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Tensor network states, and in particular Projected Entangled Pair States (PEPS) have been a
strong ansatz for the variational study of complicated quantum many-body systems, thanks to
their built-in entanglement entropy area law. In this work, we use a special kind of PEPS - Gauged
Gaussian Fermionic PEPS (GGFPEPS) - to find the ground state of 2+1 dimensional pure Z2 lattice
gauge theories for a wide range of coupling constants. We do so by combining PEPS methods
with Monte-Carlo computations, allowing for efficient contraction of the PEPS and computation
of correlation functions. Previously, such numerical computations involved the calculation of the
Pfaffian of a matrix scaling with the system size, forming a severe bottleneck; in this work we
show how to overcome this problem. This paves the way for applying the method we propose and
benchmark here to other gauge groups, higher dimensions, and models with fermionic matter, in an
efficient, sign-problem-free way.

I. INTRODUCTION

Tensor network states (TNS), and matrix product
states (MPS) in particular, have been very fruitful in
dealing with complicated quantum many body models in
condensed matter physics. MPS are ansatz states with
a built-in area law for the entanglement entropy [1–3]
equipped with algorithms which scale polynomially with
the system size, rather than exponentially. This opens
the way for a very efficient ground state search [4, 5],
as well as studying the dynamics [6] and thermal states
[7, 8] of quantum many-body systems. The idea of tensor
networks can be extended to higher spatial dimensions,
when MPS are generalized to projected entangled pair
states (PEPS) [2, 3, 9, 10]. However, in spite of the great
numerical success of MPS, PEPS in higher dimensions
are generally very difficult to handle (i.e. contract) nu-
merically; while they have been successfully applied to
two dimensional models in some cases (see, e.g. [11, 12]),
the computational time required for contracting PEPS
generally scales unfavorably when increasing the spatial
dimension to more than one [13].

Gauge theories are at the heart of our modern physics.
They play a central role in the standard model of par-
ticle physics, giving a local description of the funda-
mental interactions [14]. In condensed matter physics,
they offer effective and emergent descriptions of intrigu-
ing many-body phenomena [15]. The local symmetries
upon which they are based allow for a simple and local
formulation of complicated interactions, and give rise to
a highly constrained Hilbert space. Gauge theories ex-
hibit some fascinating features, such as running coupling,
which can be both useful and challenging: for example,

in Quantum Chromodynamics (QCD), the theory of the
strong nuclear force, the high energy limit is asymptoti-
cally free [16], allowing one to study collider physics using
perturbation theory. The low-energy side, on the other
hand, is strongly interacting and highly nonperturbative,
giving rise to beautiful yet challenging physical phenom-
ena such as quark confinement [17, 18] involving many
open puzzles.

A very successful method to address nonperturbative
gauge theory physics has been within the framework of
lattice gauge theories [17, 19–21]. Based on Monte-Carlo
simulations of Wick-rotated path integrals in Euclidean
spacetime [22, 23], many challenging computations of
static quantities in gauge theories have been carried out
(for example, much of our knowledge of the hadronic
spectrum these days is the result of lattice Monte-Carlo
computations [24]). On the other hand, these methods
do not allow us to directly study real-time evolution, and
thus are not suitable for dynamical analysis. Addition-
ally, in many important physical scenarios with a finite
density of fermionic matter, the sign problem [25] makes
the use of Monte-Carlo methods impossible.

In the last decade, some quantum information based
methods have been proposed to deal with these issues.
First, quantum simulation [26] offers one approach to
simulate this challenging area of physics using atomic,
molecular, optical and solid state devices; one can de-
sign [27–33] and build [34–41] quantum simulators of lat-
tice gauge theories which are free of the above-mentioned
issues, and this is a very promising and exciting avenue of
research. Tensor network states, on which this work fo-
cuses, provide another quantum-information-based way
to deal with them [42, 43].
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In a single space dimension, Matrix product states,
combined with DMRG (density matrix renormalization
group) techniques [4, 44] have been successfully applied
to lattice gauge theories, both in particle and condensed
matter physics (see reviews [29, 30, 42, 45] and references
therein). A reliable but limited approach is to extend
MPS-based algorithms to two-dimensional systems de-
fined on ladders or cylinders. While this approach has
been successfully applied to study gapped phases of mat-
ter and the transitions between them (e.g., [46–49] and
others), the computational cost of this approach grows
exponentially with additional dimensions, making the ex-
trapolation to the thermodynamic limit generally impos-
sible. In higher dimensions, tensor network techniques
have been used for studying lattice gauge theories. Lat-
tice gauge theories have been studied numerically using
various methods in [43, 50–55].

In parallel, some analytical work has been done out
on the properties of gauge invariant PEPS, and in par-
ticular on gauging mechanisms [56, 57] which allow one
to minimally couple gauge fields to matter-only PEPS
in a straight-forward manner even for arbitrary groups
and space dimensions. The latter method, when com-
bined with Gaussian fermionic PEPS [58], was used for
introducing Gauged Gaussian Fermionic PEPS (GGF-
PEPS) [59, 60]. In such states, a free (Gaussian)
fermionic matter state with a global symmetry is gauged
in a way analogous to conventional Hamiltonian-level
minimal coupling techniques [61], resulting in a physi-
cally relevant state which describes quantum matter and
gauge fields interacting in a gauge-invariant way. More-
over, it was shown that this special class of PEPS allows
one to contract the states and compute correlation func-
tions efficiently using Monte-Carlo sampling [62]. For
this method, the sampling probability is shown to always
depend on the norm of a quantum state, and hence it is
sign-problem-free. Therefore one can use GGFPEPS as
ansatz states for variational Monte-Carlo [63, 64] ground
state search of lattice gauge theory Hamiltonians, over-
coming the common sign problem experienced by lattice
gauge theories, as well as the difficulty of contracting
PEPS in more than a single space dimension. Previous
works have variations of tensor network states as varia-
tional Ansatz for Monte Carlo, e.g. [65–67]. Here, we
construct anstatz states that are locally gauge invariant
and adapted to the gauge group in question.

In previous work [68], this method was used to find the
ground state of a pure Z3 lattice gauge theory. While
successful for most values of the coupling constant, one
important issue with the algorithm was the need for com-
putation of Pfaffians [69] of matrices whose dimensions
scales with the size of the physical system. This scal-
ing posed a serious bottleneck on using GGFPEPS as
variational ansatz states [70]. In this work we present a
simple way to overcome this problem, and demonstrate
its use for finding the ground state of a Z2 pure gauge
theory [71–75]. While this computational problem on
its own does not suffer from the sign problem, the tech-

niques demonstrated in this work can be generalized in
a straight-forward way to cases which do suffer from it
(e.g., coupling the very same theory to physical fermions
with an odd number of flavors and imposing the gauge
constraint [48, 76]).

This paper is structured as follows: In Secs. II and III,
we introduce ZN gauge theories with a special focus on
Z2 and constructing the GGFPEPS ansatz state. Sub-
sequently, the GGFPEPS are minimized with the algo-
rithm described in Sec. IV. Numerical results are pre-
sented in Sec. V and we conclude in Sec. VI.

II. PHYSICAL SYSTEM

We focus on pure gauge ZN lattice gauge theories in
the 2 + 1d Hamiltonian framework; i.e. the physical sys-
tem is a two dimensional spatial lattice, with gauge field
degrees of freedom occupying its links. Due to the ab-
sence of dynamical matter, no physical degrees of free-
dom are associated with the sites.

Each link ` = (x, i) (labelled by the starting site x and
a direction i ∈ {1, 2}) hosts an N dimensional Hilbert
space. On each link ` we introduce two operators, which
satisfy the following conditions

PN` = QN` = 1, P †` P` = Q†`Q` = 1

P`Q`P
†
` = eiδQ`, δ =

2π

N

(1)

– Nth roots of unity, unitarity, and ZN algebra respec-

tively [73]. If we label the eigenstates of P by {|p〉}N−1
p=0 ,

for which

P |p〉 = eipδ |p〉 , (2)

we can immediately deduce that Q is a unitary and pe-
riodic (|N〉 = |0〉) raising operator,

Q |p〉 = |p+ 1〉 . (3)

Similarly, one can show that the eigenstates of Q,

{|q〉}N−1
q=0 , for which

Q |q〉 = eiqδ |p〉 , (4)

are unitarily and periodically lowered by P ,

P |q〉 = |q − 1〉 . (5)

The dynamics is given by the Hamiltonian [73]

H =
λ

2

∑
`

[
2− (P` + P †` )

]
+

1

2λ

∑
p

[
2− (Q†p1Q

†
p2Qp3Qp4 + H.c.)

] (6)

where the second sum is over plaquettes p - unit squares
of the lattice - and p1, p2, p3, p4 refer to the four links
around p (see Figure 1 for an illustration of the notation).
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FIG. 1. Illustration of the naming conventions on the lattice.
Green dots illustrate the positions of the gauge fields. The
small blue arrows indicate the direction of the discrete diver-
gence at every vertex. The red square is an oriented plaquette
(indicated by red arrows) with four links p1, p2, p3 and p4.

FIG. 2. Illustration of the Gauss law operator. It is written
in terms of a discrete divergence on the lattice.

The Hamiltonian is gauge invariant; that it, it is in-
variant under local unitary transformations of the form

V (x) = P (x, 1)P (x, 2)P † (x− ê1, 1)P † (x− ê2, 2)
(7)

(where êi is a lattice vector in the i ∈ {1, 2} direction; see
Figure 2). Since [H,V (x)] = [V (x) , V (y)] = 0 for any
lattice sites x,y, the Hilbert space is decomposed into a
set of superselection sectors labelled by eigenvalues of all
V (x) operators. We shall focus here on the sector whose
states |ψ〉 satisfy

V (x) |ψ〉 = |ψ〉 , ∀x. (8)

The N → ∞ limit reproduces compact QED - the
Kogut-Susskind Hamiltonian [19] of a U(1) lattice gauge
theory [17, 21]. With this analogy in mind, we refer to
the first (link) term of (6) as the electric energy and to
the second (plaquette) term as the magnetic one.

In this work, we focus on the N = 2 case - a pure Z2

lattice gauge theory [71, 77]. There, we can make the
choices Q = Q† = σx and P = P † = σz, and identify
{|p〉}1p=0 ({|q〉}1q=0) as the eigenstates of σz (σx) with

eigenvalues (−1)
p

((−1)
q
). The Hamiltonian (6) then

simplifies to

H = λ
∑
`

[1− P`] +
1

λ

∑
p

[1−Qp1Qp2Qp3Qp4 ] . (9)

(again following the conventions of Fig. 1).
Traditionally, a link with |p = 0〉 is considered as one

that does not carry any electric flux while a link with
|p = 1〉 carries it. Z2 gauge invariance, in the sector de-
fined by Eq. 8, implies that we only discuss superposi-

tions of products of P eigenstates, involving only closed
flux loops.

To gain additional insight into the physics of the
model, let us consider the extreme coupling limits. First,
the strong coupling limit, where λ� 1, for which it will
be convenient to redefine the Hamiltonian as H̃ = λ−1H,
and in which the electric term dominates whiile the mag-
netic term is a small perturbation. For λ → ∞, the
ground state takes the form

|ψ (λ =∞)〉 =
⊗
`

|p = 0〉` ≡ |ψE〉 (10)

- a product state of |p = 0〉 on all the links. If we de-
crease λ a little bit, such that the condition λ� 1 is still
satisfied, using perturbation theory one obtains that the
ground state becomes

|ψ (λ� 1)〉 =

(
1 +

1

8λ2

∑
p

Qp1Qp2Qp3Qp4

)
|ψE〉+O

(
λ−4

)
.

(11)
The first order correction is a superposition of all the P
eigenstates which contain a single plaquette’s flux loop;
the second order correction will be a superposition of all
the possible two-plaquette excitations, and so on. Con-
sider the Wilson loop operator [17], which in the Z2 case
takes the form

W (C) =
∏
`∈C

Q` (12)

where C is some close curve on the lattice, usually chosen
to be rectangular. For a rectangular Wilson loop with
dimensions R1×R2, the leading order of the expectation
value of the Wilson loop in the strong coupling regime
will be given by the A = R1R2-th order of the pertur-
bative series of Eq. (11), and hence the Wilson loop will
decay with an area law,

〈W (R1, R2, )〉λ�1 ∝ e
−2 lnλR1R2 (13)

- a manifestation of a confining phase [17, 77].
On the other hand, if we take the other extreme limit

of λ� 1, the magnetic energy dominates. In the extreme
case of λ = 0 the ground state is the magnetic one, |ψB〉,
also known as one of the toric code ground states [78]. It
takes the form

|ψ (λ = 0)〉 ∝
∏
p

(1 +Qp1Qp2Qp3Qp4) |ψE〉 ≡ |ψB〉 .

(14)
An equal superposition of all the P states satisfies the
gauge invariance condition (8). Raising λ but staying in
the λ� 1 regime, we can again use perturbation theory
to construct the state, and a straightforward calculation
shows that

〈W (R1, R2, )〉λ�1 ∝ e
−2f(λ)(R1+R2) (15)

- a perimeter law decay, manifesting a deconfined
phase [17, 77].
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The area law and perimeter law extend beyond the per-
turbative regimes, until one approaches the confinement-
deconfinement phase transition [72–75, 77, 79, 80].

III. CONSTRUCTION OF AN ANSATZ STATE

We would like to build an ansatz state for a varia-
tional search of the ground state of the Z2 Hamiltonian
of Eq. (9), for different values of λ. What is required
from such an ansatz state?

The state must be gauge invariant, and we would
like to use a construction which will allow us to cou-
ple, in future work, with fermionic matter. We there-
fore use the construction of Gauged Gaussian Fermionic
PEPS [59, 60]. Furthermore, as was shown in [62], one
can perform all the relevant calculations for such states
rather efficiently using Monte-Carlo.

We use this ansatz state, with the Z2 gauge group,
but without physical matter (dynamical fermions). The
auxiliary degrees of freedom which shall be used for the
construction of the state will nevertheless be fermionic, to
allow us to couple to fermions later on and enable the effi-
cient Monte-Carlo computation. Additionally, we would
like our family of ansatz states to contain the extreme
λ � 1 and λ � 1 cases discussed above; ideally, the
ansatz will be able to interpolate between them and ap-
proximate the ground states in the intermediate regime.

We construct our states as follows: for each site x, we
introduce 4F auxiliary or virtual fermionic modes, asso-
ciated with the edges of links intersecting through it –
F modes in each direction. We denote their creation
operators by

{
r†α (x)

}F
α=1

,
{
u†α (x)

}F
α=1

,
{
l†α (x)

}F
α=1

,{
d†α (x)

}F
α=1

, representing the right, up, left and down di-
rections, respectively. We will unite the 4F virtual modes
on a single vertex x under a general notation of the form{
a†α (x)

}4F

α=1
, and define the Gaussian operator

A (x) = exp
(
Tαβa

†
α (x) a†β (x)

)
(16)

on each site (in general, Tαβ may be site dependent, but
we make it uniform to enforce translation invariance).

We define the virtual symmetry operator V (x) =
V† (x) by

V (x) a†α (x)V† (x) = −a†α (x) (17)

and note that

V (x)A (x)V† (x) = A (x) . (18)

We can decompose the symmetry operator to

V (x) = Vr (x)Vu (x)Vl (x)Vd (x) (19)

such that

Vr (x) r†α (x)V†r (x) = −r†α (x) (20)

and similarly for u, l, d.
We further define the gauging operators UG (x, i) (for

i ∈ {1, 2}) on the links, which multiply the fermionic
creation (or annihilation) operators of virtual fermions
associated with them with the physical gauge field oper-
ators Q on the respective links:

UG (x, 1) r†α (x)U†G (x, 1) = Q (x, 1) r†α (x) ,

UG (x, 2)u†α (x)U†G (x, 2) = Q (x, 2)u†α (x) .
(21)

Note that

P (x, 1)UG (x, 1)P † (x, 1) = Vr (x)UG (x, 1)V†r (x) ,

P (x, 2)UG (x, 2)P † (x, 2) = Vu (x)UG (x, 2)V†u (x) .
(22)

We also define, on each link, the Gaussian operators

w (x, 1) = exp
(
W 1
αβl
†
α (x + ê1) r†β (x)

)
w (x, 2) = exp

(
W 2
αβd
†
α (x + ê2)u†β (x)

) (23)

which couple the virtual fermions associated on both
sides of a link and satisfy

Vr (x)w (x, 1)V†r (x) = Vl (x + ê1)w (x, 1)V†l (x + ê1)

Vu (x)w (x, 2)V†u (x) = Vd (x + ê2)w (x, 2)V†d (x + ê2) .
(24)

The coupling between neighboring sites is necessary be-
cause the states would remain a product state otherwise.

Finally, the fermionic Fock vacuum |Ω〉 is invariant un-
der all the virtual V (x), and the gauge field state |ψE〉 de-
fined in Eq. (10) is invariant under all the physical gauge
transformations V (x). With all the above definitions, we
are ready to define our ansatz state, the fermionic gauged
Gaussian PEPS as

|ψ〉 = 〈Ω|
∏
x,i

w† (x, i)UG
∏
x

A (x) |Ω〉 |ψE〉 (25)

where UG =
∏
x,i

UG (x, i). Let us examine this state care-

fully, to understand what it may describe.
First, on the right, we begin with the physical state
|ψE〉, which is the no-flux, strong coupling limit ground
state, as defined in Eq. (10). On top of it, we act with the
gauge field operator O ≡ 〈Ω|

∏
x,i

w† (x, i)UG
∏
x
A (x) |Ω〉.

Note that this expression contains a part that acts on
the gauge-fields that is not traced out. While all virtual
fermions are traced out, the expression still acts as an
operator on the gauge fields. To add physical fermions
to the game, one can add their Fock vacuum on the right,
and add them to the A (x) operator appropriately [62].
Here we only focus on the pure gauge case and shall
now show how to tailor it to the requirements mentioned
above. Note that both |ψE〉 and O are gauge invariant
(this can be shown using the symmetry properties of Eqs.
(18,22,24)) and therefore our ansatz is gauge invariant,
that is, it satisfies Eq. (8).
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The operator
∏
x
A (x) creates a virtual fermionic state

when acting on the vaccuum |Ω〉. It is a product state of
the different sites x; on each x, depending on the param-
eters of T , we may excite some, none, or all the virtual
modes associated with the four links around it. A leg
with an odd number of excitations will be referred to as
one which carries virtual flux, and one with an even num-
ber of excitations will not. On top of that, we act with
the gauging operator UG, and then apply the resulting
operator to the initial physical state |ψE〉. The gauging
operator multiplies each creation operator on the outgo-
ing links (right and up) by the physical Q operator on
the same link, and thus (since Q2 = 1), links that carry
virtual flux will now also carry a physical one. However,
the state is still not gauge invariant, since when we take
the product of all the sites we might well end up with
open flux strings which violate the gauge symmetry; the
projection onto

∏
x,i

w† (x, i) prevents that possibility, and

ensures that the fluxes are properly connected.
We would like to obtain an ansatz PEPS |ψ〉 with

the minimal F possible, which will include the extreme
case ground states, |ψE〉 and |ψB〉, defined in Eq. (10)
and (14) respectively. We would also like the state to
have rotational invariance, in the lattice sense (invari-
ance under π/2 rotations). In Appendix A we show that
this can be obtained for F = 2 (two virtual fermions on
each link) with

T =



0 −z1 −iy1 −iz1 ia ib ic id
z1 0 −iz1 y1 −d −a −b −c
iy1 iz1 0 z1 −ic −id −ia −ib
iz1 −y1 −z1 0 b c d a
−ia d ic −b 0 −z2 −iy2 −iz2

−ib a id −c z2 0 −iz2 y2

−ic b ia −d iy2 iz2 0 z2

−id c ib −a iz2 −y2 −z2 0


.

(26)

(where the ordering is r1, u1, l1, d1, r2, u2, l2, d2 and all
the parameters are, in general, complex) and

W 1 = σx, W 2 = η2σx (27)

(where η4 = −1, and this parameterization was derived
for the choice η = eiπ/4 - equivalent parameterizations
for other possible values exist too).

As we show in the appendix, setting all the parameters
to zero gives rise to |ψE〉; setting them all to zero besides
b4 = − 1

16 produces |ψB〉.
A gauge invariant construction can be obtained as well

with one virtual fermion per link, F = 1, and (as can be
seen in the appendix) it captures the physics for large
and small values of the coupling constant λ with good
precision, though not exactly. We refer to this construc-
tion as the “minimal” ansatz. However, as can be seen
numerically, it fails in the intermediate coupling regime.
Therefore, in the main text we focus on the F = 2 (cf.
Eq. (26)) approach, which we denote the “optimized”

ansatz. For further details and a direct comparison of
the two approaches, we refer to Appendix A.

IV. THE ALGORITHM

Having introduced and justified the ansatz physically,
we would now like to recall why it is useful numeri-
cally and discuss the computation algorithm. We tackle
this problem in two steps: first we show how to com-
pute expectation values for a given set of parameters by
combining GGFPEPS with Monte Carlo [62]. We then
demonstrate how to adapt the parameters using varia-
tional Monte Carlo (VMC) methods.

A. Q eigenbasis formulation

Following [62], we begin by expressing our ansatz
PEPS |ψ〉 in the Q eigenbasis. We introduce the gauge
field configuration states, which are simply product states
of Q eigenstates on all the lattice’s links:

|Q〉 =
⊗
x,i

|q (x, i)〉 . (28)

As eigenstates of all the Q operators, they satisfy

Q (x, i) |Q〉 = eiπq(x,i) |Q〉 . (29)

Due to the orthonormality of the local |q〉 state on each
link, these states are also orthonormal:

〈Q|Q′〉 = δQ,Q′ =
∏
x,i

δq(x,i),q′(x,i). (30)

In this basis, the gauging operators UG (x, i) from
Eq. (21) may be seen as controlled operations, transform-
ing the fermionic operators based on the gauge field’s Q
eigenvalue,

UG (x, i) =
∑
q

|q〉x,i 〈q|x,i ⊗ Uq (x, i) (31)

where

Uq (x, 1) = exp

(
iπq

F∑
α=1

r†α (x) rα (x)

)

Uq (x, 2) = exp

(
iπq

F∑
α=1

u†α (x)uα (x)

)
.

(32)

As a result (and up to an irrelevant normalization factor
- the PEPS is not normalized in any case), we can rewrite
the ansatz state as

|ψ〉 =
∑
Q
ψ (Q) |Q〉 . (33)
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The wavefunction is given by

ψ (Q) = 〈Ω|
∏
x,i

w† (x, i)UQ
∏
x

A (x) |Ω〉 (34)

where

UQ =
∏
x,i

Uq (x, i) . (35)

The wavefunction ψ (Q) is nothing but an overlap of
two fermionic Gaussian states,

|ψR〉 =
∏
x

A (x) |Ω〉

|ψL (Q)〉 = UQ
∏
x,i

w (x, i) |Ω〉
(36)

(we have used the fact that UQ = U†Q).
Fermionic Gaussian states are fully classified by the

elements of their covariance matrices [69]; the covariance
matrix consists of correlators of products of two fermionic
operators (fermionic two-point, or Green’s, functions).
They are central in our algorithm, based on conventional
Gaussian fermionic PEPS techniques [58].

So far, we have expressed the fermionic modes using
creation and annihilation (Dirac) operators. Numerically
and analytically, however, following the Gaussian formal-
ism discussed in [69] and in the context of PEPS in [58],
it is more convenient to work with Majorana modes since
they yield real-valued covariance matrices. As usual, for
a given Dirac mode annihilated by c and created by c†,
we define two Majorana modes

γ(1) = c+ c†

γ(2) = i(c− c†)
(37)

- that is, a system with p Dirac modes has 2p Majorana
modes, labeled from 1 to 2p. The Majorana modes anti-
commutation relations are given by the Clifford algebra

{γi, γj} = 2δij . (38)

The covariance matrix of a state |Φ〉 is given by

Γa,b =
i

2
〈[γa, γb]〉 (39)

=
i

2

〈Φ|[γa, γb]|Φ〉
〈Φ|Φ〉

. (40)

In Appendix B we show how to compute the covariance
matrix of a state expressed in terms of exponentials of
creation operator bilinears acting on the Fock vacuum,
as the states |ψR〉 and |ψL (Q)〉 that we work with.

We denote the covariance matrix of |ψR〉 by D, and
that of |ψL (Q)〉 by Γin (Q). Since both |ψR〉 and |ψL (Q)〉
are product states, it is easy to construct their covariance
matrices out of local ingredients: both covariance matri-
ces will be block diagonal. D will be a direct sum of
identical blocks, each being the covariance matrix of the
state created by A (x) on a single site; Γin (Q) is a direct
sum of covariance matrices of pairs of virtual fermions on
the links, which will not be identical due to the gauging.

B. The norm of the state

All our computations will be based on computing ex-
pectation values of operators with respect to the ansatz
state |ψ〉, in the form of Eq. (33). However, as this state
is not normalized, we would like to show how the norm
is computed. Note that

〈ψ|ψ〉 =
∑
Q
|ψ (Q)|2 = Tr [|ψR〉 〈ψR|ψL (Q)〉 〈ψL (Q)|]

(41)
- the squared norm of |ψ〉 is nothing but a sum over over-
laps between two Gaussian fermionic density matrices.
This can easily computed in terms of their covariance
matrices [81] giving rise to:

|ψ (Q)|2 =

√
det

(
1− Γin (Q)D

2

)
. (42)

C. Computation of the Wilson Loop

The first expectation value we are interested in com-
puting is that of a Wilson loop W (C) as defined in
Eq. (12).

The key property here [62] is that the configuration
states |Q〉 are eigenstates of the Q operators and thus
also of the Wilson loop operator:

W (C) |Q〉 =
∏
`∈C

(−1)
q(`) |Q〉 (43)

where the q (`) values are dictated by the eigenvalues of
Q` operators with respect to the configuration of |Q〉.
Therefore,

〈W(C)〉 =
∑
Q
FW (C)(Q)p(Q), (44)

where FW (C) =
∏
`∈C

(−1)
q(`)

and we define the function

p(Q) =
|Ψ(Q)|2∑
Q′ |Ψ(Q′)|2

. (45)

Note that for any Q, 0 ≤ p (Q) ≤ 1, and that
∑
Q
p (Q) =

1 and thus it is a probability density function over the
gauge field configuration space.

Using Metropolis sampling [82], we can compute the
expectation value using Markov chain Monte Carlo sam-
pling (MCMC) [62]. Instead of the full probability p(Q),
we need only the transition probability between two
gauge field configurations,

p(Q → Q′) =
|Ψ(Q′)|2

|Ψ(Q)|2
. (46)
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The denominator of Equation (45), which is hard to com-
pute, is avoided. In the Monte Carlo procedure, we use
a single-site update, i.e. we randomly select a single site
and propose a new gauge field for it. Since the changes
in the covariance matrices are only local, we can use the
matrix-determinant lemma and the Woodbury identity
to update inverses and determinants locally after each
step.

In general, the exact contraction of a general PEPS is
exponentially hard [83]. Here, since we picked the sub-
class of gauged Gaussian fermionic PEPS, we can per-
form the contraction required for Wilson loop computa-
tion efficiently, using covariance matrices and Eq. (42).

D. Computing P expectation values

The next operator whose expectation value we would
like to compute is P on a given link. It does not act
diagonally on the configuration states |Q〉, and thus this
has be done with caution [62].

First, note that for a given link `,

〈ψ|P` |ψ〉 =
∑
Q,Q′

ψ (Q′)ψ (Q) 〈Q′|P` |Q〉 . (47)

P` changes q on the link ` and does not affect any other
links; thus, the configuration Q′ is identical to Q every-
where but on `, where we have the opposite q eigenvalue.
If we denote Q̂ as the configuration of gauge fields on all
the links but `, such that Q = (Q̂, q) and Q′ = (Q̂, q− 1)
(the subtraction operation is obviously modulo 2), we
have

〈P`〉 =
〈ψ|P` |ψ〉
〈ψ|ψ〉

=

∑
Q
ψ
(
Q̂, q − 1

)
ψ
(
Q̂, q

)
∑
Q′
|ψ (Q′)|2

=
∑
Q

ψ
(
Q̂, q − 1

)
ψ
(
Q̂, q

)
|ψ (Q)|2

p (Q)

≡
∑
Q
FP (Q) p (Q) .

(48)
Therefore, if we have an efficient way to compute FP (Q),
we can use Monte-Carlo techniques to evaluate the expec-
tation value of P as well. In Appendix C we show how
this can be done.

In a previous work [68], the electric energy was calcu-
lated by explicitly transforming the expression to Grass-
mann variables. The resulting equation contains a Pfaf-
fian that depends on the system-size. In contrast to the
determinants and inverses that are used in the algorithm,
the value of the Pfaffian cannot be tracked across Monte
Carlo updates. Thus, the computation of a system-sized
Pfaffian is necessary with each measurement.

In this paper, we introduce a new way to compute the
electric energy that only depends on Pfaffians of constant

size if F > 1. For F = 1, the computation does not de-
pend on Pfaffians at all (cf. Appendix C). Here, we use
the properties of the Gaussian mapping for covariance
matrices to obtain the numerical value of the electric en-
ergy. In the case of the optimized ansatz (F = 2), Pfaf-
fians of constant size enter the computation, but since
they do not scale with system size, they do not hamper
the computation.

E. Looking for the ground state

We wish to find the ground state by minimizing the
expectation value of the Hamiltonian given in Eq. (9).
Thanks to the translational and rotational invariance of
the Hamiltonian and our ansatz, we can express the en-
ergy to be minimized as

E = nlλ (1− 〈P 〉) + np (1− 〈Q1Q2Q3Q4〉) (49)

where nl is the number of links in the system and np is the
number of plaquettes, and 〈P 〉, 〈Q1Q2Q3Q4〉 refer to the
expectation value on one particular link and plaquette
which we can choose arbitrarily.

The Monte Carlo procedure described above enables
us to compute these expectation values for a given set
of parameters α. In addition to the evaluation, we need
a minimization step that drives the parameters towards
the groundstate.

By computing the gradient of the energy with re-
spect to the parameters dE

dα , we can use the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [84]
to minimize the parameter values.

V. RESULTS

In section III, we introduced a gauge invariant ansatz
state depending on complex parameters. Its expressive
power depends on the number of virtual fermions F on
the links. In the following section, we will numerically
benchmark the state and explicilty compare the mini-
mal construction (F = 1) with the optimized construc-
tion (F = 2). Following analytic arguments (cf. Ap-
pendix A), we expect the optimized ansatz to match bet-
ter with exact results.

The key part of the numerical computation of the en-
ergy is the evaluation of the sum in Eq. (33). In general,
the number of terms in the sum scales exponentially with
the lattice size. Thus, for large systems, we cannot expect
to evaluate the sum exactly and we resort to Monte Carlo
(MC) computations. For small systems, however, an ex-
act contraction (EC) of the states is feasible. The exact
evaluation on small systems decouples the error that we
introduce by sampling with Monte Carlo from problems
with the ansatz itself: even if we evaluate a bad ansatz
state perfectly with MC, it stays a bad ansatz state.

As a first step, we compare the result of an exact con-
traction GGFPEPS with ED data on a 2× 2 system (cf.



8

2

4
〈H
〉

ED
EC, min.
EC, opt.
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10−3

10−5

ε r
(〈
H
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FIG. 3. Comparison of exact diagonalization (ED) data for
a 2× 2 system with exact contraction (EC) data obtained by
explicitly contracting the GGFPEPS. The upper panel shows
a comparison of the minimal and the optimized approach with
ED data. The lower panel displays the relative error between
each of the two approaches with the ED data.

Fig. 3). The notation 2 × 2 corresponds to a single pla-
quette that is closed with periodic boundary conditions,
leading to 4 plaquettes in total. Here, exact diagonaliza-
tion refers to solving the time-independent Schrödinger
equation explicitly by diagonalizing the Hamiltonian.
This is possible for a Z2 gauge theory since the link
Hilbert spaces have finite dimension.

For high couplings, where the electric term dominates,
the variationally minimized data agrees well with the ED
data. This behavior is expected since the electric ground
state (no magnetic term) can be exactly represented with
the minimal approach. We expect that the minimal ap-
proach has larger problems in the low-coupling region
(dominated by the magnetic energy). In contrast to ear-
lier works [62, 68], however, we see a good agreement at
lower couplings as well. The main difference stems from
allowing the parameters in T to be complex. For a more
detailed analysis, we refer to Appendix A.

The lower panel of Figure 3 shows the relative error
εr(〈H〉) = (〈H〉EC − 〈H〉ED) / 〈H〉ED, where the sub-
scripts of the expectation values indicate the method of
computation. The plot illustrates that the convergence of
the optimized ansatz is not only better in the transition
region, but across the entire coupling region.

Since we know from the analytic considerations above
that the groundstate of the magnetic term cannot be ex-
actly represented by the minimal approach, we take a
more detailed look at the different terms of the Hamilto-
nian. The minimization of the total energy of a system
is easier than obtaining the correct results for other ob-
servables. Figure 4 shows exact contraction data of the
two approaches for a system of size 2 × 2. To further
study the problem of the minimal approach, we visualize
the total energy H, the electric HE and the magnetic HB

with different colors. The curves of the total energy are
the same as in the upper panel of Fig. 3. The minimal

0 1 2 3 4
λ

0

1

2

3

4

〈H
〉

ED
EC, min.
EC, opt.

H
HE
HB

FIG. 4. Comparison of different energy components between
exact contraction (EC) and exact diagonalization (ED) on a
2 × 2 lattice. The color of the lines and markers encodes
the part of the energy: total energy (purple), electric energy
(gray), and magnetic energy (olive). The shape of the markers
indicates the computational method: ED (full line), GGF-
PEPS with the minimal approach (pentagons), and GGF-
PEPS with the optimized approach (crosses).

approach matches decently for the low coupling region
and well for the high coupling region.

In the transition region around g = 0.8, however, the
total energy is far from optimal and the decomposition
into electric energy and magnetic energy does not fol-
low the actual groundstate (given by ED) at all. Note
that the gray points (electric energy) and the olive points
(magnetic energy) are allowed to lie under the exact so-
lution (solid line). The variational principle holds only
for the total energy and not for individual parts of the
total energy.

The data for the optimized approach shows two dis-
tinct advantages over the minimal approach. Firstly, it
fits much closer to the exact solution, especially in the
transition regions. Secondly, the variational results fol-
low the magnetic energy and the electric energy much
better. Thus, the optimized approach is a more faithful
description of the actual ground state.

The exponential scaling of the number of configura-
tions renders the exact contraction scheme for larger sys-
tems extremely computationally expensive. For these
systems, we use Monte Carlo sampling.

All variational Monte Carlo data shown in the plots is
obtained with 105 warm-up steps and 105 measurement
steps. Our ansatz is translationally invariant and the
number of parameters scales only with F and not with
the system size L2 where L is the linear extent of the
lattice. Thus, we can use the results of EC computations
as starting points for the Monte Carlo computations of
larger system sizes. The error bars on the variational
Monte Carlo data are computed with a re-binning anal-
ysis to take into account the finite auto-correlation from
the single-site update.

In the previous paragraphs, we established that the
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FIG. 5. Comparison of exact diagonalization data for a 4× 4
system with variational Monte Carlo data for the same sys-
temsize.
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FIG. 6. Comparison of VMC data of the optimized ansatz
with data obtained via QMC. Data of different system sizes
is scaled with the number of vertices L2 where L is the linear
extent of the lattice.

ansatz is well-suited to describe the physics of Z2 lat-
tice gauge theories. In Fig. 5, we check the variational
Monte Carlo sampling procedure. We compare data for
a 4× 4 system computed with Monte Carlo sampling for
the GGFPEPS and with an exact diagonalization code
exploiting the symmetries of the system [48], which relies
on the ED library QuSpin [85, 86]. The data shows good
agreement of the Monte Carlo sampling procedure with
ED data.

Finally, we can start extending the system to sizes that
are not accessible with exact contractions or exact diago-
nalization. In Fig. 6, we show the energy of the optimized
ansatz (F = 2) for different sizes. For better comparison,
the energy is scaled to the number of vertices L2 on the
lattice. Additionally, we show data of standard quantum

Monte Carlo (QMC) on a 6 × 6 as a comparison [76].
The good agreement between the L = 4 and L = 6 data
can indicate that finite size effects do not have a large
effect on the energy of the system. The situation might
be different for other observables.

VI. SUMMARY AND CONCLUSIONS

In this paper, we constructed an efficient variational
ansatz for the pure Z2 lattice gauge Hamiltonian. The
ansatz in form of a GGFPEPS explicitly fulfills the gauge
invariance of the system. The expressibility of the ansatz
can be controlled by the number of virtual fermions on
the links. We show analytically that a single virtual
fermion on the links (F = 1) is not sufficient to represent
the weak-coupling groundstate of the theory.

Numerically, we check the analytical result by exactly
contracting the state and showing that the optimized ap-
proach represents the energy more faithfully. Due to the
Gaussian character of the state, the contraction is effi-
cient and larger systems can be handled via Monte Carlo
sampling.

Additionally, we demonstrate a new method to com-
pute the electric energy for GGFPEPS. In previous
work [68], the computation demanded the computation
of a system-sized Pfaffian in every measurement. This
computation is substituted by a matrix multiplication
and an inversion which can be tracked through the local
sampling procedure. This can enable the exploration of
larger systems and removes one of the big runtime penal-
ties of the algorithm.

One of the immediate next steps to add physical
fermions to the system. The formulation of the state
is written in terms of fermions to allow a seamless inte-
gration of physical fermions in the ansatz.

Furthermore, the more efficient formulation algorithm
introduce here, may enable simulations in three space
dimensions, as well as of other gauge groups, including
compact ones such as U(1), SU(2) or SU(3), and quite
possibly serve as a way to study non-perturbative gauge
theories, in particular 3 + 1d QCD with a finite chemical
potential, which suffers from the sign problem.
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Appendix A: Parametrization

In the main text, the parametrization of the ansatz
state is presented in a rather brief manner. Here, we
provide more details and complete the required proofs.

1. Rotational Invariance

First, we would like to ensure that the state is rota-
tionally invariant, in the lattice sense, that is, invariant
under π/2 rotations. We will do so by briefly reviewing
the procedures of refs [59, 60]. Let us first define how ro-
tations are carried out. Given a lattice site, x = (x1, x2),
we define its rotation by

Λx = (−x2, x1) . (A1)

We can then define the rotation of physical operators
simply as

Q (x, 1)→ RpQ (x, 1)Rp† = Q (Λx, 2)

Q (x, 2)→ RpQ (x, 2)Rp† = Q (Λx− ê1, 1)
(A2)

where Rp is the unitary operator implementing the π/2
rotation of physical operators and states, and similar re-
lations hold for the P operators. Clearly, the strong cou-
pling vacuum is rotation invariant,

Rp |ψE〉 = |ψE〉 , (A3)

and therefore it is easy to see that the weak coupling
vacuum |ψB〉 is invariant too, following its definition in
Eq. (14).

We also define the rotation of the virtual degrees of
freedom, implemented by the unitary Rv, by

Rva†α (x)Rv† = Rαβa
†
β (Λx) (A4)

where Rαβ is a matrix which relates to the rotation
of the legs: taking r to u, u to l etc. Clearly, it
has to be unitary. Thus, it has to be a permuta-
tion matrix (up to phases). If we choose the ordering

a†α =
(
r†1, u

†
1, l
†
1, d
†
1, ..., r

†
F , u

†
F , l
†
F , d

†
F

)T
and assume that

the rotation does not create any mode mixing, we can
simply write R as the direct sum

R =

F⊕
m=1

R0. (A5)
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where

R0 = η

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (A6)

where |η| = 1. If we wish to couple to physical fermions,
the virtual fermions should have similar transformation
rules [59]; since a complete rotation puts a minus sign on
a fermion, this phase must satisfy

η4 = −1. (A7)

Note that the virtual vacuum is invariant under rota-
tions,

Rv |Ω〉 = |Ω〉 , (A8)

and thus we can guarantee, following Refs. [59, 60], that
our PEPS |ψ〉, as defined in Eq. (25) will be rotationally
invariant if

RpRvA (x)Rv†Rp† = A (Λx) (A9)

as well as

Rvw (x, 1)Rv† = w (Λx, 2) , and

Rvw (x, 2)Rv† = w (Λx− ê1, 1) .
(A10)

The rotation property of A (x) from Eq. (A9) is ob-
tained if and only if the matrix T satisfies the equation

RTTR = T (A11)

(just by acting with the rotation operators on the expo-
nential of A (x) explicitly). This further constrains the
parameterization.

The rotation rules of w (x, i) may be demanded in a
similar fashion. Using the definitions from Eq. 23, we get
that the proper transformation rules (A10) are obtained
if and only if

η2W 1 = W 2

η2W 2 = −W 1T
(A12)

giving rise the consistency equation

η4W 1 = −W 1T . (A13)

Since we do not wish η to depend on F , let us consider
what happens for F = 1 where W 1,2 are simply numbers
and their transposition is irrelevant; this forces us to sat-
isfy Eq. (A7) even in the absence of physical fermions.

We choose not to include any free parameters in W 1,2;
a common trick in PEPS theory [3] allows one to absorb
all the free parameters into the on-site tensors (T in our
case).

With all that at hand, we can now proceed to con-
struct the most suitable ansatz state |ψ〉 while meeting
the required contstraints.

2. Minimal ansatz

The most minimal construction we may try is F = 1:
a single virtual fermion per leg. Then, Tαβ is a four
dimensional complex matrix, and a†α has four compo-
nents, one on each leg (r, u, l, d). Due to the fermionic
anti-commutation relations, we obtain that T is an anti-
symmetric matrix, reducing the number of allowed com-
plex parameters to six. Solving the rotational invariance
conditions of Eqs. (A11) and (A12) reduces the number
of free complex parameters in T to two:

T =

 0 −z −iy −iz
z 0 −iz y
iy iz 0 z
iz −y −z 0

 (A14)

and gives rise to

w (x, 1) = exp
(
l† (x + ê1) r† (x)

)
w (x, 2) = exp

(
η2d† (x + ê2)u† (x)

)
.

(A15)

It is easy to see that the strong coupling vacuum is
included here, simply by choosing y = z = 0, but which
other states can be created with this choice? For that,
we attempt to understand the meaning of the y, z pa-
rameters. Recalling that the columns and rows of T are
ordered as {r, u, l, d}, we can see that the parameter y re-
lates to the creation of virtual fermions along a straight
line (r and l, or u and d) while z is associated with cor-
ners. To see this clearly, we can rewrite our A (x) oper-
ator as

A =
(
1− 2zr†u†

) (
1− 2iyr†l†

) (
1− 2izr†d†

) (
1− 2izu†l†

) (
1 + 2yu†d†

) (
1 + 2zl†d†

)
=

(
1− 2z

)(
1− 2iy

)(
1− 2iz

)(
1− 2iz

)(
1 + 2y

)(
1 + 2z

)
(A16)

(we omitted the coordinate x which is shared by all operators for simplicity, and the graphical notation should be
taken with caution, as it does not account for the ordering of creation operators - one can see the first row as defining
proper ordering for the diagrams below). We can open the brackets, and discover, due to the fermionic statistics and
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the fact the fermionic modes cannot be excited twice, that we have the following possibilities:

A = 1− 2zr†u† − 2iyr†l† − 2izr†d† − 2izu†l† + 2yu†d† + 2zl†d† + 4
(
iy2 − 2z2

)
r†u†l†d†

= 1− 2z − 2iy − 2iz − 2iz + 2y + 2z + 4
(
iy2 − 2z2

)
.

(A17)

The PEPS |ψ〉 is created by a product of such oper-
ators on all sites, acting on the Fock vacuum and the
strong coupling ground state |ψE〉. The gauging opera-
tor adds Q on all the links where r or u are excited, and
thus makes the “physical flux map” look like the virtual
one. The remaining action of w† operators and project-
ing back on the virtual vaccum, completing the definition
of the PEPS in Eq. (25), guarantees gauge invariance and
proper closing of the physical flux loops. We can use this
to consider the structure of |ψ〉 as a series in the param-
eters y, z (without assuming that any of them is small).

The zeroth order will be obtained by the 1 ingredient
of all A and w operators, and thus it will simply be∣∣∣ψ(0)

〉
= |ψE〉 . (A18)

The next order will have to involve the shortest flux
loop - a plaquette - requiring a contribution of four sites
which is not 1, and 1 everywhere else. This will be a
combination of four corners, and thus will be accompa-
nied by 16z4. The final phase will be determined by the
fermionic anticommutation rules when contracting with
the right terms from w†; a straightfoward computation
shows that∣∣∣ψ(1)

〉
= −16z4

∑
p

Qp1Qp2Qp3Qp4 |ψE〉 . (A19)

We define the second order as that with two plaquettes
excited. Here, there are several possibilities; first, of pla-
quettes p, p′ with no link or site in common. Then it is
straightforward to show that the amplitude is the square

of that for a single plaquette:
(
−16z4

)2
= 256z8. An-

other option is that of two plaquettes which share a link;
then, we need four corners and two straight lines, and
the amplitude per such a single excitement is −64z4y2;
finally, we consider plaquettes with one site in common,
which can be created in two ways, giving rise to two con-
tributions to the amplitude: eight corners (contrbuting
256z8) or six corners and two straight lines (−256iz6y2).

Continuing in this way is possible but tedious, so we
stop here in order to evaluate what this state is able to
describe. First, assume that y = 0 and |z| � 1. Then
the PEPS may be seen as a perturbative expansion, and
we have

|ψ〉 =

(
1− 16z4

∑
p

Qp1Qp2Qp3Qp4

)
|ψE〉+O

(
z8
)
.

(A20)

If we pick z =
(
−128λ2

)−1/4 � 1, we get, in leading
order, the perturbative solution of the ground state for
λ � 1 as in Eq. (11). The next order, however, cannot
be obtained, since we cannot excite two neighboring pla-
quettes with y = 0, so we will not extend the discussion
on this perturbative limit further.

Next, we consider the weak limit. We wish our ansatz
to cover both extreme limits, so what about |ψB〉? We
can take a look at its definition in Eq. (14) and start
expanding all the brackets. We can clearly see that the
superposition includes |ψE〉 as we have in our PEPS |ψ〉
and that all the orders (in particular the order of a single
plaquette), no matter how many plaquettes are excited
and where they are, have the same amplitude 1. Going
back to what we have just derived, this implies that we
need z4 = − 1

16 . Going up to the second order, there are
several kinds of terms; the pairs of far plaquttes carry
an amplitude of 256z8 = 1 as required; but those who
share a link carry an amplitude of −64z4y2 = −4y2,
thus we require y2 = − 1

4 . However, we will run into
contradiction with the other kind of terms, pairs of pla-
quettes with only a single site shared. Their amplitude
will be 256

(
z8 − iz6y2

)
= 1± 1 6= 1, and our conclusion

is that the minimal ansatz does not cover the weak limit
and thus does not satisfy our basic requirements from an
ansatz.

3. Optimized ansatz

Next, we try to build an ansatz that will include |ψB〉,
the weak limit ground state too, as defined in (14) with
two virtual fermions per leg (F = 2). This time, we shall
use a rather more constructive, bottom-up approach, by
first considering a single plaquette.

Consider one plaquette and label the sites around it by
a, b, c, d, as in Fig. 7. On each leg of the links we introduce
a single virtual fermionic mode, eight altogether, and we
name them as in the figure. Note that the sites a, b, c, d
are entirely independent of the parameters a, b, c, d in
Eq. (26).

Suppose this is our entire system, and we construct
our PEPS for it; the initial gauge field state will simply
be |0〉 = |p = 0〉⊗4

. The A operators will take the most
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FIG. 7. Notation convention for the single plaquette construc-
tion - the first step towards obtaining |ψB〉 with our ansatz.

general forms

Aa = 1 + far
†
1 (a)u†2 (a)

Ab = 1 + fbu
†
1 (b) l†2 (b)

Ac = 1 + fcl
†
1 (c) d†2 (c)

Ad = 1 + fdd
†
1 (d) r†2 (d) .

(A21)

Gauging will be done as usual. In order to connect the
modes properly, and following the previous construction,
we define the operators

wab = exp
(
l†2 (b) r†1 (a)

)
wbc = exp

(
η2d†2 (c) r†1 (b)

)
wdc = exp

(
l†1 (c) r†2 (d)

)
wad = exp

(
η2d†1 (d)u†2 (a)

)
.

(A22)

Finally, the PEPS for a single plaquette will take the
form

|ψ�〉 = 〈Ω|w†abw
†
bcw
†
dcw
†
adUGAaAbAcAd |Ω〉 |0〉 . (A23)

It is easy to verify that the contraction of the virtual
fermions will give rise to

|ψ�〉 = (1 + fafbfcfdQabQbcQdcQad) |0〉 . (A24)

Why did we bother to do all that? Because we wish to
generate an operator which is a product of such operators
on all the plaquettes,

O =
∏
p

(1 + fp1fp2fp3fp4Qp1Qp2Qp3Qp4) ; (A25)

Clearly, when fp1fp2fp3fp4 = 1 for all the plaquettes,
O |ψE〉 = |ψB〉.

In order to build this O, we consider a PEPS |ψ〉 with
F = 2 - two virtual fermions per mode. On each site x
we set

A (x) = Aa (x)Ab (x)Ac (x)Ad (x) (A26)

which allows a site to connect to all the four plaquettes
around it - to one plaquette it plays the role of a from the
above construction, and to the others, the role of b, c, d.
Finally, we introduce

w (x, 1) = exp (l2 (x + ê1) r1 (x)) exp (l1 (x + ê1) r2 (x)) .
(A27)

which accounts for the link being ab for the plaquette on
top of it, and dc for the one beneath it. Similarly,

w (x, 2) = exp
(
η2d2 (x + ê2)u1 (x)

)
exp

(
η2d1 (x + ê2)u2 (x)

)
(A28)

Plugging these into the PEPS construction |ψ〉 gives us
|ψB〉 if we choose fafbfcfd = 1.

All we have to do is to show that this is embedded
in some general parametrization with F = 2. Such
a construction will have an eight dimensional T ma-
trix. Demanding the rotation invariance condition (A11),
we obtain the T matrix introduced in Eq. (26). For
the w operators we stick to the choices of Eqs. (A27)
and (A28). They satisfy the rotation invariance condi-
tions of Eq. (A12). Then, if we set all the parameters
of the T matrix (26) to zero, other than b, we can get
|ψB〉; inspecting Eq. 26 carefully and comparing it with
our |ψB〉 construction implies that

fa = 2ib

fb = −2b

fc = −2ib

fd = 2b.

(A29)

Taking the product, we obtain fafbfcfd = −16b4 and
hence setting b4 = − 1

16 and all the other parameters
of (26) to zero, gives us |ψB〉. Trivially, setting all the
parameters to zero gives rise to |ψE〉.

Therefore, we choose the F = 2 PEPS with T given
in (26) and w from (A27) and (A28), or equivalently (27),
as our ansatz. It satisfies all the requirements we set for
ourselves: gauge invariant, rotation invariant, and in-
cluding the extreme cases |ψE〉 and |ψB〉 with a minimal
number of parameters.

A big difference between the ansatz used in this work
and previous work [59, 68] is lifting the restriction to real
parameters in T . In Fig. 8, we illustrate the differences in
using real/complex-valued parameters and changing the
number of fermions on the links. The mention of layers
in the figure refers to the idea of enlarging the number of
parameters by adding additional GGFPEPS coupled to
the same gauge field. In the absence of physical fermions
the contraction of the GGFPEPS can be seen as a wave-
function in the group element basis (cf. Eq. (33)). If we
choose independent PEPS, we can compute all observ-
ables independently with only a linear runtime penalty
in the number of layers. For more details on layers, we
refer to Ref. [68].

In Fig. 8, Panel (a) shows exact contraction data for
the minimal ansatz with real parameters. As in a previ-
ous work [68], we see a 1/λ divergence for low couplings.
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This is exactly the prefactor in front of HB . Thus, the
ansatz state reaches a minimum energy for HB and fails
to lower it further. With an increase in the number of
layers, the problem can be mitigated, but a distinct devi-
ation exactly at the transition region remains. Panel (b)
shows a similar plot for the optimized approach. Even
for the minimal number of a single layer, we get good
agreement with the expected curve (solid line). Upon
increasing the number of layers, we see improvements in
the transition region. In panels (c) and (d) the minimal
and optimized approach are shown for complex param-
eters, respectively. We note that the divergence at low
couplings can be mitigated with just a single layer also in
the F = 1 case [panel (c)] for complex parameters. The
transition region, however, remains hard to access for the
minimal approach. Only the choice of complex parame-
ters and the optimized ansatz of two virtual fermions on
each link (F = 2)[panel (d)] leads to a good match across
the full range of couplings.

Appendix B: Computation of the covariance matrix
in Dirac modes

We consider a fermionic Gaussian state of the form

|ψ〉 = N exp

(
1

2
Mija

†
ia
†
j

)
|Ω〉 (B1)

where {a†i}2Ri=1 create fermionic modes from the Fock vac-
uum |Ω〉 and Mij = −Mji is an anti-symmetric matrix.

The anti-symmetric matrix M can always be brought
to a canonical form M0, with a unitary U

M = UTM0U. (B2)

If Mij ∈ R, U is orthogonal, but the decomposition
in (B2) involves UT and not U† for both R and C.

In both cases (M ∈ R and M ∈ C),

M0 =


0 λ1

−λ1 0
. . .

0 λR
−λR 0

 (B3)

with λk ∈ R and λk ≤ 0. We denote M0 in terms of a
direct sum

M0 =

R⊕
k=1

M0(k) (B4)

where M0(k) = iλkσy.
In this canonical basis, |ψ〉 can be written as a product

of BCS states |ψk〉:

|ψ〉 =

R⊗
k=1

|ψk〉 with (B5)

|ψk〉 =
1√

1 + λ2
k

(
1 + λkb

†
2k−1b

†
2k

)
|Ωk〉 (B6)

and b†i = Uija
†
j .

The covariance matrix of |ψ〉 in this canonical basis,
Γ0, can be written as a direct sum:

Γ0 =

R⊕
k=1

Γ0(k) (B7)

where Γ0(k) is the 4 × 4 covariance matrix of the BCS
state |ψk〉.

The Dirac covariance matrix for |ψk〉 is given as

ΓDαβ =

(
Qk Rk
Rk Qk

)
(B8)

where

Qαβ(k) =
i

2
〈ψk|

[
b̃α(k), b̃β(k)

]
|ψk〉

Rαβ(k) =
i

2
〈ψk|

[
b̃α(k), b̃†β(k)

]
|ψk〉

b̃1(k) = b2k−1

b̃2(k) = b2k.

(B9)

For |ψk〉 =
(
u(k) + v(k)b†1(k)b†2(k)

)
,

Q(k) = u(k)v(k)σy

= −i(1−M2
0 (k))−1M0(k)

(B10)

R(k) =
i

2

(
1− 2v2(k)

)
1

=
i

2

(
1−M2

0 (k)
)−1 (

1 +M2
0 (k)

) (B11)

with u(k) = 1√
1+λ2

k

and v(k) = λk√
1+λ2

k

and 1−M2
0 (k) =(

1 + λ2
k

)
1.

Using the structure of the direct sum for R and Q, we
obtain

R =
i

2
(1−M2

0 )−1(1 +M2
0 ) (B12)

Q = −i(1−M2
0 )−1M0. (B13)

In the original ordering of the operators b and b† we get

ΓD0 =

(
Q R
R Q

)
(B14)

= i

(
−(1−M2

0 )−1M0
1
2 (1−M2

0 )−1(1 +M2
0 )

− 1
2 (1−M2

0)−1(1 +M
2

0) (1−M2

0)−1M0

)
.

(B15)

Here, we ordered the operators such that

{b1, · · · , bR, b†1, · · · , b
†
R}. Although all λk ∈ R, we

keep the notation M0 for easier notation later.

We rotate back to the a basis that we started with and
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FIG. 8. Comparison of different choices for the parameters and the number of virtual fermions on the link (F ). The top(bottom)
row shows the data for real(complex)-valued parameters. The left(right) column displays data for minimal(optimized) ansatz.
All panels except for the top left one use the same scale for easier comparison.

define

V =

(
U

U

)
, ~a =



a1

...
a2R

a†1
...

a†2R


, ~b =



b1
...
b2R
b†1
...

b†2R


(B16)

such that

~b = V~a

~a = V †~b =

(
UT

U†

)
~b†.

In the a basis, we obtain

ΓDαβ =
i

2
〈ψ|[~aα,~aβ ]|ψ〉

=
i

2
〈ψ|
[
Vαα′~bα′ , Vββ′

]
~bβ′ |ψ〉

= (V †ΓD0 V )αβ

(B17)

which evaluates to

ΓD = i

(
−M−M 1

2M
− (1 +MM

)
− 1

2M
− (1 +MM

)
M−M

)
. (B18)

with M− =
(
1−MM

)−1
.

The covariance matrix in terms of Majorana modes can
be computed by a linear transformation from Eq. (B18)
which follows directly from the definition of the Majorana
modes in Eq. (37).

The direct connection between the parametrization M
and the Majorana covariance matrix enables us to com-
pute the derivatives of the covariance matrices automat-
ically by symbolic differentiation. Since the matrices are
not modified during a Monte Carlo evaluation, we can
store the numerical evaluation of the derivatives for a
given set of parameters.

Appendix C: Calculation of 〈P 〉

Here we shall elaborate and give detail on the compu-
tation of FP (Q), that we need for the computation of 〈P 〉
and hence for the electric energy part of 〈H〉. Following



18

Eq. (48), recall that

FP (Q) =
ψ
(
Q̂, q − 1

)
ψ
(
Q̂, q

)
|ψ (Q)|2

. (C1)

If we define

|φ (Q)〉 = UQ
∏
x

A (x) |Ω〉 , (C2)

Ω (x, i) as the projector onto the empty state of all the
virtual fermionic modes on the link (x, i), and

ω (x, i) = w (x, i) Ω (x, i)w† (x, i) , (C3)

we can express the numerator of FP (Q) as

ψ
(
Q̂, q − 1

)
ψ
(
Q̂, q

)
= 〈φ (Q)| exp

(
F∑
α=1

iπr†αrα

)
×∏

x,i

ω (x, i) |φ (Q)〉

(C4)

(without loss of generality - due to the rotational sym-
metry - we assume that we compute the electric en-
ergy for a horizontal link). The numerator is the un-
normalized expectation value of the Gaussian opera-

tor exp

(
F∑
α=1

iπr†αrα

)∏
x,i

ω (x, i) with respect to the state

|φ (Q)〉.
For simplicity, let us first assume that F = 1 - the

minimal ansatz introduced above. If we denote by ω̃ the
product of ω (x, i) on all the links but the one where the
expectation value is computed, we obtain for the numer-
ator

ψ
(
Q̂, q − 1

)
ψ
(
Q̂, q

)
=

1

2
〈φ (Q)|

(
rl − l†r† − 1 + ll† + rr†

)
ω̃ |φ (Q)〉

∝1

2
〈φ (Q)| ω̃

(
rl − l†r† − 1 + ll† + rr†

)
ω̃ |φ (Q)〉

=
1

2

〈
φ̃
∣∣∣ (rl − l†r† − 1 + ll† + rr†

) ∣∣∣φ̃〉
(C5)

where r, l are the annihilation operators of the virtual
fermions on both sides of the link we study (belonging to
two neighboring sites). In the third line of (C5), we used
the fact that ω̃2 ∝ ω̃ (as a non-normalized density matrix
of a pure state), as well as that ω̃ commutes with the
modes in parentheses because it acts on different links.
For convenience, we define the state∣∣∣φ̃〉 = ω̃ |φ(Q)〉 . (C6)

The quantity we wish to compute is the expectation value
of an operator acting on the l, r modes of one particular

link, with respect to this state. Since |φ(Q)〉 is Gaussian,
this can be extracted from its covariance matrix.

All covariance matrices so far have been formulated in
terms of Majorana modes. Thus, we express the opera-
tor whose expectation value we seek in (C5) in terms of
Majorana modes:

rl − l†r† − 1 + ll† + rr†

=
1

2
(r(1)l(1) − r(2)l(2) + il(1)l(2) + ir(1)r(2)) .

(C7)

In a previous work [68], we rewrote the operator in
(C7) in terms of Grassman variables and obtained a new
form for the gauged covariance matrix of the projectors
Γin. The resulting expression required the computation
of a system-sized Pfaffian which is computationally ex-
pensive since it must be recomputed with every measure-
ment. To our knowledge, there is no algorithm to infer
the new value of a Pfaffian after a local change in a ma-
trix [70]. In the following, we present a different method
that explicitly uses the Gaussian character of the GGF-
PEPS.

Using standard fermionic Gaussian states [69], and in
particular fermionic Gaussian PEPS, techniques [58], we
can compute the covariance matrix of |φ(Q)〉 using the
so-called Gaussian map; such a Gaussian map takes as its
input the state ω̃, involving the modes on all the links but
the one we are interested in, and it is parameterized by
the covariance matrix D of the state |φ(Q)〉. We sort the
fermionic modes into two groups: the ones which are con-
tracted - those on all the links but the one we look at, and
the non-contracted, or open ones, which are all the rest
(mathematically, this is equivalent to virtual and physi-
cal modes respectively, in conventional fermionic PEPS
constructions [58]) - see Fig. 9 for graphical explanation.

The output of the Gaussian map is the covariance ma-

trix of
∣∣∣φ̃〉, which belongs to the Hilbert space of the

non-contracted fermions [87]. It is given by [58, 69]

Γv = Doo +Doc

(
D̃ − Γ̃in (Q)

)−1

DT
oc, (C8)

where Doo, Doc and D̃ are the blocks of the covariance D
containing correlations of open modes with themselves,
open with contracted, and contracted modes with them-

selves, respectively, as depicted in Fig. 10. Γ̃in (Q) is the
covariance matrix of ω̃.

Using the basis
{
l(1), l(2), r(1), r(2)

}
for the modes, we

can write the matrix Γv as

Γv =
1〈
φ̃
∣∣∣φ̃〉


0 i

〈
l(1)l(2)

〉
i
〈
l(1)r(1)

〉
i
〈
l(1)r(2)

〉
0 i

〈
l(2)r(1)

〉
i
〈
l(2)r(2)

〉
0 i

〈
r(1)r(2)

〉
0

 ,

(C9)

with 〈·〉 =
〈
φ̃
∣∣∣·∣∣∣φ̃〉. Since Γv is anti-symmetric, we do

not fill out the lower half of the matrix.
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FIG. 9. Rearrangement of the contraction pattern in terms
of PEPS contractions. The link at the top is selected for the
electric energy computation. Its legs are kept open to use the
Gaussian mapping.

D
D̃

Doc

−
D

T o
c

Doo

FIG. 10. Left: Covariance matrix in the standard case. Right:
Adapted covariance matrix to trace out the environment of
a single link. The subscripts o and c refer to open and con-
tracted modes, respectively.

We identify the expression (C7) in terms of elements
of the covariance matrix〈

φ̃
∣∣∣ 1

2

(
r(1)l(1) − r(2)l(2) + il(1)l(2) + ir(1)r(2)

) ∣∣∣φ̃〉
=

1

2

(
−1

i
Γv;1,3 +

1

i
Γv;1,4 + Γv;1,2 + Γv;3,4

)〈
φ̃
∣∣∣φ̃〉

=
1

2
(iΓv;1,3 − iΓv;1,4 + Γv;1,2 + Γv;3,4)

〈
φ̃
∣∣∣φ̃〉 .

(C10)

The full expression of 〈P 〉 reads

〈P 〉 =
〈ψ|P |ψ〉
〈ψ|ψ〉

=
∑
q,Q̂

1

4

(iΓv;1,3 − iΓv;1,4 + Γv;1,2 + Γv;3,4)
〈
φ̃
∣∣∣φ̃〉〈

ψ(Q̂, q)
∣∣∣ψ(Q̂, q)

〉 p(Q) .

(C11)

Finally, we can directly remove the anti-hermitian part
since P is a Hermitian operator in Z2 and it will add up
to zero in the end. Thus

〈P 〉 =
〈ψ|P |ψ〉
〈ψ|ψ〉

=
∑
q,Q̂

1

4

(Γv;1,2 + Γv;3,4)
〈
φ̃
∣∣∣φ̃〉〈

ψ(Q̂, q)
∣∣∣ψ(Q̂, q)

〉 p(Q) . (C12)

Here, the norm 〈φ|φ〉 can be computed using (42) for the

modified matrices D̃ and Γ̃in.

In the case of the optimized approach with F = 2, the
expression corresponding to (C7) is

eiΦr
†
1r1eiΦr

†
2r2

1

4

(
1 + l†1r

†
2

)(
1 + l†2r

†
1

)
×

r1r
†
1r2r

†
2l1l
†
1l2l
†
2 (1 + r2l1) (1 + r1l2)

=
1

4

(
r

(1)
1 l

(1)
2 − r(2)

1 l
(2)
2 + il

(1)
2 l

(2)
2 + ir

(1)
1 r

(2)
1

)
×

1

4

(
r

(1)
2 l

(1)
1 − r(2)

2 l
(2)
1 + il

(1)
1 l

(2)
1 + ir

(1)
2 r

(2)
2

)
.

(C13)

The subscript indices denote the different values of F in
the system.

While we can write the expectation value in terms
of a multiplication Majorana modes, we cannot directly
transform the products into elements of the covariance
matrix. The products of four Majorana modes are iden-
tified with Pfaffians in terms of submatrices of the co-
variance matrix D using equation (17) from [69]

The equation [69]

tr(ρipca1ca2 · · · c2p) = Pf(Γv|a1,··· ,a2p) , (C14)

with 1 ≤ a1 < · · · < a2p ≤ 2n, enables the transfor-
mation from products of Majorana modes to matrix ele-
ments of the covariance matrix. Here, Γv|a1,··· ,a2p is the
2p× 2p submatrix with the indicated rows and columns.
More concretely, we need the contraction of 4 Majorana
modes

Tr(ρc1c2c3c4) = −Pf(Γv|1234) . (C15)

In terms of Pfaffians, we can write Eq. (C13) as

1

16
[Pf(Γv|1357)− Pf(Γv|2358)− iPf(Γv|1235)− iPf(Γv|3578)

− Pf(Γv|1467) + Pf(Γv|2468) + iPf(Γv|1246) + iPf(Γv|4678)

+ iPf(Γv|1567)− iPf(Γv|2568) + Pf(Γv|1256) + Pf(Γv|5678)

+ iPf(Γv|1347)− iPf(Γv|2348) + Pf(Γv|1234) + Pf(Γv|3478)] .

(C16)
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The final expression of 〈P 〉 reads, after omitting all imaginary terms,

〈P 〉 =
〈ψ|P |ψ〉
〈ψ|ψ〉

=
1

16

∑
q,Q̂

[Pf(Γv|1357)− Pf(Γv|2358)− Pf(Γv|1467) + Pf(Γv|2468)

+ Pf(Γv|1256) + Pf(Γv|5678) + Pf(Γv|1234)− Pf(Γv|3478)]

〈
φ̃
∣∣∣φ̃〉〈

ψ(Q̂, q)
∣∣∣ψ(Q̂, q)

〉p(Q̂, q) .

Appendix D: Calculation of derivatives

The idea of a variational algorithm is to minimize
the energy by (iteratively) adapting the parameters of
a state. While gradient free optimizations are possible,
the gradient of the energy with respect to the parameters,
speeds up the minimization significantly. The total en-
ergy of the system consists of two parts: H = HE +HB .
Since the electric energy is non-diagonal in the group el-
ement basis (cf. sec. IV D), we go through the relevant
calculations in detail. The easier case of the magnetic
energy (diagonal in the group element basis) follows di-
rectly.

We consider an observable O and its expectation value

〈O〉 =
∑
Q
FO(Q)p(Q). (D1)

Our aim is to calculate the derivative with respect to a
parameter α of the matrix T (α). The number of param-
eters depends on the value of F . The derivative of the
observable can be written as

∂

∂α
〈O〉 =

〈
∂

∂α
O

〉
+

〈
O

∂
∂α |Ψ(Q)|2

|Ψ(Q)|2

〉

− 〈O〉

〈
∂
∂α |Ψ(Q)|2

|Ψ(Q)|2

〉
.

(D2)

The expression can be derived by considering the loga-
rithmic derivative ∂

∂α ln 〈O〉 and transforming back at the
end of the calculation. If the observable does not explic-
itly depend on the parameters, as is the case for Wilson
loops, the first term in (D2) vanishes.

In a first step, we focus on the calculation of the sec-
ond and third term which are always present since the
norm always depends on the parameters. Instead of di-
rectly tracking the derivative of the parameters through
the state construction, we will use the chain rule. The
matrix D does not change during one Monte Carlo com-
putation with a given set of parameters and is the only
one that contains the parameters.

The derivative of the norm is

∂

∂α
|Ψ(Q)|2

=
d

dα

√
det

(
1− Γin(Q)D(α)

2

)
=− 1

2N+1

√
det(1− ΓinD)×

Tr

(
Γin(Q)

∂D

∂α
(1− Γin(Q)D)−1

)
.

(D3)

The calculation is described in more detail in an Ap-
pendix of Ref. [68].

According to the calculation in Appendix C, the elec-
tric energy is obtained by changing the Gaussian map.
The expression for the electric energy contains the co-

variance matrix and two norms 〈ψ|ψ〉 and
〈
φ̃
∣∣∣φ̃〉 that

depend on the parameters. The exact expression depends
on the ansatz.

For the minimal ansatz (F = 1), we compute the ob-
servable of the electric energy with [cf. Equation (C7)]

FP =
1
4 (Γv;1,2 + Γv;3,4) 〈φ|φ〉
〈Ψ(Q, q)|Ψ(Q, q)〉

. (D4)

The derivative of the expression reads

∂FP
∂α

=
1

4

∂

∂α

(Γv;1,2 + Γv;3,4) 〈φ|φ〉
〈ψ|ψ〉

=
1

4

∂
∂α [Γv;1,2 + Γv;3,4] 〈φ|φ〉

〈ψ|ψ〉
+ FP (ṽ − v)

(D5)

with v and ṽ given by

v = −1

2
Tr

(
Γin

∂D

∂α
D−1

(
D−1 − Γin

)−1
)

ṽ = −1

2
Tr

(
Γ̃in

∂D̃

∂α
D̃−1

(
D̃−1 − Γ̃in

)−1
) (D6)

The tilde decorations used here are those introduced in
Appendix C.

When using the optimized ansatz (F = 2), we have a
slightly different expression for the electric energy

FP =
1
16f(Γv) 〈φ|φ〉
〈Ψ(Q, q)|Ψ(Q, q)〉

(D7)
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where f(Γv) is the sum of Pfaffians in (C16) without the
prefactor of 1

16 .

The derivative of the expression is structurally similar
to one of the minimal approach

∂FP
∂α

=
1

16

∂

∂α

f(Γv) 〈φ|φ〉
〈ψ|ψ〉

=
1

16

[
∂
∂αf(Γv)

]
〈φ|φ〉

〈ψ|ψ〉
+ FP (ṽ − v)

(D8)

with v and ṽ defined as above.

In comparison to the minimal ansatz, the expression
for the optimized ansatz contains Pfaffians of certain
rows and columns of the resulting covariance matrix in
∂
∂αf(M). These are the results of Wick contractions from
four-body correlators. Since f(M) is a sum of indepen-
dent terms, we only treat a single Pfaffian explicitly

∂

∂α
Pf (Γv(α)|i1,i2,i3,i4)

=
1

2
Pf(Γv|i1,i2,i3,i4) Tr

(
Γv|−1

i1,i2,i3,i4

∂Γv|i1,i2,i3,i4
∂α

)
.

(D9)

For both, F = 1 and F = 2, the derivative of the
electric energy contains the derivatives of the covariance
matrix Γv. The expression reads

∂

∂α
Γv =

∂

∂α

[
Doo(α) +Doc(α)(D̃(α)− Γ̃in)−1Doc(α)T

]
=
∂Doo

∂α
+
∂Doc

∂α

(
D̃ − Γ̃in

)−1

DT
oc

−Doc

(
D̃ − Γ̃in

)−1 ∂D̃

∂α

(
D̃ − Γ̃in

)−1

DT
oc

+Doc

(
D̃ − Γ̃in

)−1 ∂Doc

∂α

T

,

(D10)

where we used ∂K−1

∂α = −K−1 ∂K
∂αK

−1.

Similar to the idea of tracking (D−1 − Γin)−1, we can
also track (D − Γin)−1 and avoid the expensive matrix
inversions in each measurement computation.

The derivative of the matrices Doo, Doc,D and D are
derivatives of the covariance matrix of the Majorana
modes D. As described in Appendix B, we know a direct
construction of D in terms of T . Thus, we can calculate
the derivatives symbolically before the actual computa-
tion and insert the appropriate parameters as needed.
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