
Strange Correlation Functions for Average Symmetry-Protected Topological Phases

Jian-Hao Zhang,1 Yang Qi,2, 3, 4, ∗ and Zhen Bi1, †

1Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
2State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China

3Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

Average symmetry-protected topological (ASPT) phase is a generalization of symmetry-protected
topological phases to disordered systems or open quantum systems. We devise a “strange correlator”
in one and two dimensions to detect nontrivial ASPT states. We demonstrate that for a nontrivial
ASPT phase this strange correlator exhibits long-range or power-law behavior. We explore the
connection between the strange correlators and correlation functions in two-dimensional loop models
with quantum corrections, leading to the exact scaling exponents of the strange correlators.

Introduction – Symmetry-protected topological (SPT)
phases host nontrivial short-range entanglement (SRE)
which cannot be destroyed in the presence of symme-
tries [1–31]. Recently, it has been shown that symmetry-
protected SRE can still prevail even if part of the protect-
ing symmetry is broken locally by quenched disorder but
restored upon ensemble averaging [32–38], which defines
a new class of SPT phases dubbed average SPT (ASPT).
The notion of ASPT also generalizes to mixed states aris-
ing naturally from the coupling between the system and
the environment. Provided that symmetry-breaking dis-
orders or quantum decoherence are unavoidable in ex-
periments, the investigation of properties of ASPTs is of
both theoretical and practical significance.

The nontrivial features of SPT phases often manifest
on the physical boundaries which often show symmetry-
protected gapless spectrum, while the bulk correlation
functions of local observables all decay exponentially with
distance due to the spectral gap. Therefore, the bulk
detection of an SPT state is a nontrivial task if only a
wavefunction without boundaries is available. One pow-
erful tool is the strange correlator [39–41] defined for

a given wavefunction |Ψ⟩ as C(r, r′) = ⟨Ψ|O(r)O(r′)|Ψ0⟩
⟨Ψ|Ψ0⟩ .

Here |Ψ0⟩ is a symmetric trivial state serving as a ref-
erence, and O’s are certain local operators. It has been
demonstrated that, given a nontrivial SPT wavefunction,
the strange correlation is generically long-range or power-
law in the long-distance limit. The strange correlator
has been successfully applied to identify nontrivial SPT
wavefunctions in numerical simulations [42–49].

This letter provides a generalization of the strange cor-
relator to ASPT states. We highlight that the fidelity be-
tween two density matrices is a natural extension of wave-
function overlap from pure states to mixed states, which
allows us to define a basis-independent form of strange
correlator for ASPTs. For the rest of the paper, we briefly
discuss the notion of ASPTs and define the strange corre-
lator for ASPTs. Then we showcase the power of strange
correlators with examples in 1d and 2d. In 1d, we show
the strange correlator of the average cluster state with
Z2 × ZA

2 symmetry (“A” denotes an average symmetry

throughout this paper) is long-range ordered. In 2d, we
demonstrate two examples of bosonic ASPTs with the
so-called 0d-decoration and 1d-decoration and one exam-
ple of fermionic ASPT with 1d-decoration. We uncover
an intriguing connection between the strange correlator
and so-called watermelon correlators in O(n) loop mod-
els with quantum corrections coming from the decorated
domain wall structure of the ASPT states, granting us
exact scaling exponents for the strange correlators.
ASPT states – In the ASPT setting [32, 38], we con-

sider the topological properties of a density matrix, which
can be either the result of quantum decoherence on a
pure state or the ensemble of ground states of disor-
dered Hamiltonians. A mixed state can host two dis-
tinct types of symmetries. The exact symmetry K is
a symmetry for each individual quantum trajectory or
disordered Hamiltonian, while the average G symmetry
is only a statistical symmetry of the ensemble. Mathe-
matically, an exact symmetry acts on the density ma-
trix as Ukρ = eiθkρ, while an average symmetry ac-
tion is UaρU

†
a = ρ. For ASPT states, we demand the

density matrix does not break these symmetries spon-
taneously. Therefore, each state in ρ is a short-range
entangled state preserving K symmetry, and the corre-
lation function of G-charged operators are short-ranged,
namely Tr(ρϕ†G(r)ϕG(r

′)) ∼ e−|r−r′|/ξ, indicting the av-
erage symmetry is preserved in ρ.

A nontrivial ASPT refers to cases where the SRE prop-
erties of the ensemble of states cannot be removed with-
out breaking the exact and average symmetries. Such
nontrivial SRE in an ASPT can be captured by the dec-
orated domain wall picture[50]. Essentially, give an n-
dimensional symmetry defect of average symmetry G,
one can decorate an n-dimensional SPT wavefunction
of the exact K symmetry, which we refer to as nd-
decoration pattern. The nontrivial decoration dictates
that it is impossible to adiabatically connect the state to
a trivial state without breaking the K symmetry.

Note that the exact symmetry K is always a normal
subgroup of the full symmetry group. Namely, K and G
fit into a short exact sequence, 1 → K → G → G → 1.
For a trivial group extension, the ASPT state can be
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shown to have a corresponding pure state SPT wavefunc-
tion with exact K ×G symmetry. However, if the group
extension is nontrivial, there can be ASPT states that
cannot have a pure state SPT correspondence, a class of
states dubbed intrinsic ASPT phase [38]. We stress that
the strange correlator defined below can detect nontrivial
ASPTs of both classes.

Strange correlator – The strange correlator for a den-
sity matrix ρ is defined as

C(r, r′) =
F (ρ, ϕ(r)ϕ(r′)ρ0ϕ(r)ϕ(r′))

F (ρ, ρ0)
, (1)

where F (ρ, ρ0) = Tr(
√√

ρρ0
√
ρ) is the fidelity of two

density matrices ρ and ρ0. ρ0 here is a reference trivial
state preserving the exact and average symmetry. It is
easy to show that if ρ is a pure-state SPT, the strange
correlator we defined comes back to the ordinary strange
correlator for pure-state SPTs.

Note our definition of strange correlator requires no
specific choice of basis. However, for a generic density
matrix ρ with an exact symmetry K and an average
symmetry G, it is convenient to use a G-breaking ba-
sis: ρ =

∑
D pD |ΨD⟩ ⟨ΨD|. Each |ΨD⟩ is a K symmetric

but G-breaking wavefunction and the sum over D takes
into account of all possible G symmetry breaking pat-
terns. Physically, each |ΨD⟩ can be regarded as a partic-
ular quantum trajectory of decoherence processes or the
ground state of a specific disordered Hamiltonians. For a
nontrivial ASPT, each |ΨD⟩ has nontrivial K-SPT deco-
rations on the symmetry defects of G. In this basis, we
can choose the reference state as ρ0 =

∑
D pD |ΦD⟩ ⟨ΦD|

where we use the same probability distribution for sim-
plicity and each |ΦD⟩ is a trivial product state preserving
the K symmetry. Now the strange correlator can be re-
formulated in the following form,

C(r, r′) =

∑
D pD| ⟨ΨD|ϕ(r)ϕ(r′) |ΦD⟩ |∑

D pD| ⟨ΨD|ΦD⟩|
. (2)

In the following, we will show with examples that the
strange correlator has long-ranged or power-law behavior
at long distances if ρ describes a nontrivial ASPT.
1d example – The first example is the 1d averaged clus-

ter state protected by Z2 × ZA
2 symmetry. This ASPT

can be obtained by decoherence on a pure state SPT
with Z2×Z2 symmetry. The pure state SPT is stablized
by the cluster Hamiltonian H = −∑2N

j=1 Zj−1XjZj+1,
which builds in the decorated domain wall structure. The
two Z2 symmetries are defined on the odd and even sites,
respectively, Zodd

2 =
∏

j∈oddXj , Zeven
2 =

∏
j∈evenXj .

For simplicity, we consider strong measurements in the
Z-basis on the even sites which breaks Zeven

2 down to av-
erage. In this case, we can write down the explicit den-
sity matrix states, ρ =

∑
D

1
2N

|ΨD⟩⟨ΨD|, where |ΨD⟩ =⊗N
j=1 |Z2j = σD

2j⟩ ⊗ |X2j+1 = σD
2jσ

D
2j+2⟩, which follows

the decorated domain wall picture. Taking the reference

2

connect the state to a trivial state without breaking K
symmetry.

Note that the exact symmetry K is always a normal
subgroup of the full symmetry group. In another word,
K and G fit into the following short exact sequence,
1 ! K ! G ! G ! 1. For a trivial group extension,
namely G = K ⇥ G, the corresponding ASPT phase has
a clean limit [44] meaning that one can purify the mixed
state to a clean SPT wavefunction with exact K ⇥ G
symmetry. However, if the group extension is nontrivial,
there are ASPT phases that cannot have a clean limit
– dubbed intrinsically ASPT phase [45]. We stress that
the strange correlator defined here can detect nontrivial
ASPT of both classes. In addition, the strange correla-
tor will detect the ASPT order in the bulk of the system
which is useful for some ASPT phases where boundary
detection is no longer convenient. For instance, in the
0d-decoration case, the boundary of ASPT does not host
gapless mode but has spontaneous K charge fluctuations
according to the disorder configurations of G [32].

We first construct a strange density matrix from the
ASPT ensemble, which has the following explicit form

⇢s =
X

D
pD| Dih�D|, (1)

where we have used the same probability distribution as
in the ensemble, | Di is the wavefunctions in the ensem-
ble to be detected, and |�Di is a reference trivial wave-
function with the same G disorder configurations. The
strange density matrix can be viewed as a super-operator
acting on the ASPT density matrices and a reference triv-
ial density matrix. Given the strange density matrix, the
strange correlator of local operators �(r) is defined as

C(r, r0) =
Tr (⇢s�(r)�(r0))

Tr⇢s
. (2)

We will consider two types of operators that trans-
form nontrivially under G and K symmetry respectively.
In the following, we will show with examples that the
strange correlator has long-ranged or power-law decay
behavior in the long distance if the ensemble describes
a nontrivial ASPT. In fact, if the extension between K
and G is trivial, we show that the strange correlator de-
fined above can be mapped back to the ordinary strange
correlator for a clean SPT wavefunction [46] (See supple-
mentary materials).

Strange correlator: Examples – The first example is the
1d averaged cluster state [47] protected by Z2 ⇥ZA

2 sym-
metry. Consider a spin-1/2 chain with 2N spins and pe-
riodic boundary conditions. The clean limit of the ASPT
has a stabilizer Hamiltonian H = �P2N

j=1 Zj�1XjZj+1

where X and Z are Pauli matrices that are anti-commute.
The two Z2 symmetries are defined on the odd and
even sites, respectively, Zodd

2 =
Q

j2odd Xj , Zeven
2 =Q

j2even Xj . Now we break the Zeven
2 to an average sym-

metry ZA
2 by strong random Zeeman fields {hD

2j}. We
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FIG. 1. A schematic for decorated domain wall state for
bosonic ASPT with Z2 ⇥ Z2 ⇥ ZA

2 symmetry and fermionic
ASPT with Zf

2 ⇥ ZA
2 symmetry. We have Ising spins on tri-

angular lattice sites (green) and for the boson case, two spin-
1/2’s on the links. The red curve depicts the decorated 1d
cluster state, while a blue ellipse depicts that the two spins
are polarized to |+i states. In the case of fermionic ASPT,
instead of two spin-1/2’s, two Majorana modes are attached
to each link. On the domain wall, the Majorana modes are
dimerized into a 1d Kitaev chain. Otherwise, the 2 Majorana
modes on a link pair up locally with even fermion parity.

then have an ensemble labeled by {pD, | Di}, where | Di
is the ground state of HD = �Pj Z2jX2j+1Z2j+2 +

hD
2jZ2j which is the Hamiltonian for a specific disorder

realization. In this case, we can write down the explicit
states,| Di =

PN
j=1 |Z2j = h2ji ⌦ |X2j+1 = h2jh2j+2i,

which follows the decorated domain wall picture. With-
out loss of generality, we pick pD = 1/2N as the proba-
bility of each domain wall configuration. We take the
reference trivial wavefunctions |�Di =

PN
j=1 |Z2j =

h2ji ⌦ |X2j+1 = 1i, where there is no charge attached
to the domain wall. With all the above ingredients, we
can explicitly calculate the strange correlator of the Zi

operator on the odd sites of the 1d averaged cluster state.

Explicit calculation shows CZZ(i, j) =
Tr(⇢sZiZj)

Tr⇢s
= 1,

which is long-range as we advertised.

The second example is a 2d ASPT with Z2 ⇥ Z2 ⇥ ZA
2

symmetry. The ASPT ensemble is described by decorat-
ing the domain wall of the average ZA

2 symmetry with
a 1d cluster state protected by the Z2 ⇥ Z2 exact sym-
metry. As pictorially shown in Fig. 1, whenever there is
a domain wall piercing through the links, a cluster state
wavefunction is put on the domain wall.

Let us first calculate the strange correlator of the Z
operators of spins on the link, namely,

CK(r, r0) =
Tr (⇢sZrZr0)

Tr⇢s
=

P
D pDh D|ZrZr0 |�DiP

D pDh D|�Di .

(3)
The subscript K denotes that we consider operators that
transform nontrivially under K. Let us first consider the
denominator of Eq. (3). It is a sum over configurations of
the Ising spins, labeled by D. Without loss of generality,
we assume the probability distribution pD has the form
of the Boltzmann weight of a classical Ising model, or
equivalently pD = 2

Q
l2D x�L(l), where x = e�2� . Here,

FIG. 1. Decorated domain wall states for bosonic ASPT with
Z2 × Z2 × ZA

2 symmetry and fermionic ASPT with Zf
2 × ZA

2

symmetry. Ising spins associated with ZA
2 symmetry are on

the triangular lattice sites (green). For the boson case, each
link hosts two spin-1/2’s. A 1d cluster state (red) is attached
to each Ising domain wall, while in a blue circle, the spins are
polarized to |+⟩ states. For fermionic ASPT, the link spins
are replaced by Majorana fermions, and the decorated states
are replaced by 1d Kitaev chains.

state with |ΦD⟩ =
⊗N

j=1 |Z2j = σD
2j⟩⊗|X2j+1 = 1⟩, where

no charge is attached to the domain wall, we explicitly
find the strange correlator of Zi operators on even sites
long-range correlated, namely CZZ(i, j) = 1[51]. In the
supplementary[52], we show that the long-ranged behav-
ior goes beyond the strong-measurement limit as long as
the G symmetry is preserved on average.
2d examples – We consider a 2d bosonic ASPT with

Z2 × Z2 × ZA
2 symmetry. The ASPT is described by

decorating the domain wall of the average ZA
2 symmetry

with a 1d cluster state protected by the Z2 × Z2 exact
symmetry as pictorially shown in Fig. 1. This ASPT
exists for both decohered and disordered systems.

We first consider the strange correlator of the Z oper-
ators of spins on the links, namely

CK(r, r′) =
F (ρ, ZrZr′ρ0ZrZr′)

F (ρ, ρ0)
=

∑
D pD|⟨ΨD|ZrZr′ |ΦD⟩|∑

D pD|⟨ΨD|ΦD⟩|
.

(3)
The subscript K denotes that we consider operators that
transform nontrivially under K. The denominator of Eq.
(3) is a sum over configurations of the Ising spins, labeled
by D. Without loss of generality, we assume the proba-
bility pD the form of the Boltzmann weight of a classical
Ising model, or equivalently pD = 2

∏
l∈D x

−L(l), where

x = e−2β [53]. Here, l labels a domain wall in the Ising
configurations and L(l) its length. For the ensemble to
be in a ZA

2 symmetric phase, we need x > xIsingc = 1/
√
3

for a triangular lattice. In each configuration, we have
the factor of wavefunction overlap which can be decom-
posed into the product of overlap between a cluster state
and a trivial state on each domain wall,

⟨ΨD|ΦD⟩ =
∏

l∈D
⟨ψcluster|ψ0⟩(l) =

∏

l∈D
2× 2−L(l). (4)

Here the overlap is calculated with the fixed point wave-
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FIG. 2. Phase diagram of the strange correlator. The ASPT
is well defined in x > xIsing

c . For x < xIsing
c , the G symmetry

is spontaneously broken.

function of the cluster state and trivial state [52]. Each
overlap factor decays with the length of the domain wall.
The decay rate generally is not universal, while the fac-
tor of 2 in front of the exponential decay is universal –
it is related to the degeneracy of the boundary modes
of the decorated 1d SPT. We show in the supplemen-
tary materials[52] that this factor stays the same for SPT
wavefunction away from the fixed point using both field
theory and matrix product representations for 1d SPT.
This factor is crucial for the behavior of strange correla-
tors. Eventually, the denominator can be written as

F (ρ, ρ0) = 2
∑

D
x̃−L(D)2n(D), (5)

where L(D) is the total length of domain wall, n(D) is
the number of domain walls in configuration D, and x̃ =
x/2 is the renormalized loop tension. Eq. (5) resembles
the partition function of an O(n) loop model with loop
fugacity n = 2 [52]. We emphasize that both the loop
fugacity and tension have received nontrivial quantum
corrections from the decorated domain wall states.

For the numerator, the crucial observation is that
⟨ΨD|ZrZr′ |ΦD⟩ is non-zero only if the two measured
spins reside on the same domain wall. The non-zero value
is precisely the strange correlator of the 1d cluster state
times the factor of wavefunction overlaps. Therefore, the
strange correlator, in the end, can be written as

CK(r, r′) =

∑
D′⟨ZrZr′⟩S x̃−L(D′)2n(D

′)

∑
D x̃

−L(D)2n(D)
, (6)

conditioned on that in every configurations of D′ there
must be a domain wall connecting r and r′. The factor
⟨ZrZr′⟩S is a non-zero constant as the strange correlator
of the 1d cluster state. This quantity maps to the 2-
leg watermelon correlator in the O(2) loop model [54]
[55]. For the loop tension x̃ > xn=2

c = 1/
√
2, the loop

model will be in the dense loop phases, which indicates
the strange correlator has a power-law behavior:

CK(r, r′) ∼ |r − r′|−2∆2 , (7)

where ∆2 is known as the 2-leg exponent whose value in
the O(2) loop model is ∆2 = 1/2.
A careful reader may notice that, if we start from the

bare loop tension x ∈ [1/
√
3,
√
2], then the renormalized

loop tension x̃ is not in the dense loop phase. In fact,
loop tension in this regime will flow to 0 in the infrared
and the system prefers to have no loops, also known as
the dilute loop phase. Therefore, the strange correlator
defined in Eq. (3) decays exponentially with distance.
However, this does not indicate that the strange correla-
tor fails to detect the ASPT order because we also need to
include the strange correlator associated with operators
that transform nontrivially under G symmetry, namely

CG(r, r
′) =

F (ρ, σrσr′ρ0σrσr′)

F (ρ, ρ0)
, (8)

where σ’s are the Ising spins on the sites of the triangu-
lar lattice. Note if we were to put in the original ASPT
density matrix here to calculate the correlator, then it
would be short-ranged per the definition of ASPT. How-
ever, it is no longer the case since we are dealing with the
strange density matrix which is quantum-corrected to an
O(2) loop model. The strange correlator in fact measures
the probability of two points sitting in the same domain.
In the dilute loop phase where loops are suppressed, this
correlator is actually long-ranged,

CG(r, r
′) ∼ const, for x̃ < 1/

√
2. (9)

Therefore, strange correlators are either long-ranged or
power-law in the whole regime where ASPT is well de-
fined, as shown in the phase diagram in Fig. 2 [56].
We also construct an example of fermionic ASPT in 2d

with 1d-decoration. The example is the averaged version
of 2d fermionic SPT with unitary Z2 symmetry [57]. The
decorated domain wall wavefunction is similar to the bo-
son case shown in Fig. 1. On the links of the triangular
lattice, we put 2 Majorana modes, labeled χA and χB ,
forming a complex fermion c = (χA + iχB)/2. For Ma-
jorana modes on an Ising domain wall, they form a 1d
topological superconductor[58–61]. Otherwise, they pair
up locally to even parity states.
Consider the strange correlator of the c fermions,

CK(r, r′) =
F (ρ, c(r)c(r′)ρ0c†(r′)c†(r))

F (ρ, ρ0)
. (10)

The essential difference from the previous case is the
quantum correction of the loop fugacity from the SPT-
trivial wavefunction overlap on the domain walls. Indeed,
we can show for the fixed point wavefunction, the over-
lap has the form ⟨ΨD|ΦD⟩ =

∏
l∈D⟨ψMajorana|ψ0⟩(l) =

∏
l∈D

√
2 ×

√
2
−l

[52]. This means that the loop model

now has loop fugacity n =
√
2. For the numerator, simi-

lar to the previous case, the only configurations that are
non-zero need to have one domain wall going through the
two fermion positions. Therefore, the strange correlator
reduces to

CK(r, r′) =

∑
D′⟨crcr′⟩S x̃−L(D′)

√
2
n(D′)

∑
D x̃

−L(D)
√
2
n(D)

, (11)
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FIG. 3. Top: the charge decoration rule for the Z3 × ZA
3

symmetry. A ±2π vortex of ZA
3 is decorated with ±1 charge

of Z3. Bottom: The allowed configuration in the numerator
of the strange correlator in Eq. (12).

where ⟨crcr′⟩S=const as the strange correlator of the 1d
Kitaev chain. This strange correlator maps to the 2-leg
watermelon correlator in the O(n =

√
2) model. The

behavior of such a correlator depends on the value of

x̃ = x/
√
2. For x̃ > xn=

√
2

c
∼= 0.601, the loop model

falls into the dense loop fixed point, where the correlator
has a similar power-law behavior as in Eq. (7) with an

exponent ∆2 = 1/3. For x̃ = xn=
√
2

c , the loop model is at
the dilute fixed point, where the exponent becomes ∆2 =

3/5. For x̃ < xn=
√
2

c , the loop model is no longer critical
and the K-strange correlator becomes short-ranged.

In the regime x̃ < xn=
√
2

c or x <
√
2xn=

√
2

c , we can con-
sider the G-strange correlator defined as Eq. (8). Since
in this regime, the loop model is in a dilute loop phase,
the G-strange correlator is again long-range ordered.

After considering 2d cases with 1d-decoration, we give
an example of 2d decohered bosonic ASPT with 0d-
decoration with Z3 × ZA

3 symmetry. This ASPT has a
structure in that a nontrivial Z3 is attached on each vor-
tex of the ZA

3 order parameter as shown in Fig. 3. The
ensemble of states consistent with the decoration rule de-
fines a Z3 × ZA

3 ASPT.
We consider the strange correlation of creation and

annihilation operators of Z3 charges, namely,

CK(r, r′) =
F (ρ, a†(r)a(r′)ρ0a†(r′)a(r))

F (ρ, ρ0)
. (12)

We specify that the reference state has 0 charges deco-
rated on the ZA

3 vortices. D again represents all differ-
ent configurations of ZA

3 order parameter. In particu-
lar, there will be domain wall and vortex configurations.
However, if D has vortices, then the overlap function be-
tween the trivial and SPT wavefunction in the denomina-
tor will be identically zero due to the nontrivial Z3 global
charge decorated on the vortex. Therefore, all the vortex
configurations are killed in the summation and we end
up again with a loop model. Note that there are two fla-

vors of loops since there are two different kinds of domain
walls in a Z3 model. Here, without loss of generality, we
assume the probability distribution is given by a thermal
weight of a Z3 clock model [62]. As a result, the loop
tensions for the two kinds of domain walls are the same.
The denominator can be written as

F (ρ, ρ0) = 3
∑

D′

x−L(D′)2n(D
′), (13)

where D′ only contain loop configurations and the overall
factor of 3 comes from the Z3 symmetry. Eq. (13) again
maps to the partition function of an O(2) loop model.
By the same logic, the summation in the numerator of

Eq. (12) should also contain only loop configurations ex-
cept there should be a test vortex and a test anti-vortex
right at position r and r′ respectively due to the charge
creation and annihilation operators in the definition of
Eq. (12). We demonstrate examples of allowed configu-
ration in Fig. 3. In this case, the strange correlator maps
to the 3-leg watermelon correlation of the O(2) model,
which gives

CK(r, r′) ∼ |r − r′|−2∆3 , (14)

where ∆3 = 9/8 for x > xn=2
c = 1/

√
2.

Again, the same argument as before shows that, if the
loop tension is x < 1/

√
2, then the loop model is in the

dilute loop phase and we can measure the analogous G-
strange correlator to find long-range order.
Conclusion and Discussion – In this work, we devise

a bulk diagnosis that shows long-range or power-law be-
havior for nontrivial ASPT phases. In 2d, all the strange
correlators considered here map to correlation functions
in certain 2d loop models. Remarkably, the decorated
domain wall states play a peculiar role in determining
the loop tension and loop fugacity. The nontrivial role of
decorated domain wall states in strange correlators was
noticed in Ref. [41] at a more fine-tuned point of a clean
SPT wavefunction. For intrinsic ASPTs, the structure of
the strange correlator and the mapping to the statistical
models are essentially the same. Thus, we expect our
strange correlator can detect intrinsic ASPT as well.
The generalization of the strange correlator to higher

dimensional ASPTs is an exciting future direction. The
map from the strange correlator to the statistical model
is not limited to 2d. For 3d ASPT with 1d-decoration,
the resulting statistical model will be 3d loop models
for which some analytical results are also known [63–65].
For 2d-decoration, for example, a 3d ASPT phase with
K = Z2 and G = ZA

2 from decorating a 2D Levin-Gu
state on the codimension-1 ZA

2 domain wall, we imagine
the strange correlator can be mapped to a correlation
function in 3d membrane models. However, how exactly
the nature of the decorated 2d state affects the resulting
membrane model is not clear.
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Supplemental Materials for “Strange Correlation Function for Average Symmetry-

Protected Topological Phases”

Strange correlator of 1d average cluster state

In this section, we explicitly calculate the strange cor-
relator of the 1d average cluster state. The stabilizer for
a pure 1d cluster state is

H = −
2N∑

j=1

Zj−1XjZj+1, (S1)

where Z andX are Pauli matrices that are anti-commute.
There is a Z2 × Z2 symmetry that is defined on the odd
and even sites, respectively, with the generators as

Zodd
2 =

∏

j∈odd

Xj , Zeven
2 =

∏

j∈even

Xj . (S2)

Then we perform strong Z measurements on the even
sites which can be done by coupling each qubit on an
even site with an ancilla qubit through a controlled-Z
gate and then tracing out the ancilla. By recording all
measurement outcomes, the Zeven

2 symmetry is broken to
an average symmetry ZA

2 in the resulting mixed state.
The mixed state is an ensemble of states, each of which
is given by the form

|ΨD⟩ =
N⊗

j=1

|Z2j = σD
2j⟩ ⊗ |X2j+1 = σD

2jσ
D
2j+2⟩, (S3)

where {σ2j} are measurement outcomes. We can see that
for each specific measurement outcome, the correspond-
ing wavefunction has an explicitly decorated domain wall
structure. The trivial reference wavefunctions are chosen
as following

|ΦD⟩ =
N⊗

j=1

|Z2j = σD
2j⟩ ⊗ |X2j+1 = 1⟩, (S4)

where there is no charge decorated to the domain wall.
In the strong measurement limit, we have equal proba-

bility for each state. Here, we can consider a generalized
probability distribution, pD ∼ e−nDWβJ , where nDW is
the number of domain walls of even spins, and J can be
thought of as the energy cost of creating a domain wall.
This is a Boltzmann factor of a 1d classical Ising model
at finite temperature. As long as β <∞, the Ising model
is in a disordered phase, thus, the ensemble will preserve
the average Z2 symmetry. With this general probability
distribution, we can calculate the strange correlator of
the Z operators on the even sites,

CZZ(i, j) =
F (ρ, ZiZjρ0ZiZj)

F (ρ, ρ0)
, (S5)

Firstly we consider the denominator, which is composed
of wavefunction overlaps as F (ρ, ρ0) =

∑
D pD|⟨ΨD|ΦD⟩|

in the decorated domain wall basis. We note that accord-
ing to the explicit expressions in Eqs. (S3) and (S4), the
wavefunction overlap ⟨ΨD|ΦD⟩ is nonzero if and only if
σD
2jσ

D
2j+2 = 1, ∀j. It turns out that the denominator of

the strange correlator should be

F (ρ, ρ0) = 2e−βE0 , (S6)

where E0 is the ground state energy of the 1d Ising model
of the qubits on even sites.
Then we focus on the numerator of the strange corre-

lator. We first consider Zi and Zj operators on the even
sites. The Z’s will extract the measurement outcomes
σD
i and σD

j on the sites i and j. It turns out that the
numerator of the strange correlator should be

F (ρ, ZiZjρ0ZiZj) = 2e−βE0 . (S7)

Therefore, the strange correlator CZZ(i, j) = 1 for gen-
eral β <∞, which implies that the decohered average 1d
cluster state is a nontrivial ASPT state.
We can also derive the nontrivial strange correlator

from the string order parameter. Suppose i = 2i′ and
j = 2j′, we consider the string order parameter to be
defined as

S1 = Z2i′




j′−1∏

k=i′

X2k+1


Z2j′ , (S8)

where the operator in the bracket is the truncated exact
symmetry operator. For any β < ∞, it is easy to check
the expectation value of the above string order parameter
is equal to 1,

Tr (ρS1) = 1. (S9)

This is because that each wavefunction |ΨD⟩ in ρ is
invariant by acting the string order parameter. Now con-
sider each term in the numerator of the strange correlator

⟨ΨD|Z2i′Z2j′ |ΦD⟩ = ⟨ΨD|Z2i′




j′−1∏

k=i′

X2k+1


Z2j′ |ΦD⟩,

(S10)

because |ΦD⟩ is invariant under the truncated symme-
try operator. Furthermore, each wavefunction |ΨD⟩ is
invariant under the string operator. Therefore, we have

⟨ΨD|Z2i′Z2j′ |ΦD⟩ = ⟨ΨD|ΦD⟩. (S11)
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With this, we can see the strange correlator equals 1 for
any β <∞.
Now we consider the strange correlator of Z2i−1 and

Z2j+1. We can show explicitly the strange correlator is
long-range correlated in this case as well. We will make
a connection with a fidelity version of the string order
parameter. The denominator of the strange correlator is
the same as in Eq. (S6). The numerator of (S5) can be
calculated explicitly: Z2i−1/Z2j+1 flips the X eigenval-
ues at the site-(2i− 1)/(2j+1), therefore, the wavefunc-
tion overlap ⟨ΨD|Z2i−1Z2j+1|ΦD⟩ is nonzero if and only
if there were exactly two domain walls, σ2i−2σ2i = −1
and σ2jσ2j+2 = −1. It turns out that the numerator of
(S5) should be

F (ρ, Z2i−1Z2j+1ρ0Z2i−1Z2j+1) = 2e−β(E0+2J), (S12)

and thus the strange correlator CZZ(2i − 1, 2j + 1) =
e−2βJ is finite at any β < ∞. In particular, at β = 0,
the strange correlator is 1. Therefore, we can determine a
nontrivial ASPT density matrix by the strange correlator
of both the average and exact degrees of freedom.

Next we consider the connection with the string order
parameter associated with the average symmetry. We
know that the usual string order parameter defined by
Tr (ρS2), with

S2 = Z2i−1

(
j∏

k=i

X2k

)
Z2j+1, (S13)

decays exponentially with distance[32]. However, we can
consider a fidelity version of the string order parameter,
defined as

F (ρ, S2ρS2) . (S14)

This string order parameter can be shown to be exactly
equal to 1 when we consider the fixed-point density ma-
trix. In particular, we can show if the string order param-
eter is 1, the strange correlator has to be 1 as well. We
can see from the following argument. In the decorated
domain wall basis, it is easy to show that the explicit
form of Eq. (S14) is expressed as

F (ρ, S2ρS2) =
∑

D

√
pDpD+2, (S15)

where D+2 and D are different by two domain walls at 2i
and 2j. Furthermore, by utilizing the mean inequalities,

∑

D

√
pDpD+2 ≤

∑

D

pD + pD+2

2
= 1, (S16)

where the equality is taken if and only if pD+2 = pD
for ∀D. On the other hand, the strange correlator
C(2i − 1, 2j + 1) =

√
pD0+2/pD0 where D0 is the spin

configuration with no domain wall. Hence the strange
correlator is equal to 1 when the string order parameter
is 1.

Strange correlators of ASPT and clean SPT

In this section, we show that the strange correlator of
ASPT phases is equivalent to that of SPT in the pure
state assuming the ASPT phase has a clean limit.
As mentioned in the introduction, for clean SPT the

strange correlator is defined as

C(r, r′) =
⟨Ω|ϕ(r)ϕ(r′)|Ψ⟩

⟨Ω|Ψ⟩ , (S17)

where ϕ(r) is some local operator at the position r, |Ψ⟩
is the wavefunction of the SPT phase, and |Ω⟩ is the
wavefunction of a trivial product state. For ASPT the
strange correlator is defined as

C(r, r′) =
F
(
ρ, ϕ(r)ϕ(r′)ρ0ϕ†(r′)ϕ†(r)

)

F (ρ, ρ0)
. (S18)

where ρ0 is the reference trivial density matrix with the
same symmetry class, and F (ρ, ρ0) = Tr

√√
ρρ0

√
ρ is

the fidelity between two density matrices ρ and ρ0. In
particular, if both ρ and ρ0 are pure states, the fidelity
is collapsed to the modulo of wavefunction overlap.
Assuming the ASPT has a clean limit, we can al-

ways obtain a purified clean SPT wavefunction from the
mixed-state density matrix that defines the ASPT state.
In particular, in the decorated domain wall basis, we can
have

ρ =
∑

D
pD|ΨD⟩⟨ΨD| −→ |Ψ⟩ =

∑

D

√
pDe

iθD |ΨD⟩,

(S19)
where the θD is a Berry phase that should be self-
consistently determined using the F -move of G-defects.
For an ASPT with a clean limit, this procedure can al-
ways be done and the resulting wavefunction is guaran-
teed to be short-range entangled. However, if the ASPT
does not have a clean limit, namely an intrinsic ASPT,
one cannot find a consistent assignment of the Berry
phases. It is easy to come up with a trivial reference
state

|Ω⟩ =
∑

D

√
pD|ΦD⟩, (S20)

where |ΦD⟩ are just decorating trivial product states on
the G symmetry defects.
The numerator of the strange correlator in Eq. (S18)

is

F (ρ, ϕ(r)ϕ(r′)ρ0ϕ
†(r′)ϕ†(r)) =

∑

D
pD|⟨ΦD|ϕ(r)ϕ(r′)|ΨD⟩|.

(S21)

On the other hand, the numerator of the strange cor-
relator of the clean SPT phases (S17) from the purified
wavefunctions (S19) and (S20) is

⟨Ω|ϕ(r)ϕ(r′)|Ψ⟩ =
∑

D
pD⟨ΦD|ϕ(r)ϕ(r′)|ΨD⟩eiθD . (S22)
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g0 g1

g2 g3

F−move−−−−−→

g0 g1

g2 g3

ν3(g̃1, g̃2, g̃3)

FIG. S1. F -move of the G-defect decorated with 1d K-SPT
decoration. Black solid dots depict the projective representa-
tions of K symmetry, and the red links depict their entangle-
ments.

Each term of the numerators of the strange correlators
(S18) and (S17) is equivalent up to a phase factor that is
the Berry phase acquired from the F -move of G-defect.
Following similar calculations, each term of the denom-
inators of (S18) and (S17) is also equivalent up to this
phase.

We demonstrate that if there is no extension between
K and G, the phase factor eiθD in the F -symbol illus-
trated in Fig. S1 is always trivial, namely it forms a co-
boundary of G ×K group (for fermion SPT phases, the

fermion parity Zf
2 should be included in K). Nontrivial

ASPTs with pure state correspondence are characterized
by nontrivial decoration pattern, not the Berry phases,
as the Berry phases become invisible in a density matrix.

We argue this phase is trivial for the 2d SPT phases
from decorating 1d K-SPT on the codimension-1 G-
defect. From Künneth formula, this type of 2d SPT
phases are labeled by the following 3-cocycle

ν3(h1, h2, h3) ∈ H1
(
G,H2 [K,U(1)]

)
, (S23)

where hj = (gj , kj) ∈ G × K. Due to the structure
in (S23), by some gauge transformations (attaching 3-
coboundaries) we can further write this 3-cocycle in the
standard form as

ν3(h1, h2, h3) = [ω2(k1, k2)](g3), (S24)

where ω2(k1, k2) only depends on k1 and k2 and gives the
classification of 1d K-SPT, and evaluating it on g3 gives
the 3-cocycle.

Now we consider the F -move of the G-defect, see Fig.
S1. The F -move of the G-defect changes the pattern of
domain wall configuration of G. We consider the Berry
phase ν3(g̃1, g̃2, g̃3) = ν3(g

−1
0 g1, g

−1
1 g2, g

−1
2 g3) that only

depends on the group elements of G. Due to Eq. (S24),
we know the 3-cocycle ν3(g̃1, g̃2, g̃3) can be deformed into
ν3(1k, 1k, g̃3), where k1 = k2 = 1k are the identity ele-
ment of the group K, by some gauge transformations.
Since the ν3(1k, 1k, g̃3) now only depends on one group
element g̃3, one can further apply gauge transformation
to gauge this phase away as well. As a consequence,
all the Berry phase factors can be gauged away for the

FIG. S2. Phase diagram for 2D O(n) loop models.

symmetry group G = G×K. Therefore, the strange cor-
relators of ASPT (S18) and clean SPT (S17) are identical
for 2d SPT from decorating the codimension-1 G-defects
by 1d K-SPT. It is easy to generalize our argument to
the ASPT phases in higher dimensions with any kind of
domain wall decorations, with G = G×K.

A review of O(n) loop model and correlation function

In the main text, we have mapped the strange correla-
tor of 2d ASPT phases to a certain correlation function
in the self-avoiding O(n) loop model on the honeycomb
lattice. Here let us review some of the useful facts on the
loop models. The partition function of the loop model is
a sum over all possible self-avoiding loop configurations
C, weighted by a loop tension x for the total length of
loop configurations and a loop fugacity n for the number
of loops |C|,

Z =
∑

C
xlengthn|C|. (S25)

It is called the O(n) loop model because the partition
function of a honeycomb lattice of O(n) spins can be
transformed into the above form.
The phase diagram of the loop model is shown in Fig.

S2. For a fixed value of n ∈ [−2, 2], there is a crit-

ical point xc =
[
2 +

√
2− n

]−1/2
which separates the

so-called dense loop phase and dilute loop phase. For
x > xc/x < xc, we call the corresponding phase the
“dense/dilute” loop phase, and xc remarks their transi-
tion termed as the dilute fixed point [54].
For the O(n) loop model with −2 ≤ n ≤ 2, the L-leg

watermelon correlation function CL(x−y) measures the
probability that L non-intersecting lines have a common
source point x and shrink at the certain endpoint y. At
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the dense phase x > xc and the dilute critical point xc,
the L-leg watermelon correlation function has power-law
decay behavior as

CL(x− y) ∼ |x− y|−2∆L , (S26)

while CL(x− y) decays exponentially in the dilute loop
phase (x < xc). The watermelon correlation is also power
law right at the dilute fixed point but with a different
exponent for n < 2.
Let us investigate the critical exponent ∆L. By the

two-dimensional Coulomb gas technique [67], the O(n)
model can be transformed into a solid-to-solid (SOS)
model by orienting the loops in the continuum limit,
which is a Gaussian model with the following action

SGaussian =
g

4π

∫
d2x(∇ϕ)2, (S27)

where g is the coupling constant of the Coulomb gas, such
that

n = −2 cos(πg), (S28)

where g ∈ [1, 2] for the dilute critical point xc and
g ∈ [0, 1] for the dense loop phase (x > xc). The criti-
cal exponent ∆L of the watermelon correlation function
(S26) is determined by

∆L =
g

8
L2 − (1− g)2

2g
, (S29)

for the O(n) model where n is parameterized by Eq.
(S28). In the main text, we have utilized Eq. (S26) to
calculate various critical exponents of watermelon corre-
lation functions: L = 2 and L = 3 for n = 2 model, and
L = 2 for n =

√
2 model.

Wavefunction overlap of 1d dimerized topological
states

In the main text, we emphasize that the wavefunction
overlap of the decorated 1d SPT phase plays an essential
role in the strange correlator (S18). Therefore, in this
section, we explicitly calculate the wavefunction overlap
of 1d cluster states with trivial symmetric product state
as well as the overlap of 1d Kitaev chain with trivial
superconductor in systems with finite size using the fixed
point wavefunctions.

For the 1d cluster state protected by Z2×Z2, the wave-
function |ψ⟩ of the 1d cluster state in Z-basis is explicitly
written as

⟨· · ·sj−1sjsj+1 · · · |ψ⟩ = (−1)
∑

j sjsj+1/
√
22L (S30)

where sj = 0, 1 and 2L is the number of qubits. Physi-
cally, there is a qubit with X = −1 at each domain wall

of Z (i.e., Zj−1Zj+1 = −1) and a qubit with X = 1 at
the site away from the Z domain wall. Then consider the
trivial state |ψ0⟩ as the ground state of the disentangled
Hamiltonian H0 = −∑j Xj , with the following explicit
form

|ψ0⟩ =
2L⊗

j=1

1√
2
(| ↑⟩+ | ↓⟩)j =

2L⊗

j=1

|Xj = 1⟩ (S31)

Hence the overlap of 1d cluster state (S30) and trivial
product state (S31) is

⟨ψ0|ψ⟩ =
1

2L−1
= 2× 2−L (S32)

As we have emphasized in the main text, prefactor 2
is related to the quantum dimension of the boundary of
the 1d SPT state.
Next, we consider the Majorana chain, with the fol-

lowing Hamiltonian

H = −
∑

j

c†jcj+1 + h.c.−
∑

j

cjcj+1 + h.c. (S33)

The ground states wavefunctions of the Majorana chain
are

|Ψeven
0 ⟩ = 1√

2

(
|Ψ+

0 ⟩+ |Ψ−
0 ⟩
)

|Ψodd
0 ⟩ = 1√

2

(
|Ψ+

0 ⟩ − |Ψ−
0 ⟩
) (S34)

where the superscript even/odd represents the even/odd
fermion parity of the ground state wavefunctions, and

|Ψ±
0 ⟩ =

1

2L/2
e±c†1e±c†2 · · · e±c†L |0⟩ (S35)

It is well-known that the ground state of the Majo-
rana chain with periodic/anti-periodic boundary con-
dition (PBC/anti-PBC) has odd/even fermion parity,
hence |Ψeven

0 /|Ψodd
0 ⟩ is the ground state wavefunction of

the Majorana chain with anti-PBC/PBC. Then consider
the atomic insulator as the 1d trivial product state, with
the following disentangled Hamiltonian

H0 = µ
∑

j

c†jcj , µ > 0 (S36)

whose ground state wavefunction is the unoccupied vac-
uum state |0⟩, with even fermion parity. Hence the wave-
function overlap between |0⟩ and |Ψodd

0 ⟩ vanishes because
of the different fermion parity, and the wavefunction over-
lap between |0⟩ and |Ψeven

0 ⟩ is

⟨0|Ψeven
0 ⟩ =

(
1√
2

)L−1

=
√
2× 2−L/2, (S37)

where the prefactor
√
2 also coincides with the quantum

dimension of the boundary Majorana zero modes.
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Quantum correction of the loop fugacity

In the main text, we proved that the strange correlator
of 2d Z2 × Z2 × ZA

2 ASPT state is precisely mapped to
the loop correlation function in the O(2) loop model. In-
tuitively, there is only one kind of domain wall of the 2D
classical Ising model, hence the Ising domain wall should
be described by an O(1) model if we decorate nothing
on the Ising domain wall. Here we argue the universal
nature of this factor away from the fixed point wavefunc-
tion using a field-theoretical representation of the SPT
wavefunction. It is known that the wavefunction of a 1d
SPT state can be written as O(3) non-linear sigma model
(NLσM) with a Wess–Zumino–Witten term at level-1.
The overlap between an SPT wavefunction and a trivial
state can be represented as [68],

⟨Ψ|Φ⟩ =
∫

D[n⃗(x)]

exp

(
−
∫ L

x=0

L[n⃗] + iWZW1[n⃗(x)]

)
,

(S38)
where L[n⃗] contains the kinetic term of the NLσM and
possible anisotropic terms that break the SO(3) symme-
try. Doing a wick rotation, we can equivalently view this
overlap as the thermal partition function at temperature
β = L of a quantum mechanical model of a charged par-
ticle moving on a sphere with a 2π magnetic monopole
at the center. This Landau level problem has a robust
2-fold degeneracy of its ground state with energy 1

2ℏωc

where ωc depends on the details of the kinetic terms.
The thermal partition function at large β = L is given
by ⟨Ψ|Φ⟩ ∼= 2 × e−Lℏωc/2, where the prefactor 2 comes
from the 2-fold ground state degeneracy. We also note
that this overlap can be viewed as the boundary partition
function of the SPT state. Therefore, the degeneracy is
also the boundary degeneracy of the SPT that is deco-
rated on the domain wall.

We can also provide a more rigorous argument based
on the matrix product state (MPS) representation of 1d
SPT phases [2]. A K-symmetric 1d SPT state can be
described by an injective MPS,

|ΨSPT⟩ =
∑

i1,···iN
Tr [Ai1 · · ·AiN ] |i1 · · · iN ⟩, (S39)

which has the following symmetry property [2]

Vg V †
gAjAj =

Ug

, (S40)

where g ∈ K, Ug, and Vg are local unitary operators
acting on the physical indices (dashed lines) and virtual
indices (solid lines), respectively. For g, h ∈ K, the uni-
tary operators Vg and Vh have the following property

VgVh = ω(g, h)Vgh, (S41)

where ω(g, h) ∈ H2[K,U(1)] which implies that Vg is a
projective representation of the group G.

Then we consider two MPSs of two topologically dis-
tinct 1d SPT phases A and B, which are depicted by two
2-cocycles ω1 and ω2 in H2[K,U(1)]. Their overlap can
be represented graphically as

Aj Aj+1

Bj Bj+1

· · · = Tr(E1E2 · ··)· · ·

(S42)

where Ej is the transfer matrix of two 1d MPSs. Fur-
thermore, by acting Ug and U†

g to the physical indices of
two MPSs, we have

Aj

Bj

=

Aj

Bj

U†
g

Ug

=

Wg W †
gAj

V †
g VgBj

(S43)

i.e., XgEjX
†
g = Ej , where Xg = V †

g ⊗Wg that also sat-
isfies the condition of projective representation of K as

XgXh =
ω2(g, h)

ω1(g, h)
Xgh (S44)

Therefore, the transfer matrix Ej has a K symmetry
and transforms projectively under K. For translational
invariant MPSs, the overlap of these MPSs is Tr(EL)
(where L is the system size), which is determined by the
largest eigenvalue of E.

For the Z2-classified 1d SPT phases, the largest eigen-
value of the transfer matrix will always have 2-fold degen-
eracy from the projectively imposed symmetry K, which
leads to an overall factor 2 of the wavefunction overlap
of the trivial and nontrivial 1d SPT states. We call this
universal factor coming from the decorated 1d SPT as
quantum correction of the loop fugacity.
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