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Abstract We study the local structural changes along
the jamming transitions in asymmetric bidisperse
granular packings. The local structure of the packing
is assessed by the contact orientational order, Q̃`, that
quantifies the contribution of each contact configuration
(Large-Large, Small-Small, Large-Small, Small-Large)

in the jammed structure. The partial values of Q̃` are
calculated with respect to known ordered lattices that
are fixed by the size ratio, δ, of the particles. We find
that the packing undergoes a structural transition at
φJ , manifested by a sudden jump in the partial Q̃`.
Each contact configuration contributes to the jammed
structure in a different way, changing with δ and con-
centration of small particles, XS. The results show not
only that the packing undergoes a structural change
upon jamming, but also that bidisperse packings exhibit
local HCP and FCC structures also found in monodis-
perse packings. This suggests that the jammed struc-
ture of bidisperse systems is inherently endowed with lo-
cal structural order. These results are relevant in under-
standing how the arrangement of particles determines
the strength of bidisperse granular packings.

Keywords Jamming transition · Structure · Amor-
phous · Extreme size ratio · Bidisperse packings

1 Introduction

The jamming transition in granular packings has been
studied for years, with much attention paid to monodis-
perse packings since this is the simplest case [1–3]. Such
a transition is defined when a set of non-contacting
spheres come into contact collectively to form a rigid
structure. For a monodisperse packing, the jamming
transition occurs at a jamming density around φJ ≈
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0.64 in 3D. Considering a second particle size in the
packing with a size ratio of δ = rS/rL = 0.71 and the
same number of large and small particles (50:50 mix-
ture), φJ increases slightly compared to the monodis-
perse case [2, 4, 5]. On the other hand, varying the
concentration of small particles, XS, and size ratio, δ,
studies have shown a richer jamming diagram for bidis-
perse packings than the monodisperse and even the
50:50 mixture with δ = 0.71 [6–15]. In this case, φJ
shows a maximum value at a given XS that increases
as δ decreases. Similar results have also been obtained
in dense suspension where the viscosity was found to
be minimal at a specific value of XS while the jamming
density was found to be maximal for the same XS [16–
20]. Such a minimal value of the viscosity also decreases
whereas the maximal value of the jamming density in-
creases when δ decreases.

Recently, it was shown that there are critical δ and
XS values below which the jamming structure of a bidis-
perse system consists only of large particles, while most
small particles remain without contacts [6, 12, 14, 15].
This suggests that the jammed structure can be re-
garded as a monodisperse rather than a bidisperse pack-
ing, although the packing itself can still be modified by
the presence of small particles at higher compression.
This finding has led to reconsider the jamming transi-
tion diagram for bidisperse packings to provide a more
general overview. In a recent paper, it is shown that at
low δ and low XS, small particles can be jammed by
compressing beyond the φJ formed by large particles
[14]. Such φJ is extracted at a packing fraction where
the fraction of large particles, nL, contributing to the
jammed structure exhibits a jump, defined by a sharp
but finite value similar to that observed in the mean
contact number, see Ref. [14]. A separate jump in the
fraction of small particles, nS, occurs at φ > φJ , which
was interpreted as the jammed transition of the small
particles. This result led to the idea that a bidisperse
packing in compression has two jamming transitions
at low δ and low XS. The first jamming transition is
driven by the jamming of predominantly large particles
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and the second transition small particles are jammed
together with large ones. This second transition was
shown for δ ≤ 0.22 to be an additional line extending
towards higher packing densities as XS is reduced, gen-
eralizing the jamming diagram of bidisperse packings.

The evolution of the jammed structure in a range
of packing fractions has been well studied in monodis-
perse hard-sphere packings [21–24], showing that upon
compression there is a structural transition from disor-
dered to an ordered local structure. All works report the
development of local Hexagonal Close-Packed (HCP)
and Face-Centred Cubic (FCC) lattices as the system
becomes denser. The evolution of the jammed struc-
ture in bidisperse packings has not been explored in de-
tail. It is not clear how each configuration type; Large-
Large (LL), Small-Small (SS), Large-Small (LS), and
Small-Large (SL), contribute to the development of the
jammed structure when δ and XS are varied. The way
each particle size is packed in the system is important
to understand the transition to jamming and also how
such structures can lead to different structural proper-
ties. In this work, we investigate the structural evolution
of jammed bidisperse packings along the first and sec-
ond jamming transition lines recently reported. We will
discuss that the structure factor is not a good indicator
of the jamming transition, as it predicts a similar struc-
ture immediately before and at φJ . We will introduce
the local contact orientational order (LCOR), analo-
gous to the local bond orientational order (LBOR), as
a variable sensitive to jamming that quantifies the local
structures of bidisperse packings.

This paper is organized as follows. In Sec. 2, we
briefly discuss the numerical simulation. We define the
concentration of small particles, XS, and discuss how
the number of particles in each bidisperse mixture
changes with XS. We also explain the simulation pro-
tocol used to determine the jammed structures. Sec. 3
presents the first and second transitions for bidisperse
packings. Here we present the method to obtain φJ . In
Sec. 4, the structure factor is obtained to analyze the
packing structure along the first and second transition
lines. In Sec. 5, we introduce the local contact orienta-
tional order, Q̃`, to quantify the local structure of the
packings. Here, we investigate how Q̃` changes with φ
and XS for different δ values. We also show results of
Q̃` for each configuration type to investigate their con-
tribution to the jammed packing. Finally, we conclude
with a summary and further discussion.

2 Numerical simulation

We perform 3D molecular dynamic simulations using
MercuryDPM [25, 26] to study the role of small particles
in the jammed structure of soft-sphere packings with-
out gravity [27–29]. The absence of gravity is essential
for our observations. It allows small particles to have

no contacts with the large particles and thus can un-
dergo a collective transition upon high compression. In
contrast, in the presence of gravity, small particles have
already contacts with the jammed structure of large
particles. These contacts make it difficult to study the
contribution of small particles on the jammed structure
upon compression, and as a consequence, any additional
transition associated with small particles, given either
by jamming density or LCOR, cannot be found. New-
ton’s equation for each particle is solved numerically to
predict its motion in time. N = 6000 particles are used
to create a bidisperse packing, where a number of large,
NL, and small, NS, particles with dimensionless radius
rL and rS are considered. We choose the large particle
radius as length scale, x′u = r′L = 1.5, therefore, the di-
mensionless radius of large particles is rL = r′L/x

′
u = 1,

while for small particles, rS = r′S/x
′
u = r′S/r

′
L, respec-

tively. The prime symbol represents the variable with
units while the variable without prime is dimension-
less. These definitions above define the size ratio as
δ = r′S/r

′
L = rS ∈ [0.15, 1]. This means that any change

in δ is due to a change in the small particle size. The
mass scale is chosen as m′u = ρ′pr

′3
L , where ρ′p = 2000

is the density of large and small particles and its di-
mensionless value is ρp = 1 since ρ′u = ρ′p. Therefore,
the dimensionless mass of the large and small parti-
cles is mL = 4

3π and mS = 4
3πr

3
S = mLδ

3. The chosen

time scale is t′u = (m′u/κ
′
n)1/2 with κ′n = 105 the nor-

mal stiffness. We choose here κn = 1, since κ′u = κ′n.

Thus t′u = (ρ′p/κ
′
n)1/2r

′3/2
L ≈ 0.26. The viscous damp-

ing used is γ′n = 1000 and its dimensionless value is
γn = γ′n/(ρ

′
uκ
′
nr
′3
L ))1/2 ≈ 0.038.

The linear spring-dashpot model is used to model
the contact between particles [11, 27–29]. For bidisperse
packings, the effective mass, mij , the contact time, tijc ,
and the coefficient of restitution, eij , depend on δ, as
can be seen in Fig. 1. Since eij depends on mij and tijc
via eij = exp

(
−γntijc /2mij

)
, the partial coefficients of

restitution for δ = 0.15 are eLL = 0.95, eSS = 0.48, and
eLS = eSL = 0.60, see the dashed line in Fig. 1. However,
as δ → 1, eSS, eLS → eLL. This result indicates that
the collisions of the SS and LS-SL configuration types
are more elastic at high δ. A background dissipation
force is imposed on each particle velocity, with constant
dissipation γb = γn, to damp out the kinetic energy of
the particles, especially at high δ.

A bidisperse packing formed by a given set ofNL and
NS is characterized by the size ratio δ and the volume
concentration of the small particles, XS = NSδ

3/(NL +
NSδ

3). Fig. 2 shows the variation of NL and NS as a
function of XS for three typical values of δ. For a fixed
value of δ the number of small particles increases while
the number of large particles decreases with XS. The
intersection point, representing a packing with NL =
NS = N/2, shifts to lower XS values as δ decreases. This
point corresponds to the 50:50 particle mixture studied
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Fig. 1 Variation of the dimensionless effective mass, mij, the

dimensionless contact time, tijc , and the partial coefficient of
restitution, eij , as a function of the size ratio δ. The dimen-
sionless mass for each contact type is given by mLL = 2π/3,
mSS = mLLδ3, and mLS = mSL = 2mLLδ3/(1 + δ3), re-
spectively. The dimensionless contact time is determined by

tijc = t′ijc /t′u = π/(κn/mij − (γn/mij)2)1/2. The dashed line
represents the lowest value of δ = 0.15 used in this work.
Note that eij stops at δ ≈ 0.06 since imaginary values are
obtained for eSS and eLS below it.

previously in bidisperse systems using δ = 0.71 [2, 4].
Far below the intersection point (XS → 0), the packing
is formed by small particles in a sea of large particles.
As XS increases and approaches the intersection point,
the numbers of small and large particles become of the
same order of magnitude. Well above the intersection
point (XS → 1) few large particles are embedded in a
sea of small ones. This can be seen in Fig. 3 for typical
bidisperse packing structures.

The initial configuration of any bidisperse packing
is such that spherical particles of radius rL and rS
are placed uniformly at random in a 3D box with-
out gravity, allowing overlap between them, with an
initial packing fraction of φini = 0.3 and large uni-
form random velocities. Large overlaps lead to an ini-
tial peak in kinetic energy, but this is quickly damped
by the background medium and collisions. Low den-
sity systems with high kinetic energy contribute to
the rapid randomization of particles. The granular gas
is then isotropically compressed to approach an ini-
tial direction-independent configuration with the tar-
get packing fraction φ0 < φJ that depends on δ and
XS. Then a relaxation process of the system starts.
Once such a process is complete, isotropic compression
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Fig. 2 Number of large, NL, and small, NS, particles as a
function of XS for three typical δ. The total number of par-
ticles is fixed at N = 6000. The intersection points represent
the 50:50 mixtures at XS(δ = 0.73) ≈ 0.28, XS(δ = 0.41) ≈
0.06, and XS(δ = 0.15) = 0.01.

(loading) begins, which ceases when φ = φmax. Then
the isotropic decompression (unloading) process con-
tinues 10 times slower than the loading process until
φ0 is reached again. In this way, the jamming density,
φJ , along the decompression process is obtained. Other
methods of strain control could be used [2, 30, 31], but
they would not have any other effects since the defor-
mation is performed quasi-statically. After the simu-
lation protocol is completed, the jamming density and
the jammed structures of each bidisperse packing in the
decompression branch are examined, since these values
are less sensitive to the deformation rates [32]. A de-
tailed discussion of the contact model and simulation
procedure is given in Refs. [14, 15].

3 Jamming transition lines

In this section, we discuss how the jamming transition is
achieved for each bidisperse packing. We start by quan-
tifying the fraction of large, nL = N c

L/N , and small
particles, nS = N c

S/N , that contribute to the jammed
structure as a function of φ at different δ and XS. N c

L,S
is the number of large and small particles in contact,
while N = NL + NS is the total number of particles
in the system. Fig. 4 (right panel) shows a jump for
δ = 0.73, which represents a simultaneous contribution
of both particle sizes to the jammed structure. Interest-
ingly, φJ is independent of XS showing similar values
to that of a monodisperse packing, φmono

J ≈ 0.64. This
finding is in line with the observation that a bidisperse
packing with δ = 0.73 can be used to break up a global
crystallization obtained in monodisperse packings but
otherwise behaves similar to it [2, 4, 5]. Although, as
we will see in Sec. 5, we still find a certain fraction of
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Fig. 3 Packing structures for two extremes δ at different
XS. Cyan and white colors represent large and small particles,
respectively. Each packing is shown at φmax. Note that higher
φ are obtained for structures with δ = 0.15, they are shown
enlarged for better illustration. This is the reason why large
particles look bigger.

local ordered structures. In contrast, a significant de-
coupling between nL and nS is obtained at lower XS

for δ = 0.15, see Fig. 4 (a,c). Such decoupling indicates
that a large number of small particles are jammed at
higher densities, which corresponds to similar behavior
of large particles at low densities.

To find the exact value of the jamming density at
which nL and nS jump as a function of δ and XS, we
calculate the derivative ∂nL/∂φ and ∂nS/∂φ. We used
the five-point finite difference method with an accuracy
of ∼ O(∆φ4) to approximate the first derivative over
the data shown in Fig. 4. This method yields a value of
φJ for both fractions of large and small particles. Fig. 5
displays the derivative of nL and nS as a function of φ,
showing a characteristic peak (maximum derivative) at
a value consistent with φJ . Note that for δ = 0.15 and
XS = 0.1 the peak for large particles is found at a much
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Fig. 4 Fraction of large, nL, and small, nS, particles in con-
tact as a function of the packing fraction for different combi-
nations of δ and XS.

lower φ, while a small peak is obtained at higher den-
sity for small particles, see Fig. 5 (a). The small peak
in nS is due to its smoother behavior compared to nL.
Nevertheless, a critical density can be extracted repre-
senting the largest amount of small particles jammed,
see the inset in Fig. 5 (a). This proves that the system
undergoes a transition from a structure with predom-
inantly large particles to one with the participation of
both particle sizes. On the other hand, at higher δ, it
becomes clear that both particle sizes contribute simul-
taneously to the jammed structure, see Figs. 5 (b, d).
Thus, using this method, one can extract the values of
φJ for the entire combination of δ and XS.

Fig. 6 shows the φJ values extracted by the method
explained above as a function of XS for some δ val-
ues. For δ = 0.15, we find that the two lines meet
at X∗S ≈ 0.21 with φJ ≈ 0.80. The superscript ∗ in-
dicates the concentration of small particles where the
second jamming transition line emerges, see solid cir-
cles in Fig. 6. Such a point matches with the kink of
the jamming lines, shifting to high XS as δ increases,
as also reported in Ref. [6]. For XS < X∗S , an increasing
line of densities is observed for small δ as XS → 0.
Such a line is an extension of the transition where
both large and small particles are jammed, having a
particle mean overlap less than 1% of the large par-
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Fig. 5 Derivative of nL and nS as a function of the packing
fraction for δ = 0.15 and δ = 0.73 at different XS. The max-
imum value of each derivative is considered as the jamming
density of each particle size. The inset is a zoom-in of the
maximum derivative of nS.

ticle radius, see Ref. [15]. The values of φJ are com-
pared with a model introduced by Furnas almost a
century ago [33] to predict the highest density of ag-
gregates used in the production of mortar and con-
crete. This model states that φJ can decouple at an
extreme particle size ratio (δ → 0) into two limits that
have a common point at X∗S . The lower limit considers
an approximation where large particles dominate the
jammed structure, while small particles are not con-
sidered because their number is not sufficient to play
a role (0 ≤ XS < X∗S). Thus, the jamming density is
given by φJ(XS) = φmono

J /(1 − XS). The upper limit,
both large and small particles participate in the jammed
structure (0 ≤ XS ≤ 1). In this case, the number of
small particles is large enough to drive some large par-
ticles into the jammed state. Therefore, φJ is written by
φJ(XS) = φmono

J /(φmono
J + (1− φmono

J )XS). The Furnas
model describes the trend of the data by following the
values for low XS corresponding to the first jamming
state. It shows a maximum density of φJ(X∗S) ≈ 0.87
at X∗S = (1 − φmono

J )/(2 − φmono
J ) ≈ 0.26, which is in

reasonable agreement with the value obtained here for
X∗S ≈ 0.21 at δ = 0.15. The model also shows an ad-
ditional transition line emerging where the two limits
meet and end at a density of one. Such an additional line
has not been considered in previous works when using
the Furnas model, see Refs. [6, 7, 9, 10]. The additional
line resulting from our simulation data qualitatively fol-
lows the Furnas prediction and ends at X◦S = 0.1 for the
lowest δ, see Fig. 6. The superscript ◦ marks the end-
point of the extension line. The transition line ends at
X◦S since there is no jump in nS for XS < X◦S , but rather
this quantity increases continuously in this region and
does not exhibit any features of a jump transition. This
allows us to argue that the additional transition line
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Fig. 6 Jamming density, φJ , as a function of the concentra-
tion of small particles,XS, for different values of the size ratio,
δ. The extreme XS values (0 and 1) correspond to monodis-
perse systems, which have a value of φmono

J ≈ 0.64, indicated
by the dashed horizontal line. The solid lines represent the
Furnas model [33], see the text for its explanation and ideas.
Open (solid) symbols represent the first (second) transition
lines.

terminates in an endpoint at a finite X◦S that depends
on δ, see Ref. [14].

The jamming transition lines observed in Fig. 6 rep-
resent a more complete jamming diagram for bidisperse
packings. Indeed, the second transition starts at a size
ratio around δ = 0.22 and becomes longer for smaller δ.
This particular value of δ coincides with the minimum
size ratio, δmin ≈ 0.225, at which a small particle can
fit into the gap left by large particles forming a tetra-
hedral structure, see Ref. [11]. For δ > δmin, a small
particle cannot fit into the gap left by the large par-
ticles in contact, destroying the tetrahedral structure
and creating different local structures. For δ < δmin,
the small particle is too small to fit into the gap of the
tetrahedral becoming a rattler in a system. Instead, a
number of small particles are now needed to fill the gap
in order to come in contact with large particles. In this
case, other local structures are developed. This will be
discussed in Sec. 5.

So far, we have shown the dependence of φJ on δ
and XS. φJ is enhanced for δ < 0.73, especially at very
low δ and low XS, showing a second transition. The
differences in jamming densities between the extreme
size ratios are remarkable. For example, one would have
expected a substantial variation of φJ for δ = 0.73,
since this is far from the monodisperse case of only
large, δ = 0, and only small particles, δ = 1. Instead,
φJ appears to be constant for δ = 0.73 and hardly
varies above φmono

J independent of XS. This means that
packings with δ > 0.73 would have φJ values close to
φmono
J and probably similar properties as a monodis-
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perse packing. Examining the jammed structure of the
packings as a function of δ and XS may provide better
insight into the values of φJ for δ = 0.73. In addition, it
is important to understand how the jammed structure
evolves as the system approaches jamming and how it
changes along the first and second jamming transitions.
The following sections are devoted to the study of the
structure of jammed bidisperse packings along the jam-
ming transition lines.

4 Structure factor analysis

To understand how the structure of a bidisperse packing
changes with XS and δ, we calculate the total and par-
tial structure factors, S(q), at φJ . This allows exploring
the structural contribution that each configuration type
has in the jammed packing. A general definition of the
partial S(q) is

Sνβ(q) =
1

N

Nν∑
i=1

Nβ∑
j=1

cos(q · riν)cos(q · rjβ)

+
1

N

Nν∑
i=1

Nβ∑
j=1

sin(q · riν)sin(q · rjβ)

(1)

where ν, β ∈ {L, S} and the sum runs over all ν and β
particles. Therefore, the total S(q) can be decomposed
in terms of configuration types: SLL(q), SSS(q), SLS(q),
and SSL(q) as shown in Ref. [34]. By symmetry, we ob-
tain that SLS(q) = SSL(q). Thus, we show the struc-
ture factor of only one term and call it Smix(q). The
term “mix” is only used in this section to highlight the
equivalence of S(q) for SL and LS. As we will explain in
Sec. 5, SL and LS contact configurations are differently
treated when calculating LCOR, thus the term “mix”
is no longer used. Therefore, the total structure factor
is then written as S(q) = SLL(q) + SSS(q) + 2Smix(q).

Fig. 7 shows the total and partial structure factors
at jamming for δ = 0.73 at different XS. We obtain
that LL dominates over SS and mix configurations for
the lowest XS, see Figs. 7 (b)-(d). As XS increases, SS
begins to dominate the structure over the other configu-
ration types. This is evident as the number of small
particles increases with XS. The exchange of the con-
figuration type in the dominance of the packing struc-
ture marks a structural change above a certain XS. We
think that this occurs at XS(δ = 0.73) ∼ 0.28 since it
corresponds to the 50:50 particle mixture of the pack-
ing, see Fig. 2. On the other hand, Smix(q) appears
to be independent of XS, suggesting that it has no ef-
fect on the overall structure factor. The meaning of the
negative value in Smix(q) indicates anticorrelated den-
sity fluctuations between small and large particles at
long distances (q → 0), i.e., high density fluctuations of
small particles correspond to low density fluctuation of
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Fig. 7 S(q) vs qr′L at φJ for δ = 0.73 at different XS. S(q)
of (a) Total, (b) Large-Large, (c) Small-Small, and (d) Mixed
particle configurations.

large ones. For positive values, the density fluctuations
of large and small particles need to be mostly in sync
and so are correlated.

The total S(q) shows a gradual change due to the
structural transition that the LL and SS configurations
undergo, causing the system to explore different local
structures as XS varies. Despite SLL(q) and SSS(q) show
a significant change withXS, the whole S(q) shows simi-
lar structure factors, i.e., similar jammed structures are
obtained where their peaks become wider and shifted
for high q as XS → 1. We think that the similar struc-
tures might be responsible for the similar jamming den-
sities observed in Fig. 6 for δ = 0.73. This indicates
that the packing structure influences the jamming den-
sity, as it was recently shown in Ref. [35], where the
random close packing in monodisperse packings can be
theoretically calculated by considering only specific lo-
cal disorder arrangements of particles.

For δ = 0.15, the structure factor is different from
δ = 0.73. At the first transition, the total S(q) is given
by SLL(q) since the jammed structure consists only of
large particles (data not shown). On the other hand,
at the second transition, both large and small particles
are jammed. The total S(q) is dominated by SS over LL
and mix configurations types, see the magnitude of the
y-axis of Figs. 8 (b)-(d). This dominance rises as XS in-
creases, leading to a packing structure formed mostly of
small particles with some contribution from mix config-
urations, see Fig. 8 (d). The peaks shown by SSS(q) at
long wavelengths (q . 3.3), see Fig. 8 (c), can be due to
(i) the formation of ordered regions between small par-
ticles, which is possible because there are many more
small particles than large ones and (ii) high density fluc-
tuations of small particles compared to large ones. Few
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Fig. 8 S(q) vs qr′L for δ = 0.15 at different XS along the
transition line where both species are jammed. S(q) of (a)
Total, (b) Large-Large, (c) Small-Small and (d) Mixed parti-
cle configurations.

large particles are surrounded by many small ones at
large scales. This is also observed in Fig. 8 (d), where
a huge disparity between large and small particle num-
ber at a large distance gives rise to negative values in
SLS(q), leading to anticorrelated density fluctuations.

Fig. 9 shows the variation of total and partial S(q)
before, at the first and at the second jamming transition
for δ = 0.15 at XS = 0.1. The S(q) shown at the first
and second transitions differ as a consequence of further
compression, which causes small particles to jam with
the jammed structure of large particles and to form high
crystallized regions of small particles, see the peaks in
Fig. 9 (a,c) and particle configurations in Fig. 3. How-
ever, it is difficult to interpret such a difference as an
indication of a jammed transition. On the other hand,
the S(q) immediately before and at the first jamming
transition are identical to each other, which could be in-
terpreted as the same packing structure. Note that the
difference in the packing fraction between the structure
before and the structure at the first jamming transition
is ∆φ ≈ 10−3. This small value does not make much
difference between the total and partial S(q) when go-
ing from a loose to the first jamming state. The reason
for this is that all particles in the system are used to
calculate the structure factor, regardless of whether the
particles are in contact or not. This makes it difficult to
distinguish whether the structure is present before, at
the first, or even at the second jamming transition. In
the next section, we will introduce and examine a sensi-
tive variable that can distinguish the structural features
of a jamming transition.
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0.0

6.7

13.3

20.0

26.7

33.3
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Fig. 9 Comparison of S(q) before (φ = 0.7143), at the first
(φJ = 0.7160) and second jamming transition (φJ = 0.8712)
for δ = 0.15 at XS = 0.1. S(q) of (a) Total, (b) Large-Large,
(c) Small-Small, and (d) Mixed particle configurations.

5 Local contact orientational order Q̃`

In the previous section, we showed that S(q) before
jamming is identical to S(q) at the first transition, sug-
gesting that there is no difference in structure between
them. As φ→ φJ , a loose granular packing with a non-
contacting structure approaches the jamming state. At
φ = φJ , the packing undergoes a structural transition
defined as a jammed structure, which is not accounted
for by the structure factor. To understand the evolution
of a jammed structure, and even more to distinguish the
structures along the first and second transitions given in
Fig. 6, a variable sensitive to each structural feature at
jamming is needed. This section is dedicated to the in-
troduction of a variable that is not only able to predict
structural changes in the packing, but also to quantify
the contribution of specific local structures formed by
each configuration type in the jammed structure.

5.1 Definition of Q̃`

A variable that has been used to study the structure and
measure crystallinity in supercooled liquids and metal-
lic glasses is the bond orientational order (BOR), Q`,
see Ref. [36]. It is determined by summing the spher-
ical harmonics of degree ` of all bonds in the system.
Here, a bond is defined by the connection of each par-
ticle center i with the center of its nearest neighbors j.
A local measure of this variable, Q`,local, was proposed
in Refs. [36, 37] as a more accurate measure for identi-
fying local structures. It determines the BOR on each
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particle and then is averaged over all particles. How-
ever, Q`,local depends on the method used for nearest
neighbor detection. For instance, the radial distribution
function with a cutoff rmax is used [36, 38, 39], however,
it leads to different Q`,local values when rmax is varied.
Delauney triangulation method [37, 40], morphometric
neighbourhood [41] and an extension of the morphome-
tric neighborhood applied to noisy structures [42] has
also been applied for identifying nearest neighbors. Due
to neighborhood ambiguity, Q`,local is not uniquely de-
fined. Here, we introduce an alternative definition of
the bond orientational order. Instead of using a special
detection method to find the nearest neighbors, we use
the contacts between particles to define the local contact
orientational order (LCOR), Q̃`. In this way, the neigh-
bors of a particle i are already defined by their contacts.
The definition of Q̃` states that before jamming when
no jammed structure has yet formed, zero values of Q̃`
must be obtained. However, there is a possibility that
an isolated accumulation of contact particles will yield
a nonzero but low value of Q̃`. Therefore, LCOR aban-
dons the definition of a recent work [43], in which the
local bond orientational order at jamming is zero for
highly amorphous packings. In our work, amorphous
packings are characterized by the onset of the jamming
structure where Q̃` is not necessarily zero but has a
finite low value. While high values of Q̃` represent an
ordered packing. For dense packings where φ� φJ , we
expect BOR to be equal to LCOR, Q`,local = Q̃`, since
the detection method used in BOR can already identify
those j particles in contact with i particle as nearest
neighbors.

The local contact orientational order is then calcu-
lated by

Q̃` =
1

N

N∑
i=1

(
4π

2`+ 1

∑̀
m=−`

∣∣∣∣ 1

N i
c

Nic∑
j=1

Y`m(θj , ϕj)

∣∣∣∣2)1/2

,

(2)
where Y`m(θj , ϕj) is the spherical harmonics of degree `
and of order m, θj and ϕj are the polar and azimuthal
angles formed by i particle center between their j con-
tacts with respect to the z and x axes, respectively. N i

c
is the number of contacts of i particle and N is the total
number of particles.

5.2 Frequency distribution of Q̃6

To get a first insight into the structures of the jammed
bidisperse granular packings, we determine Q̃6 for each
particle i in the system. In this way, we can distinguish
the LCOR of large particles from that of small particles.
The reason for calculating Q̃6 is because it can be used
to quantify possible six-fold local crystal structures that
form between particles of the same size. For example, it
has been shown that the packing structure of particles

of one size tends to form local HCP and FCC structures
upon compression, becoming more frequent for denser
packings [21–24]. In particular, the distribution of the
bond orientational order shows characteristic peaks at
Q̃HCP

6 = QHCP
6,local = 0.48 and Q̃FCC

6 = QFCC
6,local = 0.57,

consistent with the dominance of local HCP and FCC
structures [22–24]. Here, we assume that LCOR must
exactly match with BOR for HCP and FCC structures.
With this background, we can study how large and
small particles are packed according to a six-fold lat-
tice as a function of δ and XS.

The values of Q̃6 for large and small particles are
used to construct independent frequency distributions,
P (Q̃6). Such distribution is shown in Fig. 10 (a, b) at

φJ for δ = 0.73 at two relevant XS values. P (Q̃6) ex-
presses the population of large and small particles with
Q̃6 within the jammed structure. In general, the dis-
tributions follow a Gaussian-like behavior, with their
mean value depending on the particle size. For XS = 0.4
the structure is dominated by small particles, while for
XS = 0.1 the large particles predominate. In both cases,
P (Q̃6) exhibits a fraction of local HCP and FCC struc-
tures formed by both large and small particles that
change with XS, see the dashed and dotted lines in
Figs. 10 (a, b). For δ = 0.15 a similar explanation can
be given, but in this case, small particles always domi-
nate the jammed structure over large ones, see Figs. 11
(a, b). At XS = 0.1, the system undergoes several jam-
ming transitions during compression. The first jamming
transition is caused by large particles at φJ ≈ 0.71,
where P (Q̃6) is indicated in the inset of Fig. 11 (a).
This shows that the packing is not fully ordered despite
the formation of some local HCP and FCC structures.
Instead, it shows a wide range of local structures. At
the second transition, φJ ≈ 0.87, the small particles
dominate the jammed structure since they disrupt the
jammed structure of large ones resulting in less contacts
of LL, giving rise to 0.2 ≤ Q̃6 ≤ 0.3. As XS increases,
large particles are less present in the system, leading
to a monodisperse packing of small particles. Fig. 11
(b) shows this scenario, where the mean of the distri-

bution coincides with Q̃HCP
6 , indicating that most small

particles form hexagonal local structures. We also find
that the population of local HCP and FCC structures
increases with XS, suggesting that the local order of
the packing increases with the concentration of small
particles.

For a deeper understanding of the local structure,
the configuration of large and small particles at jam-
ming are separately depicted using dots with specific
colors. Each dot is placed at each particle center while
its color represents the value of Q̃6 of the particle. Dark
colors represent the local disordered surrounding of the
particles, while light colors correspond to the local or-
dered ones. Although this representation does not allow
to see a particular structural lattice, it allows to dis-
tinguish the local arrangement around each i particle,
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Fig. 10 Frequency distribution, P (Q̃6), of large and small
particles at φJ for δ = 0.73 at (a) XS = 0.1 and (b) XS =

0.4. The dashed and dotted lines represent Q̃HCP
6 = 0.48 and

Q̃FCC
6 = 0.57, respectively. (c)-(f) Configurations of large and

small particles at φJ . Each dot represents the center of a
particle and the color indicates the magnitude of Q̃6. The
lowest value of Q̃6 (dark color) represents a disordered lattice,
while the highest value (light color) is an ordered one. The
dots are barely transparent to reveal the structure behind
them.

and also how Q̃6 is distributed in the jammed struc-
ture. Fig. 10 (c)-(f) shows the distribution of Q̃6 in the
jammed packing for δ = 0.73. Looking at Fig. 10 (c) and
Fig. 10 (f), where large and small particles dominate
the structure at different XS, one cannot see much dif-
ference between the distributions of Q̃6. This indicates
that similar structures are obtained independently of
XS, thus leading to similar φJ , see Fig. 6. For δ = 0.15,
the distribution of Q̃6 shows a different scenario with
XS. At XS = 0.4, the distribution of Q̃6 is dominated
by small particles, see Fig. 11 (f), while large ones do

not contribute between 0.2 ≤ Q̃6 ≤ 0.8, see Fig. 11 (d).
This happens due to the low number of large particles
in the system, NL ≈ 32. Thus, they tend to share only
contacts with small particles. This leads to Q̃6 < 0.2
for large particles. For XS = 0.1 and second transi-
tion, small particles still dominate the distribution of

Fig. 11 Frequency distribution, P (Q̃6), of large and small
particles at φJ for δ = 0.15 at (a) XS = 0.1 at the second
transition and (b) XS = 0.4. The dashed and dotted lines

represent Q̃HCP
6 = 0.48 and Q̃FCC

6 = 0.57, respectively. The

inset in (a) represents P (Q̃6) at the first jamming transition.
(c)-(f) Configurations of large and small particles at φJ . Each
dot represents the center of a particle and the color indicates
the magnitude of Q̃6. The lowest value of Q̃6 (dark color)
represents a disordered lattice, while the highest value (light
color) is an ordered one. The dots are barely transparent to
reveal the structure behind them.

Q̃6 over large ones, see Fig. 11 (c, e). In this case, the

distribution of Q̃6 shows a structure where small par-
ticles form clusters of the same Q̃6 value (specifically

between Q̃HCP
6 = 0.48 and Q̃FCC

6 = 0.57). This indi-
cates that small particles accumulate in HCP and FCC
structures.

The results presented above show that bidisperse
packings not only form HCP and FCC crystal-like struc-
tures of the same particle size, but also other local struc-
tures are relevant in the packing. In addition to Large-
Large and Small-Small particle contacts lead to specific
local structures, contacts between large and small par-
ticles also tend to form completely different ones. Such
local structures are already accounted for in the distri-
bution of P (Q̃6), but are difficult to distinguish from the
six-fold lattice. To explore the different local structures,
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Fig. 12 Illustration of typical structures found in bidisperse
packings. (a) Hexagonal structures are generally formed by
LL and SS contact configurations. (b) For δ = 0.73, the dens-
est lattice is a cubic structure formed between LS (dashed
line) and SL particle contacts (solid line). (c) For δ = 0.15, tri-
angular and hexagonal lattices are formed between SL (solid
line) and LS particle contacts (dashed line) to achieve the
most efficient lattice.

in the next section we will investigate how the individ-
ual structures of the contact configuration contribute
to the jammed structure of the bidisperse packings.

5.3 Partial Q̃` of local structures

Q̃` is determined for each contact configuration: LL,
SS, SL, and LS. For LL and SS, we determined Q̃6 be-
cause they can form local hexagonal structures when
are packed, see Fig. 12 (a). Mixed contacts are treated
differently. Large particles can be packed with small
particles in different ways, depending on the size ra-
tio, see Ref. [11]. For δ = 0.73, one can demonstrate
that the most efficient lattice is a cubic lattice, where
a small (large) particle with radius rS = (

√
3 − 1)rL

is in the center of a cube of large (small) particles, see

Fig. 12 (b). Thus, we calculate Q̃8 for SL and LS, re-
spectively. For δ = 0.15, a small particle with radius
rS = [(

√
3 − 1)/2

√
3]rL fits into a triangular lattice of

large particles, while a large particle fits into a hexago-
nal lattice of small ones, Fig. 12 (c). Therefore, we use

Q̃3 for SL and Q̃6 for LS. In this way, we get a better ap-
proximation of how each contact configuration assem-
bles and contributes as the system approaches jamming,
and also along the first and second jamming transitions.

Other Q̃` values can also be calculated on LL and SS
contact configurations. For example, Q̃4 and Q̃8 can be
determined to account for square and cubic local struc-
tures. However, we restrict ourselves to Q̃6 since LL
and SS tend to form six-fold lattices, HCP and FCC,
which are the densest lattices. For the mixed contact
configurations, Q̃` is determined by δ since it leads to
the densest lattice formed between large and small par-
ticles, see Fig. 12.

Fig. 13 shows the values of partial Q̃LL
6 , Q̃SS

6 , Q̃LS
8

and Q̃SL
8 as a function of φ for δ = 0.73 at different XS.
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Fig. 13 Partial Q̃` vs φ for δ = 0.73 at differentXS. Q̃6 is cal-
culated for LL and SS contacts as they can form six-fold HCP
and FCC structures. While Q̃8 is used for LS and SL contacts
since a cubic structure is the densest lattice. The jamming
densities at each jump correspond to φJ(XS = 0.1) = 0.647,
φJ(XS = 0.2) = 0.653, φJ(XS = 0.4) = 0.655 and φJ(XS =
0.6) = 0.653.

We find that all partial Q̃` have similar density, namely
φJ ≈ 0.65, independent of XS. This agrees with the re-
sults shown in Fig. 4, where the fraction of large, nL,
and small particles, nS, show a jump at the same φJ .
However, a clear difference in the structural arrange-
ment of the contact configurations is observed when
XS changes. For XS = 0.6, Q̃SS

6 dominates the jammed

structure compared to Q̃LL
6 , indicating the formation of

a fraction of six-fold structures in the system, see Fig. 13
(d). Q̃SL

8 dominates next the jammed structure over Q̃LS
8

showing that there are higher local formations of cu-
bic structures in which small particles are surrounded
by large ones. When XS decreases, the dominance of
SS and SL in the jammed structure is completely ex-
changed by LL and LS, see Fig. 13 (a). This change

in structural dominance, indicated by Q̃`, is due to the
high number of large particles present at low XS that
tends to form local six-fold and cubic structures, see
Fig. 12 (b). One can speculate that there should be a

certain value of XS at which all partial Q̃` are equal.
For δ = 0.73, this could be at XS = 0.28, which corre-
sponds to the 50:50 mixture, see Fig. 2. However, this
needs to be investigated and clarified in future work.

For δ = 0.15 the scenario is different. Q̃SS
6 and Q̃SL

3

always dominate the jammed structure over Q̃LL
6 and

Q̃LS
6 due to the low number of large particles. We note

that for XS > 0.2 the partial Q̃` jumps at the same
φJ . This suggests that some HCP, FCC, and triangular
structures are formed during jamming, which become
more frequent as φ increases. For XS < 0.2, there is
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Fig. 14 Partial Q̃` vs φ for δ = 0.15 at different XS. Q̃6

is calculated for LL and SS contacts as they can form six-
fold HCP and FCC structures. While Q̃6 and Q̃3 are used
for LS and SL contacts, respectively. Each jamming density
occurs at φL

J(XS = 0.1) = 0.717 and φS
J(XS = 0.1) = 0.871.

φL
J(XS = 0.2) = 0.804 and φS

J(XS = 0.2) = 0.820. φJ(XS =
0.4) = 0.769 and φJ(XS = 0.6) = 0.726. The superscripts L
and S in φJ represent the jamming of large and small particles
at different densities. The inset shows the rising point of each
contact type contribution at low φ.

a structural decoupling in the packing depending on
the contact configurations, becoming more evident for
XS = 0.1. A first jump is observed at φJ ≈ 0.71 which
indicates the first jamming transition of the system.
An amorphous structure with low formation of six-fold
structures is obtained with Q̃LL

6 ≈ 0.015, see the inset in
Fig. 14 (a). Upon further compression, small particles
begin to contribute to the jammed structure. This is in-
dicated by the smooth increase in Q̃SS

6 , Q̃LS
6 , and Q̃SL

3 .
Then, the structure is dominated by SS and SL contact
configurations at φ ≈ 0.77. At the second transition,
φJ ≈ 0.87, where a large number of small particles sud-
denly jam, we find that Q̃SS

6 ≈ 0.28, which is far from
the typical values found in the local HCP and FCC
packing structures. One can assume that the structure
is disordered but endowed with a local order due to the
existence of a fraction of HCP and FCC structures, see
Fig. 11 (a).

Fig. 13 and Fig. 14 display an unusual behavior of
Q̃` for φ � φJ : Q̃` decreases or increases with φ de-
pending on the contact type. We think that this behav-
ior is a consequence of over-compression of the system
that generally leads to different particle penetrations
and distortion of the packing structure. For a full dis-
cussion of the contact type penetration as a function of
φ, see Ref. [15].

6 Summary and conclusion

We have studied the structural transition along the
first and second jamming transition lines in bidisperse
granular packings. The local contact orientational or-
der (LCOR), Q̃`, was introduced to quantify the local
structures of the packings by considering particle con-
tacts as nearest neighbors. This means that any sudden
change in contacts will be reflected on Q̃`. The global
structure of each bidisperse packing was divided into
contact configurations, i.e., Large-Large (LL), Small-
Small (SS), Large-Small (LS), and Small-Large (SL),
to quantify the role of each contact configuration in the
jammed packing. For the LL and SS contact configu-
rations, Q̃6 was calculated with respect to the six-fold
lattice, while LS and SL were treated differently be-
cause the local structures depend on δ. For δ = 0.73,
Q̃8 was determined for LS and SL because a cubic lat-
tice is the most efficient one. For δ = 0.15, Q̃3 and Q̃6

were calculated for SL and LS since they tend to form
triangular and hexagonal lattices, respectively.

We found that for δ = 0.73 all partial Q̃` show a
sudden jump at the same φJ , but have different contri-
butions as XS changes. For example, at XS = 0.1, the
jammed structure is dominated by a fraction of six-fold
and cubic lattices of LL and LS, respectively. In con-
trast, for XS = 0.6, this scenario is dominated by the
same local structures, but for SS and SL contact config-
urations. For δ = 0.15, a different behavior is observed.
For XS = 0.1, the contribution of each contact config-
uration to the jammed structure decouples as φ→ φJ .
At φJ ≈ 0.71, Q̃LL

6 shows a jump to a very low value,

while the rest of the partial Q̃` are zero. This represents
the formation of an amorphous jammed structure and
thus the first jamming transition of the system. Upon
further compression, we observe a structural change ex-
perienced by small particles, marking the second jam-
ming transition. The jammed structure at the second
transition is dominated by a fraction of six-fold and tri-
angular lattices of SS and SL contact configurations.
For XS > 0.2, all Q̃` simultaneously jump to the same
φJ , with the jammed structure dominated mainly by SS
and SL. The results have shown that the evolution of
both first and second jamming transitions is accompa-
nied by a structural change in the system, where some
HCP/FCC structures of large and small particles are
formed.

The analysis of the structure factor has shown that
the packing structures for δ = 0.73 are similar showing
with approximately the same φJ as XS changes. Al-
though, each configuration type contributes differently
to the total S(q). Therefore, the jammed structures can
be expected to be structurally similar for δ = 0.73, re-
gardless of the concentration of the small particles. Such
an equivalence of packing structures needs to be con-
firmed and explained in future research.
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We have also shown that the S(q) immediately be-
fore jamming is identical to the S(q) at jamming. This
means that S(q) cannot distinguish whether the system
is jammed or not. Choosing a variable that responds
to each transition is important for understanding how
jammed structures arise and which contact configura-
tion contributes the most. The introduction of the con-
tact orientational order aims to shed light on the local
structures of the packings. Looking at the partial Q̃`,
one can determine how the contact configurations are
packed when φ → φJ . This result could be crucial to
understand how the strength of the bidisperse packing
evolves. For example, it is of great importance to know
how the bulk modulus and other macroscopic proper-
ties of the packings depend on the packing structure.
The structural features presented here are consistent
with the jamming density and bulk modulus reported
in Ref. [15] along the first and second jamming transi-
tion, which can suggest a possible connection between
them. In particular, the similar values of the jamming
density and bulk modulus observed for δ = 0.73 may be
due to the formation of equivalent jammed structures
independent of XS. For δ = 0.15, the structures seem
to correlate with the jamming density and bulk modu-
lus, suggesting that the structure has an effect on them.
Future work in this direction is ongoing.
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