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CLASSICAL DENSITY FUNCTIONAL THEORY:

REPRESENTABILITY AND UNIVERSAL BOUNDS

MICHAL JEX, MATHIEU LEWIN, AND PETER S. MADSEN

Abstract. We provide upper and lower bounds on the lowest free en-
ergy of a classical system at given one-particle density ρ(x). We study
both the canonical and grand-canonical cases, assuming the particles
interact with a pair potential which decays fast enough at infinity.
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1. Introduction

Density functional theory (DFT) is a powerful tool used in quantum
physics and chemistry to model quantum electrons in atoms, molecules and
solids [Lie83, DG90, PY94, ED11, LLS19b, CLLF]. However, DFT is based
on a rather general mathematical scheme and it can be applied to many
other situations. This work is devoted to the rigorous study of classical
DFT, which is used for finite or infinite systems of interacting classical par-
ticles.

Classical DFT is widely employed in materials science, biophysics, chem-
ical engineering and civil engineering [Wu06]. It has a much lower compu-
tational cost than the more precise molecular dynamics simulations, which
are limited to small systems and short times [GGRSB99, Rot10, LGN13].
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2 M. JEX, M. LEWIN, AND P. S. MADSEN

Classical DFT is typically used at interfaces between liquid-gas, liquid-liquid
(in fluid mixtures), crystal-liquid and crystal-gas phases at bulk coexistence.
The density is then non constant in space and varies in the interfacial region
between the two phases.

The physical theory of inhomogenous fluids goes essentially back to the
60s [MH61, De 62, DDM64, SB62, LP63]. Functional methods and their
applications to the theory of the structure of bulk fluids were described in
[Per64, Ste64]. The realization that methods developed in the quantum
case by Hohenberg-Kohn-Sham [HK64, KS65] could be transferred to clas-
sical fluids arose in the middle of the 70s, in particular in the works of
Ebner-Saam [ESS76, EP79, SE77] and Yang et al [YFG76]. Several au-
thors then developed approximate free-energy functionals to calculate the
density profile and surface tension of the liquid-gas interface. The square-
gradient approximation could later be derived rather systematically, follow-
ing the important works of Hohenberg-Kohn-Sham on the gradient expan-
sion of the uniform (quantum) electron gas. Deriving efficient functionals
for the solid-liquid transition was harder and took longer [RY77, RY79,
HO81]. Well-known references on classical DFT are the two reviews by
Evans [Eva79, Eva92]. Other important physical references on the subject
include [HM90, PB06, Bau87, BL91, Sin91, Löw02, EORK16, HM13].

Rigorous works on classical DFT are rather scarse. Most of the mathe-
matical works are about proving that one can find an external potential V
whose interacting equilibrium Gibbs measure has any desired given density
ρ. This is called the inverse or dual problem and justifies the use of density
functional methods. In quantum DFT, V is called the Kohn-Sham poten-
tial and its existence is unclear in most situations. However, in the classical
case, V is usually well defined.

The grand-canonical 1D hard-core gas was solved exactly in a celebrated
work by Percus [Per76], who provided an exact expression of the external
potential V . This was used and extended in later works [VDP89, Per82b,
Per82a, Per97]. In two famous works [CCL84, CC84], Chayes, Chayes and
Lieb proved in a quite general setting (in particular any space dimension d)
the existence and uniqueness of the dual potential V at any positive tem-
perature T > 0. At T = 0, the canonical model can be reformulated as a
multi-marginal optimal transport problem [CFK13, CFP15, Pas15, DGN17,
SDG+17], where V is usually called the Kantorovich potential. Its exis-
tence and properties are known in many cases [Kel84, DP15, BCDP18] but
uniqueness usually does not hold. The grand-canonical case was studied in
the recent article [DLN22]. Most of these works are based on compactness
arguments and do not furnish any quantitative information on the shape of
the potential V in terms of the given density ρ. In the recent paper [JKT22],
a novel Banach inversion theorem was used to provide an explicit formula
for V in terms of ρ in the form of a convergent series, under the assumption
that ρ is small in L∞(Rd). This is the equivalent of the Virial expansion for
uniform systems.1

1Recall that one can express the constant density ρ of an infinite gas as a convergent
series in terms of the activity z = eβµ, in the regime z ≪ 1 [Rue99]. This corresponds
to placing the system in the constant external potential V (x) = −µ. Since ρ ∼z→0 z,
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In this work and the companion paper [JLM23] we do not discuss the
dual potential V and instead focus on more quantitative properties of the
model depending on the shape of the density ρ. The case of the three di-
mensional Coulomb interaction w(x) = |x|−1 or, more generally long range
Riesz interactions |x|−s with s < d has been the object of several recent
works [LLS19b, Lew22]. Here we always assume that the interaction poten-
tial w decays fast enough at infinity and do not discuss more complicated
long range potentials such as Coulomb.

Our main goal in this paper is to show universal local bounds on the free
energy FT [ρ] at given density ρ ∈ L1(Rd). By local we mean that we only
use terms in the form∫

Rd

ρ(x)p dx,

∫

Rd

ρ(x)q log ρ(x) dx.

The admissible values of p and q will depend on the temperature T as well as
on the singularity of the interaction potential w at the origin, that is, how
strong the particles repel each other when they get close. Such universal
bounds are important in DFT. They can help finding the natural form of
approximate functionals to be used for practical computations.2 In addition,
these bounds will be useful in our next work [JLM23] where we study the
local density approximation.

Deriving simple lower bounds is usually easy, under reasonable stability
assumptions on the interaction potential w. Obtaining upper bounds can
be much more difficult. They require constructing a good trial state, but
the constraint that the density is given and must be exactly reproduced can
generate important mathematical complications.

The simplest trial state is obtained by taking i.i.d. particles, that is, a
factorized N -particle probability (ρ/N)⊗N where N =

∫
Rd ρ ∈ N. Doing so

provides an upper bound on the free energy in terms of mean-field theory,
often called in this context the Kirkwood-Monroe functional [KM41]:

1

2

∫∫

Rd×Rd

w(x− y)ρ(x)ρ(y) dx dy + T

∫

Rd

ρ(x) log ρ(x) dx. (1)

This only makes sense when the pair interaction potential w is locally in-
tegrable. If w is globally integrable, one can use Young’s inequality and
estimate the first integral by the local energy (

∫
Rd w+/2)

∫
Rd ρ(x)

2 dx, where
w+ := max(w, 0) denotes the positive part. The simplest models of classical
DFT use (1) as a basis.

In classical statistical mechanics, it is often convenient to consider po-
tentials w diverging fast enough at the origin, which helps to stabilize the
system [Rue99, Dob64, DM67, Geo11, Reb98, PR07]. This divergence im-
plies that the particles can never get too close to each other, and this requires
that the trial state contains rather strong correlations. A factorized state
is not appropriate and (1) is infinite. The simplest singular interaction is

the series is invertible and any small uniform density is therefore representable by such a
uniform potential, with µ ∼ρ→0 β−1 log ρ.

2As an example, in the quantum case the Lieb-Oxford inequality [LO80] was used to
calibrate some famous functionals such as PBE and SCAN [Per91, LP93, PBE96, TPSS03,
SPR15, SRP15, SRZ+16, PS22].
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of course the hard-core potential w(x) = (+∞)1(|x| < r0), which is simply
infinite over a ball and vanishes outside.

In this paper we provide two different constructions of a correlated trial
state, which give reasonable upper bounds on the classical free energy at
given density, for singular interaction potentials at the origin. Our first
method uses some ideas from harmonic analysis in the form of a Besicovitch-
type covering lemma [dG75]. We cover space with cubes whose size is
adapted to the local value of the density, and put essentially one parti-
cle per cube, with the constraint that the cubes are far enough from each
other. This method works very well in the grand-canonical setting where
the number of particles is allowed to fluctuate. In order to handle the canon-
ical ensemble, a different construction is needed. We instead use techniques
from optimal transport theory developed in [CDMS19], which give a rather
good bound at zero temperature, T = 0. For T > 0 we couple this to the
Besicovitch-type covering lemma and obtain an upper bound which is not
as good as the grand-canonical one.

In [JLM23] we will study the behavior of FT [ρ] in some particular regimes
and the upper universal bounds derived here will be useful. Namely we
will consider the thermodynamic limit where ρ is essentially constant over
a large domain as well as the local density approximation when ρ varies
slowly over big regions. Such regimes have been recently considered for the
three dimensional Coulomb potential w(x) = |x|−1 in [LLS18, LLS20], for
more general Riesz potentials in [CP19b, CP19a] and for a special class of
positive-type interactions in [Mie20]. The methods used in these works all
rely on the assumption that the potential is positive-definite, and new ideas
are necessary in the general (short-range) case.

Acknowledgement. ML thanks Rupert L. Frank for providing him with a
preliminary version of the book [FLW22]. This project has received funding
from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement MDFT
No 725528 of ML). MJ also received financial support from the Ministry of
Education, Youth and Sport of the Czech Republic under the Grant No.
RVO 14000.

2. Main results

2.1. Free energies at given density. This subsection is mainly devoted
to precisely introducing models and notation used in the paper. Our main
results are stated in the next subsections.

2.1.1. The interaction potential w. For convenience, we work in Rd with
a general dimension d > 1. The physical cases of interest are of course
d ∈ {1, 2, 3} but the proofs are the same for all d, except sometimes for d =
1. We consider systems of indistinguishable classical particles interacting
through a short-range pair potential w. Throughout the paper, we work
with an interaction satisfying the following properties.

Assumption 1 (on the short-range potential w). Let w : Rd → R∪{+∞} be
an even lower semi-continuous function satisfying the following properties,
for some constant κ > 0:
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(1) w is stable, that is,
∑

16j<k6N

w(xj − xk) > −κN (2)

for all N ∈ N and x1, . . . , xN ∈ Rd;

(2) w is upper regular, that is, there exist r0 > 0, 0 6 α 6 ∞ and s > d
such that

w(x) 6 κ

(
1(|x| < r0)

(
r0
|x|

)α

+
1

1 + |x|s

)
. (3)

The lower semi-continuity of w will be used later to ensure that the en-
ergy is lower semi-continuous as a function of the one-particle density (see
Remark 3 below). In statistical mechanics, the stability condition (2) is used
to ensure the existence of the thermodynamic limit [Rue99]. On the other
hand, upper bounds of the form (3) are sometimes used to get more infor-
mation on the equilibrium states [Rue70]. At infinity, we assume that our
potential w is bounded above by |x|−s, which is integrable since s > d. It
could of course decay faster. On the other hand, the parameter α determines
the allowed repulsive strength of the interaction at the origin. If α = 0, then
w is everywhere bounded above, and if 0 < α < d, then w has at most an
integrable singularity at the origin. In particular, the positive part w+ is
integrable over the whole of Rd (since we are interested in upper bounds, the
negative part w− will not play a role in this paper). In the case where α > d,
w can have a non-integrable singularity at the origin. If α = ∞, then w can
have a hard-core. Our convention is that (r0/|x|)

α = (+∞)1(|x| < r0) for
α = +∞. When α < ∞ we can always assume that r0 = 1, possibly after
increasing κ.

Most short range potentials of physical interest are covered by Assump-
tion 1, including for instance the simple hard-core and the Lennard-Jones
potential w(x) = a|x|−12 − b|x|−6.

2.1.2. The canonical free energy. In this subsection we define the canonical
free energy FT [ρ] at given density ρ.

Suppose that we have N particles in Rd, distributed according to some
Borel probability measure P on RdN . Since the particles are indistinguish-
able, we demand that the measure P is symmetric, that is,

P(Aσ(1) × · · · ×Aσ(N)) = P(A1 × · · · ×AN )

for any permutation σ of {1, . . . , N}, and any Borel sets A1, ..., AN ⊂ Rd.
The one-body density of such a symmetric probability P equals N times the
first marginal of P, that is,

ρP = N

∫

Rd(N−1)
dP(·, x2, . . . , xN ),

where the integration is over x2, . . . , xN . Equivalently, ρP(A) = NP(A ×
(Rd)N−1) for every Borel set A. Note the normalization convention ρP(R

d) =
N . For a non-symmetric probability P we define ρP as the sum of the N
marginals.
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Notice that any positive measure ρ on Rd with ρ(Rd) = N ∈ N arises from
at least one N–particle probability measure P. One can take for instance
P = (ρ/N)⊗N for independent and identically distributed particles.

The pairwise average interaction energy of the particles is given by

UN (P) =

∫

RdN

∑

16j<k6N

w(xj − xk) dP(x1, . . . , xN ).

It could in principle be equal to +∞, but it always satisfies UN (P) > −κN
due to the stability condition on w in Assumption 1. When considering
systems at positive temperature T > 0, it is necessary to also take the
entropy of the system into account. It is given by

SN (P) := −

∫

RdN

P(x) log
(
N !P(x)

)
dx. (4)

If P is not absolutely continuous with respect to the Lebesgue measure on
RdN , we use the convention that SN (P) = −∞. The factor N ! appears be-
cause the particles are indistinguishable. In fact, we should think that N !P
defines a probability measure over (Rd)N/SN where SN is the permutation
group. We need to make sure that SN (P) < +∞, which follows if we assume
for instance that ρP is absolutely continuous with

∫
Rd ρP| log ρP| < ∞. This

is due to the well-known inequality (see, e.g., [DLN22, Lemma 6.1])

SN (P) 6 −

∫

Rd

ρP(x) log ρP(x) dx+N. (5)

The latter follows immediately from writing the relative entropy of P with
respect to (ρ/N)⊗N , which is non-negative, and using (N/e)N 6 N !.

The total free energy of the system in the state P at temperature T > 0
equals

FT (P) := UN (P)−TSN(P) =

∫

RdN

∑

j<k

w(xj−xk) dP(x)+T

∫

RdN

P log(N !P).

(6)
It can be equal to +∞ but never to −∞ due to the stability of w and thanks
to the inequality (5) if T > 0 and

∫
Rd ρP| log ρP| < ∞.

Throughout the paper, we will only consider systems with a given one-
body density ρ, which is absolutely continuous with respect to the Lebesgue
measure. At T > 0 we also assume that

∫
Rd ρ| log ρ| < ∞. This allows us to

consider the minimal energy of N -particle classical systems with density ρ,
given by

FT [ρ] := inf
ρP=ρ

FT (P) (7)

where the infimum is taken over N -particle states P on RdN with one-particle
density ρP equal to ρ. At T = 0, the entropy term disappears and we obtain

F0[ρ] := inf
ρP=ρ

∫ ∑

16j<k6N

w(xj − xk) dP(x). (8)

This is a multi-marginal optimal transport problem with symmetric cost∑
j<k w(xj − xk) and with all the marginals of P equal to ρ/N [CFK13,
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CFP15, Pas15, DGN17, SDG+17]. From the stability assumption on w
and (5), we have

FT [ρ] > −(κ+ T )N + T

∫

Rd

ρ(x) log ρ(x) dx. (9)

One of our goals will be to find simple conditions ensuring that FT [ρ] <
∞. Before we turn to this question, we first introduce the grand-canonical
problem.

Remark 2 (Symmetry). In the definition (7) we can freely remove the
constraint that P is symmetric. Since the interaction is a symmetric function
and the entropy SN is concave, the minimum is the same as for symmetric
P’s. Recall that for a non-symmetric P, ρP is by definition the sum of the
N marginals.

Remark 3 (Lower semi-continuity). The function ρ 7→ FT [ρ] is lower semi-
continuous for the strong topology. That is, we have

FT [ρ] 6 lim inf
n→∞

FT [ρn] if

∫
|ρn − ρ| → 0 and T

∫
ρn| log ρn| 6 C (10)

At T > 0 this is valid under the sole condition that w is measurable (since
the limiting probability P is necessary absolutely continuous) but at T = 0,
this uses the lower semi-continuity of w. The details of the argument are
provided later in the proof of Theorem 29, for the convenience of the reader.

Remark 4 (Convexity and duality). Using the concavity of the entropy SN ,
one can verify that ρ 7→ FT [ρ] is convex. This can be used to derive the dual
formulation of FT [ρ] in terms of external potentials

FT [ρ] = T

∫

Rd

ρ log ρ+ sup
Ṽ

{
−

∫

Rd

ρ(x)Ṽ (x) dx

− T log

∫

RdN

exp

(
−
1

T

∑

16j<k6N

w(xj − xk)−
1

T

N∑

j=1

Ṽ (xj)

)
dρ⊗N

}
,

(11)

see [CCL84]. Our notation Ṽ is because the final physical dual potential is,

rather, V := Ṽ −T log ρ. The existence of a maximizer Ṽ realizing the above
supremum is proved in [CCL84]. It is the unique potential (up to an additive
constant) so that the corresponding Gibbs state has density ρ, that is,

ρP = ρ, P =
1

Z
exp

(
−

1

T

∑

16j<k6N

w(xj − xk)−
1

T

N∑

j=1

Ṽ (xj)

)
ρ⊗N

with Z a normalization constant. At T = 0, we have the similar formula

F0[ρ] = sup
Ṽ

{
EN [V ]−

∫

Rd

ρ(x)V (x) dx

}

where

EN [V ] = inf
x1,...,xN∈Rd





∑

16j<k6N

w(xj − xk) +

N∑

j=1

V (xj)



 ,
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is the ground state energy in the potential V [Kel84]. Although there usually
exist dual potentials at T = 0, those are often not unique.

2.1.3. The grand-canonical free energy. In the grand-canonical picture, where
the exact particle number of the system is not fixed, a state P is a family of
symmetric n-particle positive measures Pn on (Rd)n, so that

∑

n>0

Pn

(
(Rd)n

)
= 1.

Here P0 is just a number, interpreted as the probability that there is no
particle at all in the system. After replacing Pn by Pn/Pn(R

dn), we can
equivalently think that P is a convex combination of canonical states. The
entropy of P is defined by

S(P) :=
∑

n>0

Sn(Pn) = −P0 log(P0)−
∑

n>1

∫

Rdn

Pn log(n!Pn), (12)

and the single particle density of the state P is

ρP =
∑

n>1

ρPn =
∑

n>1

n

∫

(Rd)n
dPn(·, x2, . . . , xn).

The grand-canonical free energy of the state P at temperature T > 0 is

GT (P) := U(P)− TS(P), (13)

where U(P) denotes the interaction energy in the state P,

U(P) :=
∑

n>2

Un(Pn) =
∑

n>2

∫

Rdn

n∑

j<k

w(xj − xk) dPn(x1, ..., xN ). (14)

From the stability of w we have

Un(Pn) > −κnPn(R
dn)

so that, after summing over n,

U(P) > −κ

∫

Rd

ρP(x) dx.

By [DLN22, Lemma 6.1] we have the universal entropy bound

S(P) 6 −

∫

Rd

ρP
(
log ρP − 1). (15)

This is because the entropy at fixed density ρ is maximized by the grand-
canonical Poisson state

Q :=

(
e−

∫
Rd

ρ

n!
ρ⊗n

)

n>0

(16)

whose entropy is the right side of (15).
When keeping the one-particle density ρ = ρP ∈ L1(Rd) fixed, we denote

the minimal grand-canonical free energy by

GT [ρ] := inf
ρP=ρ

GT (P). (17)



CLASSICAL DFT: UNIVERSAL BOUNDS 9

Using (15), we obtain

GT [ρ] > −
(
κ+ T

) ∫

Rd

ρ+ T

∫

Rd

ρ log ρ, (18)

where κ is the stability constant of w in Assumption 1.

Remark 5 (Comparing FT and GT ). Since a canonical trial state is auto-
matically also admissible for the grand-canonical minimisation problem (17),
we have the bound

GT [ρ] 6 FT [ρ]

for any density 0 6 ρ ∈ L1(Rd) with integer mass. Hence, any universal
lower energy bound for the grand-canonical ensemble is also a lower bound
for the canonical ensemble. A natural question to ask is under which con-
dition we have FT [ρ] = GT [ρ] for a density ρ of integer mass. In general
this is a difficult problem. See [DLN22] for results and comments in this
direction at T = 0.

If
∫
Rd ρ = N+t with t ∈ (0, 1) and N ∈ N, we can write ρ = (1−t) N

N+tρ+

tN+1
N+t ρ and obtain after using the concavity of the entropy

GT [ρ] 6 (1− t)FT

[
N

N + t
ρ

]
+ t FT

[
N + 1

N + t
ρ

]
. (19)

This can be used to deduce an upper bound on GT [ρ], once an upper bound
has been established in the canonical case. We will see, however, that it is
usually much easier to directly prove upper bounds on GT [ρ] than on FT [ρ].

Remark 6 (Weak lower semi-continuity). The functional ρ 7→ GT [ρ] is
weakly lower semi-continuous and, in fact, a kind of lower continuous en-
velope of FT [ρ] (see [LLS19b, DLN22]). At T = 0 this uses the lower semi-
continuity of w.

Remark 7 (Duality II). Like in the canonical case, we have the dual for-
mulation

GT [ρ] = T

∫

Rd

ρ log ρ+ sup
Ṽ

{
−

∫

Rd

ρ(x)Ṽ (x) dx

− T log

[∑

n>0

∫

Rdn

exp

(
−

1

T

∑

16j<k6n

w(xj − xk)−
1

T

n∑

j=1

Ṽ (xj)

)
dρ⊗N

]}
,

(20)

see [CCL84, CC84] and the more recent work [DLN22, Sec. 4 & 6].

2.2. Representability. Next we turn to the problem of representability.
Namely, we are asking what kind of densities ρ can arise from N–particle
probabilities with finite free energy. This depends on the shape of the in-
teraction potential w. We only address this question for ρ ∈ L1(Rd) and do
not look at general measures. The main result is that all densities are repre-
sentable at zero temperature in the non-hard-core case (α < ∞). At positive
temperature, it is sufficient to assume in addition that

∫
Rd ρ| log ρ| < ∞.
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Theorem 8 (Representability in the canonical case). Let ρ ∈ L1(Rd) with∫
Rd ρ(x) dx ∈ N. There exists a symmetric probability measure P on (Rd)N

of density ρ so that |xj − xk| > δ > 0 P–almost everywhere, for some δ > 0.
If w satisfies Assumption 1 without hard-core (α < ∞), we obtain F0[ρ] <

∞. If furthermore
∫
Rd ρ| log ρ| < ∞, then P can be assumed to have finite

entropy and FT [ρ] < ∞ for any T > 0.

The theorem follows from results in optimal transport theory and we
quickly outline the proof here for the convenience of the reader. In this
paper we will prove much more. We will in fact need some of these tools
and more details will thus be provided later in the paper.

Proof. If
∫
Rd ρ = 1, we must take P = ρ and end up with FT [ρ] = T

∫
ρ log ρ.

In the rest of the proof we assume that
∫
Rd ρ > 2.

For ρ ∈ L1(Rd), the existence of P is proved in [CDMS19, Theorem 4.3].
The number δ must be so that

∫
B(x,δ) ρ < 1 for any x ∈ Rd, where B(x,R)

denotes the ball centered at x and of radius R. Such a δ > 0 always exists
when ρ ∈ L1(Rd). See Section 5.1 below for more details on the results
from [CDMS19].

Next we prove that F0(P) < ∞. Since α < ∞ (no hard-core), we can
assume r0 = 1. We then have w(x) 6 Cδ|x|

−s for all |x| > δ, with the
constant Cδ = κ(1 + δs−α), due to Assumption 1. Hence, on the support of
P we have

∑

16j<k6N

w(xj − xk) =
1

2

N∑

j=1

∑

k 6=j

w(xj − xk) 6
Cδ

2
N max

|yj |>δ
|yj−yk|>δ

N−1∑

j=1

1

|yj |s
.

The maximum is bounded by Cδ−s independently of N due to [Lew22,
Lemma 9]. Integrating with respect to P we have proved that F0(P) 6

Cδδ
−sN . This bound is not very explicit but it only depends on δ and N .

Of course, δ itself depends on ρ in a rather indirect way.
The probability measure P obtained by the optimal transport method

of [CDMS19] is probably a singular measure, hence with an infinite entropy.
In [CDPS17], it is explained how to regularize any given P using a method
called the Block approximation. This method works well for a compactly
supported density, for which it easily implies FT [ρ] < ∞. We quickly de-
scribe the method here and refer to Section 5.3 below for details. In short, we
split the space into small cubes {Cj} of size proportional to δ and introduce
the trial probability measure

P̃ =
∑

j1,...,jN

P(Cj1 × · · · × CjN )
ρ1Cj1

⊗ · · · ⊗ ρ1CjN∫
Cj1

ρ · · ·
∫
CjN

ρ
.

That is, we take a convex combination of independent particles over small
cubes with probability P(Cj1 ×· · ·×CjN ). Choosing the cubes small enough,

we can ensure that |xj − xk| > δ/2 on the support of P̃ and
∫
Cj
ρ < 1. A

computation gives ρ
P̃
= ρP = ρ. The entropy can be estimated by

∫

RdN

P̃ log(N ! P̃) 6

∫

Rd

ρ log ρ−
∑

j

(∫

Cj

ρ

)
log

(∫

Cj

ρ

)
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(see Lemma 26 below). Estimating the last sum is not an easy task for a
general density. For a compactly supported density we can simply bound it
by 1/e times the numbers of cubes intersecting the support of ρ. Since the

energy of P̃ is finite by the previous argument, we deduce that FT [ρ] < ∞
for any ρ of compact support.

It thus remains to explain how to prove that FT [ρ] is finite for a density ρ
of unbounded support. The idea is of course to truncate it. We choose two
radii R1 < R2 so that

∫

Rd\BR2

ρ =

∫

BR2
\BR1

ρ =
1

2

(using here
∫
ρ > 2) and we define for shortness ρ1 := ρ1BR1

, ρ2 :=
ρ1BR2

\BR1
and ρ3 := ρ1Rd\BR2

. We can write

ρ =
ρ1 + 2ρ2

2
+

ρ1 + 2ρ3
2

where
∫
Rd(ρ1 + 2ρ2) =

∫
Rd(ρ1 + 2ρ3) = N . From the convexity of FT we

obtain

FT [ρ] 6
1

2
FT [ρ1 + 2ρ2] +

1

2
FT [ρ1 + 2ρ3].

The first density ρ1 + 2ρ2 has compact support hence has a finite energy,
as explained above. For the second density ρ1 +2ρ3 we use an uncorrelated
trial state in the form P1⊗s (2ρ3) where P1 is also constructed as before, but
with ρ replaced by ρ1 which has mass N − 1. Here ⊗s means the symmetric
tensor product. A calculation shows that

FT [ρ1 + 2ρ3] 6 FT

(
P1 ⊗s (2ρ3)

)

= FT (P1) + 2

∫∫

R2d

w(x− y)ρ1(x)ρ3(y) dxdy

+ 2T

∫
ρ3 log(2ρ3)

6 FT (P1) + (N − 1) sup
|x|>R2−R1

|w(x)| + 2T

∫

Rd\BR2

ρ log(2ρ).

Thus the finiteness for densities of compact support implies the same for all
densities. In fact, after optimizing over P1 we have proved the bound

FT [ρ] 6
FT [ρ1 + 2ρ2] + FT [ρ1]

2

+
N − 1

2
sup

|x|>R2−R1

|w(x)| + T

∫

Rd\BR2

ρ log(2ρ).

This concludes the proof of Theorem 8. �

We have not considered here the hard-core potential, to which we will
come back later in Section 2.4. Representability is much more delicate in
this case. From the inequality (19), we immediately obtain the following.

Corollary 9 (Representability in the grand-canonical case). Let ρ ∈ L1(Rd).
Then we have G0[ρ] < ∞ if w has no hard-core (α < ∞). If furthermore∫
Rd ρ| log ρ| < ∞, then GT [ρ] < ∞ for all T > 0.
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2.3. Local upper bounds. Recall that we already have rather simple lower
bounds in (9) and (18). The proof of Theorem 8 furnishes an upper bound
on FT [ρ] but it depends on the smallest distance δ between the particles
in the system, which is itself a highly nonlinear and nonlocal function of ρ.
For non compactly-supported densities, the proof also involves the two radii
R1, R2 which depend on ρ as well.

Our goal here is to provide simple local upper bounds involving only in-
tegrals of the given density ρ. We start in the next subsection by recalling
the simple integrable case at the origin α < d, for which we can just choose
i.i.d. particles. The case α > d is much more complicated since particles
cannot be allowed to get too close.

2.3.1. Upper bound in the weakly repulsive case α < d. In the case where
w+ is integrable at the origin, it is easy to provide a simple upper bound.

Theorem 10 (Weakly repulsive case α < d). Let w satisfy Assumption 1
with α < d. Let 0 6 ρ ∈ L1(Rd) ∩ L2(Rd) with integer mass

∫
ρ ∈ N. Let

also T > 0 and assume that
∫
Rd ρ| log ρ| < ∞ if T > 0. Then we have

FT [ρ] 6
1

2

∫∫

Rd×Rd

w(x − y)ρ(x)ρ(y) dx dy + T

∫

Rd

ρ log ρ

6
‖w+‖L1

2

∫

Rd

ρ2 + T

∫

Rd

ρ log ρ. (21)

In the grand-canonical case we have the exact same bound on GT [ρ], this
time without any constraint on

∫
Rd ρ and with ρ log ρ replaced by ρ(log ρ−1)

in the last integral.

As we have mentioned in the introduction, the functional appearing on
the right side of the first line of (21) is the so-called Kirkwood-Monroe free
energy [KM41], which is the simplest approximation of FT [ρ]. It only makes
sense for a locally integrable potential w. In addition to being an exact upper
bound, the Kirkwood-Monroe free energy also provides the exact behavior
of FT [ρ] in some regimes. This was studied in many works, including for
instance [LP66, GP69, Gat72, GK76, BL05] for the infinite gas at high
density and [BH77, Spo81, MS82, Kie89, Kie93, CLMP92, CLMP95, KP95,
Rou15] for trapped systems in the mean-field limit.

Proof. We denote N =
∫
Rd ρ and simply take as a trial state the pure tensor

product P := (ρ/N)⊗N . The interaction energy satisfies

UN (P) =
N(N − 1)

2

∫

RdN

w(x1 − x2)
( ρ

N

)⊗N
(x) dx1 · · · dxN

=
1− 1/N

2

∫∫

Rd×Rd

w(x1 − x2)ρ(x1)ρ(x2) dx1 dx2 (22)

6
‖w+‖L1

2

∫

Rd

ρ2.

From the stability condition on w, we know that for any η > 0 with
∫
η = 1,

UK(η⊗K) =
K(K − 1)

2

∫∫

Rd×Rd

w(x− y)η(x)η(y) dxdy > −κK.
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Letting K → ∞, we find∫∫

Rd×Rd

w(x− y)η(x)η(y) dxdy > 0, ∀η > 0.

This is how the stability is expressed in mean-field theory [LNR16]. Since
the double integral in (22) is non-negative, we can remove the 1/N for an
upper bound. The entropy can itself be estimated by

−SN (P) =

∫

RdN

( ρ

N

)⊗N
log
(
N !
( ρ

N

)⊗N)

= log
( N !

NN

)
+

∫

Rd

ρ log ρ 6

∫

Rd

ρ log ρ,

showing that (21) holds. In the grand-canonical case we use instead the
Poisson state in (16) and exactly obtain the mean-field energy on the right
side of (21) with ρ log ρ replaced by ρ(log ρ− 1) in the last integral. �

2.3.2. Upper bounds in the strongly repulsive case α > d. When α > d the
right side of (21) is infinite due to the non-integrability of w at the origin.
We cannot use a simple uncorrelated probability P as a trial state and it
is necessary to correlate the particles in such a way that they never get
too close to each other. The difficulty is to do this at fixed density, with
a reasonable energy cost. Also, we expect the typical distance between the
particles to depend on the local value of ρ. If we imagine that there are ρ(x)
particles per unit volume in a neighborhood of a point x, then the distance
should essentially be proportional to ρ(x)−1/d. We thus expect a bound in

terms of ρ(x)1+α/d for large densities. We can only fully solve this question
in the grand-canonical case. In the canonical case we can only treat T = 0
in full. The following is our first main result.

Theorem 11 (Strongly repulsive case α > d). Suppose that the interaction
w satisfies Assumption 1 with d 6 α < ∞. Let T > 0 and assume that for
T > 0, we have

∫
Rd ρ| log ρ| < ∞.

• In the grand-canonical ensemble, we have for any 0 6 ρ ∈ L1(Rd),

GT [ρ] 6 Cκ

∫

Rd

ρ2 + CT

∫

Rd

ρ+ T

∫

Rd

ρ log ρ

+





Cκrα0

∫

Rd

ρ1+
α
d for α > d,

Cκrd0

(∫

Rd

ρ2 +

∫

Rd

ρ2
(
log rd0ρ

)
+

)
for α = d.

(23)

Here the constant C only depends on the dimension d and the powers α, s
from Assumption 1.

• In the canonical ensemble we have the same estimate on FT [ρ] for all
T > 0 in dimension d = 1 and on F0[ρ] at T = 0 for d > 2, provided of
course that ρ has an integer mass.

In the proof we provide an explicit value for the constant C in (23) but
we do not display it here since it is by no means optimal and depends on
the cases. The parameters κ and r0 can be used to track the origin of the
different terms in our bound (23). The integrable part of the potential gives
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the ρ2 term as it did in Theorem 10. The terms involving rα0 on the second
line are solely due to the divergence of w at the origin. It is important that
we get here the expected and optimal ρ1+α/d due to the singularity. Finally,
we have an additional term involving Tρ which is an error in the entropy
due to our construction. We otherwise get the optimal Tρ log ρ.

In dimension d = 1, the proof of Theorem 11 is relatively easy, both in
the canonical and grand-canonical cases. It is detailed for convenience in
Section 3. The idea is to split the density ρ into successive intervals of mass
1/2 and then write ρ = (2ρodd+2ρeven)/2 where ρodd is the density restricted
to the odd intervals and ρeven to the even ones. We then take a trial state
of the form (Podd +Peven)/2, where Podd corresponds to placing exactly one
particle per odd interval at density 2ρ and Peven is defined similarly. This
way we have inserted some distance between the particles. It depends on
the form of ρ in the opposite set of intervals. The interaction between the
particles can then be easily controlled in terms of ρ1+α/d, as we explain in
Section 3.

In higher dimensions, there seems to be no general way of splitting Rd

into disjoints sets containing a fixed mass of ρ, so that each set has finitely
many neighbors at a given distance (except perhaps for very special den-
sities [GL17]). We can however carry over a similar argument as in the
1D case if we allow a covering with intersections. The Besicovitch covering
lemma [dG75] allows us to work with cubes Qj intersecting with finitely
many other cubes, such that

∫
Qj

ρ is any given number. We can also dis-

tribute the Qj into a finite (universal) number of subcollections so that
the cubes in each family are disjoint and not too close to each other. For
each collection of disjoint cubes we then use a simple tensor product similar
to the 1D case. The interaction is estimated using that the length of the
cubes is related to

∫
Qj

ρ1+α/d, leading to a bound involving only
∫
Rd ρ

1+α/d.

This proof was inspired by the presentation in the recent book [FLW22]
of a proof of the Lieb-Thirring and Cwikel-Lieb-Rozenblum inequalities
from [Roz71, Roz72, Wei96], thus in a completely different context. The
difficulty here is that we have no information on the number of particles in
each subcollection, due to the overlaps. This is the reason why the proof
works well in the grand-canonical setting, but not in the canonical case. The
details are given in Section 4.

To prove the result in the canonical case at T = 0 for d > 2, we use a com-
pletely different method based on optimal transport tools from [CDMS19].
As we will explain in Section 5, the latter work can be used to construct a
trial state P with ρP = ρ so that the distance between any two given parti-
cles on the support can be related to some average local value of the density
around the particles. This is how we can obtain the bound (23) at T = 0 in
the canonical case.

The next natural step is to smear this trial measure P and use it at T > 0
but we could unfortunately not give an optimal bound on the entropy of
the smearing. Our bound relies on the local radius R(x) of a density ρ,
which is thoroughly studied in Section 5.1 and is defined as follows. Let
0 6 ρ ∈ L1(Rd) with

∫
Rd ρ(y) dy > 1. For each x ∈ Rd, we define the local
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radius R(x) to be the largest number satisfying
∫

B(x,R(x))
ρ(y) dy = 1. (24)

This number is always bounded below for a given ρ ∈ L1(Rd) but behaves
like |x| at infinity. If ρ has compact support, then R(x) is bounded on the
support of ρ.

Theorem 12 (Strongly repulsive case α > d II). Suppose that the inter-
action w satisfies Assumption 1 with 2 6 d 6 α < ∞. Let T > 0 and
0 6 ρ ∈ L1(Rd) of integer mass with

∫
Rd ρ| log ρ| < ∞. Then we have

FT [ρ] 6 C(κ+ T )

∫

Rd

ρ2 + CT

∫

Rd

ρ+ T

∫

Rd

ρ log ρ+ T

∫

Rd

ρ logRd

+





Cκrα0

∫

Rd

ρ1+
α
d for α > d,

Cκrd0

(∫

Rd

ρ2 +

∫

Rd

ρ2
(
log rd0ρ

)
+

)
for α = d,

(25)

where the constant C only depends on the dimension d and the powers α, s
from Assumption 1.

The main difference compared to (23) is the additional term T
∫
ρ logRd,

which we conjecture should not be present. It is only affecting the bound in
places where R is large on the support of ρ, that is, where one cannot find a
sufficient amount of mass at a finite distance of x. Another small difference
is the additional term CT

∫
ρ2 due to our way of estimating the entropy.

The proof is detailed in Section 5.4 below.
The upper bounds in Theorems 11 and 12 will be very useful for our next

work [JLM23] where we study FT [ρ] and GT [ρ] for extended systems. The
sub-optimal upper bound (25) in the canonical case will be sufficient in this
context.

Remark 13 (Lower bounds). Even when w really behaves like |x|−α at
the origin (for instance satisfies w(x) > c|x|−α for some c > 0), a lower
bound in the form (23) cannot hold in general. This is because the density
can be large in regions where there is only one particle at a time, which
does not create any divergence in the interaction. As an example, consider
N points X1, ...,XN ∈ Rd and place around each point one particle in the
state χr := |Br|

−1
1Br , with r small enough. The corresponding state is the

(symmetrization of the) tensor product Pr =
⊗N

j=1 χr(· − Xj). Assuming
that w is continuous, its interaction energy behaves as

lim
r→0

UN (Pr) =
∑

16j<k6N

w(Xj −Xk)

hence stays finite, whereas the entropy equals

SN (Pr) = −N

∫
χr logχr = N log(|B1|r

d) −→
r→0

−∞.

On the other hand, the right side of (23) diverges much faster, like Nr−α.
This proves that a lower bound of the form (23) cannot hold for all possible
densities.
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Nevertheless, it is expected that the term
∫
ρ1+α/d should appear when

there are many particles in a small domain and is thus optimal in such
situations. For instance, assuming w > c|x|−α for |x| 6 r0 and taking
ρ = N |Br0/2|

−1
1Br0/2

(N particles at uniform density in the small ball), we

see that

FT [ρ] > min
x1,...,xN∈Br0/2




∑

16j<k6N

c

|xj − xk|α


+ T log(N/|Br0/2|)− TN.

The first minimum is known to behave like N1+α/dr−α
0 in the limit N →

∞ [Lew22, Lemma 1], which is exactly proportional to
∫
ρ1+α/d. Thus in

this case, the lower bound holds and the power 1 + α/d is optimal.

2.4. The hard-core case. We conclude this section with a discussion of
the hard-core case, which is notoriously more difficult [CCL84, Sec. 9]. We
start with the question of representability of a given density and then turn
to some upper bounds on the free energy.

2.4.1. Representability. Let r0 > 0 be a positive number and consider the
hard-core potential wr0(x) = (+∞)1(|x| < r0). Then we have for any N -
particle probability measure P

UN (P) =

{
0 if |xj − xk| > r0 ∀j 6= k, P–almost surely,

+∞ otherwise.

The set of P’s such that UN (P) = 0 is convex and its extreme points are
the symmetric tensor products of Dirac deltas located at distance > r0 from
each other. It follows that the convex set of wr0–representable densities is
the convex hull of the densities in the form

ρ =

N∑

j=1

δxj , min
j 6=k

|xj − xk| > r0. (26)

There is a similar result in the grand-canonical case. In spite of this simple
characterization, it seems very hard, in general, to determine whether a
given density belongs to this convex set or not.

In dimension d = 1, the problem can be solved exactly. Any extreme
point (26) satisfies

ρ
(
[x, x+ r0)

)
6 1, ∀x ∈ R, (27)

since there is always at most one Dirac delta in any interval of length r0. This
property pertains on the whole convex hull of wr0–representable densities.
Conversely, any positive measure ρ with ρ(R) = N satisfying (27) can be
written as a convex combination of Dirac deltas at distance > r0. To see
this, assume for simplicity ρ ∈ L1(R) and define as in [CDD15] the non-
decreasing function t 7→ x(t) on (0, N) so that

∫ x(t)

−∞
ρ(s) ds = t, ∀t ∈ (0, N).

To avoid any ambiguity when the support of ρ is not connected, we can
choose x(t) to be the largest possible real number satisfying the above
condition. The function t 7→ x(t) is differentiable, except possibly on a
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countable set, with x′(t) = ρ(x(t))−1. When ρ > 0 almost surely, we have
limt→0+ x(t) = −∞ and limt→N− x(t) = +∞. From the definition of x(t)
we have

ρ =

∫ N

0
δx(t) dt. (28)

Indeed, if we integrate the right side against some continuous function f we

find
∫ N
0 f(x(t)) dt =

∫
R
f(s)ρ(s) ds after changing variable s = x(t). Now

we can also rewrite (28) as

ρ =

∫ 1

0

N−1∑

k=0

δx(t+k) dt. (29)

By definition of x(t) we have
∫ x(t+k+1)

x(t+k)
ρ(s) ds = 1, ∀k = 0, ..., N − 2, ∀t ∈ (0, 1),

and therefore |x(t + k + 1) − x(t+ k)| > r0 when the condition (27) is sat-
isfied. Hence (29) is the sought-after convex combination of delta’s located
at distance > r0. The corresponding N -particle probability is

P = Πs

∫ 1

0
δx(t) ⊗ δx(t+1) ⊗ · · · ⊗ δx(t+N−1) dt (30)

where

Πs(f1 ⊗ · · · ⊗ fN ) =
1

N !

∑

σ∈SN

fσ(1) ⊗ · · · ⊗ fσ(N), (31)

is the symmetrization operator. At positive temperature, the previous state
can be regularized using the block approximation described in the proof
of Theorem 8, provided that

∫
R
ρ| log ρ| < ∞ and (27) holds with a strict

inequality.
In dimensions d > 2, the situation is much less clear. The condition (27)

can be re-expressed in the form

Rρ := min
x∈Rd

R(x) >
r0
2

(32)

where R(x) is the radius previously defined in (24). This can also be written
in the form ∫

B(x,r0/2)
ρ 6 1, ∀x ∈ Rd.

This is definitely a necessary condition for a density to be wr0–representable,
in dimension d > 1. Otherwise we would be able to find an x ∈ Rd and an
R < r0/2 such that

∫
B(x,R) ρ > 1. But then the probability that there are

at least two particles in the ball B(x,R) cannot vanish for any P of density
ρ and those are at distance < r0. This was already mentioned in [CCL84,
Sec. 9].

For d > 2 the condition (32) is definitely not sufficient for a density to be
representable. A counter example arises naturally within the sphere packing
problem. Recall that the d-dimensional sphere packing density

ρc(d) := lim
ℓ→∞

max{N : ∃x1, ..., xN ∈ Ωℓ, |xj − xk| > 1}

|Ωℓ|
(33)



18 M. JEX, M. LEWIN, AND P. S. MADSEN

gives the maximal number of points per unit volume one can put while
ensuring that they are at distance > 1 to each other. Here Ω is any fixed
smooth domain and Ωℓ = ℓΩ. The packing density equals ρc(1) = 1 in
dimension d = 1 and is otherwise only known in dimensions d ∈ {2, 3, 8, 24},
for which it is given by some special lattices [Coh17, Via21]. The sphere
packing fraction is defined by

vc(d) := ρc(d)|B1/2| = 2−dρc(d)|B1|

and represents the fraction of the volume occupied by the balls. This
is simply vc(1) = 1 in dimension d = 1 but is strictly less than 1 for
d > 2. Some volume has to be left unoccupied due to the impossibility
to fill space with disjoint balls of fixed radius. It has been shown that
vc(d) tends to 0 exponentially fast in the limit d → ∞ but its exact be-
havior is still unknown [TS06]. Let us now consider a constant density
ρ(x) = ρ01Ωℓ

(x) over a large domain Ωℓ = ℓΩ (for instance a ball). Then we

have R(x) = (ρ0|B1|)
−1/d well inside Ωℓ, whereas R(x) > (ρ0|B1|)

−1/d close
to the boundary. This shows that for this density

Rρ = min
x∈Rd

R(x) = (ρ0|B1|)
− 1

d =
r0
2

(
r−d
0 ρc(d)

ρ0vc(d)

) 1
d

.

In particular, the condition (32) is satisfied whenever ρ0 6 r−d
0 ρc(d)/vc(d).

On the other hand, it is clear from the packing problem (rescaled by r0) that

when ρ0 > r−d
0 ρc(d) the density cannot be representable for ℓ large enough.

Otherwise we would be able to place N = ρ0|Ωℓ| > r−d
0 ρc(d)|Ωℓ| points in

Ωℓ at distance r0, which contradicts the definition of ρc(d). In conclusion,
we have found that, in dimensions d > 2, constant densities ρ01Ωℓ

with

r−d
0 ρc(d) < ρ0 6

r−d
0 ρc(d)

vc(d)

satisfy (32) but cannot be wr0–representable for ℓ ≫ 1.
As a side remark, we mention that there are representable densities sat-

isfying (32), with Rρ as close as we want to r0/2. We can just take the sum
of two Dirac deltas placed at distance R > r0 or a smooth approximation of
it. This proves that there cannot exist a simple necessary and sufficient con-
dition of hard core representability involving Rρ only, in dimensions d > 2.
This is in stark contrast with the one-dimensional case.

There exists, however, a simple sufficient condition in a form that was
conjectured in [CCL84, p. 116]. In [CDMS19, Theorem 4.1] (see also Theo-
rem 21 below), it is proved that any density satisfying

Rρ > r0

is wr0–representable. The same holds when T > 0 if one puts a strict
inequality. It would be interesting to know if such a result is valid for
Rρ > cdr0 with cd < 1, depending on the dimension.

The conclusion of our discussion is that there seems to exist no simple
characterization of hard core representability in dimensions d > 2, involving
averages of ρ over balls. There are necessary or sufficient conditions but
they do not match.
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2.4.2. Upper bounds. Next we discuss upper bounds in the hard core case.
Even if we do not completely understand when a density is hard-core

representable, the energy is very easy to bound when it is the case. Let us
assume that w satisfies Assumption 1 with α = +∞ and that ρ ∈ L1(Rd) is
w–representable. For simplicity we also assume that w = +∞ on Br0 . Then,
for any optimizer P, we have |xj −xk| > r0 for j 6= k, P–almost surely. This
implies

F0[ρ] = UN (P) 6

∫

(Rd)N

∑

16j<k6N

κ1(|xj − xk| > r0)

|xj − xk|s
dP 6 CκNr−s

0 (34)

by [Lew22, Lemma 9]. The constant C only depends on s and d. Upper
bounds are easy once we know that the particles cannot get too close.

Constructing trial states with a good entropy is more difficult. Our proofs
of Theorems 11 and 12 work in the hard-core case, but they require addi-
tional conditions, of the form

Rρ > r0 or

∫

B(x,r0/2)
ρ 6 ε

for a sufficiently small ε. We do not state the corresponding results here
and rather refer the reader to Remarks 16, 20, and 28 below. In the rest of
this section we quickly discuss the grand-canonical 1D case which has been
studied in a famous paper of Percus [Per76] and the situation where ρ is
bounded uniformly.

The 1D grand-canonical Percus formula. The grand-canonical inverse prob-
lem was completely solved by Percus in dimension d = 1 in [Per76] (see
also [RV81]). Under the optimal assumption that Rρ > r0/2, he proved that
the grand-canonical Gibbs state with external potential

V (x) = − log ρ(x) + log

(
1−

∫ x

x−r0

ρ

)
−

∫ x+r0

x

ρ(s)

1−
∫ s
s−r0

ρ
ds

and hard-core wr0 has the density ρ. Since the potential Ṽ = V + log ρ
solves the supremum in the dual formula (20), we obtain

GT [ρ] = T

∫

R

ρ(x)
(
log ρ(x)− 1

)
dx− T

∫

R

ρ(x) log

(
1−

∫ x

x−r0

ρ

)
dx

(35)
for the hard core potential wr0 . This explicit expression shows us that, in
one dimension, the nonlocality is solely due to the second logarithmic term,
which involves the local average

∫ x
x−r0

ρ over a window of length r0. This is

further discussed in [RV81].
For a general potential w satisfying Assumption 1, we only obtain an

upper bound and need to add Cκr−s
0

∫
R
ρ by (34). We can estimate the

logarithm by assuming, for instance, that
∫ x
x−r0

ρ 6 1− ε for all x ∈ R.
To our knowledge the canonical problem was never solved in the manner

of Percus. It would be interesting to derive an upper bound on FT [ρ] of the
same form as the right side of (35).
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Bound for densities uniformly bounded by the packing density. In dimensions
d > 2 we have no simple criterion of representability, as we have seen. One
simpler situation is when ρ is everywhere bounded above by the sphere
packing density, which we have defined in (33). Then we can prove it is
representable and furnish an explicit upper bound on its grand-canonical
free energy.

Theorem 14 (Hard-core case with packing density bound). Assume that w
satisfies Assumption 1 with α = +∞. Let ρc(d) be the sphere packing density
in (33) and vc(d) = 2−dρc(d)|B1| be the volume fraction. Let ρ ∈ L1(Rd,R+)
be such that

ρ(x) 6 (1− ε)dr−d
0 ρc(d)

for some ε ∈ (0, 1). We also assume that
∫
Rd ρ| log ρ| < ∞ if T > 0. Then

GT [ρ] 6
Cκ

rs0

∫

Rd

ρ+ T

∫

Rd

ρ log ρ+ T log

(
2d

εdvc(d)

)∫

Rd

ρ,

with a constant C depending only on the dimension d and the power s from
Assumption 1.

The idea of the proof is to first construct a trial state for a constant
density ρ0 ≈ (1 − ε)dr−d

0 ρc(d) by using a periodic sphere packing with a
large period, uniformly averaged over translations (often called a “floating
crystal” [LLS19a]). We then “geometrically localize” [Lew11] this state to
make it have density ρ. The proof is detailed later in Section 6.

3. Proof of Theorem 11 in dimension d = 1

We start with the one-dimensional canonical case, for which the argu-
ment is relatively easy. We detail the proof for the convenience of the reader
and because this will pave the way for the more complicated covering meth-
ods in higher dimensions. We only consider here the canonical case. The
grand-canonical bound (23) follows using (19), but in the next section we
will provide a direct proof in the grand-canonical case which also works in
dimension d = 1.

Theorem 15 (d = 1). Suppose the interaction w satisfies Assumption 1
with 1 6 α < ∞. Let T > 0 and assume that

∫
R
ρ|log ρ| < ∞ for T > 0.

Then for any density 0 6 ρ ∈ L1(R) with
∫
R
ρ ∈ N, we have

FT [ρ] 6
4κs

s− 1

∫

R

ρ2 + log(2)T

∫

R

ρ+ T

∫

R

ρ log ρ

+





23+2α

α− 1
κrα0

∫

R

ρ1+α for α > 1,

25κr0

(
2 log(2)

∫

R

ρ2 +

∫

R

ρ2
(
log r0ρ

)
+

)
for α = 1.

(36)

Proof. Denoting N =
∫
R
ρ, we can split the real numbers R into two families

(Lj)
N
j=1, (L

∗
j )

N
j=1 of disjoint intervals in such a way that the mass of ρ in

each of these intervals is exactly
∫
Lj

ρ = 1/2, and such that each Lj has

neighboring intervals only among the L∗
j , and vice versa (see Figure 1).
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L1

L∗
1 Li

L∗
i+1

LN

L∗
N

Figure 1. Sketch of intervals

This allows us to write

ρ =
1

2

(∑

j

2ρ1Lj +
∑

j

2ρ1L∗

j

)
,

a convex combination of two measures with mass equal to N . As trial states
for each of these, we take the symmetric tensor products

Q = Πs

(⊗

j

(2ρ1Lj )
)
, Q∗ = Πs

(⊗

j

(2ρ1L∗

j
)
)
,

where Πs denotes the symmetrization operator in (31). Then the state

P :=
1

2
(Q+Q∗)

has one-body density equal to ρP = ρ. Using that the intervals (Lj) are all
disjoint, we have for instance

−SN (Q) =

∫

RN

1

N !

∑

σ∈SN

⊗

j

(2ρ1Lσ(j)
) log

(⊗

j

(2ρ1Lσ(j)
)
)

=

N∑

j=1

∫

R

2ρ1Lj log(2ρ1Lj ) =

∫
⋃

j Lj

2ρ log(2ρ),

and similarly for Q∗. By concavity of the entropy, we conclude that

−SN (P) 6 −
1

2
SN (Q)−

1

2
SN (Q∗) = log 2

∫

R

ρ+

∫

R

ρ log ρ.

To estimate the interaction energy in the state P, it suffices to provide
an estimate for both Q and Q∗. We write here the argument only for Q,
since the argument for Q∗ is exactly the same. By Assumption 1 and the
construction of Q, we immediately have

UN (Q) =

∫∫

R2

w(x− y)ρ
(2)
Q (x, y) dxdy

6 4κ
∑

i<j

∫∫

R2

(rα0 1(|x− y| < r0)

|x− y|α
+ w2(x− y)

)
×

× ρ(x)1Li(x)ρ(y)1Lj (y) dxdy
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where w2(x) = (1 + |x|s)−1 and ρ
(2)
Q is the two-particle correlation function.

For the contribution from the tail of the interaction, we have by Young’s
inequality

∑

i<j

∫∫

R2

w2(x− y)ρ(x)1Li(x)ρ(y)1Lj (y) dxdy

6
1

2

∫∫

R2

w2(x− y)ρ(x)ρ(y) dxdy

6
‖w2‖L1

2

∫

R

ρ2 6
s

s− 1

∫

R

ρ2.

From the core of w we get

4
∑

i<j

∫∫

R2

1(|x− y| < r0)

|x− y|α
ρ(x)1Li(x)ρ(y)1Lj (y) dxdy 6

∑

i<j

1d(Li,Lj)<r0

d(Li, Lj)α
.

The idea now is to use the intervals (L∗
j) to estimate the sum above. For

each i we denote by ηi the minimal length of neighboring intervals,

ηi = min{ℓ∗j | d(Li, L
∗
j ) = 0},

where ℓ∗j := |L∗
j | is the interval length, and we re-order the collection (Li)

such that η1 6 · · · 6 ηN . Fixing the index i, we now clearly have for j > i,

d(Li, Lj) > ηj > ηi,

in particular, ηi is smaller than the side length of any interval neighboring
Lj. Pick xj ∈ Li and yj ∈ Lj such that d(Li, Lj) = |xj − yj|, and let L∗

k be
the neighboring interval of Lj facing yj, that is, d(yj, L

∗
k) = 0. Defining

L̃j := (yj − ηi/2, yj + ηi/2) ∩ L∗
k,

then |L̃j | = ηi/2, and ηi/2 6 |xj − y| 6 |xj − yj| for all y ∈ L̃j, so we can
estimate

1d(Li,Lj)<r0

d(Li, Lj)α
6

2

ηi

∫

L̃j

1(|xj − y| < r0)

|xj − y|α
dy =

2

ηi

∫

L̃j−xj

1(|y| < r0)

|y|α
dy.

Now summing over j gives

N∑

j=i+1

1d(Li,Lj)<r0

d(Li, Lj)α
6

2

ηi

∫

R

1(ηi/2 6 |y| < r0)

|y|α
dy =

4

ηi

(∫ r0

ηi/2

1

|y|α
dy

)

+

6





21+α

α− 1

1

ηαi
for α > 1,

4

ηi

(
log
(2r0
ηi

))

+
for α = 1.

(37)

By Hölder’s inequality, we have by construction of the intervals L∗
j

1

(ℓ∗j )
α
6 21+α

∫

L∗

j

ρ1+α,
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for any α > 1, so in this case we conclude that

∑

i<j

1d(Li,Lj)<r0

d(Li, Lj)α
6

N∑

i=1

21+α

α− 1

1

ηαi
6

22+α

α− 1

N∑

i=1

1

(ℓ∗i )
α
6

23+2α

α− 1

N∑

i=1

∫

L∗

i

ρ1+α.

The same bound holds for the interaction energy of Q∗, but with the intervals
L∗
i replaced by Li at the end. This finishes the proof of the α > 1 case in

(36).
To finish the α = 1 case, we note that applying Jensen’s inequality on the

function t 7→ t2(log(2λt))+ for λ > 0 yields

1

ℓ∗j

(
log
( λ

ℓ∗j

))

+
= 4ℓ∗j

( 1

ℓ∗j

∫

L∗

j

ρ
)2(

log
(2λ
ℓ∗j

∫

L∗

j

ρ
))

+
6 4

∫

L∗

j

ρ2(log(2λρ))+.

Hence, continuing from (37), we get

∑

i<j

1d(Li,Lj)<r0

d(Li, Lj)α
6

N∑

i=1

4

ηi

(
log
(2r0

ηi

))

+
6 8

N∑

i=1

1

ℓ∗i

(
log
(2r0
ℓ∗i

))

+

6 25
N∑

i=1

∫

L∗

i

ρ2(log(4r0ρ))+.

Since the corresponding bound also holds for Q∗, this concludes the proof.
�

Remark 16 (Hard-core case). In the case where w has a hard-core with
range r0 > 0, it follows from the proof above that

FT [ρ] 6
( 4κs

(s− 1)r0
+ log(2)T

) ∫

R

ρ+ T

∫

R

ρ log ρ (38)

for any density ρ ∈ L1(R) satisfying the (sub-optimal) condition
∫ x+r0
x ρ 6 1

2
for all x ∈ R.

4. Proof of Theorem 11 in the grand-canonical case

In the course of our proof we need to cover the support of our density using
disjoint cubes separated by a distance depending on the local value of the
density, in order to have a reasonable control of the interaction. We obtain
such a covering by a variant of the Besicovitch lemma [dG75], which we first
describe in this subsection. It is different from the standard formulation.

For simplicity we work with a compactly supported density ρ with
∫
Rd ρ >

1. For every x ∈ Rd, we define ℓ(x) to be the largest number such that
∫

x+ℓ(x)C
ρ(x) dx =

1

3d(4d + 1)
, (39)

where C = (−1/2, 1/2)d is the unit cube centered at the origin. It is conve-
nient to work with cubes instead of balls. It is important that the chosen
value of the integral in (39) is universal and only depends on the space di-
mension d. This value is motivated by the estimates which will follow, it
could be any fixed number < 1 at this point. The number ℓ(x) always ex-
ists since the full integral is larger than 1. The function x 7→ ℓ(x) is upper
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semi-continuous. To simplify our notation we denote by C(x) := x+ ℓ(x)C
the cube centered at x of side length ℓ(x). By Hölder’s inequality we get

1

3d(4d + 1)
=

∫

C(x)
ρ 6 ℓ(x)

αd
α+d

(∫

C(x)
ρ1+

α
d

) d
d+α

and thus obtain the estimate
1

ℓ(x)α
6 3α+d(4d + 1)1+

α
d

∫

C(x)
ρ1+

α
d , ∀x ∈ Rd (40)

on the local length ℓ(x). The standard Besicovitch covering lemma (as stated
for instance in [FLW22, dG75]) implies for compactly supported densities

that there exists a set of points x
′(k)
j with 1 6 k 6 K ′ 6 4d+1 and 1 6 j 6 Jk

such that

• the cubes
(
C(x

′(k)
j )

)
16k6K ′

16j6Jk

cover the support of ρ and each x ∈ Rd

is in at most 2d such cubes,

• for every k, the cubes
(
C(x

′(k)
j )

)
16j6Jk

are all disjoint.

We need to obtain different families which satisfy additional properties,
namely we require the cubes to have a safety distance to all the larger cubes
within the same family, this distance being comparable to the side length of
the cube in question. The precise statement is the following.

Lemma 17 (Besicovitch with minimal distance). Let ρ be a compactly sup-

ported density with
∫
Rd ρ > 1. Then there exists a set of points x

(k)
j with

1 6 k 6 K 6 3d(4d + 1) and 1 6 j 6 Jk < ∞ such that

• the cubes
(
C(x

(k)
j )
)
16k6K
16j6Jk

cover the support of ρ and each x ∈ Rd is

in at most 2d such cubes,

• for every k, the cubes
(
C(x

(k)
j )
)
16j6Jk

in the kth collection satisfy

d
(
C(x

(k)
j ), C(x

(k)
ℓ )
)
>

1

2
min

{
ℓ(x

(k)
j ), ℓ(x

(k)
ℓ )
}
.

Proof. We start the proof by applying the standard Besicovitch covering
lemma recalled above. We obtain K collections of disjoint cubes. To impose
the minimal distance we separate each family into 3d subfamilies. Specifi-
cally, we use that the maximal number of disjoint cubes of side length > ℓ
intersecting a cube of side length 2ℓ is at most 3d. Thus if we look at a given
cube of side length ℓ, only 3d−1 other bigger cubes can be at distance 6 ℓ/2.
By induction we can thus always distribute all our cubes into 3d subfamilies,
while ensuring the distance property for all the bigger cubes. �

Using Lemma 17 we obtain the following partition of unity

1suppρ =
K∑

k=1

Jk∑

j=1

1
C(x

(k)
j )∩supp ρ

η
, 1suppρ 6 η :=

K∑

k=1

Jk∑

j=1

1
C(x

(k)
j )

6 2d

(41)
which we are going to use to construct our trial state for the upper bound on
GT [ρ]. We split the proof into several steps. We start with the case α > d
and treat the special case α = d at the very end.
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Step 1. Less than one particle. If
∫
Rd ρ 6 1, we consider the probability

P = (Pn) given by

P0 = 1−

∫

Rd

ρ, P1 = ρ, Pn = 0 for n > 2, (42)

which has density ρ and no interaction energy. Its free energy is thus just
equal to the entropy term

−TS(P) = T

(
1−

∫

Rd

ρ

)
log

(
1−

∫

Rd

ρ

)
+ T

∫

Rd

ρ log ρ.

The first term is negative and thus we obtain the desired inequality

GT [ρ] 6 T

∫

Rd

ρ log ρ for

∫

Rd

ρ 6 1. (43)

Step 2. Compactly supported densities (α > d). Next we consider
the case of a compactly supported density ρ with

∫
Rd ρ > 1. Using the

partition (41) we write

ρ =
1

K

K∑

k=1

(∑

j

ρ
(k)
j

)
, ρ

(k)
j :=

Kρ1
Q

(k)
j

η
,

where we abbreviated Q
(k)
j = C(x

(k)
j ) for simplicity. This is a (uniform) con-

vex combination of the K densities ρ(k) =
∑

j ρ
(k)
j . For fixed k, the ρ

(k)
j have

disjoint supports with distance greater or equal to min{ℓ(x
(k)
j ), ℓ(x

(k)
j′ )}/2.

In addition, we have
∫

ρ
(k)
j = K

∫

Q
(k)
j

ρ

η
6 3d(4d + 1)

∫

Q
(k)
j

ρ 6 1.

This is the reason for our choice of the constant in (39). Our trial state is
given by

P :=
1

K

K∑

k=1

P(k)

where

P(k) =

Jk⊗

j=1

((
1−

∫

Rd

ρ
(k)
j

)
⊕ ρ

(k)
j ⊕ 0⊕ . . .

)

is the symmetrized tensor product of the states in (42), which has density

ρ(k). Using the concavity of the entropy, our upper bound is, thus,

GT [ρ] 6
1

K

∑

k

GT (P
(k))

6
1

K

K∑

k=1

( ∑

16i<j6Jk

∫∫

Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w(x− y) dxdy

+ T

Jk∑

j=1

∫

Q
(k)
j

ρ
(k)
j log ρ

(k)
j

)
.
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We have

1

K

K∑

k=1

Jk∑

j=1

∫

Q
(k)
j

ρ
(k)
j log ρ

(k)
j =

1

K

K∑

k=1

Jk∑

j=1

∫

Q
(k)
j

ρ
(k)
j log

Kρ

η

=

∫

Rd

ρ log
Kρ

η
6

∫

Rd

ρ log ρ+ 3d

∫

Rd

ρ

since K 6 15d 6 e3d and η > 1. Thus we obtain

GT [ρ] 6
1

K

K∑

k=1

∑

16i<j6Jk

∫∫

Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w(x − y) dxdy

+ T

∫

Rd

ρ log ρ+ 3Td

∫

Rd

ρ.

Our next task is to estimate the interaction, for every fixed k. By As-
sumption 1 we have w 6 w1 + w2 with w1(x) = κ(r0/|x|)

α
1(|x| < r0) and

w2(x) = κ(1 + |x|s)−1. We first estimate the term involving the integrable
potential w2 using Young’s inequality as

∑

16i<j6Jk

∫∫

Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w2(x− y) dxdy

6
1

2

∫∫

Rd×Rd

ρ(k)(x)ρ(k)(y)w2(x− y) dxdy

6
‖w2‖L1

2

∫

Rd

(ρ(k))2 =
‖w2‖L1

2
K2

∫

∪iQ
(k)
i

ρ2

η2
.

After summing over k this gives

1

K

K∑

k=1

∑

16i<j6Jk

∫∫

Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w2(x− y) dxdy 6

‖w2‖L1

2
K

∫

Rd

ρ2

η
.

Using for instance
∫

Rd

w2 = κ|Sd−1|

∫ ∞

0

rd−1

1 + rs
dr 6 κ|Sd−1|

s

d(s − d)
,

and recalling that η > 1 and K 6 3d(4d + 1), we obtain

1

K

K∑

k=1

∑

16i<j6Jk

∫∫

Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w2(x− y) dxdy

6 κ
s|Sd−1|

2d(s − d)
3d(4d + 1)

∫

Rd

ρ2.

Next we consider the more complicated term involving the singular part
w1 = κ1(|x| < r0)(r0/|x|)

α. To simplify our notation, we remove the su-
perscript (k) and thus consider the collection (ρj)

J
j=1 of functions supported

in the disjoint cubes Qj with the safety distance. For every i 6= j, using∫
Rd ρj 6 1, we can estimate

∫∫
ρi(x)ρj(y)w1(x− y) dxdy 6

κrα0
d(Qi, Qj)α

.
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Recall that when |Qi| 6 |Qj |, the distance d(Qi, Qj) is at least equal to ℓi/2.
We can order our J cubes so that the volume is increasing: |Q1| 6 |Q2| 6
· · · 6 |QJ |. We need to estimate

J−1∑

i=1

J∑

j=i+1

1

d(Qi, Qj)α
=

J−1∑

i=1

1

ℓαi

J∑

j=i+1

1

d(C, Q′
i,j)

α

where C = (−1/2, 1/2)d and for every i, we have denoted by Q′
i,j the cube

centered at (xj − xi)/ℓi, of volume |Qj |/|Qi| > 1. To estimate the sum in j,
we use the following lemma, which is based on the integrability at infinity
of |x|−α and is similar to [Lew22, Lemma 9].

Lemma 18. Let C = (−1/2, 1/2)d be the unit cube and consider any col-
lection of non-intersecting cubes Qj with the property that |Qj | > 1 and

d(C, Qj) >
1
2 . Then we have

∑

j

1

d(C, Qj)α
6

3α27dd2

|Sd−1|(α− d)
. (44)

The constant on the right of (44) is not at all optimal and is only displayed
for concreteness.

Proof of Lemma 18. Let Xj ∈ C and Yj ∈ Qj be so that d(C, Qj) = |Xj −
Yj| >

1
2 . For any x ∈ B(Xj , 1/8) and y ∈ B(Yj, 1/8) we have

|Xj − Yj|

2
6 |Xj − Yj| −

1

4
6 |x− y| 6 |Xj − Yj|+

1

4
6

3

2
|Xj − Yj|.

Integrating over x′ ∈ C ∩B(Xj , 1/8) and y′ ∈ Qj ∩B(Yj, 1/8) we obtain

1

d(C, Qj)α
=

1

|Xj − Yj|α

6
(3/2)α

|C ∩B(Xj , 1/8)| |Qj ∩B(Yj, 1/8)|

∫

C

∫

Qj

dxdy

|x− y|α
.

The volume of the intersection of a ball of radius 1/8 centered at Xj in a
cube of volume > 1 and that of the other cube is bounded away from 0. It
is in fact minimal when Xj, Yj are located at a corner, yielding

|C ∩B(Xj , 1/8)| >
|Sd−1|

24dd
, |Qj ∩B(Yj, 1/8)| >

|Sd−1|

24dd
.

Thus, we obtain

1

d(C, Qj)α
6

3α28d−αd2

|Sd−1|2

∫

C

∫

Qj

dxdy

|x− y|α
.

Summing over j using that the cubes are disjoint we obtain

∑

j

1

d(C, Qj)α
6

3α28d−αd2

|Sd−1|2

∫

C

∫

Rd

1(|x− y| > 1
2) dxdy

|x− y|α
=

3α27dd2

|Sd−1|(α− d)

as was claimed. �
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From the estimates (40) and (44), we deduce that

∑

16i<j6Jk

∫∫

|x−y|6r0

ρi(x)ρj(y)w1(x− y) dxdy

6 κrα0
d23d+2α27d(4d + 1)1+

α
d

|Sd−1|(α − d)

∫

∪iQi

ρ1+
α
d .

Using that
∫
∪iQi

ρ1+
α
d 6

∫
Rd ρ

1+α
d and summing over K, we obtain our final

estimate

GT [ρ] 6 κ
s|Sd−1|

2d(s − d)
3d(4d+1)

∫

Rd

ρ2+κrα0
d23d+2α27d(4d + 1)1+

α
d

|Sd−1|(α− d)

∫

Rd

ρ1+
α
d

+ T

∫

Rd

ρ log ρ+ 3Td

∫

Rd

ρ. (45)

This is our final upper bound, with non-optimal constants only displayed
for concreteness.

Step 3. General densities (α > d). In order to be able to use the
Besicovitch lemma, we restricted ourselves to compactly supported densities.
We prove here that the exact same estimate holds for general densities. Let
ρ ∈ (L1 ∩ L1+α/d)(Rd,R+), ε ∈ (0, 1) and write

ρ = (1− ε)
ρ1CL

1− ε
+ ε

ρ1Rd\CL

ε

with CL = (−L/2, L/2)d. Using the concavity of the entropy, we obtain

GT [ρ] 6 (1− ε)GT

[
ρ1CL

1− ε

]
+ εGT

[
ρ1Rd\CL

ε

]
. (46)

We choose L so large that ∫

Rd\CL

ρ 6 ε,

which allows us to use (43) for the second term on the right of (46). For the
first term we just use Step 2. We find

GT [ρ] 6
Cκrα0

(1− ε)
α
d

∫

CL

ρ1+
α
d +

Cκ

1− ε

∫

CL

ρ2 + CT

∫

CL

ρ+ T

∫

Rd

ρ log ρ

+ T log ε−1

∫

Rd\CL

ρ+ T log(1− ε)−1

∫

CL

ρ.

By passing first to the limit L → ∞ and then ε → 0, we conclude that ρ
satisfies the same estimate (45) as for compactly supported densities.

Step 4. Case α = d. The case when the core of the interaction behaves as
w1(x) = κrd0 |x|

−d
1(|x| 6 r0) is similar to the previous situation with some

small changes. The function is not integrable around the origin which re-
quires to have a safety distance between particles in our trial state. However
this interaction is also non-integrable without cutoff at infinity so we need
to use that the core of our interaction is compactly supported on the ball of
radius r0. The following alternative to Lemma 18 is going to be useful.
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Lemma 19. Let C0 = (−ℓ0/2, ℓ0/2)
d and consider any collection of non-

intersecting cubes Qj with the property that |Qj | > ℓd0 and d(C0, Qj) >
ℓ0
2 .

Then we have
∑

j

1d(C0,Qj)6r0

d(C0, Qj)d
6 Cℓ−d

0

(
log

(
2r0
ℓ0

))

+

. (47)

Proof. We assume ℓ0 6 2r0 otherwise there is nothing to prove. Let Xj ∈

C0 and Yj ∈ Qj be such that d(C0, Qj) = |Xj − Yj| >
ℓ0
2 . For any x ∈

B(Xj , ℓ0/8) and y ∈ B(Yj, ℓ0/8) we have

|Xj − Yj |

2
6 |Xj − Yj| −

ℓ0
4

6 |x− y| 6 |Xj − Yj|+
ℓ0
4

6
3

2
|Xj − Yj|.

Integrating over x′ ∈ C0 ∩B(Xj , ℓ0/8) and y′ ∈ Qj ∩B(Yj, ℓ0/8) we obtain

1d(C0,Qj)6r0

d(C0, Qj)d
=
1d(C0,Qj)6r0

|Xj − Yj|d

6
(3/2)d

|C0 ∩B(Xj , ℓ0/8)| |Qj ∩B(Yj, ℓ0/8)|

∫

C0

∫

Qj

1d(|x−y|)6r0

|x− y|d
dxdy.

Summing over all cubes we get

∑

j

1d(C0,Qj)6r0

d(C0, Qj)d
6

27d3dd

|Sd−1|ℓd0

∫ r0

ℓ0
2

r−1 dr =
27d3dd

|Sd−1|

log(2r0/ℓ0)

ℓd0
.

�

Next we explain how to relate the right side of (47) with the density ρ.
Recall from (39) that

∫

C(x)
ρ(y) dy =

1

3d(4d + 1)
(48)

where C(x) is the cube of side length ℓ(x) centered at x. By Jensen’s in-
equality, we have for every convex function F

ℓ(x)dF

(
1

ℓ(x)d3d(4d + 1)

)
= ℓ(x)dF

(
1

ℓ(x)d

∫

C(x)
ρ

)
6

∫

C(x)
F
(
ρ(y)

)
dy.

(49)
Applying this to

F (t) = t2
(
log
(
6d(4d + 1)rd0t

))
+
,

we obtain

ℓ(x)−d

(
log

(
2r0
ℓ(x)

))

+

6
32d(4d + 1)2

d

∫

C(x)
ρ(y)2

(
log
(
6d(4d + 1)rd0ρ(y)

))

+
dy

6
32d(4d + 1)2

d

∫

C(x)
ρ(y)2

(
4d+

(
log rd0ρ(y)

)
+

)
dy. (50)

The rest of the proof is similar to the case α > d, using (50) and Lemma 19.
We omit the details. This concludes the proof of Theorem 11. �
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Remark 20 (Hard-core case). The previous proof can be used in the hard
core case α = ∞, under the (sub-optimal) condition that

∫
x+r0C

ρ < 1
3d(4d+1)

for all x, where C = (−1/2, 1/2)d. The interaction can be bounded by κCN
as we have seen in (34), leading to the bound

GT [ρ] 6 Cκ

∫

Rd

ρ+ CT

∫

Rd

ρ+ T

∫

Rd

ρ log ρ .

5. Proofs in the canonical case

5.1. The local radius R(x) in optimal transport. Here we explain how
to construct canonical trial states using a result from optimal transport,
in order to obtain bounds at zero temperature for a singular interaction
(d 6 α 6 ∞).

Consider any density ρ with
∫
ρ > 1, and recall the local radius R(x)

from (24). Note that R(x) can never be zero because ρ as a measure does not
have any point mass. The function R is connected to the Hardy-Littlewood
maximal function Mρ, defined by

Mρ(x) := sup
r>0

1

|Br|

∫

B(x,r)
ρ(y) dy, (51)

where |Br| denotes the volume of a ball in Rd of radius r. By definition of
R it is clear that

1

|B1|R(x)d
=

1

|B1|R(x)d

∫

B(x,R(x))
ρ(y) dy 6 Mρ(x),

so that we have the pointwise bound

1

R(x)
6 (|B1|Mρ(x))

1
d . (52)

Furthermore, using Hölder’s inequality gives for any p > 0,

1 =

∫

B(x,R(x))
ρ 6 |B(x,R(x))|

p
p+d

(∫

B(x,R(x))
ρ1+

p
d

) d
p+d

,

implying for ρ ∈ L
1+ p

d
loc (Rd) the bound

1

R(x)p
6 |B1|

p
d

∫

B(x,R(x))
ρ1+

p
d . (53)

It is also apparent that R is 1-Lipschitz-continuous, see e.g. [CDMS19,
Theorem 4.1]. One might also remark that R always stays away from zero,
i.e.

Rρ := min
x∈Rd

R(x) > 0. (54)

This is an immediate consequence of the facts that R is continuous and that,
necessarily, lim|x|→∞R(x) = ∞, because ρ ∈ L1(Rd).

To obtain an upper bound on the canonical energy at a fixed density
0 6 ρ ∈ L1(Rd), it is convenient to have existence of states P in which the
distance between the particles is bounded from below in terms of the function
R from (24). The following is a consequence of a result from [CDMS19].
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Theorem 21 (Optimal transport state). Let 0 6 ρ ∈ L1(Rd) with N =∫
Rd ρ ∈ N. There exists an N -particle state P with density ρP = ρ such that

|xi − xj| > max
(
Rρ,

R(xi)+R(xj )
3

)
for 1 6 i 6= j 6 N (55)

P–almost everywhere, where R is the function defined by (24), and Rρ is its
minimum in (54).

Proof. The proof is a simple application of [CDMS19, Theorem 4.3]. For
any 0 < η < 1 (we will choose η = 1/3 in a moment) and any x ∈ Rd, define
a set

B̃(x) = {y ∈ Rd | |x− y| < η(R(x) +R(y))}.

Then we have for any 0 < t < 1− η, using the Lipschitz continuity of R,

B̃(x) ⊆ {y ∈ Rd | t|x− y| < ηR(x)} ∪ {y ∈ Rd | (1− t)|x− y| < ηR(y)}

⊆ B(x, ηtR(x)) ∪ {y ∈ Rd | (1− t)|x− y| < η(R(x) + |x− y|)}

= B(x, ηtR(x)) ∪B(x, η
1−t−ηR(x)).

We wish to choose t and η such that the measure of right hand side is equal
to one (with respect to the measure ρ). First, requiring the two balls to

have the same radius leads to the choice t = 1−η
2 . Next, we choose η such

that η
t = η

1−t−η = 2η
1−η = 1, which implies η = 1/3.

Now, defining an open and symmetric set D ⊆ Rd × Rd by

D =
{
(x, y) ∈ Rd ×Rd

∣∣∣ |x− y| < max
(
Rρ,

R(x)+R(y)
3

)}
,

then B(x) := {y ∈ Rd | (x, y) ∈ D} satisfies

B(x) = B(x,Rρ) ∪ B̃(x) ⊆ B(x,R(x)).

Thus, by definition of R, we have ρ(B(x)) 6 ρ(B(x,R(x))) = 1, and since D
is open and symmetric, [CDMS19, Theorem 4.3] asserts the existence of a P

with the claimed properties. Specifically, one can take P to be the optimizer
for the multi-marginal optimal transport problem associated to the cost

c(x) = min{d(x,A), 1},

where A denotes the set containing the (x1, ..., xN ) satisfying (55). �

5.2. Proof of Theorem 11 in the canonical case at T = 0. The ex-
istence of the state from Theorem 21 allows us to prove the last part of
Theorem 11 about the canonical free energy at zero temperature. For con-
venience we state a proposition valid for any state P for which the particles
satisfy an inequality similar to (55). Along with Proposition 23 below (which
covers the case α = d), this immediately implies Theorem 11 in the canonical
case.

Proposition 22 (Zero temperature energy bound, d < α < ∞). Let w
satisfy Assumption 1 with d < α < ∞. Let P be any N -particle probability
measure with one-body density ρ := ρP satisfying

|xi − xj | > η
(
R(xi) +R(xj)

)
for 1 6 i 6= j 6 N , (56)
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0

zj

xi − xj

B(0, ηR(xi))

B(zj,
η
2R(xj))

ηR(xi)

η
2R(xj)

ηR(xj)

B(xi − xj, ηR(xj))

Figure 2. Sketch of construction

P–almost everywhere, for some 0 < η 6 1. Then the interaction energy in
the state P is bounded by

F0[ρ] 6 UN (P) 6
Cκrα0
ηα

∫

Rd

ρ(x)1+
α
d dx+

Cκ

ηd

∫

Rd

ρ(x)2 dx (57)

with C a constant depending only on d, α, s.

Proof of Proposition 22. In this proof we will not keep track of the exact
value of the constants, since we will need the (unknown) one from the Hardy-
Littlewood inequality. Hence C denotes here a generic constant depending
only on d, α, s. By the assumptions on w, we have

UN (P) 6 κ

∫

RdN

∑

16i<j6N

(
rα0 1(|xi − xj| 6 r0)

|xi − xj |α
+

1

1 + |xi − xj |s

)
dP(x).

(58)
Let x = (x1, . . . , xN ) be in the support of P. After permutation we can
assume that R(x1) 6 R(x2) 6 · · · 6 R(xN ). We fix the index i and consider
the points xi − xj in Rd for j = i+ 1, . . . , N . Because of (56), these points
are all at a distance at least η(R(xi) +R(xj)) from the origin, and

|(xi − xj)− (xi − xk)| = |xj − xk| > η(R(xj) +R(xk)).

Hence we can place N − i disjoint balls in Rd with radii ηR(xj), centered at
the points xi−xj, respectively. Inside each of these balls, we place a smaller
ball of radius η

2R(xj), centered at

zj =
(
1−

ηR(xj)

2|xi − xj|

)
(xi − xj).

Then xi − xj is the point on the boundary of B(zj,
η
2R(xj)) which is the

farthest from the origin (see Figure 2), so that

1

|xi − xj|α
= min

y∈B(zj ,
η
2
R(xj))

1

|y|α
.
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Note that the distance from B(zj ,
η
2R(xj)) to the origin is bounded from

below by

d
(
0, B(zj ,

η

2
R(xj))

)
> |zj | −

η

2
R(xj) = |xi − xj | − ηR(xj) > ηR(xi).

Using this, along with the fact that all the balls are disjoint, we get the
pointwise bound

N∑

j=i+1

1

|xi − xj |α
6

N∑

j=i+1

1

|B(zj ,
η
2R(xj))|

∫

B(zj ,
η
2
R(xj))

1

|y|α
dy

6
1

|B(0, η2R(xi))|

∫

B(0,ηR(xi))c

1

|y|α
dy (59)

=
2d

|B1|

1

(ηR(xi))α

∫

B(0,1)c

1

|y|α
dy

for P-a.e. x ∈ RdN . We conclude that the contribution to the energy from
the core of w can be bounded by

∫

RdN

N∑

i=1

N∑

j=i+1

1

|xi − xj |α
dP(x) 6

C

ηα

∫

RdN

N∑

i=1

1

R(xi)α
dP(x)

=
C

ηα

∫

Rd

ρ(x)

R(x)α
dx. (60)

Similarly, we get for the contribution from the tail of w,

∑

j=i+1

1

1 + |xi − xj|s
6

∑

j=i+1

1

|B(zj ,
η
2R(xj))|

∫

B(zj ,
η
2
R(xj))

1

1 + |y|s
dy

6
2d

|B1|

1

(ηR(xi))d

∫

Rd

1

1 + |y|s
dy,

so
∫

RdN

N∑

i=1

N∑

j=i+1

1

1 + |xi − xj |s
dP(x) 6

C

ηd

∫

Rd

ρ(x)

R(x)d
dx. (61)

Finally, recalling from (52) that R(x) is bounded from below in terms
of the maximal function of ρ, we apply the Hölder and Hardy-Littlewood
maximal inequalities to obtain for any power p > 0,

∫

Rd

ρ(x)

R(x)p
dx 6 C

∫

Rd

ρ(x)(Mρ)(x)
p
d dx

6 C
(∫

Rd

ρ(x)1+
p
d dx

) d
d+p
(∫

Rd

(Mρ)(x)
1+ p

d dx
) p

d+p

6 C

∫

Rd

ρ(x)1+
p
d .

Using this on (60) and (61), and combining with (58), we obtain the claimed
bound (57). �

Proposition 23 (Special case α = d). Let w be an interaction satisfying
Assumption 1 with α = d, and 0 6 ρ ∈ L1(Rd) a density with

∫
ρ = N .
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Then, for any N -particle probability measure P with one-body density ρP = ρ
satisfying (56) for some 0 < η 6 1, the interaction energy is bounded by

F0[ρ] 6

∫

RdN

∑

16i<j6N

w(xi − xj) dP(x1, . . . , xN )

6
κrd0C

η2d

∫

Rd

ρ2
(
log
(crd0
η2d

ρ
))

+
+

κC

η2d

∫

Rd

1

1 + |y|s
dy

∫

Rd

ρ2, (62)

where the constants c and C depend only on the dimension d.

Proof. The proof goes along the same lines as the proof of Proposition 22.
However, complications arise due to the fact that 1/|x|d is not integrable
at infinity, so we need to take into account the finite range r0 of the core
of w. Incidentally, this also forces us to avoid using the Hardy-Littlewood
maximal inequality later in the proof. Following the proof of Proposition 22
up to (59) and noting that B(zj,

η
2R(xj)) ⊆ B(0, |xi − xj |), we have

N∑

j=i+1

1(|xi − xj | 6 r0)

|xi − xj |d
6

N∑

j=i+1

1(|xi − xj | 6 r0)

|B(zj ,
η
2R(xj))|

∫

B(zj ,
η
2
R(xj))

1

|y|d
dy

6
1

|B(0, η2R(xi))|

∫

ηR(xi)6|y|6r0

1

|y|d
dy

=
|Sd−1|

|B(0, η2R(xi))|

(∫ r0

ηR(xi)

1

r
dr
)

+

=
2d

ηdR(xi)d

(
log
( rd0
ηdR(xi)d

))
+
.

This leads to the bound

∫

RdN

N∑

i=1

N∑

j=i+1

w(xi − xj) dP(x)

6 κrd0
2d

ηd

∫

RdN

N∑

i=1

1

R(xi)d

(
log
( rd0
ηdR(xi)d

))
+
dP(x)

+ κ
2d

|B1|ηd

∫

Rd

1

1 + |y|s
dy

∫

RdN

N∑

i=1

1

R(xi)d
dP(x), (63)

where, in this case, we cannot use the Hardy-Littlewood maximal inequality
on the first term. However, this can be circumvented using the fact that
|xi − xj| > η(R(xi) + R(xj)) on the support of P, which is the content of
Lemma 24 below. Using the lemma, we conclude

F0[ρ] 6
κrd0C

η2d

∫

Rd

ρ2
(
log
(2d|B1|r

d
0

η2d
ρ
))

+
+

κC

η2d

∫

Rd

1

1 + |y|s
dy

∫

Rd

ρ2,

where the constant C depends only on the dimension d. �

Lemma 24. Let 0 6 ρ ∈ L1(Rd) be any density with
∫
ρ > 1, and take

any configuration of points x1, . . . , xM ∈ Rd satisfying |xi −xj| > η(R(xi)+
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R(xj)) for i 6= j, for some 0 < η 6 1. Then we have the bounds

M∑

i=1

1

R(xi)p
6

Cd,p

ηp

∫

Rd

ρ1+
p
d (64)

for any p > 0, and for any λ > 0,

M∑

i=1

1

R(xi)d

(
log
( λ

R(xi)d

))
+
6

Cd

ηd

∫

Rd

ρ2
(
log
(2dλ
ηd

|B1|ρ
))

+
. (65)

Proof. We consider any configuration x1, . . . , xM as in the statement, and
seek to provide a bound on the sum

∑M
i=1

1
R(xi)p

. We order the points such

that R(x1) 6 · · · 6 R(xM ), and assume first for simplicity that all the
balls B(xj, R(xj)) intersect the smallest ball B(x1, R(x1)). The main idea

of the following argument is to split the space Rd into shells of exponentially
increasing width, centered around x1, and arguing that the number of points
among x2, . . . , xM that can lie in each shell is universally bounded. To
elaborate, take any τ > 1 and consider for m ∈ N0 the spherical shell of
points y ∈ Rd satisfying

τmηR(x1) 6 |x1 − y| < τm+1ηR(x1). (66)

Note that if xj lies in this shell, then by Lipschitz continuity of R,

2η

1 + η
R(xj) 6 |x1 − xj | < τm+1ηR(x1),

immediately implying that

R(xj) <
1 + η

2
τm+1R(x1). (67)

This means that the ball B(xj, ηR(xj)) is contained in

B(xj, ηR(xj)) ⊆ B(x1, |x1 − xj |+ ηR(xj)) ⊆ B
(
x1,

3 + η

2
τm+1ηR(x1)

)
.

Furthermore, by the assumption that B(x1, R(x1)) ∩ B(xj, R(xj)) 6= ∅, we
have that

τm

2
ηR(x1) 6

1

2
|x1 − xj| <

1

2
(R(x1) +R(xj)) 6 R(xj). (68)

Since the balls B(xj, ηR(xj)) are all disjoint, we conclude that the number
of xj ’s that can lie in the m’th shell around x1 is bounded by the ratio of
the volumes

#{j | τmηR(x1) 6 |x1 − xj| < τm+1ηR(x1)} 6
|B
(
x1,

3+η
2 τm+1ηR(x1)

)
|

|B(0, τ
m

2 ηR(x1))|

6 4dτd.

Note also that no xj can be placed inside the first shell (corresponding to
|x1 − xj | < ηR(x1)), because we always have |x1 − xj| > η(R(x1) + R(xj))
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by assumption. Now, for any power p > 0, this allows us to bound, using
(53),

M∑

j=1

1

R(xj)p
6 4dτd

∞∑

m=0

2p

(τmηR(x1))p
6

2p+2dτp+d

ηp(τp − 1)

1

R(x1)p

6
2p+2dτp+d

ηp(τp − 1)
|B1|

p
d

∫

B(x1,R(x1))
ρ(y)1+

p
d dy. (69)

To bound the sum involving the logarithm, we note first that for any λ > 0,
applying Jensen’s inequality to the function t 7→ t2(log λt)+ yields

1

R(x)d

(
log
( λ

R(x)d

))
+
=

|B1|

|B(x)|

(∫

B(x)
ρ

)2(
log
( λ|B1|

|B(x)|

∫

B(x)
ρ
))

+

6 |B1|

∫

B(x)
ρ2(log(λ|B1|ρ))+. (70)

Using this, we obtain by again summing over all the shells,

M∑

i=1

1

R(xi)d

(
log
( λ

R(xi)d

))
+
6

∞∑

m=0

4dτd2d

(τmηR(x1))d

(
log
( 2dλ

(τmηR(x1))d

))
+

6
23dτd

ηd

∞∑

m=0

1

τdmR(x1)d

(
log
( 2dλ

ηdR(x1)d

))
+

6
23dτ2d|B1|

ηd(τd − 1)

∫

B(x1,R(x1))
ρ2
(
log
(2dλ
ηd

|B1|ρ
))

+
.

Finally, we generalize to the case where not all the balls B(xj, R(xj)) in-
tersect the smallest ball B(x1, R(x1)). We split the configuration (xj)16j6M

into clusters
(
x
(k)
j

)
16j6nk

with 1 6 k 6 K, such that:

• For any k, R(x
(k)
1 ) 6 · · · 6 R(x

(k)
nk ).

• B(x
(k)
1 , R(x

(k)
1 )) ∩B(x

(k)
j , R(x

(k)
j )) 6= ∅ for any j, k.

• The balls B(x
(k)
1 , R(x

(k)
1 )) are all pairwise disjoint for k = 1, . . . ,K.

Then, using (69) on each cluster, we get for instance

M∑

j=1

1

R(xj)p
6

2p+2dτp+d

ηp(τp − 1)
|B1|

p
d

K∑

k=1

∫

B(x
(k)
1 ,R(x

(k)
1 ))

ρ(y)1+
p
d dy

6
2p+2dτp+d

ηp(τp − 1)
|B1|

p
d

∫

Rd

ρ(y)1+
p
d dy,

which concludes the proof of (64). (65) follows in the same way. �

Remark 25 (Hard-core at zero temperature). As we have mentioned in
Section 2.4, in the hard core case α = +∞, we know from (34) that for any
representable density ρ, we have

F0[ρ] 6
κC

rs0

∫

Rd

ρ(x) dx, (71)



CLASSICAL DFT: UNIVERSAL BOUNDS 37

where the constant C depends only on d and s. The problem is to determine
when ρ is representable. Using Theorem 21, this is the case when for instance
Rρ = minxR(x) > r0.

5.3. The block approximation. While the state from Theorem 21 is use-
ful for obtaining energy bounds at zero temperature, it might be singular
with respect to the Lebesgue measure on RdN , leaving it unsuitable to use
for the positive temperature case, because the entropy in this case will be
infinite. Here we describe a simple way of regularizing states, while keeping
the one-body density fixed, which is a slight generalization to any partition
of unity of the construction in [CDPS17]. Essentially, it works by cutting Rd

into ”blocks” and then locally replacing the state by a pure tensor product.
Let

∑
χj = 1Rd be any partition of unity, and P any N -particle state

with density ρ. The corresponding block approximation is defined by

P̃ :=
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )
(ρχi1)⊗ · · · ⊗ (ρχiN )∏N

k=1

∫
Rd ρχik

, (72)

where we denote

P(χi1 ⊗ · · · ⊗ χiN ) :=

∫

RdN

χi1 ⊗ · · · ⊗ χiN dP.

That is, P̃ is a convex combination of tensor products of the normalized ρχi∫
ρχi

.

One can easily show that P̃ has one-body density ρ
P̃
= ρ. Furthermore, it

is clear that P̃ is a symmetric measure whenever P is, so we can also write

P̃ =
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )Πs

( ρχi1∫
ρχi1

⊗ · · · ⊗
ρχiN∫
ρχiN

)
,

where Πs denotes the symmetrization operator in (31). In [CDPS17] the
chosen partition of unity is just a tiling made of cubes, but in fact any
partition works. Applying Jensen’s inequality yields the following.

Lemma 26 (Entropy of the block approximation). Suppose that the state
P and the partition of unity (χj) are such that χi1 , . . . , χiN all have disjoint
supports whenever P(χi1 ⊗ · · · ⊗ χiN ) 6= 0. Then we have

∫

RdN

P̃ log(N ! P̃) 6

∫

Rd

ρ log ρ+

∫

Rd

ρ
∑

i

χi log χi

−
∑

i

(∫

Rd

ρχi

)
log
(∫

Rd

ρχi

)
. (73)

Remark 27. Since (χi) is a partition of unity, the term above involving
χi log χi can always be estimated from above by zero. On the other hand, it
is not clear that the sum in last term above is even finite for an arbitrary
partition (χi). However, it turns out to behave nicely in many situations.
For instance, if

∫
ρχj 6 1 for all j, we can estimate it by 1/e times the

number of terms in the partition of unity, which is typically finite when ρ
has compact support.
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Proof. The entropy of the block approximation can be estimated using
Jensen’s inequality by
∫

P̃ log(N ! P̃)

6
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )

∫
Πs

(
⊗

k

ρχik∫
ρχik

)
log

(
N ! Πs

⊗

k

ρχik∫
ρχik

)

=
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )

∫ ⊗

k

ρχik∫
ρχik

log



∑

σ∈SN

⊗

k

ρχiσ(k)∫
ρχiσ(k)


 .

We have here used the symmetry of P to remove the first Πs. It is important
that the N ! has disappeared in the logarithm. For any non-zero term, the
supports of the χik are all disjoint, hence only the case σ = Id remains in
the sum. Using that

∫ ⊗

k

ρχik∫
ρχik

log

(
⊗

k

ρχik∫
ρχik

)
=

N∑

k=1

∫
ρχik∫
ρχik

log
ρχik∫
ρχik

and plugging this into the previous expression, we conclude that (73) holds.
�

5.4. Proof of Theorem 12 in the canonical case at T > 0. We as-
sume first that the density ρ is compactly supported, and then remove this
assumption at the end. Applying the Besicovitch covering lemma [FLW22,
dG75] on the cover {B(x, εR(x)) |x ∈ supp ρ} gives the existence of a (finite)
set of points (yj) ⊆ supp ρ satisfying that (Bj) := (B(yj, εR(yj))) covers the
support of ρ, and the multiplicity of the cover is universally bounded, i.e.,

1 6 ϕ(x) :=
∑

j

1Bj(x) 6 Cd, x ∈ suppρ,

where the constant Cd depends only on the dimension d, and thus not on ε or

ρ. This gives us a partition of unity (χj) defined by χj :=
1Bj

ϕ . One way of

constructing the Besicovitch cover is to inductively maximize εR(yj) over the

remaining volume yj ∈ supp ρ \
⋃j−1

k=1Bk, supposing that y1, . . . , yj−1 have
already been chosen. This construction implies the bound on the distances

|yj − yk| > max(εR(yj), εR(yk)) >
ε

2
(R(yj) +R(yk)) (74)

for all j 6= k.
We now take the optimal transport state P obtained from Theorem 21,

and denote by mj :=
∫
ρχj =

∫
Bj

ρ
ϕ the local mass of ρ with respect to the

partition of unity (χj). As a trial state for the free energy, we take the block
approximation (72) of P using the χj, i.e.,

Pε :=
∑

j1,...,jN

P(χj1 × · · · × χjN )
(ρχj1

mj1

)
⊗ · · · ⊗

(ρχjN

mjN

)
.

We show that the support of Pε satisfies the condition (56) for some η. For
any point (x1, . . . , xN ) ∈ suppPε, there must be a term in the sum above
such that P(χj1 × · · · × χjN ) 6= 0, and xk ∈ Bjk = B(yjk , εR(yjk)) for all k.
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In particular, since the support of P satisfies (55), there exist z1, . . . , zN with
zk ∈ Bjk and |zk − zℓ| >

1
3(R(zk) + R(zℓ)) for any k 6= ℓ. By the Lipschitz

continuity of R, xk ∈ Bjk implies that R(yjk) 6
1

1−εR(xk), so

|xk − zk| 6 2εR(yjk) 6
2ε

1− ε
R(xk).

Finally, this gives us the bound

|xk − xℓ| > |zk − zℓ| − |xk − zk| − |xℓ − zℓ|

>
1

3
(R(zk) +R(zℓ))− |xk − zk| − |xℓ − zℓ|

>
1

3
(R(xk) +R(xℓ))−

4

3
(|xk − zk|+ |xℓ − zℓ|)

>
1

3

(
1−

8ε

1− ε

)
(R(xk) +R(xℓ)). (75)

This argument also shows that if P(χj1 × · · · × χjN ) 6= 0, then the sets Bjk

are disjoint for k = 1, . . . , N , provided that ε < 1
9 .

Now, since Pε satisfies (75), it follows from Proposition 22 that the inter-
action energy (in case α > d) is bounded by

UN (Pε) 6 Cκrα0

∫

Rd

ρ1+
α
d + Cκ

∫

Rd

ρ2,

and similarly for α = d, using Proposition 23. Thus, to show (25), it only
remains to provide a bound on the entropy of the state Pε. First, applying
Lemma 26 immediately gives∫

RdN

Pε log(N !Pε) 6

∫

Rd

ρ log ρ−
∑

j

mj logmj.

Then, for any numbers s, t > 0, we can use the elementary bound

−s log(ts) 6
1

et
to conclude that

−
∑

j

mj logmj =
∑

j

mj log(R(yj)
d)−mj log(R(yj)

dmj)

6
∑

j

d

∫
ρ(x)χj(x) log((1 + ε)R(x)) dx+

1

eR(yj)d

6 d log(1 + ε)

∫

Rd

ρ+ d

∫

Rd

ρ logR+
C

εd

∫

Rd

ρ2,

where the last inequality uses (74) and Lemma 24. This proves Theorem 12
for compactly supported densities. �

Remark 28 (Hard-core case). In the hard core case α = +∞, the above
proof provides the bound

FT [ρ] 6 C
κ

rd0

∫

Rd

ρ+ CT

∫

Rd

ρ+ T

∫

Rd

ρ log ρ+
CTrd0

(Rρ − r0)d

∫

Rd

ρ2

+ T

∫

Rd

ρ logRd (76)
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under the assumption that Rρ = minxR(x) > r0, where C only depends on
d and s. The main difference is the estimate on the distance between the
particles in (75). We need to keep the maximum and use

|xk − xℓ| > max

{
Rρ,

1

3
(R(xk) +R(xℓ))

}
−

8ε

3(1− ε)
(R(xk) +R(xℓ))

>

(
1−

8ε

1− ε

)
Rρ.

Taking ε = min(Rρ/r0 − 1, 1)/100 provides (76).

5.5. Removal of the compactness condition. To finish this section we
describe how to extend a result holding for compactly supported densities
to general integrable ones, using this time a compactness argument.

Theorem 29. Assume that w satisfies Assumption 1. If we have for some
1 6 p 6 q < ∞ with q > 2 and some constants Cj > 0

FT [ρ] 6 C0

∫
ρ+ C1

∫
ρp + C2

∫
ρq + T

∫
ρ log ρ

+ C3

∫
ρ2(log ρ)+ + C4

∫
ρ logR (77)

for all ρ ∈ L1 ∩ Lq of compact support, then the same holds with the same
constants for all ρ ∈ L1 ∩ Lq. If T > 0 we assume in both cases that∫
Rd ρ| log ρ| < ∞.

Proof. Let us first assume C4 = 0 for simplicity. Our proof uses that the
energy ρ 7→ FT [ρ] is lower semi-continuous for the strong topology of L1, as
previously mentioned in Remark 3, that is,

FT [ρ] 6 lim inf
n→∞

FT [ρn]

if ρn → ρ strongly in L1(Rd) with

∫
ρqn + T

∫
ρn| log ρn| 6 C. (78)

The theorem then follows immediately by letting

ρn :=
N∫
Bn

ρ
ρ1Bn

the truncation of ρ over the ball of radius n. Note that ρn 6 (1+o(1))ρ. The
sequence ρn clearly satisfies the convergence properties of (78) and therefore
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the lower semi-continuity provides

FT [ρ] 6 lim inf
n→∞

FT [ρn]

6 lim inf
n→∞

{
C0N + C1

(
N∫
Bn

ρ

)p ∫

Bn

ρp + C2

(
N∫
Bn

ρ

)q ∫

Bn

ρq

+ T
N∫
Bn

ρ

∫

Bn

ρ log ρ+ T
N∫
Bn

ρ
log

(
N∫
Bn

ρ

)∫

Bn

ρ

+ C3

(
N∫
Bn

ρ

)2 ∫

B′

n

ρ2 log ρ+ 2

(
N∫
Bn

ρ

)2

log

(
N∫
Bn

ρ

)∫

B′

n

ρ2

}

= C0N + C1

∫
ρp + C2

∫
ρq + T

∫
ρ log ρ+C3

∫
ρ2(log ρ)+,

where B′
n := Bn ∩

{
ρ > N−1

∫
Bn

ρ
}
.

When C4 > 0 the proof is similar. We need to use that (1 + |x|)/C 6

R(x), Rn(x) 6 C(1 + |x|) for some C > 0 (depending on ρ), where Rn(x)
is the local radius of the truncated density ρn, which converges locally to
R. The uniform bounds on R and Rn imply that we must work under the
assumptions that

∫
ρ(log |x|)+ is finite (otherwise there is nothing to show).

The limit follows from dominated convergence.
For the convenience of the reader, we conclude by quickly recalling the

proof of the lower semi-continuity (78). We consider an arbitrary sequence
ρn converging to ρ strongly in L1 and satisfying the bounds in (78). It is
known that there exists an optimal Pn for FT [ρn] (but we could as well use
a quasi-minimizer). From the upper bound we have FT [ρn] 6 C for some
constant C and therefore

C > FT [ρn] = FT (Pn)

=

∫

(Rd)N

∑

16j<k6N

w(xj − xk)Pn + T

∫
Pn log(N !Pn)

=

∫

(Rd)N

( ∑

16j<k6N

w(xj − xk) + κN

)
Pn + T

∫
Pn log

(
Pn

(ρn/N)⊗N

)

− κN + T

∫
ρn log ρn + T log

N !

NN
.

The first term is non-negative from the stability property of w and the second
is a relative entropy, hence is also non-negative. We have thus proved that

T

∫
Pn logPn 6 C(ρ,N, T )

where the constant can depend on ρ,N, T but not on n. On the other hand,
we know that the sequence (Pn) is tight, that is,

∫

max |xj |>R
dPn 6

∫ N∑

j=1

1(|xj | > R) dPn =

∫

|x|>R
ρn

where the right side is small due to the strong convergence in L1. After
extraction of a subsequence, this implies

∫
F dPn →

∫
F dP for every F ∈
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C0
b . Taking F (x1, ..., xN ) =

∑N
j=1 f(xj) with f ∈ C0

b , we find that
∫
fρPn →∫

fρP, that is, ρP = ρ. In addition, we have (by convexity)

T

∫
P logP 6 T lim inf

n→∞

∫
Pn logPn 6 C. (79)

Hence P is admissible for FT [ρ], and absolutely continuous with respect to
the Lebesgue measure if T > 0. We thus have

lim inf
n→∞

∫
F dPn >

∫
F dP

for every measurable function F > 0 if T > 0 (using the absolute continuity
of P) and for every lower semi-continuous function F > 0 if T = 0. This is
satisfied for our interaction w by Assumption 1 and therefore we obtain as
we wanted

lim inf
n→∞

∫

(Rd)N

( ∑

16j<k6N

w(xj − xk) + κN

)
dPn

>

∫

(Rd)N

( ∑

16j<k6N

w(xj − xk) + κN

)
dP.

Together with the entropy bound (79) when T > 0, this proves that

lim inf
n→∞

(FT [ρn] + κN) > FT [ρ] + κN

which is the claimed lower semi-continuity (78). �

6. Proof of Theorem 14 in the hard-core case

In this section we prove Theorem 14 concerning densities which are uni-
formly bounded in terms of the tight packing density ρc(d). We start by
constructing a trial state with constant density by averaging a periodic tight
packing over translations. Such a uniform average of a periodic lattice is of-
ten called a “floating crystal” [LLS19a, LLS19b] in Physics and Chemistry.
Finally, we estimate the entropic cost of “geometrically localizing” [Lew11]
this state to enforce the desired density.

Step 1. Constant density. We have assumed ρ 6 (1 − ε)dr−d
0 ρc(d). Let

η > 0 be a fixed small number which will later be chosen in terms of ε.
From the definition of ρc(d) we can find a large cube Cℓ = (−ℓ/2, ℓ/2)d and

n = (1 + 2η)−dr−d
0 ρc(d)ℓ

d ∈ N points x01, ..., x
0
n ∈ Cℓ satisfying |x0j − x0k| >

r0(1 + η) for all j 6= k. We can also assume that no point is at a distance
less than r0 to the boundary of Cℓ. We are using here that the tight packing
density for r0(1+ η) is (1+ η)−dr−d

0 ρc(d) > (1+2η)−dr−d
0 ρc(d) and that the

limit (33) is the same for cubes and for balls.
Now, we replace each point x0j by a smeared measure

χ0
j(x) =

2d

(r0η)d
χ

(
2
x− x0j
r0η

)

where χ = |B1|
−1
1B1 . The smearing radius ηr0/2 has been chosen so that

the supports of the χ0
j remain at distance at least r0.



CLASSICAL DFT: UNIVERSAL BOUNDS 43

Finally, we consider (2K + 1)d copies of our system (K ∈ N), repeated
in a periodic fashion so as to form a very large cube CL = (−L/2, L/2)d of
side length L = (2K + 1)ℓ. In other words, we define the N := (2K + 1)dn
points xkj := x0j + kL with k ∈ {−K, ...,K}d . The smeared measures χk

j are
defined similarly. The state

P = Πs

⊗

j∈{1,...,n}
k∈{−K,...K}d

χk
j

has the density ρ =
∑

j,k χ
k
j and the finite entropy

∫

(Rd)N
P log(N !P) = N

∫

Rd

χ logχ = N log

(
2d

|B1|rd0η
d

)

(recall Πs is the symmetrization operator in (31)). Finally, we average over
translations of the big cube and define the trial state

P̃ =
1

ℓd

∫

Cℓ

P(·+ τ) dτ,

which has the density

ρ̃ =
1

ℓd

∑

j

χ0
j ∗ 1CL

.

The latter is constant, equal to n/ℓd = (1 + 2η)−dr−d
0 ρc(d) well inside the

large cube. Note that, by concavity, the entropy of P̃ can be estimated by
that of P.

Step 2. Geometric localization. We assume for the rest of the proof
that ρ has a compact support and we choose K large enough so that ρ̃ is
constant on the support of ρ. Our estimates will not depend on K. One
can then deduce the bound for general densities by adapting the proof of
Theorem 29, or by passing to the limit K → ∞ in the formulas (80)–(81) of
the trial state.

We pick η so that (1− ε)d = (1 + 2η)−d, that is,

η =
ε

2(1− ε)
.

Then we have ρ 6 ρ̃ a.e. This enables us to consider the localization function

θ :=
ρ

ρ̃
=

ρ

(1 + 2η)−dr−d
0 ρc(d)

6 1

and the θ–localized state P̃|θ, which has the desired density θρ
P̃
= ρ.

We recall that the θ–localization Q|θ of a state Q (with 0 6 θ 6 1) is

the unique state which has the correlation functions ρ(k) = ρ
(k)
Q θ⊗k for all

k, see [HLS09, Lew11, FLS18]. In our case we only need the definition for a
tensor product since we have by linearity

P̃|θ =
1

ℓd

∫

Cℓ

P(·+ τ)|θ dτ. (80)
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For a symmetric tensor product Q = Πs(q1 ⊗ · · · ⊗ qN ) with probabilities qj
of disjoint support, the θ-localized state can be expressed as

Q|θ =

N⊕

n=0

(
N

n

)
1

N !

∑

σ∈SN

(θqσ(1))⊗ · · · ⊗ (θqσ(n))×

×

(
1−

∫
θqσ(n+1)

)
· · ·

(
1−

∫
θqσ(N)

)
. (81)

We will need the following.

Lemma 30 (Entropy of localization of tensor products). Let Q = Πs(q1 ⊗
· · · ⊗ qN) be a symmetric tensor product, with q1, ..., qN probability measures
of disjoint supports. For any 0 6 θ 6 1, we have

S(Q|θ) = −
∑

j

∫

Rd

(θqj) log(θqj)−
∑

j

(
1−

∫

Rd

θqj

)
log

(
1−

∫

Rd

θqj

)
.

(82)
In particular, we deduce

− S(Q|θ) 6
∑

j

∫

Rd

(θqj) log(θqj). (83)

As a side remark we also note also that (82) provides

S(Q|θ) + S(Q|1−θ)

= S(Q)−
∑

j

[(
1−

∫
θqj

)
log

(
1−

∫
θqj

)
+

(∫
θqj

)
log

(∫
θqj

)]

−

∫
ρ
(
θ log θ + (1− θ) log(1− θ)

)
.

The additional terms are positive and therefore we recover the subadditivity
of the entropy S(Q) 6 S(Q|θ) + S(Q|1−θ) [HLS09, Appendix A].

Proof. Each tensor product (θqσ(1))⊗· · ·⊗ (θqσ(n)) appears exactly (N −n)!
times with the same weight in (81). We can thus write it in the better form

Q|θ =

N⊕

n=0

1

n!

∑

j1 6=···6=jn

(θqj1)⊗ · · · ⊗ (θqjn)
∏

k/∈{j1,...,jn}

(
1−

∫
θqk

)

where now the terms all have disjoint supports. We obtain that the entropy
equals

S(Q|θ) = −
N∑

n=0

1

n!

∫

Rdn

∑

j1 6=···6=jn

(θqj1)⊗· · ·⊗(θqjn)
∏

k/∈{j1,...,jn}

(
1−

∫
θqk

)
×

× log

{
(θqj1)⊗ · · · ⊗ (θqjn)

∏

k/∈{i1,...,in}

(
1−

∫
θqk

)}
.

Note that the n! in the logarithm simplifies with the 1/n!. Expanding the
logarithm and collecting the terms we obtain the claimed formula. �
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In our case, we deduce by concavity that

−S(P̃|θ) 6 −
1

ℓd

∫

Cℓ

S
(
P(· − τ)|θ

)
dτ

6
1

ℓd

∑

j,k

∫

Cℓ

∫

Rd

θ(x)χk
j (x− τ) log

(
θ(x)χk

j (x− τ)
)
dτ dx

=
1

ℓd

∑

j,k

∫

Cℓ

∫

Rd

θ(x)χk
j (x− τ) log

ρ(x)χk
j (x− τ)

(1 + 2η)−dr−d
0 ρc(d)

dτ dx.

We estimate χk
j in the logarithm by its supremum ‖χk

j ‖∞ = 2d

(r0η)d|B1|
and

use that
θ(x)

ℓd

∑

j,k

∫

Cℓ

χk
j (x− τ) dτ = θ(x)ρ̃(x) = ρ(x).

We obtain

−S(P̃|θ) 6 log

(
(1 + 2η)d

ηdvc(d)

)∫
ρ+

∫
ρ log ρ

= log

(
2d

εdvc(d)

)∫
ρ+

∫
ρ log ρ.

On the other hand, the energy bound (34) applies since we still have |xj −

xk| > r0 on the support of the localized state P̃|θ. This concludes the proof
of Theorem 14. �
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