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MEASURABLE IMBEDDINGS, FREE PRODUCTS, AND GRAPH PRODUCTS

ÖZKAN DEMIR

Abstract. We study Measurable Imbeddability between two countable groups, which is an order-like gen-
eralization of Measure Equivalence that allows the imbedded group to have an infinite measure fundamental
domain. We prove if Λ1 measurably imbeds into Γ1, and Λ2 measurably imbeds into Γ2 under an additional
assumption that lets the corresponding fundamental domains to be arranged in a special way, then Λ1 ∗ Λ2

measurably imbeds into Γ1 ∗ Γ2. Building upon the techniques used, we show that the analogous result
holds for graph products of groups.

1. Introduction and Statement of the Main Results

Measure equivalence (ME) is an equivalence relation between discrete countable groups that measure-
theoretically generalizes the notion of being virtually isomorphic. It can be viewed as a measured analogue
of quasi-isometry in geometric group theory; it was introduced by Gromov in [6]. The prominent examples
of ME groups are lattices in the same locally compact second countable (lcsc) group.

We study a one-sided generalization of this notion, called Measurable Imbedding (MI), in which one of
the groups is allowed to have an infinite measure fundamental domain inside the corresponding coupling.
It gives a partial ordering within the class of discrete countable groups. As an example, the definition will
cover the following situation: If Γ is a lattice in a lcsc group G and Λ is any discrete subgroup in G, then Λ
measurably imbeds into Γ. The purpose of this paper is to show that the notion of meaurable imbeddability
is preserved under free products and more general graph products of groups, under a natural assumption on
the coupling index.

A remarkable result involving MI is presented by Gaboriau and Lyons in [4], where they give a Measurable-
Group-Theoretic solution to the famous von Neumann-Day problem. They showed that for any non-amenable
group Γ, one can find an essentially free action of the free group F2 y [0, 1]Γ such that, almost every Γ-orbit
of the Bernoulli action Γ y [0, 1]Γ decomposes into F2-orbits. Later in [1], Berendschot and Vaes gave an
explicit construction of a Measurable Imbedding (or Measure Equivalence Embedding, as called in their
paper) of a free group to any non-amenable group (even in the generality of locally compact groups), in
the sense of Definition 2.2. This adds yet another item to the endless list of equivalent characterizations of
amenability: A group Γ is amenable if and only if F2 does not measurably imbed into Γ.

To the author’s knowledge, the notion of MI is introduced by Bader, Furman, and Shalom in an unpub-
lished preprint, and first appeared in literature in a paper by Sako (see Definition 2.1 in [9]), where he proves
that Ozawa’s class S is an invariant under Measure Equivalence. He actually proves a stronger statement: if
Λ measurably imbeds into Γ and Γ is in class S, then Λ is in class S. One can show similar statements hold
for amenability and Haagerup’s approximantion property (or a-T-menability) by following the same ideas in
the proof of them being ME invariants (e.g., see Section 3.1.1 in [2]).

Our main results do not hold at the generality of MI, so we introduce a slight strengthening of this notion
called Strict Measurable Imbedding (SMI), which allows us to arrange the fundamental domains so that the
fundamental domain having smaller measure is contained in the other. In Proposition 2.7, we show that this
notion is equivalent to the notion of a Random Subgroup introduced by Monod in [8].

Orbit Equivalence (OE) is a special case of SMI, which corresponds to the case where we can choose the
same set as the fundamental domain for both of the actions. Our first main result is a generalization of
Gaboriau’s result (PME6 in [3]) which says finite free products of OE groups are OE.
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Theorem A. If Λ1
SMI
֌ Γ1 and Λ2

SMI
֌ Γ2, then Λ1 ∗Λ2

SMI
֌ Γ1 ∗Γ2 Moreover, for given (Λi ֌ Γi)-couplings

Σi with indices [Γi : Λi]Σi
= ci for i = 1, 2, one can find a (Λ1 ∗ Λ2 ֌ Γ1 ∗ Γ2)-coupling Σ where:

[Γ1 ∗ Γ2 : Λ1 ∗ Λ2]Σ =

{
1, if c1 = c2 = 1

∞, otherwise

A generalization of both free products and direct products is the notion of graph products of groups,
which is thoroughly studied in Green’s thesis ([5]). In [7] (Proposition 4.2) Horbez and Huang proved that
the graph product of OE groups are OE, generalizing Gaboriau’s result. Our second main result generalizes
this result and Theorem A for finitely generated groups:

Theorem B. Let Θ be a finite simple irreducible graph with vertex set V . Let H and G be two graph products
over Θ, with nontrivial finitely generated vertex groups {Hv}v∈V and {Gv}v∈V , respectively. Suppose for

each v ∈ V , Hv

SMI
֌ Gv, with coupling index cv. Then H

SMI
֌ G with coupling index ∞, unless when all

cv = 1, in which case the coupling index is also 1.

Irreducibility of the underlying graph prevents the decomposition of the graph as the join of two subgraphs,
which corresponds to direct product in the group level. The similar result for direct products is known for
ME groups, and same proof works for the SMI case. Thus, Theorem B holds for non-irreducible graphs, but
the index calculation will have some special cases.

In Section 2 we recall/give definitions and remarks for Measure Equivalence (ME), Measurable Imbed-
dings (MI), and Strict Measurable Imbeddings (SMI). Then, we investigate the relation between SMI and
the notions of randomorphisms, randdembeddings and random subgroups introduced by Monod in [8]. In
Section 3, we prove Theorem A. In Section 4, we give definition of graph products of groups, state the normal
form theorem with a relevant proposition and prove Theorem B.

Acknowledgements. I would like to thank my advisor Alexander Furman for his invaluable guidance,
support, and encouragement. I would also like to thank the anonymous referee for their helpful and detailed
feedback and for pointing out the relation between SMI and randomorphisms.

2. Definitions, Remarks, and Relation to Randomorphisms

Throughout the paper; all groups will be discrete countable, all measure spaces will be standard, and all
set equalities are almost everywhere (a.e.) equalities (i.e. the symmetric difference between the two sets is
null with respect to the ambient measure). We first recall the definition of Measure Equivalence (introduced
by Gromov in [6]):

Definition 2.1. Two groups Λ and Γ are called Measure Equivalent (abbreviated as ME, and denoted

Λ
ME
∼ Γ) if there exists an infinite measure space (Σ, µ) with a measurable, measure preserving action of Λ×Γ,

so that both actions Λ y Σ and Γ y Σ admit finite-measure fundamental domains Y ∼= Σ/Λ, X ∼= Σ/Γ, i.e.:

Σ =
⊔

γ∈Γ

γX =
⊔

λ∈Λ

λY

The space (Σ, µ) is called a (Λ,Γ)-coupling or ME-coupling. The index of this coupling is the ratio
of the measures of the fundamental domains:

[Γ : Λ]Σ :=
µ(Y )

µ(X)
∈ (0,∞)

Remarks. (See [2] for details)

(1) For a given coupling, the index is well-defined, i.e., it does not depend on the choices of the funda-
mental domains.

(2) Let Λ
ME
∼ ∆ and ∆

ME
∼ Γ with couplings Σ1 and Σ2. Then Λ

ME
∼ Γ with the coupling Σ = Σ1×∆Σ2 :=

(Σ1 × Σ2)/∆ where ∆ acts diagonally on the product. Moreover, the index of this coupling can be
computed as:

[Γ : Λ]Σ = [Γ : ∆]Σ1
[∆ : Λ]Σ2

In particular,
ME
∼ is an equivalence relation on groups.
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(3) Any ME-coupling can be decomposed into an integral over a probability space of ergodic ME-
couplings, that is, ones for which the Λ× Γ-action is ergodic.

(4) If [Γ : Λ]Σ = c ≥ 1, and the coupling is ergodic, then we can choose fundamental domains X and Y
(possibly after rescaling the measure µ) so that X ⊂ Y , µ(X) = 1, and µ(Y ) = c.

(5) Given a (Λ,Γ)-coupling Σ and a choice of fundamental domains Y ∼= Σ/Λ, X ∼= Σ/Γ, we obtain a
measurable measure-preserving action Λ y X where for λ ∈ Λ and x ∈ X , λ · x is the (essentially)
unique element in Γλx ∩X , and a cocycle α : Λ×X → Γ where α(λ, x) is the unique element in Γ
satisfying γ · x = α(λ, x)λx. We similarly have Γ y Y and corresponding cocycle β : Γ × Y → Λ.
(We use · to denote those two actions, to distinguish them from the original action Λ× Γ y Σ)

We give the definition of Measurable Imbedding between groups, which can be thought of as ME but with
index in (0,∞].

Definition 2.2. Λ Measurably Imbeds into Γ (abbreviated as MI, and denoted Λ
MI
֌ Γ) if there exists

an infinite measure space (Σ, µ) with a measurable, measure preserving action of Λ×Γ, so that both actions
Λ y Σ and Γ y Σ admit measurable fundamental domains Y,X ⊂ Σ such that X has finite measure.

The space (Σ, µ) is called a (Λ ֌ Γ)-coupling or MI-coupling. The index of this coupling is the ratio
of the measures of the fundamental domains:

[Γ : Λ]Σ :=
µ(Y )

µ(X)
∈ (0,∞]

Here are analogous remarks for MI (the proofs are similar to the ME case):

Remarks.

(1) For a given coupling, the index is well-defined, i.e., it does not depend on the choices of the funda-
mental domains.

(2) Let Λ
MI
֌ ∆ and ∆

MI
֌ Γ with couplings Σ1 and Σ2. Then Λ

MI
֌ Γ with the coupling Σ = Σ1 ×∆ Σ2.

Same as the ME case, the index of this coupling can be computed as:

[Γ : Λ]Σ = [Γ : ∆]Σ1
[∆ : Λ]Σ2

In particular,
MI
֌ is an order relation on groups.

(3) Any MI-coupling can be decomposed into an integral over a probability space of ergodic MI-
couplings.

(4) We have actions Λ y X , Γ y Y and corresponding cocycles α : Λ × X → Γ , β : Γ × Y → Λ
as in the ME case. However, Y might be an infinite measure space in this case, so the cocycle of
importance is α.

Arranging fundamental domains so that the large group’s fundamental domain is contained in the smaller
one’s plays an important role in our constructions, which is not possible for this general definition if index is
less than 1. Indeed, the following example illustrates the theorem does not hold when we replace SMI with

MI: consider the trivial coupling of cyclic groups Z2
MI
֌ Z2 with index 1, and another coupling Z3

MI
֌ Z2

with index 2
3 . (As we consider finite groups, these are ME-couplings in disguise.) However, we cannot have

Z2 ∗ Z3
MI
֌ Z2 ∗ Z2, as the latter is amenable while the former is not.

Even if the coupling index is greater than 1, it is not always possible to arrange fundamental domains as
described, as the following example demonstrates:

Example 1. Let (Σi, µi) be a (Λ ֌ Γ)-couplings with indices ci so that c1 < 1, c2 > 1. Possibly after
rescaling the measures µi, we can choose fundamental domains Yi

∼= Σi/Λ, Xi
∼= Σi/Γ for i = 1, 2, so that

µ1(Y1) = c1, µ1(X1) = 1, µ2(Y2) = ac2, µ2(X2) = a, where a is chosen so that the ratio c =
ac2 + c1
a+ 1

> 1.

Then the coupling Σ = Σ1

⊔
Σ2 has index c > 1, but it is not possible to arrange fundamental domains so

that the one with the larger measure contains the other. The main reason is the fact that the coupling Σ is
not ergodic, as Σ1,Σ2 ∈ Σ are invariant sets which are neither null nor conull.

To exclude such cases, we introduce the following strengthening of MI:
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Definition 2.3. Λ Strictly Measurably Imbeds into Γ (abbreviated as SMI, and denoted Λ
SMI
֌ Γ) if

there exists an infinite measure space (Σ, µ) with a measurable, measure preserving action of Λ× Γ, so that
both actions Λ y Σ and Γ y Σ admit Borel fundamental domains Y,X ⊂ Σ such that X has finite measure
and X ⊂ Y .

The space (Σ, µ) is called a (Λ ֌ Γ)-coupling or SMI-coupling. The index of this coupling is the
ratio of the measures of the fundamental domains:

[Γ : Λ]Σ :=
µ(Y )

µ(X)
∈ [1,∞]

We similarly have well-definedness of the coupling index, transitivity, and cocycles for SMI. Recall that
in Example 1, what prevented the MI-coupling from being an SMI-coupling was the fact that Σ1,Σ2 ⊂ Σ
were nontrivial invariant subsets, so the coupling was not ergodic. Indeed in general, if Σ is an ergodic
MI-coupling with index c ≥ 1, then Σ is an SMI-coupling with the same index. On the other hand, if there
is an MI-coupling with index c ≥ 1, then by ergodic decomposition we can find an ergodic MI-coupling
with a possibly different index c̃ ≥ 1, hence an SMI-coupling. These observation give us the following
characterization of SMI in terms of MI:

Proposition 2.4. Λ
SMI
֌ Γ if and only if Λ

MI
֌ Γ with index c ≥ 1.

Next, we have the following proposition that gives us the necessary and sufficient properties an SMI-cocycle
must have.

Proposition 2.5. Λ
SMI
֌ Γ if and only if there exist a probability space (X,µ) with a measure preserving

Λ-action, and a cocycle α : Λ×X → Γ satisfying α(λ, x) = e ⇐⇒ λ = e, for all x ∈ X.

Proof. If we have Λ
SMI
֌ Γ, choosing the fundamental domains X ⊂ Y as in the definition gives the action

Λ y X , and the corresponding cocycle α. Using the fact that X ⊂ Y , one can show that this cocycle satisfies
the property in the statement.

For the other direction, suppose we have such a probability space with a Λ-action and a Λ-valued cocycle.
Let (Ω, µ̃) := (Γ×X, cΛ × µ), where cΛ is the counting measure. Define the actions of Γ and Λ on Ω as:

Γ y Ω γ • (γ̄, x) = (γ γ̄, x)

Λ y Ω λ • (γ̄, x) = (γ̄ α(λ, x)−1, λ · x)

These actions are measure preserving, they commute, and {e} × X is a Γ-fundamental domain. One can
check that both actions are free, the induced Λ-action on X is the action ·, and the cocycle we get is α. Now,
we will describe a Λ-fundamental domain. Enumerate the group Γ as Γ = {γ0, γ1, γ2, ...}, where γ0 = e. Let
Y0 := {e} ×X . Having constructed Y0, Y1, ..., Yn−1 inductively, define:

Yn = ({λn} ×X) \ Λ •

(
n−1⊔

i=0

Yi

)

Finally, set Y :=
∞⊔

i=0

Yi. Using the construction and the hypothesis on the cocycle α, one can check that

Y is a Λ-fundamental domain. It contains the Γ-fundamental domain {e} × X . Hence, Ω is the desired
(Λ ֌ Γ)-coupling. �

Remark. The condition on the cocycle α is equivalent to the following statement: For all x ∈ X , α(e, x) = e
and the functions α( · , x) : Λ → Γ are injective. So, SMI-cocycles are characterized by this injectivity
property.

Remaining of the section follows [8] for the definitions. Given two countable groups Λ and Γ, one can
define the Polish space

[Λ,Γ] := {f : Λ → Γ | f(e) = e}

There is a natural Λ-action on [Λ,Γ] given by

(λ · f)(x) := f(xλ)f(λ)−1 for f ∈ [Λ,Γ], λ, x ∈ Λ.
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Definition 2.6. (Definitions 5.1 & 5.2 in [8]) A randomorphism from Λ to Γ is a Λ-invariant probability
measure on [Λ,Γ]. A randomorphism is a randembedding if it is supported on the injective maps. Say
that Λ is a random subgroup of Γ if it admits a randembedding into Γ.

We observe that being a random subgroup is equivalent to SMI.

Proposition 2.7. Λ
SMI
֌ Γ if and only if Λ is a random subgroup of Γ.

Proof. The forward direction follows from the discussion at Section 5.2 in [8]. Indeed, arranging the fun-
damental domains as X ⊂ Y , the SMI-cocycle α : Λ × X → Γ yields a measurable map α̂ : X → [Λ,Γ]
given by α̂(x)(λ) = α(λ, x). This map is Λ-equivariant, and one can check the condition X ⊂ Y ensures
that α̂ lands into injective maps. Therefore, letting µ be the probability measure on X, the measure α̂∗µ is
a randembedding.

For the other direction, let X := {f : Λ → Γ | f(e) = e, f is injective} equipped with the randem-
bedding µ, which is invariant under the action Λ y X , (λ · f)(x) := f(xλ)f(λ)−1. Consider the space
Ω := {f : Λ → Γ | f is injective} with the Γ-action by translations on the image, i.e. (γf)(x) := γ(f(x)).
Note Ω =

⊔
γ∈Γ γX , so equipping Ω with the natural measure coming from this partition makes the Γ-action

measure preserving, and X becomes a fundamental domain for Γ. Let Λ y Ω by (λf)(x) := f(λ)f(xλ)f(λ)−1.
Ω consisting of injective functions implies that this Λ-action is free, and this action commutes with the Γ
action. Moreover, the induced Λ-action on X coming from these free commuting actions is the original
Λ-action on X. Hence, we will get a cocycle α : Λ×X → Γ such that γ · f = α(λ, f)λf . This formula shows
that α(λ, f) = f(λ). By the definition of the space X , this cocycle satisfies the hypotheses of Proposition
2.5, which gives the result.

�

3. Free Products

A special case of ME is Orbit Equivalence (OE), which corresponds to having a coupling with index 1.
If additionally the actions are ergodic, one can choose the same set as the fundamental domain for both of
the actions. (See [2] for the definition and proof of this correspondence.) Gaboriau’s result mentioned in the
introduction is:

Theorem 3.1. (PME6 in [3]) If Λ1
OE
∼ Γ1 and Λ2

OE
∼ Γ2, then Λ1 ∗ Λ2

OE
∼ Γ1 ∗ Γ2

There, he actually proves the same result for infinite free products, from which the above result follows.
He also gives counterexamples to show that the conclusion does not hold if we replace OE with ME. Theorem
A shows that the result is true if we replace OE with SMI. Theorem A follows from the following theorem
using transitivity of SMI:

Theorem 3.2. For groups Λ, Γ, G; if Λ
SMI
֌ Γ with coupling Σ and G is non-trivial, then G ∗ Λ

SMI
֌ G ∗ Γ

with coupling index ∞, unless [Γ : Λ]Σ = 1, in which case the new coupling index is also 1.

Proof. Fix a (Λ,Γ)-coupling (Σ, µ), fundamental domains Y ∼= Σ/Λ, X ∼= Σ/Γ such that X ⊂ Y and
µ(X) = 1. Then we have the action Λ y X and the corresponding cocycle α : Λ × X → Γ so that
λ · x = α(λ, x)λx.

Let G act on X trivially to get an action of G ∗ Λ on X , still denoted by ·. Extend the cocycle
α to α̃ : (G ∗ Λ) × X → G ∗ Γ by setting α̃(g, x) = g, for g ∈ G, and using the cocycle identity
α̃(gh, x) = α̃(g, h · x)α̃(h, x).

Set Σ̃ = (G ∗Γ)×X , with the induced product measure µ̃, where we take the counting measure on G ∗Γ,
and µ|X on X . We define the following actions:

G ∗ Γ y Σ̃ w · (w̄, x) = (w w̄, x)

G ∗ Λ y Σ̃ w · (w̄, x) = (w̄ α̃(w, x)−1, w · x)

This is the same construction from the proof of Proposition 2.5, and it is easy to check that the cocycle

α̃ satisfies the hypothesis of that Proposition. So we can apply Proposition 2.5 and already conclude that Σ̃
is a (G ∗Λi ֌ G ∗Γi)-coupling. In order to calculate the coupling index, we will give an explicit description
of a G ∗ Λ-fundamental domain.
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We will look at Σ̃ from another perspective, which will make the description of this fundamental domain

easier. The idea is to see Σ̃ as a collection of disjoint copies of the original coupling Σ, using the natural
identification Σ ∼= Γ×X . Letting Γ y G∗Γ by right multiplication, we have G∗Γ ∼= G∗Γ/Γ×Γ. By seeing
elements of G ∗ Γ as reduced words, and choosing the representatives of minimal word length from G ∗ Γ/Γ
gives the identification G ∗ Γ/Γ ∼= W , where:

W := {w ∈ G ∗ Γ|w is a reduced word ending with a non-trivial element of G} ∪ {e}

This gives us the identification Σ̃ ∼= W × Γ ×X . The action of G ∗ Λ making this identification G ∗ Λ-
equivariant is:

g • (w, γ, x) = (wγg−1, e, x) for g ∈ G

λ • (w, γ, x) = (w, γα(λ, x)−1, λ · x) forλ ∈ Λ

If z ∈ G∗Λ is a reduced word starting with a nontrivial element of G, a straightforward calculation shows:

z • (w, γ, x) = (wγα̃(z, x)−1, e, z · x)

Identifying Γ × X ∼= Σ, we claim Ỹ := ({e} ×X)
⊔
(W × (Y \ X)) is a fundamental domain for G ∗ Λ.

We first show that G ∗ Λ • Ỹ = W × Γ×X , so Ỹ intersects every orbit of G ∗ Λ. Indeed, the identification

W×Γ×X ∼= W×Σ isG∗Γ-equivariant, andW×X ⊂ (G∗Λ)•({e}×X). This givesW×Y ⊂ (G∗Λ)•Ỹ . As Y is

a Λ fundamental domain in Σ, Λ•({w}×Y ) = {w}×Σ. Hence, W×Γ×X ∼= W×Σ ⊂ Λ•(W×Y ) ⊂ (G∗Λ)•Ỹ .

It remains to show for any nontrivial element w ∈ G ∗ Λ and y ∈ Ỹ , w · y /∈ Ỹ . An arbitrary element of
G ∗Λ can be written of the form λz, where λ ∈ Λ and z ∈ G ∗Λ is a reduced word starting with an element

of G. Also note that (w, γ, x) ∈ Ỹ if and only if w = γ = e corresponding to {e} × X , or γx ∈ Y as an
element in Σ. We also recall the following observation coming from the choice of the fundamental domains
so that X ⊂ Y :

(1) α(λ, x) = e ⇐⇒ λ = e

Letting p : G ∗ Γ → Γ be the retraction homomorphism onto Γ, note that for w ∈ G ∗ Γ and x ∈ X ,
w · x = p(w) · x, as G acts trivially on X . So, we have the following equality:

(2) w · x = α(p(w), x)p(w)x

We have three cases depending on whether λ or z are trivial:

Case 1: Both λ and z are non-trivial.
Let (w, γ, x) ∈ Ỹ . Then,

λz • (w, γ, x) = λ • (wγα̃(z, x)−1, e, z · x) = (wγα̃(z, x)−1, α(λ, z · x)−1, λz · x) /∈ Ỹ

as α̃(λ, z · x) 6= e by (1) and:

α(λ, z · x)−1(λz · x) = α(λ, p(z) · x)−1α(λp(z), x)λp(z)x by (2)

= α(p(z), x)λp(z)x by cocycle identity

= λ(p(z) · x) by (2)

λ(p(z) · x) /∈ Ỹ as p(z) · x ∈ X ⊂ Y and λ 6= e.

Case 2: λ = e and z is non-trivial.

z • (e, e, x) = (α̃(z, x)−1, e, z · x) /∈ Ỹ

as α(z, x) 6= e by (1) and definition of α̃.
For γ 6= e and γx ∈ Y :

z • (w, γ, x) = (wγα̃(z, x)−1, e, z · x) /∈ Ỹ

as wγα̃(z, x)−1 6= e. Indeed, γx ∈ Y implies α(λ, x) 6= γ for all λ ∈ Λ and for a.e. x ∈ X , so γ inside the
word wγα̃(z, x)−1 will not be cancelled.
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Case 3: z = e and λ is non-trivial.

λ • (e, e, x) = (e, α(λ, x)−1, λ · x) /∈ Ỹ

as α(λ, x) 6= e by (1), and

α(λ, x)−1(λ · x) = λx /∈ Y

For γ 6= e and γx ∈ Y :

λ • (w, γ, x) = (w, γα(λ, x)−1, λ · x) /∈ Ỹ

as γα(λ, x)−1 6= e as in Case 2, and

γα(λ, x)−1(λ · x) = γλx = λ(γx) /∈ Y

as γx ∈ Y and λ 6= e.

This shows Ỹ is a G ∗Λ fundamental domain. Note if [Γ : Λ]Σ = 1, then Y = X , so µ̃(Ỹ ) = µ̃({e}×X) =

µ(X) = 1. Otherwise, [Γ : Λ]Σ > 1, so µ(Y \X) > 0. Hence, we have µ̃(Ỹ ) = µ̃({e}×X)+ µ̃(W × (Y \X)) =
1+ |W |µ(Y \X) = ∞, as W is infinite as long as G is a non-trivial group. This proves the statement about
the coupling indices. �

Proof of Theorem A. By Theorem 3.2, we get Λ1 ∗ Λ2
SMI
֌ Γ1 ∗ Λ2 with index d1, and Γ1 ∗ Λ2

SMI
֌ Γ1 ∗ Γ2

with index d2. Composing these couplings gives Λ1 ∗ Λ2
SMI
֌ Γ1 ∗ Γ2 with index d1d2. If c1 = c2 = 1, then

d1 = d2 = 1, so d1d2 = 1. Otherwise, at least one di is ∞, so d1d2 = ∞. �

The following is immediate using Proposition 2.7.

Corollary 3.3. If Λi is a random subgroup of Γi for i = 1, 2, then Λ1 ∗Λ2 is a random subgroup of Γ1 ∗Γ2.

4. Graph Products

We first state some preliminary definitions for graph products, and a normal form theorem for the elements
in a graph product. Throughout this section, the groups are assumed to be finitely generated, and the graphs
are finite and simple, i.e. with no edge loops and with no multiple edges between vertices. For proofs and
further details, see [5].

Definition 4.1. (Definition 3.1 in [5]) Let Θ be a graph, with vertex set VΘ = {vi|i = 1, 2, ..., n}. Let
{Ak}

n
k=1 be a collection of groups. Let GΘ := 〈Ak | [Ai, Aj ] ∀( vi, vj) ∈ EΘ〉, where EΘ is the edge set of Θ.

We call GΘ the graph product of the {Ak} given by Θ. We call Θ the underlying graph, and the groups
Ak are called the generating vertex groups.

If Θ is a complete graph, then the graph product reduces to the direct product of the vertex groups. On
the other hand, if there are no edges in Θ, the graph product becomes the free product of the vertex groups.
So graph products give us a spectrum of constructions between these two extremities. We have the notion of
a word being reduced in graph products analogous to the same notion in free products where no cancellation
can happen between the elements.

Definition 4.2. (Definition 3.5 in [5]) Let GΘ be a graph product of the groups A1, A2, ..., An. A sequence
g1, g2, ...gm of elements from GΘ is called reduced if:

(i) gi ∈ Ai, for i = 1, 2, ..., n .
(ii) gi 6= e, for i = 1, 2, ..., n .
(iii) ∀gi, gj with i < j for which ∃k i ≤ k < j with

[ gi, gi+1] = [ gi, gi+2] = ... = [ gi, gk] = e

[ gk+1, gj] = [ gk+2, gj ] = ... = [ gj−1, gj] = e

gi and gj are in different generating groups.

Part (iii) means that repeatedly swapping elements from generating groups whose corresponding vertices
are adjacent in Θ cannot bring together two terms from the same generating group. We will refer to this
swapping of commuting terms as syllable shuffling.
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Definition 4.3. (Definition 3.7 in [5]) Let GΘ be a graph product of the groups A1, A2, ..., An. Fix finitely
many generators for each Ai, and let w be a word in those generators. If w = w1w2...wr where each wj

is a word in the generators of only one of the generating groups, no wj is the empty word, and wj , wj+1

are not in the same generating group for j = 1, 2, ..., r − 1, then the syllable length, λ(w) of w is r, and
w1, w2, ..., wr are called the syllables of w. The syllable length λ(g) of an element g ∈ GΘ is the minimal
syllable length of a word defining g.

The following theorem, gives a normal form for elements in graph products, which plays the role of reduced
words in free products.

Theorem 4.4. (Theorem 3.9 in [5]) Let GΘ be a graph product of the groups A1, A2, ..., An. Each element
g 6= e of GΘ can be uniquely (up to syllable shuffling) expressed as a product

g = g1g2...gr where g1, g2, ..., gr is a reduced sequence.

Proof. See [5]. �

The link of a vertex v, denoted lk(v), is the set of all vertices that are connected to v. The star of a
vertex v, denoted st(v), is lk(v) ∪ {v}.

Proposition 4.5. Let GΘ be a graph product of the groups A1, A2, ..., An. Fix a vertex generator Ak, and
let L be the standard subgroup of GΘ generated by lk(vk), where vk is the vertex corresponding to Ak. Then,
each element g ∈ GΘ can be expressed as a product g = alh where:

(i) a ∈ Ak

(ii) l is a reduced word in L.
(iii) h is a reduced word starting with an element of Am, where the corresponding vertex is not in st(vk),

or h = e

Proof. For g = e, we just have a = l = g = e.
For g 6= e, write g = g1g2...gr as in Theorem 4.4. Note that, either it is possible to have g1 ∈ Ak after

syllable shuffling, in which case a = g1; or not, in which case a = e. Then, let gk be the first element not
in Ak or H . In case a = g1, taking l = g2g3...gk−1 and h = gkgk+1...gr gives the result. (If k = 2, l = e) In
case a = e, taking l = g1g2g3...gk−1 and h = gkgk+1...gr gives the result. (If k = 1, l = e) If such a gk does
not exist, just take l = a−1g and h = e. These give the result in all possible cases. �

It is straightforward to show that if Λi

SMI
֌ Γi with index ci for i=1,2; then Λ1×Λ2

SMI
֌ Γ1×Γ2, and there

is a (Λ1 ×Λ2 ֌ Γ1 × Γ2)-coupling with index c1c2, with the convention ∞ · c = ∞. (Use the direct product
of (Λi ֌ Γi)-couplings with the natural action of Λ1 × Λ2 and Γ1 × Γ2.) Indeed the same result holds if
we replace SMI with MI. As the direct product case is covered using these observations, we will not deal
with the graph products which split into direct products, so we need the following notion of irreducibility
for graphs:

Definition 4.6. Given two graphs Θ1 and Θ2, define their join, denoted Θ1 ◦ Θ2, as the graph we get by
connecting every vertex of Θ1 to every vertex of Θ2 with an edge. More rigorously:

V (Θ1 ◦Θ2) = VΘ1 ∪ VΘ2

E(Θ1 ◦Θ2) = EΘ1 ∪ EΘ2 ∪ {(v1, v2)|v1 ∈ VΘ1, v2 ∈ VΘ2}

A graph Θ is called irreducible, if there are no pair of nonempty full subgraphs Θ1 and Θ2, such that
Θ = Θ1 ◦Θ2.

Theorem B follows from the following result by using transitivity of SMI:

Theorem 4.7. Let Θ be a finite simple irreducible graph with vertex set V . Let H and G be two graph
products over Θ, with nontrivial finitely generated vertex groups {Hv}v∈V and {Gv}v∈V , respectively. Suppose

there exists w ∈ V suvh that, Hw

SMI
֌ Gw with coupling index c, and Hv and Gv are isomorphic for all

v ∈ V, v 6= w. Then H
SMI
֌ G with coupling index ∞, unless when c = 1, in which case the coupling index is

also 1.
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Proof. Set Λ = Hw, Γ = Gw. Fix a (Λ,Γ)-coupling (Σ, µ), fundamental domains Y ∼= Σ/Λ and X ∼= Σ/Γ,
such that X ⊂ Y and µ(X) = 1. Then we have the action Λ y X and the corresponding cocycle α :
Λ×X → Γ so that λ · x = α(λ, x)λx.

For each v 6= w, let Hv act on X trivially. That gives an action of the graph product H on X , still
denoted by ·. Extend the cocycle α to α̃ : H ×X → G by setting α̃(h, x) = h, for h ∈ Hv, v 6= w and using
the cocycle identity α̃(gh, x) = α̃(g, h · x)α̃(h, x)

Set Σ̃ = (G×X, µ̃), where µ̃ is the induced product measure. We define the following actions:

G y Σ̃ w · (w̄, x) = (w w̄, x)

H y Σ̃ w · (w̄, x) = (w̄ α̃(w, x)−1, w · x)

As before, this is the same construction from the proof of Proposition 2.5, so the same remarks hold. We
can use Proposition 4.5 to show that the cocycle α̃ satisfies the hypothesis of Proposition 2.5, so we can

already conclude that H
SMI
֌ G. In order to calculate the coupling index, we will give an explicit description

of an H-fundamental domain.
Letting Γ y G by right multiplication, we have G ∼= G/Γ×Γ. By seeing elements of G as reduced words

(as in Definition 4.2) up to syllable shuffling, and choosing representatives of minimal word length from G/Γ
gives the identification G/Γ ∼= W , where

W := {w ∈ G|w is not equal to a nontrivial reduced word ending with an element of Γ} ∪ {e}

This gives us the identification Σ̃ ∼= W ×Γ×X . The action of H making this identification H-equivariant
is defined by:

λ • (w, γ, x) = (w, γα(λ, x)−1, λ · x) for λ ∈ Λ = Hv

h • (w, γ, x) = (wh−1, γ, x) for h ∈ Hw , wherew ∈ lk(v)

h • (w, γ, x) = (wγh−1, e, x) for h ∈ Hw , wherew /∈ st(v)

Let Hlk(v) < H be the standard subgroup of H generated by lk(v). Note Hlk(v) y W by right multipli-

cation. Let W̃ ⊂ W be a fundamental domain for this action, for example, choose the minimal length word
from each Hlk(v)-orbit. Note that if VΘ = st(v), then Γ would be in the center of G, and we would have

W = Hlk(v), and W̃ = {e}. However, that would mean Θ = {v} ◦ lk(v), contradicting irreducibility. Hence,

W properly contains Hlk(v), and in this case it is easy to observe that W̃ is nontrivial. This is the only place
we use irreducibility of Θ.

Identifying W ×Γ×X ∼= W ×Σ equivariantly, we claim Ỹ := ({e}×X)
⊔
(W̃ × (Y \X)) is a fundamental

domain for G.

Showing G•Ỹ = W×Γ×X is similar to the free product case after we observeW × Σ ⊂ Hlk(v) • (W̃ × Σ).

Hence, Ỹ intersects every G-orbit.

It remains to show that for any nontrivial element w ∈ H and y ∈ Ỹ , w · y /∈ Ỹ . Using Proposition 4.5,
such an element w can be written of the form w = λgh where λ ∈ Λ, g is a reduced word in Hlk(v), and

h ∈ H is a reduced word starting with an element not in Hlk(v) or Λ. Also note that (w, γ, x) ∈ Ỹ if and

only if w = γ = e corresponding to {e} ×X or w ∈ W̃ and γx ∈ Y as an element in Σ. As in the proof of
Theorem 3.2, we have (1), and letting p : H → Γ be the retraction, we have (2). For such h and g, we can
compute the action as:

h • (w, γ, x) = (wγα̃(h, x)−1, e, h · x)

g • (w, γ, x) = (wg−1, γ, x)

We have seven cases, depending on whether λ, g, or h are trivial:

Case 1: λ, g, h are non-trivial.

Let (w, γ, x) ∈ Ỹ . Then,

λgh • (w, γ, x) = (wγα̃(h, x)−1g−1, α(λ, h · x)−1, λh · x) /∈ Ỹ
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as α(λ, h · x) 6= e by (1), and

α(λ, h · x)−1(λh · x) = α(λ, p(h) · x)−1α(λp(h), x)λp(h)x by (2)

= α(p(h), x)λp(h)x by cocycle identity

= λ(p(h) · x) by (2)

λ(p(h) · x) /∈ Ỹ as p(h) · x ∈ X ⊂ Y and λ 6= e.

Case 2: λ = e, g and h are non-trivial.

gh • (e, e, x) = (α̃(h, x)−1g−1, e, h · x) /∈ Ỹ

as α(h, x)−1g−1 6= e

For w ∈ W̃ , γ 6= e and γx ∈ Y :

gh • (w, γ, x) = (wγα̃(h, x)−1g−1, e, h · x) /∈ Ỹ

as wγα̃(h, x)−1g−1 6= e. Indeed, γx ∈ Y implies α(λ, x) 6= γ for all λ ∈ Λ and for a.e. x ∈ X , so γ inside the
word will not be cancelled.

Case 3: g = e, λ and h are non-trivial.
Same as Case 1 from the proof of Theorem 3.2.

Case 4: h = e, λ and g are non-trivial.

λg • (e, e, x) = (g−1, α(λ, x)−1, λ · x) /∈ Ỹ

as g 6= e, and α(λ, x)−1(λ · x) = λx /∈ Y .

For w ∈ W̃ , γ 6= e and γx ∈ Y :

λg • (w, γ, x) = (wg−1, γα(λ, x)−1, λ · x) /∈ Ỹ

as γα(λ, x)−1 6= e and γα(λ, x)−1(λ · x) = λγx /∈ Y .

Case 5: λ = g = e, and h is non-trivial.
Same as Case 2 from the proof of Theorem 3.2.

Case 6: h = g = e, and λ is non-trivial.
Same as Case 3 from the proof of Theorem 3.2.

Case 7: λ = h = e, and g is non-trivial.

g • (e, e, x) = (g−1, e, x) /∈ Ỹ

as g 6= e.

For w ∈ W̃ , γ 6= e and γx ∈ Y :

g • (w, γ, x) = (wg−1, γ, x) /∈ Ỹ

as wg−1 /∈ W̃ by the definition of W̃ .

The calculation of the index of this coupling is same as the one in the proof of Theorem 3.2. �

Proof of Theorem B. The final coupling we get at the end will be the composition of all the intermediate
couplings described in Theorem 4.7, with index equal to the product of the intermediate indices. If cv = 1
for all v, then all of the intermediate couplings will also have index 1, so product will be 1. Otherwise, at
least one of them will have infinite index, so the product will be ∞. �

Remark. The same result holds without the irreducibility assumption up to the index calculation. Without

irreducibility, we might encounter cases where W̃ = e, so the coupling index can be µ̃(Ỹ ) = µ(Y ). That
means for such intermediate couplings, the index will be cv. In particular, this gives another proof for the
case of direct products.

We finish by combining this remark with Proposition 2.7:

Corollary 4.8. Let Θ be a finite simple graph with vertex set V . Let H and G be two graph products over
Θ, with nontrivial finitely generated vertex groups {Hv}v∈V and {Gv}v∈V , respectively. Suppose for each
v ∈ V , Hv is a random subgroup of Gv. Then H is a random subgroup of G.



MEASURABLE IMBEDDINGS, FREE PRODUCTS, AND GRAPH PRODUCTS 11

References

[1] T. Berendschot and S. Vaes, Measure equivalence embeddings of free groups and free group factors.
[2] A. Furman, A survey of measured group theory, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ.

Chicago Press, Chicago, IL, 2011, pp. 296–374.
[3] D. Gaboriau, Examples of groups that are measure equivalent to the free group, Ergodic Theory Dynam. Systems 25 (2005),

no. 6, 1809–1827.
[4] D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann’s problem, Invent. Math. 177 (2009),

no. 3, 533–540.
[5] E. R. Green, Graph Products of Groups, Ph.D. Thesis, University of Leeds, 1990.
[6] M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc.

Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295.

[7] C. Horbez and J. Huang, Measure equivalence classification of transvection-free right-angled Artin groups, J. Éc. polytech.
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