(b)(a)

(c) (d)

FIG. 2. Nematic morphologies for the cases (a) c0 = 0, and
(b) c0 = −5 at t = 50. The regions are colored according to
the direction of n, as shown in the key. The snapshots in (c)
c0 = 0, and (d) c0 = −5 depict the regions corresponding to
n ⊥M and n 6⊥M.

of these re-scaled parameters in terms of the Landau co-
efficients, which depend on the material properties and
experimental conditions [30, 33]. Notice that different
combinations of these coefficients can lead to the same
values of the re-scaled parameters. For simplicity, we set
Γ = 1, C̄ = 1, and l = 1. Unless specified otherwise, the
results are presented for ξ1 = ξ2 = 1.

We have numerically solved Eqs. (5)-(12) using the Eu-
ler discretization method [42] to determine the evolution
of the nematic and magnetic components. The initial
fields Q(r, 0) and M(r, 0) consisted of small random fluc-
tuations about 0, corresponding to the high-temperature
disordered state for both fields. The discretization mesh
sizes ∆x = 1 and ∆t = 10−4 are used in our simula-
tion. Periodic boundary conditions were employed to
simulate the bulk behavior and remove edge effects. All
statistical results presented here are for the system size
N3 (N = 64), averaged over 10 independent runs de-
noted by 〈· · · 〉. The evolution of Eqs. (5)-(12) provides
{Qij} and Mi at all lattice points. The Q-tensor thus
obtained is symmetric and traceless, but not necessarily
diagonal. The physically relevant quantities n,k,S and
T can be obtained from Q, refer text following Eq. (1).

Starting with identical random initial conditions,
Fig. 2 shows evolution snapshots of the nematic morphol-
ogy (n) at t = 50 for (a) c0 = 0 and (b) c0 = −5. The
n-field has inversion symmetry, so the orientation at each
point on the cubic grid can be represented by one of the 4
colors shown in the key. The growth of domains is faster
in the uncoupled system as compared to the FN. Re-
call that the magneto-nematic coupling parameter γ < 0
coerces n to be perpendicular to M. The lower panel
again shows the n-field at t = 50 for (c) c0 = 0, and (d)
c0 = −5. In these sub-figures, regions with n ⊥ M are
identified as those where the dot product |n ·M| < 0.05.

(a)

(c)

(b)

(d)

c0=0 c0=-5

FIG. 3. Morphologies of the S-field for (a) c0 = 0, and (b)
c0 = −5.0 at t = 50. The regions are colored according to the
magnitude of S. The corresponding T -field is shown below in
(c) c0 = 0, and (d) c0 = −5.0.

In (c), both n and M undergo ordering but their relative
directions are not constrained. On the other hand, in (d)
the magneto-nematic coupling enforces n ⊥M.

B. Emergence of Biaxiality

Let us now demonstrate that the Q-field in Fig. 2 be-
comes biaxial when the coupling is introduced. Uniaxial
LCs have average orientational order along the (primary)
director n. Additional orientational order in the perpen-
dicular plane signifies the presence of yet another (sec-
ondary) director k leading to biaxiality in the system
[19]. In Figs. 3(a)-(b), we plot the order parameter S
of the n-field at t = 50 for c0 = 0,−5. The darker re-
gions in the snapshots denote regions with higher values
of S. Clearly, the n-field is significantly ordered in both
cases. In Figs. 3(c)-(d), we plot the corresponding order
parameter T of the k-field (secondary director). In this
case, we see that there is significant order only when the
magneto-nematic coupling is turned on.

Next, we estimate the average biaxiality parameter
〈T 〉. This is obtained by spatially averaging T (r, t) for
each run, and then averaging over independent runs.
Fig. 4(a) shows 〈T 〉 vs. t for different values of c0. For
the uncoupled limit c0 = 0, 〈T 〉 ' 0 after the initial tran-
sients, signifying relaxation to the uniaxial state. For
c0 < 0, 〈T 〉 grows and saturates to Ts at late times. (We
have checked this for values starting from c0 = −0.05.)
The saturation values are obtained from the fixed point
solutions Q∗ and M∗ of the TDGL equations. These can
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be obtained by first setting ∂/∂t = 0 and ∇2 = 0 in
Eqs. (5)-(12), and solving the coupled equations numeri-
cally via the Newton-Raphson method [42]. The relevant
equations are:

ξ1
[
±3q1 − q23q1 + C̄(6q21 − 2q22 − 2q23 + q24 + q25)

]
+c0(−M2

1 −M2
2 + 2M2

3 ) = 0, (14)

ξ1
[
±q2 − q2q2 + C̄(4q1q2 + q24 − q25)

]
+c0(M2

1 −M2
2 ) = 0, (15)

ξ1
[
±q3 − q2q3 + C̄(−4q1q3 + 2q4q5)

]
+2c0M1M2 = 0, (16)

ξ1
[
±q4 − q2q4 + C̄(2q1q4 + 2q2q4 + 2q3q5)

]
+2c0M1M3 = 0, (17)

ξ1
[
±q5 − q2q5 + C̄(2q1q5 − 2q2q5 + 2q3q4)

]
+2c0M2M3 = 0, (18)

ξ2
[
±M1 − |M|2M1

]
+ c0[(q2 − q1)M1

+q3M2 + q4M3] = 0, (19)

ξ2
[
±M2 − |M|2M2

]
+ c0[−(q1 + q2)M2

+q3M1 + q5M3] = 0, (20)

ξ2
[
±M3 − |M|2M3

]
+ c0[2q1M3

+q4M1 + q5M2] = 0. (21)

The dashed horizontal lines in Fig. 4(a) denote the
fixed-point values obtained numerically from Eqs. (14)-
(21). Next, we obtain the relation between Ts and the
magneto-nematic coupling strength. Fig. 4(b) shows the
variation of Ts vs. c0. Notice that Ts increases for small
c0 and then saturates for larger values of c0.

The small-c0 dependence of T for c0 < 0 can be ob-
tained analytically using a perturbative approach as fol-
lows. Let Q∗ = Q∗0 + ∆Q and M∗ = M∗

0 + ∆M, where
(Q∗0,M

∗
0) are the fixed points of the uncoupled equations

(c0 = 0). Without loss of generality, we use rotational
invariance to make the choice

Q∗0 =

−q∗1 0 0
0 −q∗1 0
0 0 2q∗1

 , M∗
0 = (1, 0, 0) , (22)

where

q∗1 =
2C̄ +

√
4C̄2 + 12

6
. (23)

This corresponds to n∗0 pointing along the z-axis, and
M∗

0 pointing along the +x-axis, i.e., n∗0 ⊥ M∗
0. Thus,

the base state for our expansion is only valid for c0 < 0.
For c0 > 0, a suitable base state would have n∗0 ‖ M∗

0.
The expressions for (∆Q,∆M), correct to O(c0), can be

obtained from Eqs. (14)-(21) with ξ1 = ξ2 = 1:

∆Q =


− (3 + 2C̄)c0

6C̄q∗1(1 + C̄q∗1)
0 0

0
(4C̄q∗1 + 3)c0

6C̄q∗1(1 + C̄q∗1)
0

0 0 − c0
3(1 + C̄q∗1)

 ,

∆M =

(
−c0q

∗
1

2
, 0, 0

)
. (24)

From the Q-tensor, the small-c0 dependence of S and
T can be obtained as

S =
(6 + 4C̄2)q∗1 + 2C̄ − c0

3(1 + C̄q∗1)
+O(c20), (25)

T = − 3(1 + C̄q∗1)c0
C̄q∗1(6q∗1 + 4C̄2q∗1 + 2C̄)

+O(c20). (26)

( We stress that Eqs. (25)-(26) are only valid for c0 < 0
due to our choice of the unperturbed state. For c0 > 0,
an exact numerical solution of Eqs. (14)-(21), where we
carefully consider all possible roots, shows that T = 0.)
The solid line in the inset of Fig. 4(b) denotes T vs. c0
from Eq. (26) with C̄ = 1. There is very good agreement
with the numerical results up to c0 ' −4.0.

T
 S

(i
i)

T
 

T
 S

c0t

(a) (b)

c0

FIG. 4. (a) Plot of the average biaxiality parameter, 〈T 〉
vs. t, for different values of c0. The dashed lines correspond
to the fixed-point values of T for c0 = −5,−10. (b) Plot of
saturation value of biaxiality parameter Ts vs. c0. The dashed
line denotes the fixed-point values of T , obtained numerically
from the TDGL equations. The inset shows the behavior for
small c0. The solid line denotes the result in Eq. (26) with
C̄ = 1.
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T
 

t
FIG. 5. Plot of average biaxiality parameter, 〈T 〉 vs. t, for
different values of positive c0.

We also demonstrate that the equilibrium morpholo-
gies for c0 > 0 are uniaxial in nature. In Fig. 5, we show
the time-dependence of the average biaxiality parameter
〈T 〉 for c0 = 2.0, 4.0, 6.0, evaluated from Eqs. (5)-(12).
The dashed line denotes the fixed-point value of T = 0,
obtained by a Newton-Raphson solution of Eqs. (14)-
(21). Clearly, 〈T 〉 → 0 at late times, confirming uniaxial
order for c0 > 0.

IV. SUMMARY AND DISCUSSION

To conclude, we have presented a framework that ex-
plains the emergence of biaxiality due to the magneto-
nematic coupling in nematic liquid crystals with mag-
netic inclusions or ferronematics. This topic has gener-
ated interest because of its potential application in the
multi-billion dollar LC display industry. Further excite-
ment has resulted after the benchmarking experiments
of Liu et al. [15], which demonstrated the emergence
of the elusive biaxial order in FNs. Our framework to
guide experiments in these unique systems with the twin

properties of magnetism and biaxiality is therefore very
timely. We have used coarse-grained Landau-de Gennes
free energies and a time-dependent Ginzburg-Landau for-
mulation to explore the free energy minima of this cou-
pled system. The different feature is the inclusion of a
coupling parameter c0 < 0 due to which the FN relaxes
to a state where n ⊥ M. This choice is crucial for the
emergence of biaxiality in our study, and is also consistent
with the experiments of Liu et al. [15]. Our formulation
provides a quantitative evaluation of biaxiality and its
dependence on the magneto-nematic coupling strength.
The latter, in principle, can be manipulated in the labo-
ratory. We hope that this quantification will enable more
systematic experiments.

In a related context, we also mention the earlier ex-
periments of Mertelj et al. which created the first stable
FN with enhanced magnetic response [18, 27, 28]. In the
Mertelj experiments, the equilibrium state of the FN had
n ‖ M. The work of Mertelj et al. formed the basis of
the experiments by Liu et al. Our theoretical formulation
with c0 > 0 mimics the key results of the experiments of
Mertelj et al. This choice promotes alignment of the ne-
matic and magnetic order parameters [27, 28]. However,
we emphasize that this class of systems shows uniaxial
behavior. Therefore, by manipulating model parameters,
our formulation allows for tailoring morphologies as well
as biaxiality. FNs are of great fundamental and tech-
nological interest, and much remains to be understood
regarding their equilibrium and non-equilibrium proper-
ties. Our study is a modest step in this direction. We
hope that it will provoke joint experimental and theoret-
ical investigations in this area.
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[11] K. Severing and K. Saalwächter, Phys.l Rev. Lett. 92,
125501 (2004).

[12] K. Merkel, A. Kocot, J. Vij, R. Korlacki, G. Mehl, and
T. Meyer, Phys. Rev. Lett. 93, 237801 (2004).

[13] B. R. Acharya, A. Primak, and S. Kumar, Phys. Rev.
Lett. 92, 145506 (2004).

[14] J. H. Lee, T. K. Lim, W. T. Kim, and J. I. Jin, J Appl.
Phys. 101, 034105 (2007).

[15] Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Sma-
lyukh, PNAS 113, 10479 (2016).

[16] F. Brochard and P. G. de Gennes, J. Phys. 31, 691
(1970).



7

[17] A. Mertelj and D. Lisjak, Liq. Cryst. Rev. 5, 1 (2017).
[18] A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, Nature
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