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Abstract. Consider the Cauchy problem of one dimensional porous medium equation (PME)

with reactions. We first prove a general convergence result, that is, any bounded global solution

starting at a nonnegative compactly supported initial data converges as t→ ∞ to a nonnegative

zero of the reaction term or a ground state stationary solution. Based on it, we give out a

complete classification on the asymptotic behaviors of the solutions for PME with monostable,

bistable and combustion types of nonlinearities.
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1. Introduction

Consider the following reaction diffusion equation (abbreviated as RDE in the following)

(1.1) ut = uxx + f(u), x ∈ R, t > 0.

In the last decades, many authors gave systemic qualitative study for this equation. The reaction

terms include the following three typical types:

(fM ) monostable case, (fB) bistable case, (fC) combustion case.

In the monostable case, we assume f = f(u) ∈ C1([0,∞)) and

(1.2) f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, (1− u)f(u) > 0 for u > 0, u ̸= 1.

The well known example is the logistic term, that is, the Verhulst law: f(u) = u(1− u). In the

bistable case, we assume f = f(u) ∈ C1([0,∞)) and

(1.3) f(0) = f(θ) = f(1) = 0, f(u)


< 0 in (0, θ),

> 0 in (θ, 1),

< 0 in (1,∞),

∫ 1

0
f(s)ds > 0,

for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0. A typical example is f(u) = u(u − θ)(1 − u) with

θ ∈ (0, 12). In the combustion case, we assume there exists θ ∈ (0, 1) such that f ∈ C1([θ,∞])

and

(1.4)

{
f(u) = 0 in [0, θ], f(u) > 0 in (θ, 1), f ′(1) < 0, f(u) < 0 in (1,∞),

there exists a small δ > 0 such that f ′(u) > 0 for u ∈ (θ, θ + δ].

In 1937, Fisher [17] and Kolmogorov et al. [22] studied the RDE with logistic reaction in

their pioneer works. In particular, they specified the traveling wave solutions. In 1975 and 1978,

Aronson and Weinberger [6, 7] studied the asymptotic behavior for the solutions of the Cauchy

problem of RDE. Among others, in the monostable case, they proved the hair-trigger effect,

which says that spreading happens (that is, u→ 1 as t→ ∞, which is also called persistence or

propagation phenomenon) for any positive solution of the monostable equation; in the bistable

case, they gave sufficient conditions for spreading and that for vanishing (that is, u → 0 as

t→ ∞, which is also called extinction phenomenon). In 1977, Fife and McLeod [16] also studied

the bistable equation, proved the existence and stability of the traveling wave solution. In 2006,

Zlatoš [32] gave further systemic study on the asymptotic behavior for the solutions of bistable

and combustion equations. More precisely, he considered the Cauchy problem of (1.1) with

initial data u(x, 0) = χ[−L,L](x) (which denotes the characteristic function over [−L,L]), and
proved a trichotomy result: there exists a sharp value L∗ > 0 such that when L > L∗ (resp.
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L < L∗), spreading (resp. vanishing) happens for the solution. In addition, the solution develops

to a transition one if and only if L = L∗, which is a ground state solution in the bistable case

and the largest zero θ ∈ (0, 1) of f in the combustion case. In 2010, Du and Matano [13]

extended these results to the Cauchy problem with general initial data like u(x, 0) = σϕ(x) for

positive number σ and continuous, nonnegative, compactly supported function ϕ. For bistable

and combustion equations, they also proved the trichotomy and sharp transition results as in

[32]. In 2015, Du and Lou [11] proved similar results for the nonlinear Stefan problem.

In this paper, we study the porous medium equation with reactions:

(CP)

{
ut = (um)xx + f(u), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

where m > 1 is a constant. This problem can be used to model population dynamics with

diffusion flux depending on the population density, the combustion, propagation of interfaces

and nerve impulse propagation phenomena in porous media, as well as the propagation of inter-

galactic civilizations in the field of astronomy (cf. [20, 21, 24, 27] etc.). For simplicity, we use

PME/RPME to refer to the porous media equation in (CP) without/with a reaction.

The well-posedness of the problem (CP) was studied in [2, 3, 26, 30] etc.. For the qualitative

property, the monostable equation was considered widely. For example, in 1979, Aronson [3]

considered the problem with logistic reaction. He studied the existence of traveling wave solu-

tions and compared the results with that in RDE. It was shown that (see also [19, 25, 29]) the

monostable RPME has a traveling wave solution u(x, t) = Ũ(x − ct) if and only if m ≥ 1 and

only for the speed c ≥ c∗(m). For bistable and combustion RPMEs, however, there is only one

traveling wave solution Ũ(x − c∗t) (cf. [19]). Recently, Du, Quirós and Zhou [14] considered

the (N -dimensional) RPME with Fisher-KPP type of reaction. In particular, they presented

a precise estimate for the spreading speed of the free boundary with a logarithmic correction.

On the other hand, the qualitative properties for the RPMEs with bistable or combustion re-

action were not as clear as the monostable case. In 1982, Aronson, Crandall and Peletier [5]

considered the bistable RPME in a bounded interval. Besides the well-posedness, they specified

the stationary solutions which can be ω-limits of the solutions. Recently, Gárriz [18] considered

the problem (CP) with reactions of the monostable, bistable and combustion types. He gave

sufficient conditions ensuring the spreading or vanishing, and used the traveling wave solution

to characterize the spreading solutions starting at compactly supported initial data.

Our aim in this paper is to give out a complete classification for the asymptotic behaviors

of the solutions of (CP). We will specify its stationary solutions; prove a general convergence

result, that is, any nonnegative bounded global solution converges as t → ∞ to a stationary

one. Then, based on the general result, we prove the hair-trigger effect for monostable PME

and spreading-transition-vanishing trichotomy results on the asymptotic behavior for solutions

of bistable or combustion RPMEs. In some sense, this paper can be regarded as a RPME version

of the important works [11, 13, 32] for RDEs.

Our basic assumption on f is

(F) f(u) ∈ C2([0,∞)) with Lipschitz number K, f(0) = 0 and f(u) < 0 for u > 1.
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Figure 1. An example of the initial data.

The C2 smoothness is mainly used to give the a priori estimates, including the lower bound for

vxx (where v is the pressure, see Appendix for details). In the study of asymptotic behavior,

we actually only need f ∈ C1. The assumption f(u) < 0 for u > 1 is natural in population

dynamics, which means that the population has a finite capacity. If one only studies the well-

posedness, this requirement can be weakened or omitted. The initial data are chosen from the

following set (see Figure 1)

(I) u0 ∈ X :=

{
ψ ∈ C(R)

∣∣∣∣ there exist b > 0 and a finite number of open intervals in [−b, b]
such that ψ(x) > 0 in these intervals, and ψ(x) = 0 otherwise

}
.

It is also possible to consider more general initial data, for example, u0 ∈ C(R) with compact

support, or, u0 ∈ L1(R)∩L∞(R). For simplicity and clarity of presentation, especially, for clarity

of the free boundaries, we consider in this paper only the initial data in X. In this case, the

solution has a left-most free boundary l(t), a right-most free boundary r(t), and finite number

of interior free boundaries in (l(t), r(t)).

For any T > 0, denote QT := R × (0, T ). A function u(x, t) ∈ C(QT ) ∩ L∞(QT ) is called a

very weak solution of (CP) if for any φ ∈ C∞
c (QT ), there holds

(1.5)

∫
R
u(x, T )φ(x, T )dx =

∫
R
u0(x)φ(x, 0)dx+

∫∫
QT

f(u)φdxdt+

∫∫
QT

[uφt + umφxx]dxdt.

As an extension of the definition, if u satisfies (1.5) with inequality “≥” (resp. “≤”), instead

of equality, for every test function φ ≥ 0, then u is called a very weak supersolution/very weak

upper solution (resp. very weak subsolution/very weak lower solution) of (CP) (cf. [30, Chapter

5]).

From the references [5, 25, 26, 30] etc. we know that under the assumption (F) and (I),

the problem (CP) has a unique very weak solution u(x, t) ∈ C(QT ) ∩ L∞(QT ) for any T > 0,

u(x, t) ≥ 0 in QT , and the support of u(·, t), denoted by spt[u(·, t)], is contained in [l(t), r(t)] for

all t > 0. Moreover, we will show below that both −l(t) and r(t) are non-decreasing Lipschitz

functions, as in PME, and so the following limits exist:

(1.6) l∞ := lim
t→∞

l(t), r∞ := lim
t→∞

r(t).

With the global existence in hand, it is possible to study the asymptotic behavior for the

solutions. For RDEs, the equations are uniform parabolic and the strong maximum principle is

applicable. So, any solution is a classical one and the convergence of u to its ω-limit is taken in

the topology of C2,1
loc (R). For our RPME, however, we have only very weak solutions with Cα

bounds in any compact domain. A nonnegative solution is not necessarily to be positive and
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Figure 2. Type I ground state solution.

Figure 3. Type II ground state solution.

classical. Hence the convergence of a solution to its limit is first considered in the topology of

Cloc(R) or L∞
loc(R). In addition, if u(x, tn) → w(x) > 0 as tn → ∞ in some domain J , then

u > 0 in J by the positivity persistence and so it is a classical solution. Thus, the convergence

u(x, tn) → w(x) holds in C2 topology in any compact subdomain of J . In summary, if no other

specification, throughout this paper we use the following definition for ω-limits of u:

(1.7) lim
n→∞

u(x, tn) = w(x) means

{
u(x, tn) → w(x) in Cloc(R) topology;
u(x, tn) → w(x) in C2

loc(J) topology if w(x) > 0 in J.

In some cases, our problem may have a ground state solution, which means one of the following

two types of nonnegative stationary solutions of (CP):

• Type I ground state solution (see Figure 2): U0(x) ∈ C2(R) is an even stationary solution

of (CP) with

U0(x) > 0 > U ′
0(x) for x > 0, U0(+∞) ∈ [0, 1);

• Type II ground state solution (see Figure 3): there exist a positive integer k, zi ∈ R (i =

1, 2, · · · , k) and L > 0 with zi + 2L ≤ zi+1 (i = 1, 2, · · · , k − 1) such that

(1.8) U(x) = U(x− z1) + U(x− z2) + · · ·+ U(x− zk), x ∈ R,

where U(x) ∈ C(R) ∩ C2(R\{±L}) is an even stationary solution of the problem (CP) with

(1.9) U(x) > 0 > U ′(x) for x ∈ (0, L), U(x) = 0 for x ≥ L, (Um−1)′(L) = 0.

A Type I ground state solution is positive on the whole R, which is the analogue of that in

bistable RDEs (cf. [13, 32]). For our RPME, this kind of solution exists if, in particular, f is a

bistable nonlinearity with

(1.10) f(u) = −λuα(1 + o(1)) as u→ 0 + 0,

for some λ > 0 and α ≥ m (see Lemma 6.1). The component U in Type II ground state solution

has a compact support, which is different from Type I. Such a solution exists when (1.10) holds

for 0 < α < m (see Lemma 6.1). The last equality in (1.9) is used to indicate that U(x) is
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a stationary solution not only of the RPME but also of the Cauchy problem (CP). In fact,

a necessary and sufficient condition ensuring a stationary solution ū of RPME with compact

support [−b, b] is also a stationary solution of the Cauchy problem (CP) is that the waiting times

at its boundaries ±b are infinite, which requires that (ūm−1)(±b) = 0 (see Lemma 2.3 below).

Our first main theorem is a general convergence result, which says that any nonnegative

bounded global solution of (CP) converges to a nonnegative zero of f or a ground state solution:

Theorem 1.1 (General convergence theorem). Assume (F) and (I). Let u(x, t) be a bounded,

nonnegative, time-global solution of (CP). Then u(·, t) converges as t → ∞, in the sense of

(1.7), to a stationary solution of (CP), which is one of the following types:

(i) a nonnegative zero of f ;

(ii) U0(x− z0) for some z0 ∈ [−b, b] and some Type I ground state solution U0;

(iii) U(x) as in (1.8) for k ≥ 1 points z1, z2, · · · , zk ∈ [−b, b]. In addition, l∞, r∞ are bounded

in this case.

This theorem is a fundamental result and can be used conveniently to study various RPME.

For example, when the reaction term in RPME is a typical monostable, bistable or combustion

one, it is easy to clarify all of the nonnegative stationary solutions. Hence, using the general

convergence result in the previous theorem, we can give a rather complete analysis on the

asymptotic behavior for the solutions of (CP) with these reactions.

To obtain the above convergence result, our main tool is the so-called zero number argument

in the version of porous medium equation, which can be used to describe the intersection points

between two solutions. The main difficulty to establish the argument is brought by the existence

of free boundaries and the degeneracy of diffusion here, which is a significant difference compared

with the classical heat equation. In particular, the intersection number may increase. For the

convenience of the readers, we present the intersection number properties as a theorem in the

below. Let u1, u2 be two solutions of (CP) with initial data in X, then they are zero outside of

their supports. It is a little confusing to define the intersection number between u1 and u2 in

these places. Instead, we denote Z0(t) as the number of their positive intersection points, that

is,

(1.11) Z0(t) := #{x ∈ R | u1(x, t) = u2(x, t) > 0}, t ≥ 0,

where #S denotes the number of the elements in a set S.

Theorem 1.2 (Intersection number properties). Assume (F). Let u1, u2 be bounded, nonnega-

tive, time-global solutions of (CP) with initial data in X. If Z0(0) <∞, then Z0(t) <∞ for all

t > 0, and there exists a time T ≥ 0 such that

Z0(t) decreases for t > T.

More specifically, there exist {tj}0≤j≤k with 1 ≤ k ∈ N and 0 = t0 < t1 < · · · < T := tk−1 <

tk = +∞ such that

(i) Z0(t) decreases if tj < t < tj+1 (j = 0, 1, · · · , k − 1);
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(ii) Z0(t) strictly increases at t = tj (j = 1, · · · , k − 1) in the following sense:

lim
t→tj+0

Z0(t) > lim
t→tj−0

Z0(t).

The last property (that is, Z0(t) increases at tj) happens in particular when a component

where u1 > 0 meets a component where u2 > 0 as their boundaries approaching to each other

(see more in Lemma 3.5). As we have mentioned above, this is significant different from the

classical zero number diminishing properties. Such a phenomena happens only in PMEs where

a solution has free boundaries but not in RDEs.

In order to describe the threshold of transition solutions, as in [11, 13, 32], we introduce a

one-parameter family of initial data u0 = ϕσ(x) satisfying the following conditions:

(Φ1) ϕσ ∈ X for every σ > 0, and the map σ 7→ ϕσ is continuous from (0,∞) to L∞(R);
(Φ2) if 0 < σ1 < σ2, then ϕσ1 ≤, ̸≡ ϕσ2 ;

(Φ3) lim
σ→0

∥ϕσ∥L∞(R) = 0.

Theorem 1.3. Assume f ∈ C2 is a monostable reaction term satisfying (1.2). Let uσ(x, t)

be the very weak solution of (CP) with u0 = ϕσ(x) satisfying (Φ1)-(Φ3). Then the hair-trigger

effect holds: for all σ > 0, we have

uσ(·, t) → 1 as t→ ∞, in the topology of L∞
loc(R).

Remark 1.4. Theorem 1.3 is a direct application of Theorem 1.1, since the structure of the

ω-limit set is rather simple in this case (see details in Section 4). Through a different proof,

[18] obtained a deeper result on the hair-trigger effect for more general monostable RPME in

N -dimensional space, where f satisfies lim inf
u→0+0

f(u)

um+2/N > 0.

In the combustion case, we have the following result.

Theorem 1.5. Assume f ∈ C2 is a combustion reaction term satisfying (1.4). Let uσ(x, t) be

the very weak solution of (CP) with u0 = ϕσ satisfying (Φ1)-(Φ3). Then there exist 0 < σ∗ ≤ ∞
such that the following trichotomy result holds:

(i) spreading happens for σ > σ∗:

uσ(·, t) → 1 as t→ ∞, in the topology of L∞
loc(R).

(ii) vanishing happens for 0 < σ < σ∗:

uσ(·, t) → 0 as t→ ∞, in the topology of L∞(R).

(iii) transition case for σ = σ∗:

uσ(·, t) → θ as t→ ∞, in the topology of L∞
loc(R).

Moreover for large t, uσ has exactly two free boundaries l(t) < r(t) satisfying

(1.12) −l(t), r(t) = 2y0
√
t [1 + o(1)] as t→ ∞,

for some y0 ∈ (0, θ
m−1

2 ).
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In the bistable case, if we further assume that f ′(0) < 0, then the problem (CP) has Type II

ground state solutions, and so we have the following trichotomy result.

Theorem 1.6. Assume f ∈ C2 is a bistable reaction term satisfying (1.3) and f ′(0) < 0. Let

uσ(x, t) be the very weak solution of (CP) with u0 = ϕσ satisfying (Φ1)-(Φ3). Then there exist

0 < σ∗ ≤ σ∗ ≤ ∞ such that the following trichotomy holds:

(i) spreading happens for σ > σ∗:

uσ(·, t) → 1 as t→ ∞, in the topology of L∞
loc(R).

(ii) vanishing happens for 0 < σ < σ∗:

uσ(·, t) → 0 as t→ ∞, in the topology of L∞(R).

(iii) transition case for σ∗ ≤ σ ≤ σ∗:

uσ(·, t) → U(x) as t→ ∞, in the topology of L∞(R),

where U(x) is a Type II ground state solution defined as (1.8) for k (≥ 1) points

z1, z2, · · · , zk ∈ [−b, b].

Remark 1.7.

(1) Under some additional conditions, we can show the sharpness of the transition solution:

σ∗ = σ∗ (see details in Lemma 6.3).

(2) The behaviour of a transition solution in Theorem 1.6 (iii) is quite different from that

of the bistable RDE, where the transition solution converges to a Type I ground state

solution which is positive on the whole R.
(3) When spreading happens, the estimate on the propagation of the free boundaries has

been shown in [18].

The main features of the paper are as follows:

(1) we give out a complete classification for the asymptotic behaviors of the solutions of

(CP) with general nonlinear term;

(2) we establish the zero number argument for RPME with solid proof.

This paper is arranged as follows. In Section 2 we first present some results on the well-

posedness and the a priori estimates, which are not entirely new and some details are postponed

to Appendix. We also present sufficient conditions ensuring the waiting time of a free boundary

to be 0, finite or infinite, specify the relationship between the stationary solutions of the RPME

and those of the Cauchy problem, and derive the monotonicity and the Darcy law for the free

boundaries. In Section 3, we study the monotonicity of the solution outside of the initial support,

show the intersection number properties, and then use it, as well as the classical zero number

argument, to prove the general convergence result. In Section 4, we consider the RPME with

monostable reaction term and prove the hair-trigger effect. In Section 5 we consider the RPME

with combustion reaction term: we present all possible nonnegative stationary solutions, prove a

trichotomy result with a sharp transition for the asymptotic behavior. We also present a precise

estimate for the propagation speed of the free boundaries of the transition solutions. In Section
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6, we consider the RPME with bistable reaction term: we present all possible nonnegative

stationary solutions, specify Type I and Type II ground state solutions, prove a trichotomy

result with transition for the asymptotic behavior. In Section 7, we give a sufficient condition

for the complete vanishing phenomena. Finally, for the convenience of the readers, we present

in Appendix (Section 8) the a priori estimates, well-posedness and other important properties

for PME with general reaction terms. They are not entirely new but not well collected in the

literature.

We collect some notations and symbols which will be used in this paper.

• For ψ ∈ C(R), we use spt[ψ(·)] to denote its support;

• v(x) → b (x→ x0−0), or, lim
x→x0−0

v(x) = b means the left limit lim
x<x0, x→x0

v(x) = b. The

right one is denoted similarly;

• D−
x v(x0) = lim

x→x0−0

v(x)−v(x0)
x−x0

denotes the left derivative of v at x0. The right oneD
+
x v(x0)

is similar;

• 0 < 1− x≪ 1 means that x < 1 and 1− x is sufficiently small;

• a(x) ∼ b(x) as x→ x0 ± 0 means that a(x) = b(x)(1 + o(1)) as x→ x0 ± 0.

2. Preliminaries

In this section we first collect some basic results on the a priori estimates and the well-

posedness. Then we specify the waiting time, stationary solutions, the regularity and the Darcy

law of the free boundaries, which turn out not direct consequences of the corresponding results

for PME.

2.1. Well-posedness and a priori estimates. As we have mentioned above, the existence

and uniqueness of (CP) have been studied a lot by many authors (see, for example, [5, 25, 26, 30]

etc.). In addition, by the assumption f(u) < 0 for u > 1 in (F) and by the comparison principle,

it is easily to obtain

(2.1) 0 ≤ u(x, t) ≤M ′
0 := max{1, ∥u0∥L∞(R)}, x ∈ R, t > 0.

The persistence of positivity, the finite spreading speed and the a priori estimates were also

studied widely, especially for the PME without reactions/sources or RPMEs with polynomial

or logistic reactions. For our equation with a general reaction term, however, these properties

seem not conveniently collected in literature, though they are not entirely new. We collect some

of them here and present some detailed proof in the appendix.

1. Positivity persistence. If u(x, t0) ≥ ε > 0 in a neighborhood of x0 ∈ R, then u(x0, t) > 0

for all t ≥ t0 (see Proposition 8.2). Thus, u is classical near the line {(x0, t) | t > t0}).
2. Finite propagation speed. The solution has a left-most free boundary l(t) and a right-

most free boundary r(t) (also called interfaces) which propagate in finite speed: spt[u(·, t)] ⊂
[l(t), r(t)] ⊂ [−s̄(t), s̄(t)] with

(2.2) s̄(t) := O(1)(t+ 1)1/2e
K(m−1)(t+1)

2 , t > 0,

(see Proposition 8.4).
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In a gas flow problem through a porous medium, u denotes the density of the gas, and

(2.3) v(x, t) :=
m

m− 1
[u(x, t)]m−1

represents the pressure of the gas. In many cases, it is convenient to consider v rather than u.

Using v, (CP) is converted into the following problem

(pCP)

{
vt = (m− 1)vvxx + v2x + g(v), x ∈ R, t > 0,

v(x, 0) = v0(x) :=
m

m− 1
um−1
0 (x), x ∈ R,

with

(2.4) g(v) := m
((m− 1)v

m

)m−2
m−1

f

(((m− 1)v

m

) 1
m−1

)
.

For simplicity, we call the equation in (pCP) as pRPME. Since f is Lipschitz with number K

we have

(2.5) |g(v)| ≤ K(m− 1)v, v ≥ 0.

Since u is bounded as in (2.1), we see that v is also bounded:

(2.6) 0 ≤ v(x, t) ≤M0 := max

{
m

m− 1
, ∥v0∥L∞

}
, x ∈ R, t > 0.

3. A priori estimates. We have a priori estimates for vx, vxx and vt as follows. If v > 0 in

R := (a, b)× (0, T ], then for any 0 < δ < b−a
2 , τ < T there holds:

(2.7) |vx(x, t)| ≤M1(m, f, δ, τ), (x, t) ∈ [a+ δ, b− δ]× [τ, T ].

There exist τ0 = τ0(m, v0) and C = C(m, v0) such that

vxx(x, t) ≥ −C(t+ τ0), x ∈ R, t ∈ (0, T ],

in the sense of distributions in R× (0, T ]. For any τ > 0 there holds

(2.8) −C3t− C4 ≤ vt(x, t) ≤ C1t+ C2, x ∈ R, t ≥ τ,

where Ci depends on m, f and v0, while C2 depends also on vt(x, τ).

In addition, we have the following locally uniform Hölder estimates (cf. [10] and [30, Theorem

7.18]): for any τ > 0 and any compact domain D ⊂ R× (τ,∞), there are positive constants C

and α, both depending only on M ′
0,m and τ , such that

(2.9) ∥v∥Cα(D) ≤ C.

Note that the Hölder estimates in [10, 30] are given for u, but it is easy to convert to that for v.

2.2. Waiting times of the free boundaries and compactly supported stationary solu-

tions. In PME and RPMEs, the degeneracy of the equation not only causes finite propagation

and free boundaries. It may even occur that a free boundary is stationary for a while if the mass

distribution near the border of the support is very small.

Let x0 ∈ R be a zero of u0(x). Define the waiting time at x0 by

t∗(x0) := inf{t > 0 | u(x0, t) > 0}.
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For the one dimensional PME, it is known that t∗(x0) can be 0 or a positive number, depending

on the decay rate of u0 near x0 (cf. [30, §15.3], [31]). For our equation with a source, the

situation is more complicated since positive reactions can promote the propagation while the

negative reactions will restrain it. We will show the following results.

(1). t∗(x0) = 0 when the pressure v0 near x0 is bounded from below by a linear function;

(2). t∗(x0) > 0 when the pressure v0 lies below a quadratic function near x0. In addition

t∗(x0) < ∞ if the reaction term f ≥ 0 near 0, or, if f is negative but v0 lies above

another quadratic function with big coefficient.

(3). t∗(x0) = ∞ when the pressure v0 is less than a quadratic function near x0 and f(u) ≤
−K ′u for some large K ′ > 0 and 0 ≤ u≪ 1.

For simplicity, we assume 0 is a zero of v0 and consider its waiting time.

1. The case t∗(0) = 0.

Lemma 2.1. Assume (F) and (I). Assume v0(0) = 0 and

(2.10) v0(x) ≥ ρx, 0 ≤ x ≤ r0,

for some ρ > 0, r0 > 0, then t∗(0) = 0.

Proof. Set

a :=
π

r0
, h :=

ρr0
π
, µ := K(m− 1) +mha2, b(t) :=

ha2

µ
(e−µt − 1),

and, for t ≥ 0, define

v(x, t) :=

 he−µt sin(ax− b(t)),
b(t)

a
≤ x ≤ b(t) + π

a
,

0, otherwise.

By a direct calculation we have

v(x, 0) ≤ v0(x), x ∈ R,

and, with z := ax− b(t),

N (v) := vt − (m− 1)v vxx − v2x − g(v)

≤ vt − (m− 1)v vxx − v2x +K(m− 1)v

= he−µt[−µ sin z + (m− 1)a2he−µt sin2 z +K(m− 1) sin z

−b′(t) cos z − a2he−µt cos2 z]

≤ a2h2e−µt[− sin z + e−µt cos z − e−µt cos2 z]

≤ a2h2e−2µt[− sin z + cos z − cos2 z]

= −1

2
a2h2e−2µt[(1− cos z)2 + 2 sin z − sin2 z]

≤ 0,
b(t)

a
≤ x ≤ b(t) + π

a
, t ≥ 0.

Therefore, v(x, t) is a subsolution, and so by the comparison result (see, for example, [30,

Theorem 6.5]) we have v(0, t) ≥ v(0, t) > 0 for small t > 0. Then t∗(0) = 0 since b′(t) < 0 for

all t ≥ 0. □
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2. The case t∗(0) ∈ (0,∞).

Lemma 2.2. Assume (F) and (I). Assume v0(0) = 0,

(2.11) v0(x) ≥ A2x
2, 0 ≤ x ≤ r0,

for some r0 > 0 and some A2 satisfying

(2.12) A2 > A2(m,K) :=
K(m− 1)

2σ
m

m+1 − 2σ
, σ :=

( m

m+ 1

)m+1
.

and

(2.13) v0(x) ≤ A1x
2, x ≥ 0,

for some A1 > A2. Then t∗(0) ∈ (0,∞).

Proof. First we show that t∗(0) > 0. Set

a :=
(m− 1)K

2(m+ 1)A1 + (m− 1)K
, T1 :=

a

(m− 1)K
, C1 :=

1− a

2(m+ 1)
,

and define

v̄(x, t) :=
C1x

2

T1 − t
, x ∈ R, 0 ≤ t < T1.

Then v̄(x, 0) = A1x
2 ≥ v0(x), and

N (v̄) := v̄t − (m− 1)v̄v̄xx − v̄2x − g(v̄)

≥ v̄t − (m− 1)v̄v̄xx − v̄2x −K(m− 1)v̄

=
C1x

2

(T1 − t)2
[1− 2(m+ 1)C1 −K(m− 1)(T1 − t)]

≥ 0, x ∈ R, t ∈ [0, T1).

By comparison we have v(x, t) ≤ v̄(x, t) in t ∈ [0, T1). Hence, the waiting time of v at 0 is not

smaller than T1 = T1(m,A1,K).

Next we prove t∗(0) <∞. Set, for some δ ∈ (0, 1),

τ :=
σ

K(m2 − 1)
, C2 :=

δr20

2(m+ 1)τ
1

2(m+1)

, x1 :=

[
C2(1 + 2(m+ 1)A2τ)

A2τ
m

m+1

]1/2
.

Then by the choice of A2 we have

x21
C2

=
1

A2τ
m

m+1

+
2(m+ 1)τ

τ
m

m+1

< 2
σ

m
m+1 − σ

K(m− 1)τ
m

m+1

+ 2
(m+ 1)τ

τ
m

m+1

= 2
[K(m2 − 1)]

m
m+1

K(m− 1)
.

Define

v(x, t) :=

C2(t+ τ)−
m

m+1 − (x− x1)
2

2(m+ 1)(t+ τ)
, x ∈ [l(t), r(t)], 0 ≤ t < T2,

0, x < l(t) or x > r(t), 0 ≤ t < T2,

where

l(t) := x1 −
√

2(m+ 1)C2(t+ τ)
1

2(m+1) , r(t) := x1 +
√

2(m+ 1)C2(t+ τ)
1

2(m+1)

and

T2 :=
1− σ

K(m2 − 1)
.
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We now show that v(x, t) is a subsolution in 0 ≤ t < T2. In fact, by our construction it is

easy to verify that

A2x
2 ≥ v(x, 0), x ∈ [l(0), r(0)] ⊂ [0, r0]

provided δ ∈ (0, 1) is small, and the equality holds at

x = x̂ :=
x1

2(m+ 1)τA2 + 1
.

In addition, for x ∈ [l(t), r(t)], 0 ≤ t ≤ T2, by a direct calculation we have

N v := vt − (m− 1)vvxx − v2x − g(v)

≤ vt − (m− 1)vvxx − v2x +K(m− 1)v

≤ C2

(t+ τ)
2m+1
m+1

[ −1

m+ 1
+K(m− 1)(t+ τ)

]
≤ 0.

This implies that v is a subsolution at leat in the time interval [0, T2].

By the choice of the above parameters, we have

l(0)√
2C2

=

(
1 + 2(m+ 1)A2τ

A2τ
m

m+1

)1/2

−
[
2(m+ 1)τ

1
m+1

]1/2
> 0,

and

l(T2)√
2C2

<

(
[K(m2 − 1)]

m
m+1

K(m− 1)

)1/2

−
[
(m+ 1)(T2 + τ)

1
m+1

]1/2
=

(
[K(m2 − 1)]

m
m+1

K(m− 1)

)1/2

−

(
m+ 1

[K(m2 − 1)]
1

m+1

)1/2

= 0.

This means that before t = T2, the left free boundary l(t) of v(x, t) moves leftward from a

positive point to a negative one. Then, v(0, t) becomes positive at T2, and so does v(0, t). This

proves our lemma. □

The case t∗(0) > 0 still includes two subcases: t∗(0) ∈ (0,∞) and t∗(0) = ∞. In the PME,

it is known that only the former subcase is possible, which is called the hole-filling phenomena

(see, for example, [30, Theorem 15.15]). For our RPME with a reaction term, however, the

latter is also possible.

3. The case where t∗(0) = ∞ and compactly supported stationary solutions. To discuss the

possibility of infinite waiting time, we first specify the compactly supported stationary solutions,

including its sufficient and necessary conditions, examples and uniqueness. We remark that the

following two concepts should be distinguished:

compactly supported stationary solutions of the equation pRPME, and

compactly supported stationary solutions of the Cauchy problem (pCP).

The latter means all compactly supported functions v̄ such that the solution v(x, t; v̄) of (pCP)

with initial data v0 = v̄ satisfies v(x, t; v̄) ≡ v̄ for all x ∈ R and t ≥ 0.

Lemma 2.3. Assume v̄ is a continuous nonnegative stationary solution of pRPME with support

[l, r] and v̄(x) > 0 in (l, r). Then
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(i). v̄ is also a stationary solution of (pCP) if and only if t∗(l), t∗(r) ≥ τ for some τ > 0;

(ii). a sufficient condition for (i) is v̄(x) ≤ A(x − l)2 and v̄(x) ≤ A(x − r)2 in (l, r) for some

A > 0; a necessary condition for (i) is v̄′(l) = v̄′(r) = 0;

(iii). v̄ is not a stationary solution of (pCP) if v̄′(l) > 0 or v̄′(r) < 0;

(iv). in any case, v̄ is a time-independent (also called a stationary) very weak subsolution of

(pCP), and v(x, t; v̄) ≥ v̄(x) for x ∈ R, t > 0. The inequality is strict on [l, r] when v̄ is

not a stationary solution of (pCP).

Proof. (i). If t∗(l), t∗(r) ≥ τ , then for all t ∈ [0, τ ] we have

v(x, t; v̄) = v̄ (x ∈ R), l(t) = l, r(t) = r.

Therefore, these equalities hold for all t ≥ 0, and so v̄ is a stationary solution of (pCP).

(ii). The sufficient condition follows from Lemma 2.2, and the necessary condition follows

from Lemma 2.1.

(iii). The conclusion is a consequence of (ii).

(iv). Denote the corresponding density functions of v̄(x) and v(x, t; v̄) by ū(x) and u(x, t; ū),

respectively. For any T > 0 and any test function φ ∈ C∞
c (QT ) (QT := R× (0, T )) with φ ≥ 0,∫∫

QT

[ūφt + ūmφxx]dxdt =

∫
R
ū(x)[φ(x, T )− φ(x, 0)]dx+

∫ T

0

∫ r

l
(ūm)xx(x)φ(x, t)dxdt

+

∫ T

0
[(ūm)x(l)φ(l, t)− (ūm)x(r)φ(r, t)]dt

≥
∫
R
ū(x)[φ(x, T )− φ(x, 0)]dx+

∫ T

0

∫ r

l
(ūm)xx(x)φ(x, t)dxdt

=

∫
R
ū(x)[φ(x, T )− φ(x, 0)]dx−

∫∫
QT

f(ū(x))φ(x, t)dxdt.

So ū is a time-independent very weak solution of (CP), and then u(x, t; ū) ≥ ū(x) follows from

the comparison result (cf. [30, Theorem 6.5]).

To show the strict inequality, we note that, in the domain (l, r), both v̄ and v are positive,

and so the classical strong maximum principle is applied. On the other hand, by the conclusion

in (i), the waiting times at l and r are zero since v̄ is not a stationary solution of (pCP). So

v(l, t; v̄) > 0 = v̄(l) and v(r, t; v̄) > 0 = v̄(r). This proves the strict inequality on [l, r]. □

Due to the strong maximum principle, the Cauchy problem of a RDE does not have compactly

supported stationary solutions. For (pCP), however, such solutions are possible since the strong

maximum principle is not true on the free boundaries. In fact, we will show in Section 5 (see

details in Lemma 6.1) that, if f is a bistable nonlinearity with

f(u) = −λuα(1 + o(1)) as u→ 0 + 0,

for some λ > 0 and 1 ≤ α < m, then the bistable pRPME has nonnegative compactly supported

stationary solution v̄, which is a ground state solution satisfying

v̄(x) > 0 in (−L,L), v̄(x) = 0 for |x| ≥ L,
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and

v̄(x) ∼ A(x± L)
2(m−1)
m−α as x→ ∓L± 0.

Since 2(m−1)
m−α ≥ 2, by Lemma 2.3 (ii) we know that v̄ is also a stationary solution of (pCP).

Comparing the ZKB solution of PME (named after Zel’dovich, Kompaneets and Barenblatt)

with the solution of (pCP) for monostable and combustion reactions, it is easy to see that

compactly supported stationary solutions do not exist in such problems. But they can exist for

(pCP) with bistable reactions (see Lemma 6.1). We now show that it is unique when it exists.

Lemma 2.4. Assume (F) and V is a compactly supported stationary solution of (pCP) with

V (x) > 0 in (−L,L), V (x) = 0 for |x| ≥ L,

for some L > 0. Then

(2.14) V (x) = V (−x) and V ′(x) < 0 in (0, L), V ′(0) = V ′(±L) = 0.

(So, V is a Type II ground state solution of (pCP).) Moreover, such compactly supported sta-

tionary solution is unique.

Proof. By the equation we know that V is symmetric with respect to each positive critical points,

so we have the symmetry and monotonicity in (2.14) and V ′(0) = 0. The equality V ′(±L) = 0

follow from Lemma 2.3.

We now prove the uniqueness of such compactly supported stationary solution. Set

(2.15) w :=
(m− 1

m
V
) 1

m−1
V ′.

Then w(±L) = 0. Hence, on the (V,w)-phase plane (cf. Subsections 4.1 and 5.1 for more

details), V (x) corresponds to a homoclinic orbit starting and ending at (0, 0). Using the equation

in (pCP) we have

w′ = −f
((m− 1

m
V
) 1

m−1

)
.

Multiplying this equation by (2.15) and integrating it over [x, 0] for x ∈ [−L, 0), we have

w2(x) = F (V (x))− F (V (0))

with

F (v) := −2

∫ v

0
f

((m− 1

m
r
) 1

m−1

)
·
(m− 1

m
r
) 1

m−1
dr.

Taking x = −L we have w2(−L) = 0 = F (0) − F (V (0)), and so F (V (0)) = 0. For x ∈ (−L, 0)
we have V ′(x) > 0 and w(x) > 0. Thus,

F (v) > F (V (0)) = 0, v ∈ (0, V (0)).

(This happens only if f(u) < 0 for 0 < u≪ 1.) Therefore,

(2.16) Θ1 := V (0)

is the smallest positive zero of F (·), and there exists Θ ∈ (0,Θ1) such that

(2.17) f

((m− 1

m
Θ
) 1

m−1

)
= g(Θ) = 0 and f

((m− 1

m
v
) 1

m−1

)
> 0 for v ∈ (Θ,Θ1).
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Consequently, for x < 0, V (x) is uniquely determined by the problem(m− 1

m
V
) 1

m−1
V ′ =

√
F (V (x)) for x < 0, V (0) = Θ1, V ′(0) = 0.

This proves the uniqueness of compactly supported stationary solution of (pCP), that is, the

Type II ground state solution with one connected support. □

We have given sufficient and necessary conditions, and uniqueness for compactly supported

stationary solutions of the Cauchy problem (pCP). Clearly, they correspond to the analogues

of the original problem (CP). Using them we finally give some examples of initial data, which

are not necessarily to be stationary solutions, such that the waiting times on their boundaries

are infinite. For example, for a ground state solution V of the bistable pRPME in the previous

lemma, we choose v0(x) ∈ C(R) such that

v0(x) ≤ V (x) in R, v0(x) > 0 in (−L,L).

Then v0 lies below V and has the same initial boundaries ±L as V . Since the boundaries l(t)

and r(t) of v(x, t; v0) are monotone in time and since v always lies below V by comparison, we

have t∗(±L) = ∞.

2.3. Lipschitz continuity, Darcy law and strict monotonicity. We now address the Lip-

schitz continuity, the Darcy law and the monotonicity for each free boundary. For definiteness,

in this subsection, we work with the right free boundary x = r(t), that is,

v(x, t) > 0 for r(t)− 1 ≪ x < r(t), v(x, t) = 0 for x ≥ r(t).

We use one-sided partial derivatives in space and time:

D±r(t) := r′(t± 0), D±
x v(x, t) = vx(x± 0, t).

Also we use r′(t) to denote the derivative of r when D+r(t) = D−r(t).

First we recall the related results on PME.

Lemma 2.5 ([30, Chapter 15]). Let v be the global solution of (pCP) with g ≡ 0, r(t) be its

right free boundary with waiting time t∗ ≥ 0. Then, for any t0 > t∗, there exists a small ε > 0

such that

(i). r ∈ C∞((t0 − ε, t0 + ε)), v ∈ C∞(Nε) for

Nε = {(x, t) | x ≤ r(t) and |(x− x0, t− t0)| ≤ ε}, x0 := r(t0);

(ii). there holds

r′(t0) = −D−
x v(x0, t0) > 0, r′′(t) = mr′(t)D−

xxv(x0, t0);

(iii). for any positive integer j, there exists Cj depending on (x0, t0),m, j, ε, v such that∣∣∣∣ ∂j∂xj v(x, t)
∣∣∣∣ ≤ Cj , (x, t) ∈ Nε.
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We will use this lemma to prove the important properties for the free boundaries, that is,

the C1 regularity and the Darcy law. Since we have no semiconvexity for the free boundary

r(t) of RPME as for the PME (cf. [30, §15.4.1]), we have to deal with the problem in a more

complicated way.

We first show the left side continuity of vx:

Lemma 2.6. Let v be the solution of (pCP), r(t) be its right free boundary. Then

(2.18) D−
x v(r(t), t) = lim

x→r(t)−0
vx(x, t), t > 0.

Proof. As we mentioned before, vxx is bounded from below: vxx ≥ −C1t−C2 for some C1, C2 > 0.

Hence

ṽ(x, t) := v(x, t) +
1

2
(C1t+ C2)x

2

is a continuous and convex function of x for t > 0. So, for every x1 ∈ R, t1 > 0, the function

ṽ(·, t1) admits one-sided derivatives at x1: D+
x ṽ(x1, t1) and D−

x ṽ(x1, t1) with D−
x ṽ(x1, t1) ≤

D+
x ṽ(x1, t1), and the functions D±

x ṽ(·, t1) are non-decreasing ones. Consequently, D±
x v(x1, t1)

exist with D−
x v(x1, t1) ≤ D+

x v(x1, t1) and D±
x v(x, t1) + (C1t1 + C2)x are non-decreasing in x.

Note that, for small ε > 0, when x ∈ I1 := [r(t1)− ε, r(t1)), v(x, t1) is smooth and so

vx(x, t1) + (C1t1 + C2)x ≤ D±
x v(r(t1), t1) + (C1t1 + C2)r(t1).

The right hand side is bounded sinceD−
x v(r(t1), t1) ≤ 0 = D+

x v(r(t1), t1). So k1 := lim
x→r(t1)−0

vx(x, t1)

exists and k1 ≤ D−
x v(r(t1), t1). The conclusion (2.18) is proved if we can show the equality. By

contradiction, we assume that k1 < D−
x v(r(t1), t1) ≤ 0. Then there exists k2 lying between them

and

vx(x, t1) < k2, x ∈ I1.

For any x2, x3 satisfying r(t1)− ε≪ x3 < x2 < r(t1) we have

v(x3, t1)− v(x2, t1)

x3 − x2
< k2.

Taking the limit as x2 → r(t1)− 0 and using the continuity of v we obtain

v(x3, t1)− v(r(t1), t1)

x3 − r(t1)
≤ k2.

This implies that D−
x v(r(t1), t1) ≤ k2, a contradiction. □

Theorem 2.7. Let v be the solution of (pCP), r(t) be its right free boundary with waiting time

t∗ ∈ [0,∞). Then r ∈ C1((t∗,∞)) and the Darcy law holds:

(2.19) r′(t) = −D−
x v(r(t), t) ≥ 0, t > t∗.

Moreover, r′(t) ̸≡ 0 in any interval in (t∗,∞).

Proof. We prove the Darcy law at any given time t0 > t∗. Denote x0 := r(t0) and β :=

−D−
x v(x0, t0).
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Step 1. Assume β > 0 and to show D+r(t0) = β. Consider the following problem{
v̄t = (m− 1)v̄v̄xx + v̄2x +K(m− 1)v̄, x ∈ R, t > 0,

v̄(x, 0) = v̄0(x), x ∈ R,

where v̄0(x) satisfies

v̄′0(x0 − 0) = −β, v̄0(x) ≥ v(x, t0) for x ∈ R,

and v̄0(x) is sufficiently smooth so that the right free boundary r̄(t) of v̄(·, t) is smooth in t ≥ 0.

Then v̄ is a supersolution of (pCP), and so

r(t+ t0) ≤ r̄(t), t ≥ 0.

To estimate r̄(t) precisely, we change the time variable from t to s by

s = S(t) :=
eK(m−1)t − 1

K(m− 1)
⇔ t = T (s) :=

ln(1 +K(m− 1)s)

K(m− 1)
,

and define

V (x, s) :=
v̄(x, T (s))

1 +K(m− 1)s
,

then we have

(2.20)

{
Vs = (m− 1)V Vxx + V 2

x , x ∈ R, s > 0,

V (x, 0) = v̄0(x), x ∈ R.

By Lemma 2.5, for some small ε0 > 0, the right free boundary x = R(s) = r̄(T (s)) of V (·, s)
satisfies

R′(s) = −D−
x V (R(s), s), |R′′(s)| ≤ C̄1, 0 ≤ s ≤ S(ε0),

or, equivalently,

r̄′(t) = R′(s)
ds

dt
= −D−

x v̄(r̄(t), t), |r̄′′(t)| ≤ C̄, 0 ≤ t ≤ ε0.

Consequently, we have upper estimate for r(t+ t0):

(2.21) r(t+ t0) ≤ r̄(t) ≤ r̄(0) + r̄′(0)t+ C̄t2 ≤ x0 + βt+ C̄t2, 0 ≤ t ≤ ε0.

Next we consider the problem{
vt = (m− 1)vvxx + v2x −K(m− 1)v, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R,

where v0(x) satisfies

v′0(x0 − 0) = −β, v0(x) ≤ v(x, t0) for x ∈ R,

and v0(x) is sufficiently smooth so that the right free boundary r(t) of v(·, t) is smooth in t ≥ 0.

Then v̄ is a subsolution of (pCP) and, as above,

(2.22) r(t+ t0) ≥ r(t) ≥ x0 + βt− Ct2, 0 ≤ t ≤ ε0,

for some positive C > 0. Combining with (2.21) we have D+r(t0) = β.

Step 2. To show D+r(t) ̸≡ 0 in any interval in (t∗,∞) with positive measure. Note that this

conclusion implies that r(t) is strictly increasing in t > t∗. By the positivity persistence, r(t) is
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increasing in t > t∗. Assume by contradiction that D+r(t) = 0 for t ∈ [t1, t2] ⊂ (t∗,∞). We will

derive

(2.23) D+r(t) = 0, t ∈ [0, t2],

which, then, contradicts the definition of t∗ and the fact t2 > t∗.

To show (2.23), we suppose, on the contrary, that t3 := inf{t̃ | D+r(t) ≡ 0 in [t̃, t2]} ∈ (0, t1],

and, by the continuity, there exists τ ∈ (t∗, t3) such that

(2.24) D+r(τ) > 0 and r(t3)− r(τ) < ∆ :=
Pπ

µ
(1− e−µ(t2−t1)),

where −P is the lower bound of vxx: vxx > −P for x ∈ R, t ∈ [t∗, t2], and µ := K(m−1)+mPπ.

By Step 1 we have

0 < 2ρ := D+r(τ) = −D−
x v(r(τ), τ).

Hence, for ε := ρ
P we have

−D−
x v(x, τ) ≥ ρ and v(x, τ) ≥ −ρ(x− r(τ)), r(τ)− ε ≤ x ≤ r(τ).

Denote

a :=
Pπ

ρ
, h :=

ρ2

Pπ
, b(t) :=

Pπ

µ
(1− e−µ(t−τ))

and using the subsolution v as in Lemma 2.1 we conclude that

(2.25) r(t) ≥ r(τ) + b(t), t > τ.

In particular, at t = t3 we have

r(t3) = r(t2) ≥ r(τ) + b(t2) ≥ r(τ) + ∆,

contradict (2.24). This proves (2.23), and then the conclusion in this step is proved.

Step 3. Assume β > 0 and to show D−r(t0) = β. We assume that, for some increasing

sequence {tn} tending to t0,

(2.26) β′ := lim
n→∞

r(tn)− r(t0)

tn − t0
, D+r(tn) = βn := −D−

x v(r(tn), tn) > 0.

(The latter holds by Step 2.) If we can show that, for each of such time sequence {tn}, the limit

β′ = β. Then we obtain the conclusion D−r(t0) = β.

By contradiction, we assume β′ > β. The reversed case is proved similarly. Then there exist

a small δ > 0 and a large n0 such that

(2.27)
r(tn)− r(t0)

tn − t0
≥ β + 2δ, n ≥ n0.

For any given n ≥ n0, using the estimates (2.21) and (2.22) at the time tn instead of t0 we see

that, for some ε1 ∈ (0, ε0) and some positive numbers C ′, C̄ ′, there holds

(2.28) r(tn) + βnt− C ′t2 ≤ r(t+ tn) ≤ r(tn) + βnt+ C̄ ′t2, 0 ≤ t ≤ ε1.

Taking t = t0 − tn in the second inequality we have

r(t0)− r(tn) ≤ βn(t0 − tn) + C̄ ′(t0 − tn)
2.
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Together with (2.27) we see that, when n is sufficiently large,

βn ≥ β + δ.

Taking n large such that ϵ := t0 − tn ≤ ε1
2 and taking t = 2ϵ in (2.28) we have

r(t0 + ϵ) ≥ r(tn) + 2βnϵ+O(ϵ2)

≥ r(tn) + βnϵ+ C̄ ′ϵ2 + (β + δ)ϵ+O(ϵ2)

≥ r(t0) + (β + δ)ϵ+O(ϵ2).

Together with (2.21) we have

O(ϵ2) ≥ δϵ+O(ϵ2).

This is a contradiction when ϵ is small, or, equivalently n is sufficiently large.

Step 4. Existence and continuity of r′(t) at t0 when β = r′(t0) > 0. Combining Step 1 and

Step 3 we have

r′(t0) = D+r(t0) = D−r(t0) = β, when β = −D−
x v(x0, t0) > 0.

The proof in Step 3 also implies that, for any subsequence {ni} of {n}, βni ≥ β+δ is impossible,

and so lim supn→∞ βn ≤ β. In a similar way as in Step 3, one can show that βni ≤ β − δ is

impossible, and so lim infn→∞ βn ≥ β. Therefore, r′(t) is continuous at t0 from the left side. On

the other hand, if the time sequence {tn} in (2.26) is a decreasing one tending to t0 from right

side, then one can prove as above that r′(tn) → β (n→ ∞). This means that r′(t) is continuous

at t0 from the right side. Combining the above conclusions together we get r ∈ C1 at any time

t0 where r′(t0) > 0.

Step 5. The case β := −D−
x v(x0, t0) = 0. For any small ε > 0, we define

ṽ0(x) := v(x, t0) + ε(x0 − x), x ∈ R,

and consider the equation of v for t ≥ t0, with initial data v(x, t0) replaced by ṽ0(x). Then

by Step 1 we have D+r(t0) ≤ −D−
x ṽ0(x0) = ε. Since ε > 0 is arbitrary we actually have

D+r(t0) = 0. Now as the proof in Step 3, with β > 0 being replaced by β = 0, one can prove

in a similar way that D−r(t0) = 0, and so r′(t0) = 0. This implies that the Darcy law (2.19)

remains hold even if β = 0. Finally, the continuity of r′(t) at t0 where r′(t0) = 0 can be shown

as in Step 4.

This completes the proof of the theorem. □

Remark 2.8. From this theorem we know that, for t > t∗, r′(t) ≥ 0 and it is not identical zero

in any time interval. Though we do not have the strong conclusion r′(t) > 0 as in PME (cf. [30,

Corollary 15.23]), the current properties are enough to continue the study for the asymptotic

behavior of the solutions. For example, they are enough in the application of the zero number

argument.

3. Zero Number Argument and General Convergence Result

In this section we present the intersection number properties, prove that the solution is strictly

monotone outside its initial support, and then prove the general convergence result.
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3.1. Zero number and intersection number properties. A useful tool we will use in the

qualitative study is the so-called zero number argument. For the convenience of the readers, we

first prepare some basic results in this area. Consider

(3.1) ηt = a(x, t)ηxx + b(x, t)ηx + c(x, t)η in E0 := {(x, t) | b1(t) < x < b2(t), t ∈ (t1, t2)},

where b1 and b2 are continuous functions in (t1, t2). For each t ∈ (t1, t2), denote by

Z(t) := #{x ∈ J̄(t) | η(·, t) = 0}

the number of zeroes of η(·, t) in the interval J̄(t) := [b1(t), b2(t)]. A point x0 ∈ J̄(t) is called

a multiple zero (or degenerate zero) of η(·, t) if η(x0, t) = ηx(x0, t) = 0. In 1988, Angenent [1]

proved a zero number diminishing property, and in 1998, the conditions in [1] were weakened

by Chen [9] for solutions with lower regularity. One of their results can be summarized as the

following:

Proposition 3.1 ([1, 9], zero number diminishing properties). Assume the coefficients in (3.1)

satisfies

(3.2) a, a−1, at, ax, b, c ∈ L∞.

Let η be a nontrivial W 2,1
p,loc solution of (3.1). Further assume that, for i = 1, 2, either

(3.3) η(bi(t), t) ̸= 0, t ∈ (t1, t2),

or,

(3.4) bi(t) ∈ C1 and η(bi(t), t) ≡ 0, t ∈ (t1, t2),

or,

(3.5) bi(t) ∈ C1 and ηx(bi(t), t) ≡ 0, t ∈ (t1, t2).

Then

(i) Z(t) is finite and decreasing in t ∈ (t1, t2);

(ii) if s ∈ (t1, t2) and x0 ∈ J̄(s) is a multiple zero of η(·, s), then Z(s1) > Z(s2) for all s1, s2

satisfying t1 < s1 < s < s2 < t2.

Note that, in the original results in [1, 9], the problem was considered in fixed intervals,

that is, bi(t) are constants. Using our assumptions (3.3)-(3.5), for any time interval with small

length, we can straighten the domain boundaries so that the zero number diminishing properties

remain hold. The boundedness assumption of a−1 in (3.2) is clearly a difficulty in using the zero

number argument for RPMEs. Nevertheless, under some additional conditions, we can prove

a diminishing property for the number of intersection points between two solutions of (pCP),

despite the degeneracy of the equation. The analogue results for RDEs was proved in [12,

Lemma 2.4], but the proof for our current result is more complicated due to the degeneracy.

For i = 1, 2, let vi be the solution of (pCP) with initial data in

{ψ ∈ C(R) | ψ(x) > 0 in (li(0), ri(0)), ψ(x) = 0 for x ̸∈ (li(0), ri(0))}.
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Denote li(t) and ri(t) the left and right free boundaries of vi, respectively. Write

l(t) := max{l1(t), l2(t)}, r(t) := min{r1(t), r2(t)}, t ≥ 0.

Then in the case where l(t) < r(t), the number of the positive intersection points between v1(·, t)
and v2(·, t) in R, which is denoted by Z0(t) as in (1.11), is the same as the number of intersection

points in J0(t) := (l(t), r(t)).

Theorem 3.2. Assume (F), v1, v2 are given as above. Assume that Z0(0) is finite. Then there

exists a time τ ∈ [0,+∞] , such that

(i) Z0(t) decreases for t ∈ (0, τ) and for t ∈ (τ,∞);

(ii) lim
t→τ+0

Z0(t) = 1 and lim
t→τ−0

Z0(t) = 0 if τ ∈ (0,∞).

The proof of this theorem consists of the following two lemmas.

Lemma 3.3. Assume (F), v1, v2 are given as above. Further assume that l(0) < r(0) and one

of the following hypotheses holds:

(a) l1(0) ̸= l2(0), r1(0) ̸= r2(0);

(b) Z0(0) <∞.

Then

(i). Z0(t) is decreasing in t > 0;

(ii). Z0(t) is strictly decreasing when t passes through s, if v1(·, s) − v2(·, s) has a degenerate

zero in J0(s), or, if one interior zero moves to the boundary l(t) or r(t) as t→ s− 0.

Proof. We first prove the conclusions under the assumption (a). The main complexity is caused

by the possibility that an interior intersection point moves up to the domain boundaries. Without

loss of generality, we assume

l1(t) < l2(t) for small t ≥ 0, r1(t) < r2(t) for all t ≥ 0.

Then the left boundaries l1(t) and l2(t) may meet after some time, but the right boundaries will

not.

At the early stage, say t ∈ [0, t1] for some t1 > 0, l(t) = l2(t) > l1(t), and η(x, t) :=

v1(x, t)− v2(x, t) satisfies a linear equation

(3.6) ηt = a(x, t)ηxx + b(x, t)ηx + c(x, t)η, x ∈ J0(t) := (l(t), r(t)), t ∈ (0, t1],

with

a(x, t) := (m− 1)v1(x, t), b(x, t) := v1x(x, t) + v2x(x, t),

and

c(x, t) := (m− 1)v2xx(x, t) +

{
g(v1(x,t))−g(v2(x,t))

v1(x,t)−v2(x,t)
, v1(x, t) ̸= v2(x, t),

0, v1(x, t) = v2(x, t).

By the continuity of v1, v2,

η(l(t), t) = v1(l2(t), t) ≥ ρ, η(r(t), t) = −v2(r1(t), t) ≤ −ρ, t ∈ [0, t1],

for some small ρ > 0. Take two smooth curves l̂(t) and r̂(t) such that

l(t) < l̂(t) ≪ l(t) + 1, r(t)− 1 ≪ r̂(t) < r(t),
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(3.7) η(x, t) ̸= 0, x ∈ [l(t), l̂(t)] ∪ [r̂(t), r(t)], t ∈ [0, t1],

and, for some ρ1 > 0,

v1(x, t), v2(x, t) ≥ ρ1 in E1 := {(x, t) | x ∈ Ĵ(t) := [l̂(t), r̂(t)], t ∈ [0, t1]}.

Then both v1 and v2 are classical in E1, we can use the classical zero number diminishing

property in E1 to conclude that ZĴ(t)(t), which denotes the zero number of η(·, t) in the interval

Ĵ(t), is finite, decreasing in t, and strictly decreasing when t passes through a moment s when

η(·, s) has a degenerate zero. Note that, the same conclusions hold true for Z0(t) since it equals

to ZĴ(t)(t) by (3.7).

If l2(t) will never approach l1(t) for all t > 0, then the conclusions are proved.

We now consider the case: there is a moment T > t1 such that l2(t) moves leftward and meets

l1(t) as t→ T − 0, and suppose that T is the first one of such moments. Due to the diminishing

property for Z0(t) in the time interval (0, T ) we see that there are at most finite moments when

η(·, t) has degenerate zeros (only in J0(t)). Thus, there exists t2 ∈ (t1, T ) such that η(·, t) has no
degenerate zeros in J0(t) in the time interval (t2, T ), that is, in this time interval η(·, t) has fixed
finite number of non-degenerate zeros. For simplicity and without loss of generality, in the rest

of the proof we assume that η(·, t) has no interior degenerate zeros in J0(t) for all t ∈ (t2,∞).

So we can assume the null curves of η in E2 := {(x, t) | x ∈ J0(t), t2 < t < T} are

γ1(t) < γ2(t) < · · · < γk(t), t ∈ (t2, T ),

for some positive integer k. Using [15, Theorem 2] as in the proof of Lemma 2.4 in [12] one can

show that

xj := lim
t→T−0

γj(t), j = 1, 2, · · · , k,

exist. We divide the situation into two cases.

Case 1. l(T ) < x1, that is, l2(t) moves leftward to catch up with l1(t) as t → T − 0, while

the left-most null curve γ1(t) remains on the right of l(t) till t = T . In this case, by using the

comparison principle for very weak solutions in the domain

E3 := {(x, t) | −∞ < x < γ1(t), t ∈ (t2, T )}

we have

η(x, T ) > 0 for l(T ) < x < x1, η(l(T ), T ) = η(x1, T ) = 0.

As a consequence we have Z0(T ) = k. The boundary zero l(T ) of η(·, T ) is not included in

Z0(T ). Recalling the Darcy law we have the additional fact D+
x η(l(T ), T ) = 0. We remark

that, this will lead to a contradiction with the Hopf lemma immediately in the Stefan problems

for RDEs (cf. [11, 12]). However, in the current problem, the fact D+
x η(l(T ), T ) = 0 does not

contradict the Hopf lemma, since the Hopf lemma is no longer necessarily to be true at (l(T ), T )

where the equation (3.6) is degenerate.

Next, we consider the time period from the time T to t3 ∈ (T,∞], where t3 is the smallest

moment when γ1(t3) meets l(t3). Using the comparison principle in the domain

E4 := {(x, t) | −∞ < x < γ1(t), t ∈ [T, t3)},
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Figure 4. Vanishing of zero at t = T .

we conclude that η(x, t) ≥ 0 in this domain. This implies that, for t ∈ [T, t3), l1(t) ≤ l2(t), but

the equality can hold from time to time. However, no matter l1(t) < l2(t) or l1(t) = l2(t), we

have v1, v2 > 0 for x ∈ (l(t), γ1(t)], and so the strong maximum principle holds in

E5 := {(x, t) | l(t) < x ≤ γ1(t), T ≤ t < t3},

which implies that η(x, t) > 0 in E5. As a consequence, Z0(t) = k for t ∈ [T, t3).

At the moment t3, γ1(t3) meets l(t3). The following analysis for t ≥ t3 is similar as what we

will do in Case 2.

Case 2. γ1(t) tends to l(t) at t→ T − 0, and so l1(T ) = l2(T ) = γ1(T ) (see Figure 4). Recall

that we assumed before that η(·, t) no longer has interior degenerate zeros. However, this does

not exclude that possibility that γ1(T ) = γ2(T ) = · · · = γj0(T ) = l(T ), that is, j0-null curves

tend to the point (l(T ), T ) at the same time as t → T − 0. Since the discussion is similar, in

what follows, we only consider the case

l1(T ) = l2(T ) = l(T ) = γ1(T ) < γ2(T ) < · · · < γk(T ).

Then we have Z0(T ) = k − 1, and

η(x, T ) < 0, l(T ) < x < γ2(T ).

As above we next consider the time period from T to t4 ∈ (T,∞], where t4 is the smallest

moment when γ2(t4) meets l(t4). Using the comparison principle for very weak solutions in the

domain

E6 := {(x, t) | −∞ < x < γ2(t), t ∈ [T, t4)},

we conclude that η(x, t) ≤ 0 in this domain. This implies that, for t ∈ [T, t4), l2(t) ≤ l1(t), but

the equality can hold from time to time. However, no matter l2(t) < l1(t) or l2(t) = l1(t), we

have v1, v2 > 0 for x ∈ (l(t), γ2(t)], and so the strong maximum principle holds in

E7 := {(x, t) | l(t) < x ≤ γ2(t), T ≤ t < t4},

which implies that η(x, t) < 0 in E7. As a consequence, Z0(t) = k − 1 for t ∈ [T, t4).

In the case where t4 = ∞, there is nothing left to prove. In the case where t4 < ∞, we can

analyze the situation for t ≥ t4 as in the current case.

As a conclusion, we see that, in case no interior degenerate zeros appear, the zero number of

η(·, t) in the open interval J0(t) is decreasing. It is strictly decreasing when some interior null

curves touch the boundaries.
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Figure 5. Generation of zero at t = t1.

Next we consider the assumption (b). Without loss of generality, we assume that l1(0) = l2(0),

that is, the left free boundaries of v1 and v2 glue together at the beginning. Since Z0(t) < ∞,

there exists x̃ > l1(0) = l2(0), such that v1(x, 0) and v2(x, 0) has no intersection points in

(l1(0), x̃). This is a situation like that in Case 1 at time T . The rest discussion is then similar

as above.

This completes the proof of the lemma. □

Remark 3.4. In the above proof, as well as in other related places of the paper, we use the

maximum principle for η. One may worry about the unboundedness of the coefficient c in (3.6)

at the points where v2 = 0. We remark that, though we write v1 − v2 in the form of η for

convenience, we actually compare the very weak solutions v1 and v2. As in [30, Theorem 5.5]

the comparison principle between v1, v2 holds safely. The main reason is that each of them can

be approximated by a sequence of decreasing classical solutions.

Lemma 3.5. Assume (F), v1, v2 are given as above. Further assume that l(0) ≥ r(0). Then

there exists a time t1 ∈ [0,∞] such that
Z0(t) = 0, t ≤ t1,

Z0(t) = 1, t1 < t≪ t1 + 1,

Z0(t) decreases, t > t1.

Proof. By the assumption l(0) ≥ r(0), we see that the supports of two initial data v1(x, 0) and

v2(x, 0) do not have overlap. Without loss of generality, we assume v1 lies on the left of v2 in

the beginning time, that is r1(0) ≤ l2(0). Define t1 := sup{t ≥ 0 | r1(t) ≤ l2(t)} ∈ [0,∞], then

Z0(t) = 0 when t ≤ t1 by the definition of Z0(t). When t1 < ∞, r1(t) will surpass l2(t) at

t = t1 (see Figure 5). According to the monotonicity of vi near the free boundaries, we obtain

Z0(t) = 1 for t1 < t ≪ t1 + 1. After t1, the problem can be treated like that in Lemma 3.3.

Then the lemma follows. □

Proof of Theorem 1.2. The proof is almost the same as that of Theorem 3.2. We only note that

the support of initial data may not be singly connected, but consists of finite intervals. Similar

to t1 in Lemma 3.5, we define tj as the j-th time for two components (in one of them v1 > 0

and in the other v2 > 0) to meet. It is easy to see that #{tj} is at most finite up to the choice

of initial data. However, more complex than the case in Lemma 3.5, Z0(t) may not increase

strictly at t = tj , since there may exist other interior degenerate zeros of v1 − v2 which vanishes
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at the same time. To exclude such cases, we select a subset of {tj} such that Z0(t) strictly

increases at these times. This proves Theorem 1.2. □

3.2. Monotonicity outside of the initial support. Assume the initial data u0 of (CP)

belongs to

(3.8) X1 := {ψ ∈ C(R) | ψ(x) > 0 for x ∈ (−b, b), and ψ(x) = 0 for |x| ≥ b}.

Then the solution has exactly two free boundaries: l(t) < r(t) with l(0) = −b and r(0) = b.

Moreover, l(t) is strictly decreasing after the waiting time t∗1(−b), r(t) is strictly increasing after

the waiting time t∗2(b), and spt[u(·, t)] = [l(t), r(t)]. We now prove a monotonicity property for

u(·, t) outside of [−b, b].

Lemma 3.6. Assume (F) and u0 ∈ X1. Then

(i). for any given x̄ > b, if r(t̄) = x̄ for some t̄ > t∗(b), then vx(x̄, t) < 0 for t > t̄. Similarly,

for any given x̄′ < −b, if l(t̄′) = x̄′ for some t̄′ > t∗(−b), then vx(x̄′, t) > 0 for t > t̄′;

(ii). −2b ≤ r(t) + l(t) ≤ 2b for all t > 0.

Proof. (i). We only work on x̄ > b since the case x̄′ < −b is studied similarly. Given x̄ > b,

either r(t) ≤ x̄ for all t > 0, or, by Theorem 2.7, there exists a unique t̄ > t∗(b) such that

r(t̄) = x̄ > b and r(t) > x̄ for t > t̄. We consider only the latter case and will use the so-called

Aleksandrov’s reflection principle. Set

η(x, t) := v(x, t)− v(2x̄− t), (x, t) ∈ E1 := {(x, t) | −∞ < x ≤ x̄, t ≥ t̄}.

Then, for some functions c1 = c1(vx) and c2 = c2(m, g
′, v, vxx), η satisfies

ηt = (m− 1)vηxx + c1ηx + c2η, (x, t) ∈ E1,

η(x̄, t) = 0, t ≥ t̄,

η(x, t̄) ≥ 0, x ≤ x̄.

Using the maximum principle (see Remark 3.4 if one worries about the unboundedness of c2)

we have

(3.9) η(x, t) ≥ 0 in E1, ηx(x̄, t) ≤ 0 for t ≥ t̄.

Furthermore, v(x̄, t) > 0 for t > t̄ by the positivity persistence, and so both v and η are classical

near the line {x = x̄, t > t̄}. This implies that the Hopf lemma is applicable and so

ηx(x̄, t) = 2vx(x̄, t) < 0 for t > t̄.

(ii). The first inequality in (3.9) also implies that

l(t) ≤ 2x̄− r(t), t > t̄,

that is,

l(t) + r(t) ≤ 2x̄, t > t̄.

Finally, since x̄ − b > 0 can be chosen as small as possible, so does t̄ − t∗(b), we actually have

r(t) + l(t) ≤ 2b for t > 0. In a similar way one can show that r(t) + l(t) ≥ −2b for all t > 0. □
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In the above lemma we consider initial data with exactly one connected support. Now we

consider the case u0 ∈ X. More precisely, assume

(3.10) u0 ∈
{
ψ ∈ C(R)

∣∣∣∣ there exist − b ≤ l1 < r1 ≤ l2 < r2 ≤ · · · ≤ ln < rn ≤ b such that

ψ(x) > 0 in (lj , rj) for j = 1, · · · , n, and ψ(x) = 0 otherwise

}
.

Note that this set is exactly the same as X. Here we explicitly give the name of each boundary

(see Figure 1). As we will see below that, the purpose for choosing u0 in this set is mainly for

the clarity of the statement for the free boundaries. Our approach remains valid for general

continuous and compactly supported initial data with infinite many free boundaries.

For each i = 1, 2, · · · , n, denote by li(t) (resp. ri(t)) the free boundary of the solution starting

at li (resp. ri). Given j ∈ {1, 2, · · · , n − 1}, the boundary point rj either keeps stationary for

all time (that is, t∗(rj) = ∞), or it moves rightward after the finite waiting time. In the latter

case, we define

Tj := sup{T | there exists xj ∈ [rj , lj+1] such that u(xj , t) = 0 for 0 ≤ t ≤ T}.

In case Tj = ∞, the free boundaries rj(t) will never meet lj+1(t), or, rj = lj+1 and both of them

have infinite waiting times. In case Tj <∞, these two free boundaries meet in some finite time

and then this free boundary vanish after Tj . (Note that, the following case will not happen: they

meet together in finite time, and this zero of u will never vanish. In fact, by Step 2 in the proof

of Theorem 2.7, any free boundary will never stop once it begins to move.) Hence, for t > Tj ,

the intervals (lj(t), rj(t)) and (lj+1(t), rj+1(t)) merge into one: (lj(t), rj+1(t)). We remark that,

it may merge other intervals at the same time, or at some time after Tj . Whatever happens,

there exists a large T such that, for t ≥ T , there exist fixed number of free boundaries:

(3.11) l1(t) ≡ ln1(t) < rn2(t) ≤ ln3(t) < rn4(t) ≤ · · · ≤ ln2k−1
(t) < rn2k

(t) ≡ rn(t),

for n1, · · · , n2k ∈ {1, 2, · · · , n} satisfying

n1 ≤ n2 < n3 ≤ n4 < · · · < n2k−1 ≤ n2k,

such that v(x, t) > 0 in (ln2i−1(t), rn2i(t)) (i = 1, 2, · · · , k) and v = 0 otherwise. Moreover, by

(3.10) and the monotonicity of li(t), ri(t) we have

(3.12) −b < rn2(t), ln2k−1
(t) < b, t ≥ 0,

Using the previous Lemma 3.6 in each of these intervals we have the following result.

Corollary 3.7. Assume (F) and (I). Then there exists a large T such that, for t ≥ T , u(·, t) has
2k free boundaries as in (3.11) and (3.12). Moreover, for 1 ≤ j ≤ k, u(·, t) is strictly increasing

in [l2j−1(t), l2j−1(0)), and strictly decreasing in (r2j(0), r2j(t)]. In particular, u(·, t) is strictly

increasing in [l1(t), l1(0)) and strictly decreasing in (rn(0), rn(t)].

3.3. General convergence. Proof of Theorem 1.1. We prove the results by using the pressure

v instead of u.

Step 1. To show the ω-limit set is non-empty. By the locally uniform Hölder bound in (2.9),

there exist C > 0, α1 ∈ (0, 1), both depend on ∥v0∥C and m, such that, for any M > 0 and any
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increasing time sequence {tn}, there holds,

∥v(x, tn + t)∥Cα1 ([−M,M ]×[−1,1]) ≤ C.

Hence, for any α ∈ (0, α1), there is a subsequence of {tn}, denoted again by {tn}, such that

∥v(x, tn + t)− wM (x, t)∥Cα([−M,M ]×[−1,1]) → 0 as n→ ∞.

Using Cantor’s diagonal argument, there exist a subsequence of {tn}, denoted again by {tn} and

a function w(x, t) ∈ Cα(R× R) such that

v(x, tn + t) → w(x, t) as n→ ∞, in the topology of Cα
loc(R2).

In addition, if w(x, t) > 0 in a domain E ⊂ R2, then for any compact subset D ⊂ E, there

exists small ρ > 0 such that

w(x, t), v(x, tn + t) ≥ ρ > 0, (x, t) ∈ D, n≫ 1.

Then, v(x, tn + t) is classical in D, and so, for any β1 ∈ (0, 1), ∥v(x, tn + t)∥C2+β1,1+β1/2(D) ≤ C

for any large n and some C independent of n. This implies that a subsequence of {v(x, tn + t)}
converges in C2+β,1+β/2(D) (0 < β < β1) to the limit w(x, t). Thus, w(x, t) is a classical solution

of (pCP) in the domain where w(x, t) > 0, and it is a very weak solution of (pCP) for (x, t) ∈ R2.

Consequently, the ω-limit set of v in the topology of (1.7) is non-empty, compact, connected

and invariant.

Step 2. Limits of the free boundaries. By Corollary 3.7, there exists a large T such that v(·, t)
has exactly 2k free boundaries as in (3.11) and (3.12) for all t ≥ T . For each i = 1, 2, · · · , k,
since ln2i−1(t) is decreasing and rn2i(t) is increasing, the following limits exist:

(3.13) l∞ := lim
t→∞

ln1(t), l∞n2i−1
:= lim

t→∞
ln2i−1(t), r∞n2i

:= lim
t→∞

rn2i(t), r∞ := lim
t→∞

rn2k
(t).

We have the following possibilities:

Case 1. k ≥ 2. In this case all the free boundaries lie in [−b, b] except for the left most one

ln1(t) ≡ l1(t) and the right most one rn2k
(t) ≡ rn(t). Together with Lemma 3.6 (ii) we have

l1(t) ≥ −2b− rn2(t) ≥ −3b, rn(t) ≤ 2b− ln2k−1
(t) ≤ 3b.

Consequently, all the limits in (3.13) are in [−3b, 3b].

Case 2. k = 1 and −l∞, r∞ < ∞. In this case v(·, t) has exactly one connected compact

support [ln1(t), rn2(t)] = [l1(t), rn(t)] which tends to the bounded interval [l∞, r∞] as t → ∞.

Note that, even in this case, the support of the ω-limit w(x, t1) may have several separated

intervals as in the ground state solution in (1.8), since the convergence v → w is taken in

Cα
loc(R) topology, the positivity of v does not guarantee the positivity of its limit w.

Case 3. k = 1 and −l∞, r∞ = ∞. In this case v(·, t) has exactly one connected compact

support [ln1(t), rn2(t)] = [l1(t), rn(t)] which tends to R as t→ ∞.

Step 3. Quasi-convergence and Type II ground state solutions in the case −l∞, r∞ < ∞.

This includes Cases 1 and 2 in Step 2. We first use the Lyapunov functional to prove the
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quasi-convergence result, that is, any ω-limit is a stationary solution of (pCP). Define

(3.14) E[v(·, t)] :=
∫ rn(t)

l1(t)

[
m− 1

2
v

2
m−1 v2x −G(v)

]
dx, t ≥ T,

with

G(v) :=

∫ v

0
g(r)r

3−m
m−1dr,

which is convergent by |g(v)| ≤ K(m−1)|v|. When v is the solution of (pCP), a direct calculation

shows that
d

dt
E[v(·, t)] = −

∫ rn(t)

l1(t)
v

3−m
m−1 v2t dx ≤ 0.

So, E[v(·, t)] is a Lyapunov functional. It is bounded from below by our assumption l∞ ≤ l1(t) <

rn(t) ≤ r∞. Hence, we can use the standard argument to show that any ω-limit of v(·, t) is a

stationary solution of the equation pRPME.

We now explain that any ω-limit is also a stationary solution of the Cauchy problem (pCP).

Assume, w(x, t) is the limit function obtained in Step 1. For each τ1 ∈ R, we claim that the

solution v(x, t;w(·, τ1)) of (pCP) with v0(x) = w(x, τ1) is a stationary one: v(x, t;w(·, τ1)) ≡
w(x, τ1). Since w(x, τ1) has boundaries l∞, l∞n2i−1

, r∞n2i
, r∞ as in (3.13), by Lemma 2.3 we only

need to show that the waiting time of each of these boundaries is not zero. Without loss of

generality, we only prove t∗(l∞) > 0. By contradiction, assume the left boundary lw(t) of

v(x, t;w(·, τ1)) satisfies lw(τ2) < l∞ for some τ2 > 0. Since w(x, τ1 + τ2) is also an ω-limit of v:

v(x, tn + τ1 + τ2) → w(x, τ1 + τ2) ≡ v(x, τ2;w(·, τ1)), n→ ∞.

(Note that w(x, τ1 + t) solves the (pCP) with initial data w(x, τ1) at t = 0. It is nothing but

v(x, t;w(·, τ1)) by the uniqueness of the very weak solution of (pCP).) Thus, we have

l1(tn + τ1 + τ2) → lw(τ2) < l∞, n→ ∞,

contradicts the definition of l∞. Therefore, w(x, τ1) is a stationary solution of (pCP).

We continue to specify the possible shapes of the ω-limits of v. Denote by w(x) one of them.

By the monotonicity in Lemma 3.6 and Corollary 3.7, we see that either w(x) ≡ 0, or, it has

maximums in [−b, b]. In the latter case, we claim that w does not have positive minimums.

Otherwise, by the equation pRPME, w is symmetric with respect to each maximum point and

each minimum point as long as it keeps positive, and so w must be a positive periodic function,

which is impossible by the monotonicity outside of [−b, b]. Therefore, the only possible choice

for w is that it has only maximum points in [−b, b] but has no positive minimum points, and so

it is a Type II ground state solution of (pCP). More precisely, for some

−b ≤ z1 < z2 < · · · < zk ≤ b and L > 0,

with zi + 2L ≤ zi+1 (i = 1, 2, · · · , k − 1), there holds

(3.15) w(x) = V(x) := V (x− z1) + V (x− z2) + · · ·+ V (x− zk), x ∈ R,

where V (x) is the unique nonnegative compactly supported stationary solution of (pCP) as in

Lemma 2.4.
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Step 4. Convergence in case −l∞, r∞ < ∞. In the previous step we know that any ω-limit

w(x) of v(x, t) is either 0 or a Type II ground state solution as V. In the former case we actually

have the convergence result:

v(·, t) → 0 as t→ ∞,

since the ω-limit set of v is connected. In the latter case, we now improve the conclusion in Step

3 to a convergence one: v(x, t) → V(x) (t → ∞), that is, the shifts {z1, z2, · · · , zk} in (3.15) is

unique.

We first prove the following claim.

Claim 1. There exists T1 > 0 such that v(·, t) has exactly k maximums larger than Θ for t ≥ T1,

where Θ is the largest positive zero of g in (0,Θ1) as in (2.17).

First, we show that v(·, t)−Θ has exactly 2k non-degenerate zeros for large time. Using the

standard zero number argument for v(·, t) − Θ we know that, for some T2 > 0, v(·, t) − Θ has

fixed even number of non-degenerate zeros when t > T2. Since V defined by (3.15) is one ω-limit

of v, we see that the fixed number must be 2k. Denote them by

y1(t) < y2(t) < · · · < y2k−1(t) < y2k(t).

Next, we show that v has exactly one maximum zi(t) in (y2i−1(t), y2i(t)) for all large t and each

i = 1, 2, · · · , k. We only prove the conclusion in [y1(t), y2(t)]. In this interval ζ(x, t) := vx(x, t)

satisfies

(3.16)

{
ζt = (m− 1)vζxx + (m+ 1)ζζx + g′(v)ζ, y1(t) < x < y2(t), t > T2,

ζ(y1(t), t) > 0 > ζ(y2(t), t), t > T2.

Since v(x, t) > Θ for y1(t) < x < y2(t), t > T2, the equation is a uniform parabolic one, and so

we can use the classical zero number argument to conclude that, for some T3 > T2, ζ(·, t) has

fixed number of zeros in (y1(t), y2(t)). By our assumption, for some increasing time sequence

{tn}, we have

[y1(tn), y2(tn)] ⊂ (−L+ z1, L+ z1),

and v(x, tn) → V(x) (n→ ∞) in the topology C2,1
loc ((−L+z1, L+z1)). This implies that v(x, tn)

has exactly one maximum point z1(tn) ∈ (y1(tn), y2(tn)) for large n. This prove Claim 1.

By v(x, tn) → V(x) again, for some large T4 > T3, v(x, T4) > Θ near z1. For simplicity,

when t ≥ T4, denote by l(t), r(t) the two free boundaries of the support of v(·, t) containing z1.
They are nothing but l1(t) ≡ ln1(t) and rn2(t) in (3.11). Then −l(t) and r(t) are non-decreasing
continuous functions.

We now use Claim 1 to prove the convergence result, that is, the shift z1 is unique. By

contradiction we assume that v has another ω-limit point

V̌(x) := V (x− ž1) + V (x− ž2) + · · ·+ V (x− žk),

and, without loss of generality, assume z1 < ž1. Choose x0, x1, x2 ∈ [z1, ž1] such that

x0 ̸=
l(T4) + r(T4)

2
, x0 − x1 = x2 − x0 > 0,
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that is, x0 is the center of [x1, x2] ⊂ [z1, ž1] but not that of [l(T4), r(T4)]. Then, by the con-

nectedness of the ω-limit set ω(v), each V (x − xi) (i = 0, 1, 2) is a part of an ω-limit of v.

Define

l̃(t) := 2x0 − r(t), r̃(t) := 2x0 − l(t), ṽ(x, t) := v(2x0 − x, t) for x ∈ R, t ≥ T4.

Then l̃(t) and r̃(t) are free boundaries of ṽ(·, t), ṽ(x, t) > 0 for x ∈ (l̃(t), r̃(t)), t ≥ T4, and

ṽt = (m− 1)ṽṽxx + ṽ2x + g(ṽ), x ∈ R, t ≥ T4.

It is easily seen that l̃(t) < r(t), r̃(t) > l(t), and so v(·, t) and ṽ(·, t) have non-empty common

domain [l̂(t), r̂(t)] with

l̂(t) := max{l(t), l̃(t)} < x0 < r̂(t) := min{r(t), r̃(t)}, t ≥ T4.

By the choice of x0 we see that

l(T4) ̸= l̃(T4) = 2x0 − r(T4), r(T4) ̸= r̃(T4) = 2x0 − l(T4).

Hence, we can use Lemma 3.3 which is valid in open intervals to conclude that the number of

the zeros of η(·, t) := v(·, t)− ṽ(·, t) in the open interval J0(t) := (l̂(t), r̂(t)) is finite, decreasing

in t > T4, and strictly decreasing when η(·, t) has degenerate zeros in J0(t). Consequently, for

some large time T5 > T4,

(3.17) x0 is not a degenerate zero of η(·, t) := v(·, t)− ṽ(·, t) for t > T5.

On the other hand, by the previous assumption, there exist two time sequences {s(1)n } and {s(2)n }
with

(3.18) · · · < s(1)n < s(2)n < s
(1)
n+1 < s

(2)
n+1 < · · · , n = 1, 2, · · ·

such that, for i = 1, 2,

∥v(x, s(i)n )− V (x− xi)∥L∞([−L+xi,L+xi]) → 0 as n→ ∞.

Therefore, for all large n we have

z1(s
(i)
n ) ≈ xi, i = 1, 2.

By the continuity of z1(t), there exists sn ∈ (s
(1)
n , s

(2)
n ) such that z1(sn) = x0. Thus, for large n

we have

η(x0, sn) = v(x0, sn)− ṽ(x0, sn) = 0, ηx(x0, sn) = vx(x0, sn)− ṽx(x0, sn) = 0,

contradicting (3.17). This proves the uniqueness of z1, and so the convergence in this step is

proved.

Step 5. To show that any ω-limit is a stationary solution of pRPME in case −l∞, r∞ = ∞.

This is Case 3 in Step 2. For large t, say t ≥ T6, v(·, t) has exactly one connected support.

Denote, for simplicity, its left and right free boundaries by l(t) and r(t), respectively. Due to

the unboundedness of l(t) and r(t), the Lyapunov functional as in (3.14) is no longer a suitable

tool to derive the quasi-convergence result. Instead, we will use the zero number argument to

continue our argument.
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Using the limit function w(x, t) in Step 1, we want to show that, for each t ∈ R, w(x, t) is

a stationary solution of (pCP). It is sufficient to prove that w(x, 0) is so. When w(x, 0) ≡ 0 in

x ∈ R, there is nothing left to proof. So, we assume without loss of generality that w(0, 0) > 0.

We now construct directly a positive stationary solution as the following:

(3.19) (m− 1)v̄v̄xx + v̄2x + g(v̄) = 0, v̄(0) = w(0, 0) > 0, v̄′(0) = wx(0, 0).

As long as v̄ > 0 the equation is a non-degenerate second order ordinary differential equation,

and so the existence and uniqueness of the solution of (3.19) follow from the standard theory.

Noticing from the equation we see that v̄ is symmetric with respect to any positive critical point.

Hence, we have the following possibilities:

(a). v̄(x) > 0 for all x ∈ R;
(b). v̄(x) > 0 and v̄′(x) > 0 in (l0,∞) for some l0 ∈ (−∞, 0), and v̄(l0) = 0;

(c). v̄(x) > 0 and v̄′(x) < 0 in (−∞, r0) for some r0 ∈ (0,∞), and v̄(r0) = 0;

(d). v̄(x) > 0 for x ∈ (l0, r0) for some l0 < 0 < r0, v̄(l0) = v̄(r0) = 0 and it has a unique

maximum point z0 :=
l0+r0

2 .

In this step we will prove w(x, 0) ≡ v̄(x) in spt[v̄].

(a). Set

η(x, t) := v(x, t)− v̄(x), x ∈ R, t ≥ T6.

In the current case (a) we have

(3.20) η(l(t), t) < 0, η(r(t), t) < 0, t ≥ T6,

and

(3.21) ηt = a(x, t)ηxx + b(x, t)ηx + c(x, t)η, x ∈ J0(t) := (l(t), r(t)), t ≥ T6,

with

a(x, t) := (m− 1)v(x, t), b(x, t) := vx(x, t) + v̄x(x),

and

c(x, t) := (m− 1)v̄xx(x) +

{
g(v(x,t))−g(v̄(x))

v(x,t)−v̄(x) , v ̸= v̄,

0, v = v̄.

We will use Proposition 3.1 to study the zero number of η(·, t) in any bounded time interval

(t1, t2) ⊂ (T6,∞). For this purpose, we should require that a, b, c satisfy the assumption (3.2).

This is obviously not true in the domain

E1 := {(x, t) | x ∈ J0(t), t1 < t < t2},

since a−1 = [(m−1)v]−1 is not bounded near the boundaries of E1. This difficulty will be solved

below by cutting J0(t) a little bit near its boundaries. Since l(t) and r(t) are continuous and

bounded functions in [t1, t2], there exists ρ1 > 0 small such that

η(l(t), t) = −v̄(l(t)) ≤ −ρ1, η(r(t), t) = −v̄(r(t)) ≤ −ρ1, t ∈ [t1, t2].

By the uniform continuity of v, there exists ε1 > 0 small such that

η(x, t) < 0, l(t) ≤ x ≤ l(t) + ε1 or r(t) + ε1 ≤ x ≤ r(t), t ∈ [t1, t2]
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and, for some small ρ2 > 0, there holds

v(x, t) ≥ ρ2 in E2 := {(x, t) | l(t) + ε1 ≤ x ≤ r(t)− ε1, t1 ≤ t ≤ t2}.

Now we see that a, b, c satisfy the conditions in (3.2) in the domain E2. Hence the classical

zero number diminishing properties as in Proposition 3.1 hold. Since ε1 > 0, t1 − T6 > 0 can be

chosen as small as possible and t2 can be chosen as large as possible, we actually have the same

zero number diminishing properties in E1 with (t1, t2) = (T6,∞). As a consequence, η has only

degenerate zeros (not on the boundaries l(t) and r(t)) in finite time, that is, there exists T7 > T6

such that η(·, t) not longer has degenerate zeros for t ≥ T7. Thus, for any t ∈ [−1, 1] and all

large n, η(x, tn + t) = v(x, tn + t) − v̄(x) has no degenerate zeros in J0(tn + t). This implies

that (see, for example [13, Lemma 2.6]) its limit w(x, t)− v̄(x) either is 0 identically, or has no

degenerate zeros in the spatial domain where w(·, t) > 0. The latter, however, contradicts the

initial conditions in (3.19). This proves that w(x, 0) ≡ v̄(x) in spt[v̄].

(b). Now we assume v̄ is a stationary solution as in case (b). Since l(t) → −∞ (t → ∞),

there exists T8 > T6 such that l(t) < l0 for t ≥ T8. Hence, we should consider η in

E3 := {(x, t) | l0 < x < r(t), t ≥ T8}.

On its left boundary {x = l0, t > T8}, we have η > 0. By continuity, for any bounded time

interval (t1, t2) ⊂ (T8,∞), there exists ε2 > 0 and ρ3 = ρ3(t1, t2, l0) > 0 such that

η(x, t) > ρ3, l0 ≤ x ≤ l0 + ε2, t ∈ (t1, t2).

Furthermore, the term v̄xx(l0 + ε2) in the coefficient c of (3.21) is also bounded, though v̄xx(l0)

maybe not. Thus, we can use the zero number diminishing properties in the domain {(x, t) |
l0 + ε2 < x < r(t), t1 < t < t2}. By the arbitrariness of ε2 and (t1, t2), we see that the zero

number diminishing properties hold actually in the domain E3. The rest proof is similar as that

in (a). This proves the quasi-convergence in case (b).

The proof for w(x, 0) ≡ v̄ (x ∈ spt[v̄]) in cases (c) and (d) are similar as that in case (b).

Step 6. To show that any ω-limit of v is a positive stationary solution of (pCP) in the case

−l∞, r∞ = ∞. From the previous step we see that, in the case −l∞, r∞ = ∞, any ω-limit of

v must be a stationary solution of the equation pRPME as in (a)-(d). By the monotonicity

in Corollary 3.7, the cases (b) and (c) are impossible. We now prove that the case (d) is also

impossible.

1). By the monotonicity of v and w outside of [−b, b], we see that the maximum point

z0 :=
l0+r0

2 of v̄(x) ≡ w(x, 0)|spt[v̄] lies in [−b, b], and so, with ℓ := r0−l0
2 , we have

−b− ℓ ≤ l0 < z0 < r0 ≤ b+ ℓ.

2). We show that v(−3b − 2ℓ, t) < v̄(z0) for all t > 0. Assume by contradiction that the

reversed inequality holds at some time t1 > 0. Then by the monotonicity of v in (l(t1),−b) we
have

v(x, t1) ≥ v̄(x+ z0 + 3b+ ℓ), x ∈ [−3b− 2ℓ,−3b].
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Since v̄(x+z0+3b+ℓ) is a time-independent weak subsolution of the problem (pCP), by Lemma

2.3 we have

v(x, t) ≥ v̄(x+ z0 + 3b+ ℓ), x ∈ R, t ≥ t1,

and so

w(x, 0) ≥ v̄(x+ z0 + 3b+ ℓ), x ∈ R.

By the monotonicity of w(x, 0) in [−3b− 2ℓ,−b] we have

(3.22) w(x, 0) ≥ v̄(z0), x ∈ [−3b− ℓ,−b].

On the other hand, w(x, 0) = 0 at l0 ∈ [−b−ℓ, b+ℓ]. So w(x, 0) has at least one maximum point

x1 ∈ [−b, l0). Without loss of generality, assume x1 is the smallest one of such points. Then, as

a stationary solution of pRPME, w(x, 0) is symmetric with respect to x1. This implies by (3.22)

that

w(x, 0) ≥ v̄(z0), x ∈ [−3b− ℓ, 2x1 + 3b+ ℓ] ⊃ [−b− ℓ, b+ ℓ],

contradicts 1).

3). If v̄(x) ≡ w(x, 0)|spt[v̄] is not only a stationary solution of the equation pRPME, but also

a stationary solution of (pCP), then we can derive a contradiction as the following. Choose t′

large such that l(t′) < −3b− 4ℓ, and choose L′ such that

−L′ + l0 < l(t′) < −L′ + r0

and v̄(x+L′) has exactly one intersection point with v(x, t′). Then using the intersection number

properties Lemma 3.3 and using the fact in 2) we conclude that l(t) will never pass across the

left boundary −L′ + l0 of v̄(x+ L′). This contradicts the assumption l∞ = −∞.

4). We then consider the case where v̄(x) ≡ w(x, 0)|spt[v̄] is just a stationary solution of the

equation pRPME, but not a stationary one of (pCP). Denote by v(x, t; v̄) the solution of (pCP)

with initial data v̄, and denote its free boundaries by l̄(t) and r̄(t). By Lemma 2.3, the waiting

times t∗(l0) = t∗(r0) = 0. Hence, −l̄(t) and r̄(t) are strictly increasing in t > 0, and

v(x, t; v̄)|[l̄(t),r̄(t)] ≡ w(x, t)|[l̄(t),r̄(t)], 0 < t≪ 1.

Since v̄ is a (stationary) subsolution of (pCP), by Lemma 2.3 we have v(x, t; v̄) > v̄(x) on the

support of v̄, and so v(x, t; v̄) is strictly increasing in t. Therefore, for any small τ > 0, we have

l̄(2τ) < l̄(τ) < l̄(0) = l0 < r0 = r̄(0) < r̄(τ) < r̄(2τ),

and

w(x, 0) < w(x, τ) for x ∈ [l0, r0], w(x, τ) < w(x, 2τ) for x ∈ [l̄(τ), r̄(τ)].

By Step 1, v(x, tn + 2τ) → w(x, 2τ) as n→ ∞, and so for some large n0 we have

v(x, tn0 + 2τ) ≥ w(x, τ), x ∈ [l̄(τ), r̄(τ)].

From the previous step we know that w(x, τ) is a stationary solution of pRPME in [l̄(τ), r̄(τ)].

Hence, w(x, τ)|[l̄(τ),r̄(τ)] is a time-independent weak subsolution of (pCP). By comparison we

have

v(x, t) ≥ w(x, τ), x ∈ [l̄(τ), r̄(τ)], t > tn0 + 2τ.

This contradicts the fact that w(x, 0) is an ω-limit of v(x, t).
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Consequently, the case (d) is also impossible. In other words, the only possible case is (a) in

Step 5. We then have the following claim.

Claim 2. When −l∞, r∞ = ∞, any ω-limit w(x) of v(x, t;u0) is a stationary solution of pRPME

which is positive in R, and so is a stationary solution of the Cauchy problem (pCP).

Step 7. Convergence in case −l∞, r∞ = ∞. By Claim 2, the convergence v(x, tn;u0) → w(x)

in Step 1 holds actually in C2
loc(R) topology. Therefore, the solution v(·, t) is a classical one in

(ln1(t), r2n(t)). Then, using the classical zero number diminishing properties and using similar

arguments as proving [11, Theorem 1.1], [12, Theorem 1.1] (see also [13, Theorem 1.1]) we

conclude that v(·, t) converges as t→ ∞ to either a nonnegative zero of g, or

v(·, t) → V0(· − z0) > 0,

where z0 ∈ [−b, b] and V0 is an evenly decreasing positive stationary solution of pRPME, that

is,

U0(x) :=

(
m− 1

m
V0(x)

) 1
m−1

> 0, x ∈ R

is a Type I ground state solution of (CP) as given in Section 1.

This completes the proof of Theorem 1.1. □

4. Monostable RPME

In this section we study the hair-trigger effect for the solutions of (CP) or (pCP) with monos-

table type of reaction.

4.1. Stationary solutions. A stationary solution u = q(x) of (CP) satisfies

(4.1) (qm)′′ + f(q) = 0, x ∈ J ⊂ R.

We will use the phase portrait to present all the nonnegative stationary solutions that we are

interested in. The equation (4.1) can be rewritten as a pair of first order equations

(4.2)

{
p = (qm)′ = mqm−1q′,

p′ = −f(q),

or the first order equation

(4.3) pdp = −mqm−1f(q)dq.

Its first integral is

(4.4) p2 = C − 2m

∫ q

0
rm−1f(r)dr,

for suitable choice of C. We consider only the trajectories in the region {q ≥ 0} which correspond

to nonnegative solutions.

Case A. The points (0, 0) and (1, 0) are singular ones on the (q, p)-phase plane for the system

(4.2). Hence, they correspond to constant stationary solutions:

Uq(x) ≡ q, x ∈ R,
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for q = 0, 1. We will show below that U1 is the only possible choice for the ω-limit of the

solution u of (CP).

Case B. When C = C0 := 2m
∫ 1
0 r

m−1f(r)dr, the trajectories on the phase plane are two

curves, whose functions are

p = P0(q) :=

(
2m

∫ 1

q
rm−1f(r)dr

)1/2

and p = −P0(q), 0 ≤ q < 1.

They connect regular points Q± := (0,±
√
C0) to the singular point (1, 0). Denote the corre-

sponding stationary solution by U±(x). Then

U+(l0) = 0, U+(x) > 0 for x > l0, and U+(x) ↗ 1 as x→ +∞;

U−(r0) = 0, U−(x) > 0 for x < r0, and U−(x) ↗ 1 as x→ −∞,

where l0 is the left boundary of U+ and r0 is the right boundary of U−.

Case C. When C > C0, the trajectories start at (0,±
√
C), go beyond the line q = 1 and so

the the corresponding stationary solutions are unbounded ones, which will not be used below.

Case D. When 0 < C < C0, the trajectory p2+2m
∫ q
0 r

m−1f(r)dr = C is a connected curve,

symmetric with respect to the q-axis, and connecting the points Q+ := (0,
√
C), Q0 := (q0, 0)

and Q− := (0,−
√
C) for a unique q0 ∈ (0, 1) which is defined as the following

C = 2m

∫ q0

0
rm−1f(r)dr.

This trajectory corresponds to a stationary solution Uq0(x), under the normalized condition

U ′
q0(0) = 0, it satisfies

(4.5)

Uq0(0) = q0, Uq0(±L0) = 0 for some L0 > 0, U ′
q0(x) < 0, Uq0(x) = Uq0(−x) for x ∈ (0, L0).

We now study the order of the solution U in Cases B (in this case, it is U+), C or D near its

left boundary. Denote the left boundary by l0. By (4.4) we have

(Um)′ =

(
C − 2m

∫ U

0
rm−1f(r)dr

)1/2

∼
√
C, x→ l0 + 0.

So,

(4.6) Um(x) ∼
√
C(x− l0), x→ l0 + 0.

If we use V := m
m−1U

m−1 to denote the corresponding stationary solution of pRPME we have

(4.7) V (x) =
m

m− 1
C

m−1
2m (x− l0)

m−1
m , x→ l0 + 0.

Remark 4.1. We point out that the solutions U± in Case B and Uq0 in Case D are just

stationary solutions of RPME but not stationary solutions of the Cauchy problem (CP). In fact,

the expression in (4.7) and Lemma 2.1 imply that, when we choose V (x) as an initial data of the

problem (pCP), the waiting time of its boundaries are 0. In particular, in the bistable RPME,

Uq0 is not a Type II ground state solution.

We continue to specify the relationship between the support width 2L0 of Uq0 in Case D and

its height q0.



CONVERGENCE OF THE SOLUTIONS OF RPME 37

Lemma 4.2. When f is a monostable reaction term, there holds L0 → 0 as q0 → 0 + 0.

In addition, if f satisfies f(ρu) > ρmf(u) for ρ, u ∈ (0, 1), then L0 is strictly increasing in

q0 ∈ (0, 1).

Proof. By f ′(0) > 0, there exists δ > 0 small such that

(4.8) f(u) ≥ π2

4ε2
um, u ∈ [0, δ).

For any q0 ∈ (0, δ), by (4.4) we have

p2 = 2m

∫ q0

q
rm−1f(r)dr ≥ π2

4ε2
(q2m0 − q2m).

Therefore, on x ∈ [−L0, 0] we have

p = (qm)′ ≥ π

2ε
qm0

[
1−

( q
q0

)2m]1/2
.

Since q(−L0) = 0, q(0) = q0, by integrating the above inequality over [−L0, 0] we have

π

2ε
L0 ≤

∫ 1

0

dr√
1− r2

=
π

2
,

that is, L0 ≤ ε.

Denote ṽ := um and f̃(s) := f(s
1
m ), then the stationary problem

(um)′′ + f(u) = 0, u(x) > 0 in (−L0, L0), u(±L0) = 0,

is equivalent to

ṽ′′ + f̃(ṽ) = 0, ṽ(x) > 0 in (−L0, L0), ṽ(±L0) = 0.

By our assumption f̃ is a Fisher-KPP type of nonlinearity: f̃(s)/s is decreasing in s ∈ (0, 1).

Hence ṽ(0) is strictly increasing in L0. This proves the lemma. □

4.2. Hair-trigger effect. Now we can use the general convergence theorem to prove the hair-

trigger effect easily.

Proof of Theorem 1.3. By Lemma 4.2, there exist sufficiently small q0 > 0, small L0 > 0 and

some x0 ∈ R such that

(4.9) u0(x) ≥ Uq0(x− x0), x ∈ [−L0 + x0, L0 + x0].

Since Uq0(x−x0) is a time-independent very weak subsolution of (CP), by the comparison result

in Lemma 2.3 (iv) we have

u(x, t) ≥ Uq0(x− x0), x ∈ R, t > 0.

In the monostable PME, the only stationary solution of (CP) larger than Uq0 is 1. So, by using

the general convergence theorem we conclude that u(x, t) → 1 in L∞
loc(R) topology. This proves

the hair-trigger effect. □

Remark 4.3. From the above proofs we see that (4.8) holds if lim
u→0+0

f(u)
um = ∞. So, the hair-

trigger effect for the monostable RPME actually holds under this condition rather than the

stronger one f ′(0) > 0.
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5. Combustion RPME

In this section we study the asymptotic behavior for the solutions of (CP) or (pCP) with

combustion type of reaction: f satisfies (fC).

5.1. Stationary solutions. On the nonnegative stationary solutions of the equation in (CP),

we first have Case A - Case D types as in the monostable RPME. The difference is that: in Case

A the solutions are Uq ≡ q for q ∈ [0, θ]∪ {1} in the combustion case (However, only U0, Uθ and

U1 are possible choices for the ω-limits of the solution u of (CP).); in Case D, the compactly

supported stationary solutions Uq0 exists only for q0 ∈ (θ, 1). The decay rates in (4.6) and (4.7)

remain valid (in fact, they are true for x ∈ [l0, l0 + C−1/2θm] due to f(u) ≡ 0 in [0, θ]). As we

mentioned in Remark 4.1, each Uq0 is just a stationary solution of the equation but not of the

Cauchy problem (CP).

5.2. Asymptotic behavior of the solutions. Since the current problem has no Type I and

Type II ground state solutions, by the general convergence results in Theorem 1.1 we know that

u(·, t) converges as t→ ∞ to some constant solution in Case A.

Now we present a sufficient condition for the spreading phenomena: u(·, t) → 1 as t→ ∞.

Lemma 5.1. Assume f is a combustion reaction, u0 ∈ X satisfies

u0(x) ≥ Uq0(x), x ∈ R,

for some stationary solution Uq0 in Case D. Then spreading happens for the solution u of (CP).

Proof. By the comparison result, the solution u(x, t) of (CP) remains above Uq0(x). Hence any

ω-limit of u is also above Uq0(x). The only possible choice for such stationary solutions in Case

A is nothing but U1 ≡ 1. Moreover, due to the finite propagation speed and the properties in

Lemma 3.6, we know that spt[u(·, t)] = [l(t), r(t)] for large t, hence the convergence u→ 1 holds

in the sense of (1.7). □

Next we present some sufficient conditions for the vanishing phenomena: u(·, t) → 0 as t→ ∞.

Lemma 5.2. Assume f is a combustion reaction, u0 ∈ X satisfies u0(x) ≤ θ. Then vanishing

happens in the topologies of L∞(R) for the solution u of (CP).

Proof. The proof is simple since u actually solves the PME when u(x, t) ≤ θ, and so we can take

a ZKB solution as a supersolution to suppress u to 0. □

Remark 5.3. For any q ∈ (0, θ), Uq ≡ q will not be an ω-limit. In fact, if u(x, tn) → q (n→ ∞)

in the Cloc(R) topology, then, in the bounded interval [−b, b], u(x, T ) < θ for some large T .

This inequality also holds in [l(T ), r(T )] by the monotonicity outside of [−b, b]. Hence vanishing
happens for u by the above lemma, a contradiction.

To prove the sharpness of the transition: u→ θ, we need the following lemmas.

Lemma 5.4. Assume (F). For i = 1, 2, assume ui0 ∈ C(R) satisfies

ui0(x) > 0 in (li(0), ri(0)), ui0(x) = 0 for x ≤ li(0) and x ≥ ri(0),
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and

u10(x) ≤ u20(x), x ∈ R.

Let ui be the solution of (CP) with initial data ui0 and let li(t), ri(t) be its left and right free

boundaries. Then there exist T ≥ 0, τ ≥ 0 and ε0 > 0 such that

(5.1) u1(x, t) ≤ u2(x+ ε, t+ τ), x ∈ R, t ≥ T, ε ∈ [0, ε0] or ε ∈ [−ε0, 0],

provided one of the following conditions holds:

(i). r2(t)− l2(t) ̸≡ r1(t)− l1(t) for all t ≥ 0;

(ii). t∗(l2(0)) or t
∗(r2(0)) is finite, and r2(t)− l2(t) = r1(t)− l1(t) for all t ≥ 0.

Proof. By comparison we have

u1(x, t) ≤ u2(x, t) for x ∈ R and t ≥ 0, l2(t) ≤ l1(t) < r1(t) ≤ r2(t) for t ≥ 0.

(i). In case r2(T0) − l2(T0) > r1(T0) − l1(T0) for some T0 ≥ 0, we assume without loss

of generality that l2(T0) < l1(T0), and by continuity assume T0 > 0. Then using the strong

maximum principle in {(x, t) | l1(t) ≤ x < r1(t), T0 − 1 ≪ t ≤ T0} we have

u1(x, T0) < u2(x, T0) for x ∈ [l1(T0), r1(T0)).

So, there exists a small ε0 > 0 such that

u1(x, T0) < u2(x+ ε, T0) for x ∈ [l1(T0), r1(T0)], ε ∈ [−ε0, 0).

The conclusion then follows from the comparison principle for T = T0 and τ = 0.

(ii). Assume without loss of generality that t∗(l2(0)) < ∞. Given T1 > t∗(l2(0)), then both

u1(·, t) and u2(·, t) are strictly increasing in J1 := [x1, l1(0)], where x1 := l2(T1) = l1(T1). By

the monotonicity of l2(t) after the waiting time we see that l2(t) is strictly decreasing in t ≥ T1.

Hence, for any small t > 0 we have

l2(T1 + t) < x1 = l2(T1) and 0 < u2(x1, T1 + t) = u1(x2(t), T1) < u1(l1(0), T1),

for some x2(t) ∈ [x1, l1(0)]. Choose τ > 0 small, and denote

E1 := {(x, t) | l2(T1 + t) ≤ x ≤ x1, 0 ≤ t ≤ τ} and E2 := {(x, t) | x1 ≤ x ≤ x2(t), 0 ≤ t ≤ τ}.

By the monotonicity of u1(·, T1) and u2(·, T1 + τ) in [x1, x2(τ)], we have

u1(x, T1) < u1(x2(τ), T1) = u2(x1, T1 + τ) < u2(x, T1 + τ), x ∈ [x1, x2(τ)].

Thus there exists ε0 > 0 small such that

(5.2) u1(x, T1) < u2(x+ ε, T1 + τ), x ∈ [x1, x2(τ)], ε ∈ [−ε0, 0].

On the other hand, when τ > 0 and ε0 are sufficiently small we have

u1(x, T1) < u2(x+ ε, T1 + τ), x ∈ [x2(τ), r1(T1)], ε ∈ [−ε0, 0].

Combining with (5.2) we have

u1(x, T1) < u2(x+ ε, T1 + τ), x ∈ [l1(T1), r1(T1)], ε ∈ [−ε0, 0].

Then the conclusion follows from the comparison principle. □
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Lemma 5.5. Under the assumptions of the previous lemma, if we further assume that u1(·, t) →
θ as t→ ∞, then u2(·, t) ̸→ θ as t→ ∞.

Proof. Since u1 → θ, there exists T ′ ≥ T + 1 for T in (5.1) such that

(5.3) u1(x, t) < θ +
δ

2
, x ∈ R, t ≥ T ′ − 1,

where δ is given in (1.4). Now, for λ ∈ (0, 1), we define

wλ(x, t) := λ−2u1(λ
mx, λ2t), x ∈ R, t ≥ T ′.

We choose λ0 ∈ (0, 1) close enough to 1 so that, for every λ ∈ [λ0, 1),

(5.4) wλ(x, t) ≤ θ + δ, x ∈ R, t ≥ T ′,

and, by (5.1),

(5.5) wλ(x, T ′) ≤ u2(x+ ε1, T
′), x ∈ [λ−ml1(T

′), λ−mr1(T
′)]

for some ε1. Observe that wλ satisfies the equation

wλ
t = (wλ)mxx + f(λ2wλ), x ∈ R, t > 0.

By (5.4) and the assumption in (fC) we have f(λ
2wλ) ≤ f(wλ). (Here is the only place we use the

assumption f ′(u) > 0 in (θ, θ + δ].) Therefore in view of (5.5), we find that wλ is a subsolution

of (CP) for t ≥ T ′. It follows that u2(x+ ε1, t) ≥ wλ(x, t) for t ≥ T ′. If u2 → θ (t → ∞), then

by taking limit as t→ ∞ we conclude that θ ≥ λ−2θ, a contradiction. □

Proof of Theorem 1.5. From above lemmas we know that u(·, t) converges as t→ ∞ to 0, or θ,

or 1.

For the initial data ϕσ ∈ X, when σ > 0 is small we have by (Φ3) that ϕσ ≤ θ. Hence,

vanishing happens for uσ by Lemma 5.2. Denote

Σ0 := {σ > 0 | vanishing happens for uσ}.

Then Σ0 is not empty, and, by comparison, it is an interval. Since ϕσ depends on σ continuously,

so does the solution uσ (cf. [5]). Then, Σ0 is an open interval (0, σ∗) for some σ∗ ∈ (0,∞].

In case σ∗ = ∞ (this is the complete vanishing case, as stated in Theorem 7.1), there is

nothing left to prove.

The left case is σ∗ ∈ (0,∞). (This happens in particular when the condition in Lemma 5.1

holds.) In this case, the solution uσ∗ with critical initial data ϕσ∗ converges to θ or 1. We will

show that uσ∗ is a transition solution. Otherwise, spreading happens for uσ∗ → 1, that is,

σ∗ ∈ Σ1 := {σ ≥ σ∗ | spreading happens for uσ}.

Then, for any q0 ∈ (θ, 1) and the corresponding stationary solution Uq0 in Case D in Subsection

5.1, there exists a sufficiently large T such that

uσ∗(x, T ) > Uq0(x), x ∈ spt[Uq0 ].
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By the continuous dependence of u on the initial data, for any σ satisfying 0 < σ∗ − σ ≪ 1, we

also have

uσ(x, T ) > Uq0(x), x ∈ spt[Uq0 ].

Consequently, the ω-limits of uσ are bigger than Uq0 , but these ω-limits are nothing but 1, that

is, spreading happens for uσ. This implies that Σ1 is an open set and it contains σ∗, contradicts

the definition of σ∗. Therefore, uσ∗ is a transition solution, that is, u(x, t) → θ as t → ∞, and

so both of its left and right boundaries tend to infinity. It follows from Lemmas 5.4 and 5.5 that

uσ ̸→ θ for any σ > σ∗. Consequently, Σ1 = (σ∗,∞).

To finish the proof of Theorem 1.5, we only need to prove the asymptotic speeds of the free

boundaries in (1.12) for the transition solution, which follows from Proposition 5.7 below.

This completes the proof of Theorem 1.5. □

At the end of this section we study the asymptotic speeds for the boundaries of the transition

solution of (CP). In the current combustion case, the equation is PME ut = (um)xx when u ≤ θ.

So, it is convenient to compare the solutions of this equation, especially, the selfsimilar solutions,

with the solution of (CP). For this purpose, we need a special selfsimilar solution which solves

the following problem:

(5.6)


vt = (m− 1)vvxx + v2x, 0 < x < ρ(t), t > 0, ,

v(0, t) = Θ := m
m−1θ

m−1, t > 0,

v(ρ(t), t) = 0, t > 0,

ρ′(t) = −vx(ρ(t), t), t > 0.

Lemma 5.6. There exists y0 satisfying

(5.7) 0 < y0 < θ
m−1

2

such that, with ρ(t) = 2y0
√
t, the problem (5.6) has a selfsimilar solution v(x, t) = V ( x

2
√
t
).

Proof. The proof is divided into two steps.

Step 1. An auxiliary problem. We first consider the following initial value problem

(5.8)

 ξ′′(y) = −2y
(
ξ

1
m

)′
(y) = −2

y

m
ξ

1−m
m ξ′(y), y > 0,

ξ(0) = θm, ξ′(0) = −2θ
m+1

2 .

It is easily seen that, for any h ∈ (0, θm), the constant function ξ ≡ h is a solution of the

equation. Hence, it follows from ξ′(0) < 0 that ξ′(y) < 0 as long as ξ > 0. In other words, there

exists y0 ∈ (0,∞] such that

ξ′(y) < 0, ξ(y) > 0, 0 ≤ y < y0.

We now show that y0 <∞ and so ξ(y0) = 0. In fact, for any ỹ, y ∈ (0, y0) with ỹ < y we have

ξ′′(s) < −2
ỹ

m
ξ

1−m
m (s)ξ′(s), 0 < s < ỹ.

Integrating it over [0, ỹ] we have

ξ′(ỹ) < −2θ
m+1

2 + 2ỹ
(
θ − ξ

1
m (ỹ)

)
< −2θ

m+1
2 + 2θỹ.
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Integrating it again over [0, y] we have

ξ(y) < ξ̃(y) := θm − 2θ
m+1

2 y + θy2.

Since ξ̃(y) has a unique zero y∗ := θ
m−1

2 , we conclude that

(5.9) y0 < y∗.

Step 2. Selfsimilar solution. A direct calculation shows that

u(x, t) = ξ
1
m

(
x

2
√
t

)
is a selfsimilar solution of {

ut = (um)xx, 0 < x < ρ(t), t > 0, ,

u(0, t) = θ, u(ρ(t), t) = 0, t > 0,

with ρ(t) := 2y0
√
t. Therefore,

v(x, t) = V

(
x

2
√
t

)
:=

m

m− 1
ξ

m−1
m

(
x

2
√
t

)
is a selfsimilar solution of the first equation in (5.6). It also satisfies the boundary conditions in

(5.6) at x = 0 and x = ρ(t). Moreover, the interface x = ρ(t) satisfies the Darcy law (cf. [30,

Theorem 15.19]):

ρ′(t) = −vx(ρ(t), t).

In other words, we have V ′(y0) = −2y0. This proves the lemma. □

This lemma implies that V
(

x
2
√
t

)
is not only a solution of the equation in (5.6), but also a

solution of the following Cauchy-Dirichlet problem

(5.10)

{
vt = (m− 1)vvxx + v2x, x > 0, t > 0, ,

v(0, t) = Θ := m
m−1θ

m−1, t > 0,

with one free boundary ρ(t).

Proposition 5.7. Assume f satisfies (fC), u is a transition solution of (CP). Then its left and

right free boundaries l(t) and r(t) satisfy the asymptotic speed as in (1.12).

Proof. The conclusion can be proved in a similar way as the authors did for the reaction diffusion

equation in [12, Proposition 4.2]. Note that there are several key points in the proof: (1) using

the zero number argument to study the number of intersection points between two solutions.

Here we see that the argument remains valid for our problem by Lemma 3.3 and by the Darcy

law; (2) using a selfsimilar solution satisfying the Darcy law (which is called the Stefan boundary

condition in [12]) to construct lower and supersolutions. Here we only need to use the selfsimilar

solution V ( x
2
√
t
) obtained in the previous lemma to replace the selfsimilar solution Φ(t, x) in [12];

(3) using the limit θ(t)/r(t) → 0 (t→ ∞) as an extra condition, where θ(t) is the θ-level set of

u(·, t). This limit remains true for our problem and the proof is the same as that in Subsection

4.3 in [12]. □
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6. Bistable RPME

In this section we study the asymptotic behavior for the solutions of (CP) or (pCP) with

bistable type of reaction: f satisfies (fB).

6.1. Stationary solutions. On the nonnegative stationary solutions of the equation in (CP),

we first have Case A - Case D types as in the monostable RPME. The difference is that: in Case

A the solutions are Uq for q = 0, θ, 1 in the current case; in Case D, the compactly supported

stationary solutions Uq0 exists for q0 ∈ (θ1, 1), where θ1 is defined below by (6.1). The decay rates

in (4.6) and (4.7) remain valid. As we mentioned in Remark 4.1, each Uq0 is just a stationary

solution of the equation but not of the Cauchy problem (CP).

Besides these stationary solutions, for the bistable RPME, there are two other kinds of sta-

tionary solutions: periodic solutions and the ground state solution.

Case E. In the (q, p)-phase plane, besides (0, 0) and (1, 0), we have another singular point

(θ, 0), which is a center. There are infinitely many closed trajectories surrounding (θ, 0). Each

of them corresponds to a positive stationary periodic solution Uper(x). By the monotonicity

result in Corollary 3.7, none of them can be a candidate of the ω-limit for the solution of (CP)

with u0 ∈ X.

Case F. In the phase plane, there is a homoclinic orbit which starts and ends at (0, 0),

crossing the point (θ1, 0), with θ1 ∈ (θ, 1) given by

(6.1)

∫ θ1

0
rm−1f(r)dr = 0.

The function of this homoclinic orbit is

p2 = −2m

∫ q

0
rm−1f(r)dr, 0 < q ≤ θ1.

Denote the corresponding solution by U(x), and assume it satisfies the normalized condition

U(0) = θ1, U ′(0) = 0.

Assume the largest interval where U remains positive is (−L,L) for some L ∈ (0,∞]. We can

give a formula for L as the following. Denote η := Um, then

(6.2)
dη

dx
= p(η) :=

(
−2m

∫ η1/m

0
rm−1f(r)dr

)1/2

, x ∈ (−L, 0].

Therefore,

(6.3) L :=

∫ θm1

0

dη

p(η)
=

∫ θm1

0

(
−2m

∫ η1/m

0
rm−1f(r)dr

)−1/2

dη.

Under the assumptions in (fB) we have f ′(0) < 0 and so f(q) ∼ f ′(0)q as q → 0 + 0. We will

see below that L < ∞ in this case. However, L might be ∞ if f is a bistable nonlinearity but

without the assumption f ′(0) < 0.

Lemma 6.1. Assume f ∈ C([0,∞)) ∩ C1((0,∞)) is a bistable nonlinearity satisfying (1.3).

Further assume that

(6.4) f(q) = −λqα(1 + o(1)) as q → 0 + 0,
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for some λ > 0 and α > 0. Then L = ∞ when α ≥ m; L <∞ when 0 < α < m.

Proof. Substituting (6.4) into the formula p(η) in (6.2) we have

(6.5) p(η) ∼
(

2mλ

m+ α

)1/2

η
m+α
2m as η → 0 + 0.

Case 1. α ≥ m. When 0 < δ ≪ 1, we have

(6.6) L >

∫ δ

0

(
m+ α

3mλ

)1/2

η−
m+α
2m dη = ∞.

Thus, the solution U(x) > 0 in R, it is a Type I ground state solution, as that in the bistable

RDEs.

Case 2. 0 < α < m. When 0 < δ ≪ 1, we have

(6.7) L <

∫ θm1

δ

dη

p(η)
+

∫ δ

0

(
m+ α

mλ

)1/2

η−
m+α
2m dη <∞.

By (6.5) and (6.2) we have

dη

dx
∼
(

2mλ

m+ α

)1/2

η
m+α
2m as x→ −L+ 0,

and so
2m

m− α

(m+ α

2mλ

)1/2(
η

m−α
2m

)′
∼ 1, as x→ −L+ 0.

Hence,

(6.8) U(x) = η1/m(x) ∼ A1(α, λ)(x+ L)
2

m−α as x→ −L+ 0,

with

A1(α, λ) :=

(
m− α

2m

) 2
m−α

(
2mλ

m+ α

) 1
m−α

.

From (6.8) we see that, at the boundaries ±L, U is continuous for all m > α, Lipschitz when

α < m ≤ 2 + α and C1 when α < m < 2 + α.

If we denote by V (x) := m
m−1U

m−1 the corresponding pressure of U , then we have

(6.9)


V ∈ C([−L,L]), V (0) = Θ1 :=

m
m−1θ

m−1
1 , V (±L) = 0,

V (x) > 0, V ′(x) < 0, V (x) = V (−x) for x ∈ (0, L),

V (x) ∼ A(x+ L)
2(m−1)
m−α as x→ −L+ 0, with A := m

m−1A
m−1
1 .

This proves the lemma. □

Remark 6.2. In the special case when f is a bistable nonlinearity with f ′(0) < 0 as in (fB), we

have α = 1 and λ = −f ′(0), and so V in (6.9) satisfies:

V (x) ∼ A(x+ L)2 as x→ −L+ 0, with A :=
−(m− 1)f ′(0)

2(m+ 1)
.

Thus V ′(−L + 0) = 0, and so V or U = (m−1
m V )

1
m−1 is a Type II ground state solution. By

Lemma 2.3, V (x) is a stationary solution not only for the bistable RPME, but also for the

Cauchy problem (pCP). This is different from the compactly supported solutions in Case D,
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where they are only stationary solutions of the RPME but not of (pCP). Furthermore, the

combinations of such solutions, like

(6.10) V(x) := V (x− z1) + V (x− z2), with z2 − z1 ≥ 2L,

are also Type II ground state stationary solutions of the problem (pCP).

6.2. Asymptotic behavior. Proof of Theorem 1.6: We prove the trichotomy result in Theorem

1.6. By f ′(0) < 0, it follows from Remark 6.2 that, the problem has only Type II ground state

solution as in (6.9) or (6.10). By the general convergence result Theorem 1.1 we know that u

converges as t→ ∞ to 0, θ, 1, or a Type II ground state solution.

The constant solution θ can be excluded easily from the candidates. In fact, for any positive

stationary periodic solution Uper(x) of the equation (see Case E in Subsection 6.1), by the

classical zero number argument we see that the zero number of uσ(·, t) − Uper(·) is finite and

decreasing in t > 0. However, if uσ → θ for some σ > 0, then the above zero number tends to

that of θ − Uper(·), which is infinite. So we derive a contradiction.

For the initial data ϕσ ∈ X, when σ > 0 is small we have by (Φ3) that ϕσ ≤ θ. Hence, a

similar argument as in Lemma 5.2 implies that vanishing happens for uσ. Denote

Σ0 := {σ > 0 | vanishing happens for uσ}.

Then Σ0 is an open interval (0, σ∗) for some σ∗ ∈ (0,∞], as in the combustion equation.

In case σ∗ = ∞ (this is the complete vanishing case, as stated in Theorem 7.1), there is

nothing left to prove.

In case σ∗ is a positive number, we can show that uσ∗ is a transition solution, that is, it

converges to some Type II ground state solution U . Otherwise, it tends to 1. Then the set

Σ1 := {σ > 0 | uσ → 1 as t→ ∞}

is not empty. Since this set is open as proved in the combustion case and since σ∗ ∈ Σ1 by our

assumption, we see that σ ∈ Σ1 for any σ with 0 < σ∗ − σ ≪ 1. This contradicts the definition

of σ∗. In what follows we assume u(x, t) converges to a Type II ground state solution U(x) as

in (1.8).

If Σ1 is empty, then uσ is a transition solution for all σ ≥ σ∗ (this is the case σ∗ ∈ (0,∞)

and σ∗ = ∞ in Theorem 1.6), and the proof is also completed. In case Σ1 is a non-empty open

set, by the comparison principle, it is actually an interval (σ∗,∞) for some σ∗ ≥ σ∗. For each

σ ∈ [σ∗, σ
∗], uσ is a transition solution.

This completes the proof for Theorem 1.6. □

On the sharpness of the transition solution: σ∗ = σ∗, we give some sufficient conditions.

Lemma 6.3. Let uσ be the solution of (CP) with bistable f and with initial data ϕσ satisfying

(Φ1)-(Φ3). Assume uσ∗ is a transition solution, then, for any σ > σ∗, uσ is no longer a transition

one, if one of the following conditions holds:

(i). (Φ2) is strengthened as: ϕσ∗(x) ≤ ϕσ(x+ ε) when |ε| is small;
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(ii). there is i ∈ {1, 2, · · · , k} such that ri(t) − li(t) ̸≡ r∗i(t) − l∗i(t), where li(t), ri(t) are the

left and right boundaries of the i-th connected component of the the support spt[uσ(·, t)],
l∗i(t), r∗i(t) are the analogues of spt[uσ∗(·, t)];

(iii). li(t) ≡ l∗i(t), ri(t) ≡ r∗i(t) for all i = {1, 2, · · · , k}, and one of the waiting times of these

boundaries is finite.

Proof. In a similar way as proving Lemma 5.4 we see that any of the three conditions (i)-(iii)

implies that, for some T ≥ 0, τ ≥ 0 and ε0 > 0, there holds

uσ∗(x, t) ≤ uσ(x+ ε, t+ τ), x ∈ [l∗i(t), r∗i(t)], t ≥ T, ε ∈ [0, ε0] or ε ∈ [−ε0, 0].

In case uσ is also a transition solution, by taking limit as t→ ∞ in this inequality we conclude

that

U(x− z∗) ≤ U(x+ ε− zσ), x ∈ [l∞∗ , r
∞
∗ ], ε ∈ [0, ε0] or ε ∈ [−ε0, 0],

for some z∗, zσ ∈ [−b, b], where l∞∗ = lim
t→∞

l∗i(t), r
∞
∗ = lim

t→∞
r∗i(t). This is impossible since U is

a Type II ground state solution. □

Remark 6.4. The only situation not included in (ii) and (iii) in the previous lemma is

(6.11)

{
li(t) ≡ l∗i(t) ≡ li(0), ri(t) ≡ r∗i(t) ≡ ri(0) for all i = {1, 2, · · · , k},
and all the waiting times of these boundaries are infinite.

We guess that, even in this case, the transition solution is also unique. The instability of Type

II ground state solution should be the essential reason.

Remark 6.5. In case the initial data ϕσ has a unique maximum point, so does u(·, t). Then the

limit of the transition solution is a Type II ground state solution U(x− z) for some z ∈ [−b, b].
Even in this case, the transition solution may have a very wide support but just converges to

a positive limit in a bounded interval. For example, assume u(x, t;σ(b2 − x2)) is a transition

solution for some σ > 0, and b > L, then

u(x, t) > 0 for x ∈ (l(t), r(t)), t > 0,

u(x, t) ≤ u(±L, t), x ∈ (l(t),−L] ∪ [L, r(t)), t > 0,

and

u(±L, t) → 0, ∥u(·, t)− U(·)∥L∞([l(t),r(t)]) → 0 as t→ ∞.

7. Complete Vanishing Phenomena

Note that, Theorem 1.3 gives the hair-trigger effect for (CP) with monostable reactions (see

also Remark 1.4 and 4.3). In the bistable and combustion cases, however, Theorems 1.5 and 1.6

show that vanishing happens for the solutions uσ when σ < σ∗, where σ∗ ∈ (0,∞]. A natural

question is that: is it really possible that σ∗ = ∞? In other words, is there b > 0 such that,

for any initial data u0 with support in [−b, b], vanishing always happens for u, no matter how

large ∥u0∥L∞ is? We call such a result as a complete vanishing phenomena. Of course, this

phenomena seems difficult in most cases. However, it does happen for some problems. Recently,

Li and Lou [23] proved that such a phenomena really happens in bistable and combustion RDEs

provided the nonlinearity f(u) decreases sufficiently fast as u → ∞. Also, it was shown in [11]
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that this phenomena occurs in the free boundary problems for RDEs with bistable, combustion

or even monostable reactions. We now show that this phenomena happens for (CP), provided

f(u) decreases fast as u→ ∞.

Theorem 7.1. Assume f ∈ C2 is a bistable or combustion reaction term. Assume also that

(F)∞ lim inf
u→+∞

−f(u)
up0

> 0,

for some p0 > m. Then there exists a small b > 0 such that vanishing always happens for the

solution of (CP) provided spt[u0] ⊂ [−b, b].

Proof. Recall that, when f is a bistable or combustion nonlinearity, there exists K > 0 such

that

f(u) ≤ Ku, u ≥ 0.

Using the pressure notation v and

g(v) := m

(
(m− 1)v

m

)m−2
m−1

f

(((m− 1)v

m

) 1
m−1

)
,

we see that

(7.1) g(v) ≤ K(m− 1)v for v ≥ 0.

Denote

p1 :=
m− 2 + p0
m− 1

, p :=
p0 + 3m− 4

2(m− 1)
, α :=

2

p− 2
.

Then p1 − p = p− 2 = p0−m
2(m−1) =

2
α . By (F)∞ we have

lim inf
v→+∞

−g(v)
vp1

> 0.

So, there exists L0 > 0 and M > 1 such that

(7.2) g(v) ≤ −L0v
p1−pvp ≤ −Lvp, v ≥M,

where L := L0M
p1−p.

Recall that θ is a positive zero of f in the bistable and combustion equations. Choose M > 1

larger if necessary (to be determined below) and denote M0 :=
(
(m−1)M

m

) 1
m−1

, then we can

choose s0 > 0, with 0 < 1−K(m− 1)s0 ≪ 1 when M0 is sufficiently large, such that

(7.3) θ

(
1−K(m−1)s0

2K

) 1
m+1

(
1 + (m−1)−K(m2−1)s0

2

) 1
m−1

= 2M0s
1

m+1

0 > 1.

Define b1 = C1(m)s
1

m+1

0 by

(7.4)
(m− 1)b21

2m(m+ 1)s
2

m+1

0

= 1− 1

2m−1
.

Then, we can choose M > 1 sufficiently large such that

(7.5) b :=M− 1
α ≤ min

{
b1
3
, 1

}
,
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(7.6) L := L0M
p1−p ≥ 3c

b1M
+ 2p[(m− 1)α(α+ 1) + α2],

where c > 0 is defined by

c := 2
1
α b−1−αα−1[2(m− 1)α(α+ 1) + 2α2 +K(m− 1)].

Denote C := (2M0)
m−1s

m−1
m+1

0 > 1, then

(7.7)

C − (m− 1)b21

2m(m+ 1)s
2

m+1

0

 1
m−1

≥ 1

2
C

1
m−1 =M0s

1
m+1

0 .

We will show that the complete vanishing phenomena happens if spt[u(x, 0)] ⊂ [−b, b].

Step 1. We first consider the stage when the solution is suppressed by a spatial homogeneous

upper solution down to the range v ≤M . Consider the equation

v1t = −Lv21.

Then v1 = (Lt)−1 is monotonically decreasing from +∞, and till it reaches M at time t = t1 :=

(LM)−1, it is a supersolution of (pCP) due to (7.2) and p > 2, no matter how large ∥u0∥L∞ is.

So,

v(x, t) ≤ v1(t1) =M, t ≥ t1.

This inequality gives an estimate for v from above. We also need estimates on the right and

left boundaries. We state only the case on the right side since the left side is studied similarly.

For c, b given above, we define

v2(x, t) := (x− ct− b)−α − b−α, b+ ct < x ≤ 2b+ ct, t ≥ 0.

We now show that v2 is also a supersolution of (pCP) in the domain

E := {(x, t) | b+ ct < x ≤ 2b+ ct, t ≥ 0}.

1). First, on the interval J1 := [b+ ct+ 2−
1
α b, 2b+ ct], we have

2−
1
α b ≤ H := x− ct− b ≤ b, 0 ≤ v2 ≤ b−α,

and so by the first inequality in (7.1) and the choice of c we have

N v2 := v2t − (m− 1)v2v2xx − v22x − g(v2)

≥ αcH−α−1 − (m− 1)α(α+ 1)v2H
−α−2 − α2H−2α−2 −K(m− 1)v2

≥ H−α−2
[
αcH − (m− 1)α(α+ 1)H−α − α2H−α

]
−K(m− 1)b−α

≥ b−α−2
[
αc2−

1
α b− 2(m− 1)α(α+ 1)b−α − 2α2b−α

]
−K(m− 1)b−α

≥ b−2α−2
[
αc2−

1
α b1+α − 2(m− 1)α(α+ 1)− 2α2 −K(m− 1)

]
≥ 0.

2). Next, in the interval J2 := (b+ ct, b+ ct+ 2−
1
α b] we have

0 < H := x− ct− b ≤ 2−
1
α b, v2 ≥ b−α ≥M,
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and by the choice of L we have

N v2 ≥ H−α−2
[
αcH − (m− 1)α(α+ 1)H−α − α2H−α

]
+ Lvp2

≥ L(H−α − b−α)p − [(m− 1)α(α+ 1) + α2]H−2α−2

≥ 2−pLH−αp − [(m− 1)α(α+ 1) + α2]H−2α−2

≥ H−2α−2
[
2−pL− (m− 1)α(α+ 1)− α2

]
≥ 0.

3). On the free boundary r2(t) := 2b+ ct of v2, by the choice of c, we easily obtain

−v2x(2b+ ct, t) = αb−α−1 ≤ c, t ≥ 0.

Therefore, v2 is a supersolution of (pCP) in the domain E. As a consequence, at t1, the right

free boundary r(t) of v satisfies

r(t1) ≤ r2(t1) = 2b+ ct1 ≤ 2b+
c

LM
≤ b1,

by the choice of b, c and L. Similarly, the left free boundary l(t) of v satisfies l(t1) ≥ −b1.
Using the notation of u we conclude from above that

(7.8) u(x, t1) ≤ ū(x) :=M0 · χ[−b1,b1].

Step 2. Next we use the ZKB solution as another upper solution to suppress u further such

that it goes down below θ after some time. More precisely, consider{
u3t = (um3 )xx +Ku3, x ∈ R, t > 0,

u3(x, 0) = ū(x), x ∈ R.

Then u3 is a upper solution of (CP) and

u(x, t+ t1) ≤ u3(x, t), x ∈ R, t > 0.

Change the time variable from t to s by

s :=
eK(m−1)t − 1

K(m− 1)
⇔ t = T (s) :=

ln(1 +K(m− 1)s)

K(m− 1)
,

and define

w(x, s) := u3(x, T (s))[1 +K(m− 1)s]−
1

m−1 ,

then we have

(7.9)

{
ws = (wm)xx, x ∈ R, s > 0,

w(x, 0) = ū(x), x ∈ R.

To estimate w(x, s), we consider the ZKB solution

w1(x, s) := s−
1

m+1

(
C − (m− 1)x2

2m(m+ 1)s
2

m+1

) 1
m−1

+

, x ∈ R, s ≥ s0,

with s0 and C given above. By the choice of b1, C and s0, for x ∈ [−b1, b1] we have

w1(x, s0) ≥ w1(±b1, s0) = s
− 1

m+1

0

C − (m− 1)b21

2m(m+ 1)s
2

m+1

0

 1
m−1

≥ 1

2
s
− 1

m+1

0 C
1

m−1 > M0 ≥ ū(x).
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Therefore, w1 is a upper solution of (7.9), and so

w(x, s) ≤ w1(x, s+ s0), x ∈ R, s > 0.

In particular, at x = 0 and s = s1 :=
1−K(m+1)s0

2K we have

w(0, s1) ≤ w1(0, s1 + s0) = (s1 + s0)
− 1

m+1C
1

m−1 .

Using the notation u we have

u(x, T (s1) + t1) ≤ u3(x, T (s1)) = w(x, s1)[1 +K(m− 1)s1]
1

m−1

≤ (s1 + s0)
− 1

m+1C
1

m−1 [1 +K(m− 1)s1]
1

m−1 ≤ θ,

by (7.3) and (7.7).

Step 3. By the sufficient condition for vanishing in bistable and combustion RPMEs (cf.

Lemma 5.2), we conclude that u→ 0 as t→ ∞.

This proves the complete vanishing phenomena in Theorem 7.1. □
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8. Appendix: Well-posedness and a priori Estimates

For our RPME with general reaction terms, it seems that the a priori estimates, well-posedness

and other important properties as that in PME are not well collected in literature, though they

are not entirely new. We present some details here for the convenience of the readers.

8.1. Well-posedness. The existence of very weak solution of (CP) has been well studied by

many authors (cf. [5, 25, 26, 30, 31]).

Proposition 8.1. Assume (I) and f is Lipschitz continuous with f(0) = 0. Then the problem

(CP) has a unique very weak solution u(x, t) ∈ C(QT ) ∩ L∞(QT ) for any T > 0, and

0 ≤ u(x, t) ≤M ′
0 := max{1, ∥u0∥L∞} in QT = R× (0, T ).

Moreover, there are two free boundaries l(t) < r(t) such that spt(u(·, t)) ⊂ [l(t), r(t)] for all

t > 0.

We can not obtain u(x, t) > 0 as in RDEs due to the degeneracy of the equation at u = 0.

Nevertheless, the solution u solves the equation in the classical sense by the standard parabolic

theory in a neighborhood of every point (x, t) at which the solution is positive (see also [28]).
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8.2. Persistence of positivity and finite propagation speed. We now show the following

positivity persistence property as in PME.

Proposition 8.2 (Persistence of positivity). Assume u(x0, t0) > 0 for some x0 ∈ R, t0 > 0.

Then u(x0, t) > 0 for all t ≥ t0. (Thus, u is classical near the line {(x0, t) | t > t0}).

Proof. Since t0 > 0 we have u(x, t0) ∈ C(R), and so, by our assumption there exist ε > 0, δ > 0

such that

u(x, t0) ≥ ε for x ∈ J := [x0 − δ, x0 + δ].

We use K to denote the Lipschitz constant for f . Denote

β :=
1

m− 1
, µ := K +

π2

4δ2
εm−1,

and define

(8.1) u(x, t) :=

 εe−µt

(
sin

π(x− x0 + δ)

2δ

) 1
m

, x ∈ J, t ≥ 0,

0, x ∈ R\J, t ≥ 0.

It is easily seen that

u(x, 0) ≤ ε ≤ u(x, t0), x ∈ J,

and

ut − (um)xx − f(u) ≤ ut − (um)xx +Ku ≤ 0, x ∈ R, t ≥ 0.

By the comparison principle we have

u(x, t+ t0) ≥ u(x, t) > 0, |x− x0| < δ, t > 0.

This proves the proposition. □

Remark 8.3. A positive lower bound can also be given by a subsolution with the form of ZKB

solution:

(8.2) u1(x, t) :=
1

(t+ 1)βeK(t+1)

(
C − (x− x0)

2e(m−1)K(t+1)

2m

)β

+

, x ∈ R, t ≥ 0,

with w+ := max{w(x, t), 0} and C > 0 satisfying

2mCe−(m−1)K ≤ δ2, Cβ ≤ εeK .

Using this subsolution, we can conclude that

u(x, t) ≥ u1(x, t) > 0 if |x− x0| < s(t) := (2mC)1/2e−
(m−1)K(t+1)

2 , t ≥ 0.

Note that, using this estimate we have u > 0 in a shrinking domain (x0 − s(t), x0 + s(t)), while

using u we have u > 0 in a fixed domain (x0 − δ, x0 + δ).

When u0 ≥ 0 is compactly supported, besides the upper bound in Proposition 8.1, we also

have the finite propagation speed as in PME.
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Proposition 8.4. Assume (I) and f is Lipschitz continuous with f(0) = 0. Then the support

of u(·, t) lies in [−s̄(t), s̄(t)] with

(8.3) s̄(t) := [C1(t+ 1)]1/2e
(m−1)K(t+1)

2 , t > 0,

for some C1 depending only on m,K and ∥u0∥L∞, and so −l(t), r(t) ≤ s̄(t).

Proof. We construct a supersolution of the ZKB form. Set A := (4mβ)−β, choose C1 > 0 such

that

AeK
(
C1 −

b2

e(m−1)K

)β

≥ ∥u0∥L∞ ,

where b > 0 is the number in (I), and define

ū(x, t) := AeK(t+1)

(
C1 −

x2

(t+ 1)e(m−1)K(t+1)

)β

+

, x ∈ R, t ≥ 0.

By the choose of C1 we see that ū(x, 0) ≥ u0(x), and by a direct calculation we have

ūt ≥ (ūm)xx +Kū ≥ (ūm)xx + f(ū), |x| ≤ s̄(t) := [C1(t+ 1)]1/2e
(m−1)K(t+1)

2 , t ≥ 0.

Hence, ū is a supersolution of (CP), and the conclusion follows from the comparison. □

Remark 8.5. Our construction for the subsolution in (8.2) and the supersolution in this proof

is inspired by the ZKB solution, but with obvious difference due to the presence of the linear

term Ku.

8.3. A priori estimate for the pressure. As we have mentioned in Section 2, the pressure

v(x, t) := m
m−1 [u(x, t)]

m−1 solves

(pCP)

{
vt = (m− 1)vvxx + v2x + g(v), x ∈ R, t > 0,

v(x, 0) = v0(x) :=
m

m− 1
um−1
0 (x), x ∈ R,

with

g(v) := m
((m− 1)v

m

)m−2
m−1

f

(((m− 1)v

m

) 1
m−1

)
satisfying

(8.4) |g(v)| ≤ K(m− 1)v, v ≥ 0,

by (F). Since u is bounded as in Proposition 8.1, we see that v is also bounded:

(8.5) 0 ≤ v(x, t) ≤M0 := max

{
m

m− 1
, ∥v0∥L∞

}
, x ∈ R, t > 0.

Hence,

(8.6) |g(v)| ≤ G0(m,K, v0) := K(m− 1)M0, 0 ≤ v ≤M0.

By the above propositions we have the following result.

Proposition 8.6. Assume (I) and f is Lipschitz continuous with f(0) = 0. Then the problem

(pCP) has a unique nonnegative solution v(x, t) ∈ C(QT ) ∩ L∞(QT ) for any T > 0.

Moreover, if v(x0, t0) > 0 for some x0 ∈ R and t0 > 0, then v(x0, t) > 0 for all t ≥ t0, and so

v is a classical solution near the line {(x0, t) | t ≥ t0}.
The support of v(·, t) lies in [−s̄(t), s̄(t)] with s̄(t) given by (8.3).



54 B. LOU AND M. ZHOU

In what follows, we continue to present the a priori estimates for vx, vxx and vt under further

restrictions on f : f ∈ C2. In this case we have

(8.7) |g′(v)| ≤ G1(m,K, v0) and |g′′(v)| ≤ G2(m,K, v0), 0 ≤ v ≤M0.

In a similar way as Aronson [2] (with obvious modification caused by the reaction term g(v))

we have

Lemma 8.7 ([2], uniform estimate for vx). Assume (I) and f ∈ C1([0,∞)) with f(0) = 0. Let

v be a smooth positive classical solution of (pCP) in R := (a, b) × (0, T ] for some a, b, T ∈ R
with b > a, T > 0. Then for any 0 < δ < b−a

2 , τ < T there holds:

(8.8) |vx(x, t)| ≤M1(m,M0, G0, G1, δ, τ), (x, t) ∈ [a+ δ, b− δ]× [τ, T ].

Moreover, if τ = 0 and

M0
1 := max

[a,b]
|v′0(x)| <∞,

then (8.8) holds in (a+ δ, b− δ)× (0, T ] for M1 =M1(m,M0, G0, G1, δ,M
0
1 ).

Note that the a priori bound M1 of vx obtained in this lemma is uniform in T due to the fact

that the bound of v is so. The result holds for classical solutions. For the very weak solution

in C(QT )∩L∞(QT ), however, one can show the following Lipschitz continuity for v and Hölder

continuity for u (which can be regarded as the limit of a sequence of classical solutions).

Proposition 8.8 ([2], Lipschitz continuity for v and Hölder continuity for u). Assume (I) and

f ∈ C1([0,∞)) with f(0) = 0. If we further assume that um0 is Lipschitz continuous, then for

T > τ > 0,

(8.9) |v(x, t)− v(y, t)| ≤ C1(m, τ, ∥u0∥L∞) · |x− y|, x, y ∈ R, t ∈ [τ, T ],

(8.10) |u(x, t)−u(y, t)| ≤ C2(m, τ, ∥u0∥L∞)·|x−y|ν , x, y ∈ R, t ∈ [τ, T ], ν := min
{
1,

1

m− 1

}
and ∂um

∂x (x, t) exists and is continuous in x ∈ R, with ∂um

∂x (x, t) = 0 if u(x, t) = 0;

Proof. The proof follows from the previous lemma and the fact: the very weak solution u is the

pointwise limit of a decreasing sequence of positive classical functions. (For the PME, this was

shown in [28]. For the current problem, the proof is similar). □

Next we consider the lower bound of vxx. For the PME, Aronson and Bénilan [4] gave a lower

bound for vxx in 1979:

(8.11) vxx ≥ − 1

(m+ 1)t
, t > 0.

This inequality, usually known as the Aronson-Bénilan estimate, is understood in the sense of

distributions. It is optimal in the sense that equality is actually attained by the source-type or

ZKB solutions. It is a significant novelty of the Cauchy problem, and is used so often in the

theory of nonnegative solutions in the whole space. For our problem (pCP), we will also give a

lower bound for vxx, but with quite different order from (8.11).
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Proposition 8.9. Assume (F), (I), and v0 ∈ C2 a.e. in R, with

0 ≤ v0(x) ≤M0
0 , M0

1 := sup
R

|v′0(x)| <∞, v′′0(x) ≥ −M0
2 > −∞, a.e. x ∈ R.

Let v ∈ C(QT ) ∩ L∞(QT ) for any T > 0 be the solution of (pCP). Then

vxx(x, t) ≥ −C(t+ τ), x ∈ R, t ∈ (0, T ],

for some τ = τ(m,M0
0 ,M

0
1 ,M

0
2 , G0, G1, G2) and C = C(m,M0

0 ,M
0
1 , G0, G1, G2), here the in-

equality holds in the sense of distributions in R× (0, T ].

Proof. We follow the idea in Aronson and Bénilan [4] (see also [30, §9.3]).
1). First we assume v > 0 in QT := R× (0, T ]. In this case, v is a classical solution of (pCP).

We write the equation satisfied by η := vxx by differentiating the equation of v twice:

ηt = L(η) + g′′v2x,

with

L(η) := (m− 1)vηxx + 2mvxηx + (m+ 1)η2 + g′(v)η.

Note that here we use the C2 smoothness assumption for f . By Lemma 8.7 we have

|vx(x, t)| ≤M1(m,M
0
0 ,M

0
1 , G0, G1), x ∈ R, t > 0.

Hence,

ηt ≥ L(η)−G2(M1 + 1)2.

Now we construct a subsolution of this operator. Define

(8.12) τ1 :=
G1 + (m+ 1)M0

2

(m+ 1)G2(M1 + 1)2
.

Then ζ(x, t) := −G2(M1 + 1)2(t+ τ1) satisfies

ζt − L(ζ) +G2(M1 + 1)2 = G2(M1 + 1)2(t+ τ1)[G1 − (m+ 1)G2(M1 + 1)2(t+ τ1)] ≤ 0.

In addition,

ζ(x, 0) = −G2(M1 + 1)2τ1 < −M0
2 ≤ v′′0(x) = η(x, 0+), x ∈ R.

By comparison we have

vxx(x, t) = η(x, t) ≥ ζ(x, t) = −G2(M1 + 1)2(t+ τ1), x ∈ R, t > 0.

2). We now construct a family of approximate positive solutions to approach the nonnegative

general solution. Set

u0ε(x) := u0(x) + ε, x ∈ R, 0 < ε≪ 1.

Then the corresponding pressure is v0ε :=
m

m−1u
m−1
0ε , which satisfies

0 < ε ≤ v0ε(x) ≤M0
0 + 1, |v′0ε(x)| ≤M0

1 , v′′0ε(x) ≥ −M0
2 , x ∈ R.

According to the standard theory, the problem (CP) with initial data u0ε has a unique solution

uε(x, t). In a similar way as in the previous step, we see that the corresponding pressure vε

satisfies

(8.13) 0 < vε(x, t) ≤ max
{ m

m− 1
,M0

0 + 1
}
, x ∈ R, t > 0, 0 < ε≪ 1,
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vεx satisfies

|vεx(x, t)| ≤M ′
1(m,M

0
0 ,M

0
1 , G0, G1), x ∈ R, t > 0, 0 < ε≪ 1,

and vεxx satisfies

(8.14) vεxx(x, t) ≥ −C(t+ τ), x ∈ R, t ∈ (0, T ], 0 < ε≪ 1,

for

C = C(m,M0
0 ,M

0
1 , G0, G1, G2) and τ = τ(m,M0

0 ,M
0
1 ,M

0
2 , G0, G1, G2).

Since vε is strictly decreasing in ε and vε ≥ v. There exists v̂ ≥ v ≥ 0 such that

lim
ε→0

vε(x, t) = v̂(x, t) in the topology of Cloc(QT ).

(In particular, v̂ ∈ C(QT )∩L∞(QT )). Furthermore, in the area D := {(x, t) ∈ QT | v̂(x, t) > 0},
by standard interior parabolic estimates we see that the convergence holds also in the topology

C2,1
loc (D). Using the Lebesgue theorem to take limit as ε→ 0 in∫∫

[vεφxx + C(t+ τ)φ]dxdt =

∫∫
[vεxx + C(t+ τ)]φdxdt ≥ 0

for every φ ∈ C∞
c (QT ), φ ≥ 0, we obtain∫∫

[v̂φxx + C(t+ τ)φ]dxdt ≥ 0.

This means that (8.14) holds for v̂ in the distribution sense.

To complete our proof we only need to show that v̂ ≡ v. Denote by

û =
(m− 1

m
v̂
) 1

m−1 ∈ C(QT ) ∩ L∞(QT )

the original density variable corresponding to the pressure v̂. Recalling that uε is a classical

solution of (CP) with initial data u0ε we have∫
R
uε(x, T )φ(x, T )dx =

∫
R
u0ε(x)φ(x, 0)dx+

∫∫
QT

f(uε)φdxdt+

∫∫
QT

[uεφt + umε φxx]dxdt.

Taking limit as ε→ 0 we have∫
R
û(x, T )φ(x, T )dx =

∫
R
u0(x)φ(x, 0)dx+

∫∫
QT

f(û)φdxdt+

∫∫
QT

[ûφt + umφxx]dxdt.

This means that û is a very weak solution of (CP) with û(x, 0) = u0. By the uniqueness, û must

be u, and so v̂ ≡ v. □

Finally, we show that v is also Lipschitz in time.

Lemma 8.10. Assume the hypotheses in Proposition 8.9 hold. Then for any τ > 0 there holds

(8.15) vt(x, t) ≤ C1t+ C2, x ∈ R, t ≥ τ,

where C1 depends on m,M0
1 , G0 and G1, C2 depends on m,G0, G1, vt(x, τ), and

(8.16) vt ≥ −C3t− C4, x ∈ R, t > 0,

where C3 and C4 depend on m,M0
0 ,M

0
1 , G0, G1, G2.
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Proof. By approximation, we may assume that v is positive and smooth. In this case we have

0 < v ≤ 1 + ∥v0∥L∞ , |vx(x, t)| ≤M1(m,M
0
1 , G0, G1), x ∈ R, t > 0,

as above. We consider the function

P (x, t) := vt + (m− 1)v2x = (m− 1)vvxx +mv2x + g(v).

Then
Px = (m− 1)vvxxx + (3m− 1)vxvxx + g′(v)vx,

Pxx = vtxx + 2(m− 1)(v2xx + vxvxxx),

Pt = (m− 1)vvtxx + (m− 1)vtvxx + 2m(m+ 1)v2xvxx + 2m(m− 1)vvxvxx
+2mvxg

′(v)vx + g′(v)vt.

Hence we have

L(P ) := Pt − (m− 1)vPxx − 2vxPx

= g̃(x, t, P ) :=
1

v
[−(P − g)2 +A1(P − g) +A2] +A3,

with
A1 := (4m− 1)v2x + vg′, A2 := −m(3m− 1)v4x,

A3 := 2mvxg
′(v)vx + g′(v)(g − (m− 1)v2x).

By f ∈ C2 and the bounds of v, vx we see that

|Ai(x, t)| ≤ Āi, x ∈ R, t ≥ τ, i = 1, 2, 3.

Choose

C1 := Ā3, C2 := G0 +
Ā1 +

√
Ā2

1 + 4Ā2

2
+ (m− 1)M2

1 + sup
x∈R

vt(x, τ),

then

−(C1t+ C2 − g)2 +A1(C1t+ C2 − g) +A2 ≤ 0

and so

L(C1t+ C2)− g̃(x, t, C1t+ C2) ≥ 0

and

(C1t+ C2)|t=τ > C2 > P (x, τ).

Hence C1t+ C2 is a supersolution of L(P ) = g̃(x, t, P ) in t ≥ τ , and so the (8.15) follows from

the maximum principle. Note that the auxiliary function P was used for PME in [8] and [30,

Chapter 15], but the supersolution they used is −C/t, different from ours.

The lower bound for vt is an immediate consequence of Proposition 8.9:

vt = (m− 1)vvxx + v2x + g(v) ≥ −C(m− 1)(t+ τ)(1 + ∥v0∥L∞)−G0.

This proves the Lipschitz continuity for v in time. □
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