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Bounds for DP color function and canonical labelings

Ziqing Li∗ Yan Yang†

Abstract

The DP-coloring is a generalization of the list coloring, introduced by Dvořák and

Postle. Let H = (L,H) be a cover of a graph G and PDP (G,H) be the number

of H-colorings of G. The DP color function PDP (G,m) of G, introduced by Kaul

and Mudrock, is the minimum value of PDP (G,H) where the minimum is taken over

all possible m-fold covers H of G. For the family of n-vertex connected graphs, one

can deduce that trees maximize the DP color function, from two results of Kaul and

Mudrock. In this paper we obtain tight upper bounds for the DP color function of

n-vertex 2-connected graphs. Another concern in this paper is the canonical labeling

in a cover. It is well known that if an m-fold cover H of a graph G has a canonical

labeling, then PDP (G,H) = P (G,m) in which P (G,m) is the chromatic polynomial

of G. However the converse statement of this conclusion is not always true. We give

examples that for some m and G, there exists an m-fold cover H of G such that

PDP (G,H) = P (G,m), but H has no canonical labelings. We also prove that when G

is a unicyclic graph or a theta graph, for each m ≥ 3, if PDP (G,H) = P (G,m), then

H has a canonical labeling.

Keywords: DP-coloring; DP color function; 2-connected graph; ear decomposition;

canonical labeling.
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1 Introduction

All graphs considered in this paper are finite and simple. The set of natural numbers is

N = {1, 2, 3, . . . }. For m ∈ N, let [m] = {1, . . . , m}. For any graph G, let V (G) and E(G)

be its vertex set and edge set respectively. For any v ∈ V (G), let NG(v) denote the set of
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neighbors of v in G and dG(v) denote the degree of v in G. A proper m-coloring of G is a

mapping c : V (G) → [m] such that c(u) 6= c(v) whenever uv ∈ E(G). In 1912, Birkhoff [3]

introduced a function P (G,m) which counts the number of proper m-colorings of G, it is a

polynomial in m and called chromatic polynomial of G. The book by Dong, Koh and Teo [4]

gives an overview for chromatic polynomial problems.

Since it is difficult to get a simple expression for the chromatic polynomial of an arbitrary

graph, the bounds for the chromatic polynomials of graphs are of particular interest. For

n-vertex connected graphs, the upper bound for their chromatic polynomials can be found

in [4].

Theorem 1.1 ([4], Theorem 15.3.2). Let G be a connected graph with n vertices. Then for

all m ∈ N,

P (G,m) ≤ m(m− 1)n−1,

where equality holds for m ≥ 3 if and only if G is a tree.

For the family of 2-connected graphs, Tomescu obtained the following result.

Theorem 1.2 ([21], Theorem 2.1). Let G be a 2-connected graph with n vertices, where

n ≥ 3. Then for all m ∈ N with m ≥ 3,

P (G,m) ≤ (m− 1)n + (−1)n(m− 1),

where equality holds if and only if G ∼= Cn; or G ∼= K(2, 3) for the case that n = 5 and

m = 3.

In [10], Felix gave a survey on the upper bounds for the chromatic polynomials of graphs

of given order and size. Recently, some authors focus on the upper bounds for the chromatic

polynomials of n-vertex graphs with chromatic number k, they obtained some inspired re-

sults, see [7, 8, 9, 11, 16, 17] for example.

In this paper we obtain analogous results to that in Theorems 1.1 and 1.2, in the context

of DP-coloring. The DP-coloring (also called corresponding coloring) is a generalization of

the list coloring, introduced by Dvořák and Postle [6].

Definition 1.3 ([6]). Let G be a graph. If X, Y ⊆ V (G), we use G[X ] for the subgraph of

G induced by X , and we use EG(X, Y ) for the subset of E(G) with one endpoint in X and

one endpoint in Y . Given a set S, P(S) is the power set of S.

• A cover of a graph G is a pair H = (L,H) consisting of a graph H and a function

L : V (G) → P(V (H)) satisfying the following four requirements:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H);
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(2) for every u ∈ V (G), the graph H [L(u)] is complete;

(3) if EH(L(u), L(v)) is nonempty, then u = v or uv ∈ E(G);

(4) if uv ∈ E(G), then EH(L(u), L(v)) is a matching (the matching may be empty).

• A cover H = (L,H) is m-fold if |L(u)| = m for each u ∈ V (G), and H is full if for

each uv ∈ E(G), EH(L(u), L(v)) is a perfect matching.

• An H-coloring of G is an independent set in H of size |V (G)|.

• The DP-chromatic number of G, denoted by χDP (G), is the smallest m ∈ N such that

G admits an H-coloring for every m-fold cover H of G.

In 2021, Kaul and Mudrock [14] gave the definition of DP color function.

Definition 1.4 ([14]). Let H = (L,H) be a cover of a graph G. We denote PDP (G,H) the

number of H-colorings of G. The DP color function of G, denoted by PDP (G,m), is the

minimum value of PDP (G,H) where the minimum is taken over all possible m-fold covers H

of G.

By the definition of chromatic polynomial and DP color function, PDP (G,m) ≤ P (G,m)

holds for any graph G and m ∈ N. Let H = (L,H) be an m-fold cover of a graph G. We

say that H has a canonical labeling if it is possible to name the vertices of H so that L(u) =

{(u, j) : j ∈ [m]} for each u ∈ V (G) and (u, j)(v, j) ∈ E(H) for each j ∈ [m] whenever

uv ∈ E(G). It is well known that if H has a canonical labeling, then PDP (G,H) = P (G,m)

holds for each m ∈ N. So there is a natural question as following.

Question 1.5. Suppose thatH = (L,H) is a fullm-fold cover of a graphG and PDP (G,H) =

P (G,m). Does H have a canonical labeling?

By finding two examples, we give a negative answer to this question. But, considering

our examples are only for some small m, we have the following question.

Question 1.6. Suppose that H = (L,H) is a full m-fold cover of a graph G, does there exist

some M ∈ N such that for each m ≥ M , if PDP (G,H) = P (G,m), then H has a canonical

labeling?

Question 1.6 is closely related to (but not equivalent to) the Problem 3 in [5]. In order to

compare DP color functions with chromatic polynomials, Dong and Yang [5] defined a class

of graphs called DP∗. It denotes the set of graphs G for which there exists M ∈ N such that

for every m-fold cover H = (L,H) of G, if H has no canonical labelings, then PDP (G,H) >

P (G,m) holds for all m ≥ M . Then, for each graph G ∈ DP∗, PDP (G,m) = P (G,m) holds

when m ≥ M . And they posed the following question, i.e., the Problem 3 in [5].
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Question 1.7 ([5]). For a graph G, is it true that if there exists an M ∈ N such that

PDP (G,m) = P (G,m) holds for all m ≥ M , then G ∈ DP∗ ?

In [5], some types of graphs have been proved belonging to DP∗. For example, if a

graph G contains a spanning tree T such that for each e ∈ E(G) \ E(T ), ℓ(e) is odd and e

is contained in a cycle C of length ℓ(e) with the property that ℓ(e′) < ℓ(e) holds for each

e′ ∈ E(C) \ (E(T ) ∪ {e}), then G ∈ DP∗, where ℓ(e) = ∞ if e is a bridge of G, and ℓ(e)

is the length of a shortest cycle in G containing e otherwise. By the definition of DP∗, we

have the following result.

Proposition 1.8. If a graph G ∈ DP∗, then there exists an M ∈ N such that for any full

m-fold cover H of G with PDP (G,H) = P (G,m), where m ≥ M , H has a canonical labeling.

In Section 2, we obtain tight upper bounds for the DP color function of n-vertex 2-

connected graphs, and give two new proofs for the upper bounds for the DP color function

of n-vertex connected graphs. In Section 3, we give two examples that PDP (G,H) = P (G,m)

but H has no canonical labelings, and also give positive answers to Question 1.6 for unicyclic

graphs and theta graphs.

We also note that Kaul, Mudrock, and their coauthors obtain lots of results on DP color

function, see [2, 12, 15, 13, 19, 18] for example, they study the asymptotics of P (G,m) −

PDP (G,m) for a fixed graph G, they develop techniques to evaluate PDP (G,m) for some

classes of graphs such as chordal graphs, unicyclic graphs, theta graphs, Cartesian product

graphs, joint graphs, vertex-gluings graphs, and clique-gluings graphs, etc. Zhang and Dong

[23] give some sufficient conditions for graphs belong to DP≈ (DP<, respectively) where

DP≈ (DP<, respectively) is the set of graphs G for which there exists an M ∈ N such that

PDP (G,m) = P (G,m) (PDP (G,m) < P (G,m), respectively) holds for all m ≥ M . Their

results extend Dong and Yang’s results in [5].

2 Bounds for DP color function of 2-connected graphs

In [14], the authors obtained an upper bound for the DP color function of an arbitrary graph,

by using a probabilistic argument.

Lemma 2.1 ([14]). For any graph G and all m ∈ N,

PDP (G,m) ≤
m|V (G)|(m− 1)|E(G)|

m|E(G)|
.

For a connected graph, Kaul and Mudrock [14] gave the following result.
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Lemma 2.2 ([14]). For any connected graph G and all m ∈ N,

PDP (G,m) =
m|V (G)|(m− 1)|E(G)|

m|E(G)|

if and only if G is a tree.

Combining Lemmas 2.1 and 2.2, one can obtain the following result easily.

Theorem 2.3. Let G be a connected graph with n vertices. Then for all m ∈ N,

PDP (G,m) ≤ m(m− 1)n−1

where equality holds for m ≥ 2 if and only if G is a tree.

By considering the effect of the edge or vertex deletion on the DP color function, we will

give two new proofs for Theorem 2.3.

Theorem 2.4. Let G be a graph with n vertices and u, v be two distinct vertices in V (G)

with uv 6∈ E(G). If G′ = G+ {uv}, then for all m ∈ N,

PDP (G
′, m) ≤ PDP (G,m)

m− 1

m
.

Proof. Suppose that H = (L,H) is an arbitrary full m-fold cover of G. Let L′ = L and

H ′ = H + E(L(u), L(v)) where E(L(u), L(v)) is a perfect matching between L(u) and L(v)

chosen uniformly at random from the m! possible perfect matchings, then H′ = (L′, H ′) is a

full m-fold cover of G′. Let t = PDP (G,H) and I = {I1, . . . , It} be the set of all H-colorings

of G.

For each i ∈ [t], let Ei be the event that Ii is also an H′-coloring of G′. When Ii ∩ L(u)

is not adjacent to Ii ∩ L(v) in H ′, the event Ei occurs, so

Pr[Ei] = 1−
1

m
.

Let Xi be the random variable that is one if Ei occurs and zero otherwise. Let X =
∑t

i=1Xi,

then X is the random variable which equals PDP (G
′,H′). By the linearity of expectation,

the expectation of X is

E[X ] =

t
∑

i=1

E[Xi] = PDP (G,H)(1−
1

m
).

Then, combining the arbitrariness of H = (L,H), we have

PDP (G
′, m) ≤ PDP (G,m)

m− 1

m
.

The proof is complete.
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Corollary 2.5. Let G be a graph with n vertices and u, v be two distinct vertices in V (G)

with uv 6∈ E(G). If G′ = G+ {uv}, then for all m ∈ N and m ≥ max{2, χDP (G)},

PDP (G
′, m) < PDP (G,m).

Proof. When m ≥ max{2, χDP (G)}, we have 0 < 1 − 1/m < 1 and PDP (G,m) > 0, the

corollary is straightforward from Theorem 2.4.

By using Corollary 2.5, we give a new proof of Theorem 2.3 as follow.

Proof. (proof of Theorem 2.3) Let T be a spanning tree ofG, then PDP (T,m) = m(m−1)n

for all m ∈ N. From Proposition 2.3 in [1], χDP (G) ≤ 2 if and only if G is a tree. We discuss

the two cases as follow.

Case 1 |E(T )| = |E(G)|. In this case, G ∼= T , PDP (G,m) = m(m− 1)n−1 for all m ∈ N.

Case 2 |E(T )| < |E(G)|. In this case G is not a tree, so max{2, χDP (G)} = χDP (G) ≥ 3.

When m ≥ χDP (G), then PDP (G,m) < PDP (T,m) from Corollary 2.5. When 2 ≤ m <

χDP (G), then PDP (G,m) = 0 < m(m − 1)n−1. When m = 1, then PDP (G,m) = 0 ≤

m(m− 1)n−1.

Summarizing the above, the theorem follows.

Theorem 2.6. Let G be a graph with n vertices, w ∈ V (G) and dG(w) = d, then for all

m ∈ N,

PDP (G,m) ≤ m(1−
1

m
)dPDP (G− {w}, m).

Proof. Suppose that H′ = (L′, H ′) is an arbitrary full m-fold cover of G−{w}, and NG(w) =

{v1, . . . , vd}. Let L(x) = L′(x) for all x ∈ V (G − {w}), L(w) = {(w, i) : i ∈ [m]}, and

E(H) = E(H ′) ∪ (∪d
i=1EH(L(w), L(vi))) where for each i ∈ [d], EH(L(w), L(vi)) is a perfect

matching between L(w) and L(vi) chosen uniformly at random from the m! possible perfect

matchings for each i ∈ [d], then H = (L,H) is a full m-fold cover of G. Let Ω be the family

of all H = (L,H).

Let t = PDP (G−{w},H′) and I ′ = {I ′1, . . . , I
′
t} be the set of all H′-colorings of G−{w}.

In H , we denote X(I ′i) the number of vertices in L(w) that is not adjacent to any vertices

in I ′i, then

PDP (G,H) =

t
∑

i=1

X(I ′i).

Notice that dG(w) = d, for each vertex u ∈ L(w), in H the probability that u is not adjacent

to any vertices in I ′i is (1−
1
m
)d, so

EH∈Ω[X(I ′i)] = m(1−
1

m
)d.
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Then, by the linearity of expectation, we have

EH∈Ω[PDP (G,H)] =
t

∑

i=1

EH∈Ω[X(I ′i)] = m(1−
1

m
)dPDP (G− {w},H′).

Finally, combining the arbitrariness of H′ = (L′, H ′), we have

PDP (G,m) ≤ m(1−
1

m
)dPDP (G− {w}, m).

The proof is complete.

By using Theorem 2.6, we give a new proof of Lemma 2.1, along with another new proof

of Theorem 2.3 as follows.

Proof. (Another proof of Theorem 2.3) Let V (G) = {v1, . . . , vn}, Gn = G, Gi = Gi+1 −

{vi+1} where i ∈ [n− 1], then G1 is a graph with one vertex and no edges. By Theorem 2.6,

for each i ∈ [n− 1], we have

PDP (Gi, m) ≤ m(1−
1

m
)diPDP (Gi−1, m),

in which di = dGi
(vi). Then,

PDP (G,m) ≤ mn−1(1−
1

m
)
∑

n

i=2
diPDP (G1, m) = mn(1−

1

m
)
∑

n

i=1
di .

For
∑n

i=1 di = |E(G)|, we have

PDP (G,m) ≤
m|V (G)|(m− 1)|E(G)|

m|E(G)|
.

If G is a connected graph with n vertices, then | E(G) |≥ n − 1, with equality holds if

and only if G is a tree. Hence

PDP (G,m) ≤ m(m− 1)n−1,

combining with that χDP (G) ≤ 2 if and only if G is a tree, the proof is complete.

Next we focus on the upper bounds of DP color function for 2-connected graphs.

An ear of a graph G is a maximal path whose internal vertices have degree 2 in G. An

ear decomposition of G is a decomposition Q0, . . . , Qk such that Q0 is a cycle and Qi for

i ≥ 1 is an ear of Q0 ∪ · · · ∪Qi−1. It is well known that every 2-connected graph has an ear

decomposition.
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Theorem 2.7 ([22], Theorem 4.2.8). A graph is 2-connected if and only if it has an ear

decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in some

ear decomposition.

In order to get the upper bound for the DP color function of 2-connected graphs, we

first consider the DP color function of the graph obtained by adding an ear to a graph, then

combine it with the ear decomposition of 2-connected graphs, the result follows.

Theorem 2.8. Let G be a graph with n vertices and u, v be two distinct vertices in V (G).

If G′ is a graph obtained by adding an ear uw1 . . . wlv of length l + 1 (l ≥ 0) to G, then for

all m ∈ N,

PDP (G
′, m) ≤ PDP (G,m)

(m− 1)l+1

m
.

Proof. When l = 0, the result follows from Theorem 2.4. We assume l ≥ 1 in the following.

Suppose that H = (L,H) is an arbitrary full m-fold cover of G in which L(x) = {(x, i) :

i ∈ [m]} for each x ∈ V (G). Let G∗ = G′ − {wlv}, i.e., the graph G∗ is obtained by

adding a path P = uw1 . . . wl to G. Let L∗(x) = L(x) for each x ∈ V (G∗) − {w1, . . . , wl},

L∗(x) = {(x, i) : i ∈ [m]} for each x ∈ {w1, . . . , wl}, and

H∗ = H + E(L∗(u), L∗(w1)) +

l−1
∑

i=1

E(L∗(wi), L
∗(wi+1))

where E(L∗(u), L∗(w1)) (E(L∗(wi), L
∗(wi+1)), respectively) is a perfect matching between

L∗(u) and L∗(w1) (L
∗(wi) and L∗(wi+1), respectively) chosen uniformly at random from all

possible perfect matchings, then H∗ = (L∗, H∗) is a full m-fold cover of G∗.

From Proposition 21 in [14] and Lemma 19 in [2], one can get that

PDP (G
∗,H∗) = PDP (G,H)(m− 1)l.

From the arbitrariness of H = (L,H), we have

PDP (G
∗, m) = PDP (G,m)(m− 1)l.

Because G′ = G∗ + {wlv} and Theorem 2.4, we have

PDP (G
′, m) ≤ PDP (G

∗, m)
m− 1

m
= PDP (G,m)

(m− 1)l+1

m
.

The proof is completed.

In [14], Kaul and Mudrock computed the DP color function of the unicyclic graph (i.e.,

a connected graph containing exactly one cycle) with n vertices, so the DP color function of

the cycle with n vertices can be deduced.
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Lemma 2.9 ([14], Theorem 11). Let Cn be the cycle with n vertices.

(i) If n is odd, then for all m ∈ N,

PDP (Cn, m) = (m− 1)n − (m− 1).

(i) If n is even, then for all m ∈ N and m ≥ 2,

PDP (Cn, m) = (m− 1)n − 1.

Now we are ready to get a tight upper bound for the DP color function of 2-connected

graphs.

Theorem 2.10. Let G be a 2-connected graph with n vertices and G0 be a cycle of length l0
in G.

(i) If G0 is an odd cycle, then for all m ∈ N and m ≥ 3

PDP (G,m) ≤ (m− 1)n − (m− 1)n−l0+1,

where equality holds if and only if G ∼= G0.

(ii) If G0 is an even cycle, then for all m ∈ N and m ≥ 3,

PDP (G,m) ≤ (m− 1)n − (m− 1)n−l0,

where equality holds if and only if G ∼= G0.

Proof. Since G is a 2-connected graph, G contains a cycle, and the DP-chromatic number

of a cycle is three. From Theorem 2.7, G has an ear decomposition Q0, . . . , Qk such that

Q0
∼= G0 is the cycle of length l0 and Qi is an ear of Q0 ∪ · · · ∪Qi−1 for i ≥ 1. Suppose that

ear Qi has length li + 1 (li ≥ 0) for 1 ≤ i ≤ k, then we have
∑k

i=0 li = n.

By Theorems 2.8 and Lemma 2.9, if G0 is an odd cycle,

PDP (G,m) ≤ PDP (G0, m)

k
∏

i=1

(m− 1)li+1

m

=
(

(m− 1)l0 − (m− 1)
)(m− 1)n−l0+k

mk

=
(m− 1)n+k − (m− 1)n−l0+k+1

mk

≤
(m− 1)n+k − (m− 1)n−l0+k+1

(m− 1)k

= (m− 1)n − (m− 1)n−l0+1,
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where the next to the last equalities hold if and only if k = 0, i.e., G ∼= G0 is an n-vertex

odd cycle. With a similar argument, if G0 is an even cycle,

PDP (G,m) ≤ PDP (G0, m)
k
∏

i=1

(m− 1)li+1

m

=
(

(m− 1)l0 − 1
)(m− 1)n−l0+k

mk

=
(m− 1)n+k − (m− 1)n−l0+k

mk

≤
(m− 1)n+k − (m− 1)n−l0+k

(m− 1)k

= (m− 1)n − (m− 1)n−l0,

where equality holds if and only if G ∼= G0 is an n-vertex even cycle. The proof is completed.

Theorem 2.11. Let G be a 2-connected graph with n vertices.

(i) If n is odd, then for all m ∈ N and m ≥ 3,

PDP (G,m) ≤ (m− 1)n − (m− 1),

where equality holds if and only if G is an odd cycle with n vertices.

(ii) If n is even, then for all m ∈ N and m ≥ 3,

PDP (G,m) ≤ (m− 1)n − 1,

where equality holds if and only if G is an even cycle with n vertices.

Proof. Because every 2-connected graph contains a cycle, the theorem follows from Theorem

2.10.

3 Canonical labelings of H

We begin this section by giving examples which gives negative answer to Question 1.5. Next

we introduce some conclusions in [14] that will be used in our later proof, then we give

positive answer to Question 1.6 for two types of graphs.

Let G and H be two vertex disjoint graphs, the join G∨H of G and H is obtained from

G ∪H by joining every vertex of G to every vertex of H . The join Cn ∨K1 of a cycle with

n vertices Cn and a single vertex is called a wheel with n spokes and denoted Wn. A theta

graph θ(r, s, t) (r ≥ 1, s, t ≥ 2) is a graph obtained by joining two vertices by three internally

disjoint paths of lengths r, s and t. For the wheel graph, unicyclic graph, cycle graph and

theta graph, their chromatic polynomials can be found in [4].
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Lemma 3.1 ([4]). (i) For the wheel Wn (n ≥ 3),

P (Wn, m) = m((m− 2)n + (−1)n(m− 2)).

(ii) For a unicyclic graph G with n vertices containing a cycle Ci (i ≥ 3),

P (G,m) = (m− 1)n + (−1)i(m− 1)n−i+1.

(iii) For the n-cycle Cn (n ≥ 3),

P (Cn, m) = (m− 1)n + (−1)n(m− 1).

(iv) For the theta graph θ(r, s, t) (r ≥ 1, s, t ≥ 2),

P (G,m) =
(m− 1)r+s+t + (−1)s+t(m− 1)r+1 + (−1)r+t(m− 1)s+1

m

+
(−1)r+s(m− 1)t+1 + (−1)r+s+t(m− 1)2 + (−1)r+s+t+1(m− 1)

m
.

In a cover H = (L,H) of a graph G, the cross-edges are the edges of H connecting

distinct parts of the partition {L(v) : v ∈ V (G)}, we denote Ec the set of all cross-edges in

H , and denote H [Ec] the edge-induced subgraph of H induced by Ec.

Example 3.2. Let H1 = (L1, H1) be a 3-fold cover of W4, V (W4) = {x, y, z, u, v} and

L1(w) = {(w, i) : i ∈ [3]} for each w ∈ V (W4). If H1[Ec] is the graph as shown in Figure 1,

then PDP (W4,H1) = P (W4, 3) = 6. We list all H1-colorings as follows,

{(x, 1), (u, 2), (y, 3), (v, 2), (z, 2)}, {(x, 2), (u, 1), (y, 3), (v, 1), (z, 1)},

{(x, 3), (u, 1), (y, 2), (v, 1), (z, 1)}, {(x, 1), (u, 3), (y, 2), (v, 3), (z, 3)},

{(x, 2), (u, 3), (y, 1), (v, 3), (z, 3)}, {(x, 3), (u, 2), (y, 1), (v, 2), (z, 2)}.

But clearly H1 has no canonical labelings.

Example 3.3. Let H2 = (L2, H2) be a 4-fold cover of W4, V (W4) = {x, y, z, u, v} and

L2(w) = {(w, i) : i ∈ [4]} for each w ∈ V (W4). If H2[Ec] is the graph as shown in Figure 2,

then PDP (W4,H2) = P (W4, 4) = 72. We list 18 of them that are all H2-colorings containing

11



(x, 1) as follows,

{(x, 1), (u, 2), (y, 3), (v, 2), (z, 1)}, {(x, 1), (u, 2), (y, 3), (v, 2), (z, 4)},

{(x, 1), (u, 2), (y, 3), (v, 4), (z, 1)}, {(x, 1), (u, 2), (y, 3), (v, 4), (z, 2)},

{(x, 1), (u, 2), (y, 4), (v, 2), (z, 1)}, {(x, 1), (u, 2), (y, 4), (v, 3), (z, 1)},

{(x, 1), (u, 2), (y, 4), (v, 3), (z, 2)}, {(x, 1), (u, 3), (y, 2), (v, 3), (z, 1)},

{(x, 1), (u, 3), (y, 2), (v, 4), (z, 1)}, {(x, 1), (u, 3), (y, 2), (v, 4), (z, 3)},

{(x, 1), (u, 3), (y, 4), (v, 2), (z, 1)}, {(x, 1), (u, 3), (y, 4), (v, 2), (z, 3)},

{(x, 1), (u, 3), (y, 4), (v, 3), (z, 1)}, {(x, 1), (u, 3), (y, 4), (v, 3), (z, 2)},

{(x, 1), (u, 4), (y, 2), (v, 3), (z, 4)}, {(x, 1), (u, 4), (y, 2), (v, 4), (z, 3)},

{(x, 1), (u, 4), (y, 3), (v, 2), (z, 4)}, {(x, 1), (u, 4), (y, 3), (v, 4), (z, 2)}.

But H2 has no canonical labelings.

(x, 1) (x, 2) (x, 3)

(u, 1) (u, 2) (u, 3)

(y, 1) (y, 2) (y, 3)

(v, 1) (v, 2) (v, 3)

(z, 1) (z, 2) (z, 3)

Figure 1: The subgraph H1[Ec].

We note that in the above two examples m = 3 or 4, and we can’t extend m to larger

one for the graph W4. So we consider whether Question 1.6 has a positive answer for each

graph. In fact, there are some types of graphs, for which Question 1.6 has a positive answer.

Proposition 3.4 ([14]). If T is a tree and H = (L,H) is a full m-fold cover of T where

m ≥ 1, then H has a canonical labeling.

12



(x, 1) (x, 2) (x, 3) (x, 4)

(u, 1) (u, 2) (u, 3) (u, 4)

(y, 1) (y, 2) (y, 3) (y, 4)

(v, 1) (v, 2) (v, 3) (v, 4)

(z, 1) (z, 2) (z, 3) (z, 4)

Figure 2: The subgraph H2[Ec].

In the following, we find two more examples to affirm Question 1.6.

Lemma 3.5 ([14]). Let G be a graph with e = uv ∈ E(G). For each (i, j) ∈ [m] × [m], let

C
(i,j)
m be the set of proper m-coloring of G− {e} that color u with i and v with j. Then,

(i) there is an r ∈ N such that |C
(i,i)
m | = r for each i ∈ [m].

(ii) there is a t ∈ N such that |C
(i,j)
m | = t whenever i 6= j and i, j ∈ [m].

Consequently, mr = P (G− {e}, m)− P (G,m) and m(m− 1)t = P (G,m).

From Lemma 3.5 and the definition of canonical labeling, we obtain the following lemma.

Lemma 3.6. Let G be a graph and H = (L,H) be a full m-fold cover of G with m ≥ 2.

Suppose e ∈ E(G) and e = uv. Let H ′ = H − EH(L(u), L(v)) so that H′ = (L,H ′) is a full

m-fold cover of G− {e}. For each (i, j) ∈ [m]× [m], let H′
(i,j) be the set of H′-coloring that

contain (u, i) and (v, j). If H′ has a canonical labeling, then we have

(i) when i = j,

|H′
(i,j)| =

P (G− {e}, m)− P (G,m)

m
;

(ii) when i 6= j,

|H′
(i,j)| =

P (G,m)

m(m− 1)
.

Furthermore, suppose P = {(i, j) : (u, i)(v, j) ∈ EH(L(u), L(v))}, then

PDP (G,H) = PDP (G
′,H′)−

∑

(i,j)∈P

|H′
(i,j)|.

13



Lemma 3.7 ([14]). Let G be a graph and H = (L,H) be a full m-fold cover of G with m ≥ 3.

Suppose α1α2α3 is a path of length two in G and α1α3 /∈ E(G). Let e1 = α1α2, e2 = α2α3.

Then, let G0 = G−{e1, e2}, G1 = G−{e1}, G2 = G−{e2}, and G∗ be the graph obtained from

G by adding an edge between α1 and α3. Let H
′ = H−(EH(L(α1), L(α2))∪EH(L(α2), L(α3)))

so that H′ = (L,H ′) is an m-fold cover of G0. Suppose that H′ has a canonical labeling. Let

A1 = P (G0, m)− P (G,m),

A2 = P (G0, m)− P (G2, m) +
1

m− 1
P (G,m),

A3 = P (G0, m)− P (G1, m) +
1

m− 1
P (G,m),

A4 =
1

m− 1
(P (G1, m) + P (G2, m) + P (G∗, m)− P (G,m)), and

A5 =
1

m− 1
(P (G1, m) + P (G2, m)−

1

m− 2
P (G∗, m)).

Then,

PDP (G,H) ≥ P (G0, m)−max{A1, A2, A3, A4, A5}.

Moreover, there exists an m-fold cover of G, H∗, such that

PDP (G,H∗) = P (G0, m)−max{A1, A2, A3, A4, A5}.

From Lemma 3.7 and its proof in [14], we get Lemma 3.8.

Lemma 3.8. Under the condition of Lemma 3.7. Let H ′′ be the graph with V (H ′′) =
⋃3

i=1 L(αi) and E(H ′′) = EH(L(α1), L(α2)) ∪ EH(L(α2), L(α3)). Clearly H ′′ can be de-

composed into m vertex disjoint paths on three vertices. Take any one of m paths, let it

be (α1, i)(α2, j)(α3, k) where i, j, k ∈ [m], then we have five cases for i, j, k, that are (1)

i = j = k, (2) i = j and j 6= k, (3) i 6= j and j = k, (4) i 6= j and i = k, (5) i, j ,k

are pairwise distinct. Let H′
(i,j,k) be the set of H′-coloring that contains at least one edge of

the path (α1, i)(α2, j)(α3, k). Then |H′
(i,j,k)| = Aq/m when i, j, k satisfy case q, (1 ≤ q ≤ 5).

Furthermore, we suppose that for q ∈ [5], there are mq paths of case q in the m paths. Then
∑5

q=1mq = m and

PDP (G,H) = P (G0, m)−
1

m

5
∑

q=1

mqAq.

Theorem 3.9. Let G be a unicyclic graph with n vertices containing a cycle C on g vertices

where g ≥ 3 and H = (L,H) be a full m-fold cover of G. For each m ≥ 2, if PDP (G,H) =

P (G,m), then H has a canonical labeling.

14



Proof. Suppose e ∈ E(C) and e = uv. Let G′ = G − {e} and H′ = (L,H ′) where H ′ =

H − EH(L(u), L(v)). Then, G
′ is a tree and H′ is a full m-fold cover of G′. Proposition 3.4

implies that H′ has a canonical labeling. Let P = {(i, j) : (u, i)(v, j) ∈ EH(L(u), L(v))},

P1 = {(i, j) ∈ P and i = j}, and P2 = {(i, j) ∈ P and i 6= j}. Suppose that |P2| = t, then

|P1| = m− t. By Lemma 3.6, we have that for m ≥ 2

PDP (G,H) = PDP (G
′,H′)−

∑

(i,j)∈P

|H′
(i,j)|

= P (G′, m)− t
P (G,m)

m(m− 1)
− (m− t)

P (G′, m)− P (G,m)

m
.

For P (G,m) = (m− 1)n + (−1)g(m− 1)n−g+1 and P (G′, m) = m(m− 1)n−1, we have

PDP (G,H) = (m− 1)n + (−1)g(m− t− 1)(m− 1)n−g.

If PDP (G,H) = P (G,m), then t = 0 which implies H is a canonical labeling.

Theorem 3.10. Let G = θ(r, s, t) (r ≥ 1, s, t ≥ 2) and H = (L,H) be a full m-fold cover of

G. For each m ≥ 3, if PDP (G,H) = P (G,m), then H has a canonical labeling.

Proof. Let α2 be one of the common ends of the three paths of G, let α1 and α3 be the

vertices in the path of length s and t respectively, that are adjacent to α2. Clearly α1α2α3

is a path of length two in G and α1α3 6∈ E(G). We define e1, e2, G0, G1, G2, G
∗,H′, H ′′ and

mq(1 ≤ q ≤ 5) as they are defined in the statement of Lemmas 3.7 and 3.8.

Then G0 is a tree and H′ = (L,H ′) is a full m-fold cover of G0. By Proposition 3.4, H′

has a canonical labeling. So we can name the vertices of H so that L(x) = {(x, j) : j ∈ [m]}

for each x ∈ V (H) and (x, j)(y, j) ∈ E(H) for each j ∈ [m] whenever xy ∈ E(G0).

By computing, we get that

P (G0, m) = m(m− 1)r+s+t−2, (1)

P (G1, m) = (m− 1)r+s+t−1 + (−1)r+t(m− 1)s, (2)

P (G2, m) = (m− 1)r+s+t−1 + (−1)r+s(m− 1)t, (3)

P (G∗, m) =

{

P (G,m)− P (θ(r + 1, s− 1, t− 1), m), when s ≥ 3 or t ≥ 3;

P (G,m)− P (Cr+2, m), when s = t = 2.
(4)
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By Lemmas 3.8 and 3.7, we have that

PDP (G,H) = P (G0, m)−
1

m

5
∑

q=1

mqAq

=
m−m1 −m2 −m3

m
P (G0, m) +

(m− 1)m1 −m2 −m3 +m4

m(m− 1)
P (G,m)

+
(m− 1)m3 −m4 −m5

m(m− 1)
P (G1, m) +

(m− 1)m2 −m4 −m5

m(m− 1)
P (G2, m)

+
m5 − (m− 2)m4

m(m− 1)(m− 2)
P (G∗, m). (5)

For simplicity, we let u = m− 1. Then combining equations (1)-(5) with Lemma 3.1(iv),

we have that when s ≥ 3 or t ≥ 3,

PDP (G,H) =
ur+s+t+1 + ur+s+t + (−1)r+t(us+2 + us+1) + (−1)s+t(ur+2 + ur+1)

(u+ 1)2

+
(−1)r+s(ut+2 + ut+1) + (−1)r+t+1(m2 +m4 +m5)(u

s+1 + us)

(u+ 1)2

+
(−1)s+t+1(m2 +m3 +m5)(u

r+1 + ur) + (−1)r+s+1(m3 +m4 +m5)(u
t+1 + ut)

(u+ 1)2

+
(−1)r+s+tu3 + (−1)r+s+t+1(m2 +m3 +m4 +m5)u

2

(u+ 1)2

+
(−1)r+s+t(m5 − 1)u+ (−1)r+s+t(m2 +m3 +m4 + 2m5)

(u+ 1)2
; (6)

when s = t = 2,

PDP (G,H) =
ur+6 − ur+4 + ur+3 − ur+1 − (m2 +m3 +m5)(u

r+2 − ur) + (−1)r2u5

(u+ 1)2(u− 1)

+
(−1)r+1(m2 +m3 + 2m4 + 2m5 − 1)u4 + (−1)r+1(m2 +m3 +m4 +m5 + 3)u3

(u+ 1)2(u− 1)

+
(−1)r(2m2 + 2m3 + 3m4 + 4m5 − 1)u2 + (−1)r(m2 +m3 +m4 +m5 + 1)u

(u+ 1)2(u− 1)

+
(−1)r+1(m2 +m3 +m4 + 2m5)

(u+ 1)2(u− 1)
(7)

and

P (G,m) = P (G, u+ 1)

=
ur+s+t + (−1)s+tur+1 + (−1)r+tus+1 + (−1)r+sut+1

u+ 1

+
(−1)r+s+tu2 + (−1)r+s+t+1u

u+ 1
. (8)
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Let f1(u), f2(u) and g(u) be the numerator of the equations (6), (7) and (8) respectively.

Let h1(u) = f1(u) − (u + 1)g(u) and h2(u) = f2(u) − (u2 − 1)g(u). Because g(u) is a

polynomial, PDP (G,H) = P (G,m) if and only if h1(u) = 0, when s ≥ 3 or t ≥ 3; h2(u) = 0

when s = t = 2. In the following, we will prove that if h1(u) = 0 (or h2(u) = 0), then

m1 = m, m2 = m3 = m4 = m5 = 0, i.e.,H has a canonical labeling. We discuss the two

cases respectively.

Case 1. s ≥ 3 or t ≥ 3.

In this case

h1(u) = (−1)r+t+1(m2 +m4 +m5)(u
s+1 + us) + (−1)s+t+1(m2 +m3 +m5)(u

r+1 + ur)

+(−1)r+s+1(m3 +m4 +m5)(u
t+1 + ut) + (−1)r+s+t+1(m2 +m3 +m4 +m5)u

2

+(−1)r+s+tm5u+ (−1)r+s+t(m2 +m3 +m4 + 2m5).

If h1(u) is a zero polynomial, then each coefficient of the polynomial is zero. We note that
∑5

q=1mq = m = u+ 1 and mq ≥ 0 for each q ∈ [5].

Firstly, we focus on the constant term of h1(u). If the constant term of h1(u) is zero,

then m2 +m3 +m4 + 2m5 ≡ 0 (mod u), i.e., m2 +m3 +m4 + 2m5 = ku. And k ∈ {0, 1, 2},

because m2+m3+m4+2m5 ∈ [0, 2u+ 2]. According to the value of k, we have the following

three situations.

S1: k = 0, i.e., m2 +m3 +m4 + 2m5 = 0. Then we have m2 = m3 = m4 = m5 = 0 and

m1 = m.

S2: k = 1, i.e.,m2 +m3 +m4 + 2m5 = m− 1. Then we have m1 = m5 + 1.

S3: k = 2, i.e.,m2 +m3 +m4 + 2m5 = 2m− 2. Then we have m+m1 −m5 = 2 which

implies m1 = 0, m5 = m−2, m2+m3+m4 = 2; or m1 = 1, m5 = m−1, m2 = m3 = m4 = 0.

Clearly, in situation S1, h1(u) = 0 and H has a canonical labeling. In the following, we

will prove that in situations S2 and S3, h1(u) is not a zero polynomial. We focus on the

coefficient of u in h1(u) and discuss the following two subcases.

Subcase 1.1. r ≥ 2.

In this subcase, if the coefficient of u in h1(u) is zero, then m5 + 1 ≡ 0 (mod u) in

situation S2, and m5 + 2 ≡ 0 (mod u) in situation S3.

In situation S2, if m5 + 1 ≡ 0 (mod u), then m5 = u − 1 = m − 2, m1 = m − 1, and

m1 + m5 = 2m − 3. Because
∑5

q=1mq = m, we have 2m − 3 ≤ m, then m ≤ 3. So

m1 = 2, m5 = 1, but this will not happen, we can’t have only one path (α1, i)(α2, j)(α3, k)

where i, j, k are pairwise distinct.

In situation S3, if m5 + 2 ≡ 0 (mod u), then m5 = u − 2 = m − 3, this contradicts

m5 = m− 2 or m5 = m− 1.

Subcase 1.2. r = 1.
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In this subcase, if the coefficient of u in h1(u) is zero, thenm2+m3+2m5+1 ≡ 0 ( mod u)

in situation S2, and m2 +m3 + 2m5 + 2 ≡ 0 (mod u) in situation S3.

In situation S2, if m2 + m3 + 2m5 + 1 ≡ 0 (mod u), then m2 + m3 + 2m5 = u − 1,

combining this with m2 + m3 + m4 + 2m5 = u, m4 = 1 follows. But when m4 = 1, the

coefficient of the leading term is not zero.

In situation S3, m5 = m−2 or m−1. If m5 = m−2 and m2+m3+2m5+2 ≡ 0 ( mod u),

then m2+m3+2m5 = 2u−2. Combining this with m2+m3+m4 = 2, we have m2 = m3 = 0

and m4 = 2. But when m4 = 2, the coefficient of the leading term is not zero. If m5 = m−1,

then m2 + m3 + 2m5 = 2u, m2 + m3 + 2m5 + 2 6= 0 (mod u), otherwise u = 2. But when

u = 2, we have m5 = 2, m1 = 1 and m2 = m3 = m4 = 0. This will not happen, because we

can’t have two paths (α1, i)(α2, j)(α3, k) where i, j, k are pairwise distinct when m = 3.

Hence, in Case 1, if h1(u) = 0, then m1 = m,m2 = m3 = m4 = m5 = 0, i.e., H has a

canonical labeling.

Case 2. s = t = 2.

In this case

h2(u) = (−m2 −m3 −m5)u
r+2 + (m2 +m3 +m5)u

r + (−1)r+1(m2 +m3 + 2m4 + 2m5)u
4

+(−1)r+1(m2 +m3 +m4 +m5)u
3 + (−1)r(2m2 + 2m3 + 3m4 + 4m5)u

2

+(−1)r(m2 +m3 +m4 +m5)u+ (−1)r+1(m2 +m3 +m4 + 2m5).

The proof is similar to that for Case 1. If the constant term of h2(u) is zero, then

m2 +m3 +m4 + 2m5 ≡ 0 (mod u), which is the same with that in Case 1. So we have the

same three situations S1, S2, S3 with that in Case 1. Clearly, in situation S1, h2(u) = 0

and H has a canonical labeling. In the following, we will prove that in situations S2 and S3,

h2(u) is not a zero polynomial. We discuss the following two subcases.

Subcase 2.1. r ≥ 2.

In situation S2,

(−1)r(m2 +m3 +m4 +m5)u+ (−1)r+1(m2 +m3 +m4 + 2m5)

= (−1)ru2 + (−1)r+1(m5 + 1)u,

and in situation S3,

(−1)r(m2 +m3 +m4 +m5)u+ (−1)r+1(m2 +m3 +m4 + 2m5)

= (−1)r2u2 + (−1)r+1(m5 + 2)u.

If the coefficient of u in h2(u) is zero, then m5 + 1 ≡ 0 (mod u) in situation S2, and

m5 + 2 ≡ 0 (mod u) in situation S3, which are exactly the same with that in Subcase 1.1.
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So with the same argument in Subcase 1.1, we obtain that in situations S2 and S3, h2(u) is

not a zero polynomial in Subcase 2.1.

Subcase 2.2. r = 1.

If the coefficient of u in h2(u) is zero, then

(m2 +m3 +m5)u− (m2 +m3 +m4 +m5)u+ ku = (k −m4)u = 0.

In situation S2, k = 1, so m4 = 1; in situation S3, k = 2, so m4 = 2. But no matter m4 is 1

or 2, the leading term of h2(u) will not be zero.

Hence, in Case 2, if h2(u) = 0, then m1 = m,m2 = m3 = m4 = m5 = 0, i.e., H has a

canonical labeling.

Summarizing Cases 1 and 2, the theorem is obtained.

By Theorems 3.9 and 3.10, we know that the answer of Question 1.6 is yes for unicyclic

graphs and theta graphs when m ≥ 2, and m ≥ 3 respectively. Whether the answer of

Question 1.6 is yes for all graphs is still wide open.
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[6] Z. Dvořák, L. Postle, Correspondence coloring and its application to list-coloring planar

graphs without cycles of lengths 4 to 8, J. Combin. Theory, Ser. B, 129 (2018), 38–54.

[7] J. Engbers, A. Erey, J. Fox, and X. Y. He, Tomescu’s graph coloring conjecture for

l-connected graphs, SIAM J. Discrete. Math., 35(2) (2021), 1478–1502.

[8] A. Erey, Maximizing the number of x-colorings of 4-chromatic graphs, Discrete Math.,

341 (2008), 1419–1431.

[9] A. Erey, On the maximum number of colorings of a graph, J. Combin., 9(3) (2018),

489–497.

[10] L. Felix, The maximum number of colorings of graphs of given order and size: a survey,

Discrete Math., 342(10) (2019), 2783–2791.

[11] J. Fox, X. He, and F. Manners, A proof of Tomescu’s graph coloring conjecture, J.

Combin. Theory Ser. B, 136 (2019), 204–221.

[12] C. Halberg, H. Kaul, A. Liu, J. A. Mudrock, P. Shin, and S. Thomason, On polyno-

mial representations of the DP color function: theta graphs and their generalizations,

arXiv:2012.12897, (2020).

[13] H. Kaul, M. Maxfield, J. A. Mudrock, S. Thomason, The DP Color Function of Clique-

Gluings of Graphs, Enumer. Comb. Appl., 4(2) (2024), Paper No. S2R11.

[14] H. Kaul, J. A. Mudrock, On the chromatic polynomial and counting DP-colorings of

graphs, Adv. in Appl. Math., 123 (2021), Paper No. 103121.

[15] H. Kaul, J. A. Mudrock, G. Sharma, Q. Stratton, DP-coloring Cartesian product of

graphs, J. Graph Theory, 103(2) (2023), 285–306.

[16] F. Knox and B. Mohar, Maximum number of colourings: 5-chromatic case, Electronic

J. Combin., 26(3) (2019), Paper No. 3.40.

[17] F. Knox and B. Mohar, Maximum number of colourings: 4-chromatic graphs, J. Combin.

Theory Ser. B, 144 (2020), 95–118.

20

http://arxiv.org/abs/2012.12897


[18] J. A. Mudrock , A deletion-contraction relation for the DP color function, Graphs Com-

bin., 38(4) (2022), Paper No. 115.

[19] J. A. Mudrock and S. Thomason, Answers to two questions on the DP color function,

Electron. J. Combin., 28(2) (2021), Paper No. 2.24.

[20] I. Tomescu, Maximal chromatic polynomials of connected planar graphs, J. Graph The-

ory, 14 (1990), 101–110.

[21] I. Tomescu, Maximum chromatic polynomials of 2-connected graphs, J. Graph Theory,

18 (1994), 329–336.

[22] D. B. West, Introduction to Graph Theory, second ed., Prentice Hall, New York, 2001.

[23] M. Q. Zhang, F. M. Dong, DP color functions versus chromatic polynomials (II), J.

Graph Theory, 103(4) (2023), 740–761.

21


	Introduction
	Bounds for DP color function of 2-connected graphs
	Canonical labelings of H

