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We theoretically investigate the interaction between magnons and a Skyrmion-textured domain
wall in a two-dimensional antiferromagnet and elucidate the resultant properties of magnon trans-
port. Using supersymmetric quantum mechanics, we solve the scattering problem of magnons on top
of the domain wall and obtain the exact solutions of propagating and bound magnon modes. Then,
we find their properties of reflection and refraction in the Skyrmion-textured domain wall, where
magnons experience an emergent magnetic field due to its non-trivial spin texture-induced effective
gauge field. Based on the obtained scattering properties of magnons and the domain wall, we show
that the thermal transport decreases as the domain wall’s chirality increases. Our results suggest
that the thermal transport of an antiferromagnet is tunable by modulating the Skyrmion charge
density of the domain wall, which might be useful for realizing electrically tunable spin caloritronic

devices.

I. INTRODUCTION

Antiferromagnets are arising platforms for spintronic
applications due to their exceptional features [1, 2]. An
unit cell of an antiferromagnet is composed of two sublat-
tice magnets aligned antiparallelly, which removes the net
magnetic moment and thereby makes antiferromagnets
robust against external magnetic stimuli. Moreover, the
absence of the net magnetic moment allows us to ignore
the effects of stray fields which have been hampering the
densification of ferromagnetic devices. Compared to fer-
romagnets whose dynamics are on the gigahertz scale, the
inherent dynamics of antiferromagnets are in the range of
terahertz that supports the antiferromagnet a candidate
of an ultrafast computation platform [3, 4].

Elementary magnetic excitations of an antiferromag-
netic system exhibit left- and right-circular spin waves [5—
8]. A quantum of the spin wave is a spin-1 boson and
is called a magnon [9]. The magnon current can be free
from the electron current which is the classic information
carrier of electronics but inevitably implies the Ohmic
loss. Therefore magnons are considered as promising can-
didates of information carriers for low-energy-based de-
vices [10]. Not only fundamental interest for excitations
of ordered magnetic system but also potential technolog-
ical usefulness derives research branches such as magnon-
ics [11] and spin caloritronics [12].

Topological solitons are topologically classified stable
solutions of field theory [13-17]. They are found and
studied in research areas such as nuclear physics [18, 19],
soft matter physics [20-206], optics [27, 28], and con-
densed matter physics [29-38]. One of the mostly stud-
ied topological solitons is the Skyrmion [39, 40]. The
Skyrmion was suggested in early 1960’s and has been
considered as a key to describe baryonic matters in nu-
clear physics [11, 42]. The originally suggested Skyrmion
which resides in the three-dimensional space is defined by
the homotopy group m3(S%). A magnetic Skyrmion is the
two-dimensional version of the original Skyrmion, called

FIG. 1. A Skyrmion-textured domain wall. The arrows rep-
resent the Néel order parameter n. The color represents the
z-component of the Néel order parameter.

the baby Skyrmion in high energy community, and de-
fined by 72(S?). In condensed matter community, mag-
netic Skyrmions are simply called Skyrmions. Similarly
Skyrmions are generalized to N-dimension space and de-
fined by mnx(SY) [43]. From now on we use the term
“Skyrmion” to refer to the magnetic Skyrmion.

Two-dimensional antiferromagnets support topological
solitons such as Skyrmions and domain walls [44-47].
Skyrmions are point-likely localized in two-dimension
and domain walls are point-likely localized in one-
dimension [17, 48]. These localities have an advantage
in information technology [19-51]. Furthermore, toplog-
ical solitons can be used as controllers of magnon cur-
rents via the interaction of magnons and topological soli-
tons [52]. In particular, a magnon on non-trivial spin tex-
tures feels the gauge field so that experiences the effective
Lorentz force which generates the transverse dynamics of
the magnon [53-56]. The non-trivial textures frequently
become the essence of the transverse transports and also
determine the non-trivial properties of the longitudinal

transport [57-59].



In this paper, we investigate the interaction of
magnons and a Skyrmion-textured domain wall, which is
a topological soliton having properties of the Skyrmion
and the domain wall [60, 61], in two-dimensional antifer-
romagnets. The Skyrimon-textured domain wall shows
a chiral texture along the domain wall represented by
the topological charge density and determined by bound-
ary conditions that is illustrated in Fig. 1. Domain
walls with no spin texture along with them are known
to be transparent to magnons [62, 63]. However, the
Skyrmion-textured domain wall is no longer transpar-
ent, since the chiral texture makes a reflective poten-
tial barrier for the magnon [61]. To obtain the reflection
probability, we use supersymmetric quantum mechanics
(SUSY QM) [64, 65]. We also obtain the exact solutions
of magnon-bound modes in the vicinity of the domain
wall. Based on the Lagrangian formalism, we derive the
gauge field for the magnon and interpret the magnon re-
fraction as a deflection of the magnon trajectory due to
the emergent magnetic field.

Reflection and refraction phenomena affect the ther-
mal transport of the sample, and thus the thermal trans-
port is vividly chirality-dependent. Generically, the ther-
mal transport is determined by the material parameters
of a given sample which are not easy to tune rapidly.
Here using the chiral texture, we propse potentially use-
ful means to tune the thermal transport. To elucidate
the tunable thermal transport, we use domain walls in
an easy-axis antiferromagnet. The easy-axis anisotropy
breaks the spin O(3) symmetry down to U(1) and the
domain wall spontaneously breaks this U(1) symmetry.
In a two-dimensional system, a domain wall is a one-
dimensional object and spin textures can spatially vary
along the domain wall when chirality is injected [66]. The
chirality injection is tunable by the spin Hall effect of a
metal contact at the boundary of the domain wall. This
tunability of the spin chirality manifests the tunable ther-
mal transport.

This paper is organized as follows. We begin in Sec. 11
by formulating the field theory for two-dimensional anti-
ferromagnets and introduce the Skyrmion-textured do-
main wall. Section III is devoted to understand the
interaction of magnons and the Skyrmion-textured do-
main wall via SUSY QM and the emergent electromag-
netism. In Sec. IV, we show the chirality dependence of
the thermal transport. In Sec. V, we summarize and con-
clude our work. In Appendix A, we derive equations of
motion for the antiferromagnet via the Poisson bracket.
Appendix B provides detailed calculations of the gauged
sigma model [67-69]. From the gauged sigma model ap-
proach, we can naturally see how the gauge field of the
magnetic order generates the gauge field of the magnetic
excitation.

II. SKYRMION-TEXTURED DOMAIN WALLS
IN A 2D ANTIFERROMAGNET

In this section, using the continuum field the-
ory of Lagrange-Hamilton formalism, we formulate
a two-dimensional antiferromagnet and introduce the
Skyrmion-textured domain wall.

A. General formalism

We consider a two-dimensional collinear antiferromag-
net with easy-axis anisotropy, where the magnetizations
of two constituent sublattices are antiferromagnetically
coupled. The state of the antiferromagnet is represented
by the Néel order parameter n(x,t) which is a three-
dimensional unit vector in the direction of the staggered
magnetization, i.e., the difference of the magnetization
between the two sublattices. The Lagrangian of the sys-
tem is a functional of the order parameter n, whose den-
sity is given by [70-72]

1
£=3
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where p, A, and K are the inertia of the staggered mag-
netization, the exchange coefficient and the anisotropy
coefficient, respectively. For the subsequent theoretical
discussion, it is convenient to use the natural unit of
length, time, and energy by setting p = A = K = 1,
in which the Lagrangian density is given by

L-3 [mf =Y ol [1- (n: z)?]] @

Since the order parameter n has unit length, it can be
expressed by two fields # and ¢ by
n(x,t) = (sinf cos ¢, sin O sin ¢, cos b)) , (3)
0= Q(X, t) ) d) = (ZS(X’ t) . (4)
Since [n|* — >, |0m*> = 9dn - On = 9,00"0 +
sin® 0(9,¢0"¢) from Eq. (3), we obtain the Lagrangian
in terms of two fields 6 and ¢

L= % (0,696 + sin® 6(9,,60"¢) — sin®6] . (5)

Here, we use the Einstein’s summation convention and
the metric signature is [+, —, —] (2+1 spacetime metric).
The following coupled equations of motion for the fields
0 and ¢ are obtained from the Euler-Lagrange equations:

0,0"0 —sinf cosb (9,049 —1) =0, (6)

Oy (sin®00"¢) = 0. (7)

Equation (7) can be cast into 9,j" = 0, which repre-
sents the conservation of spin rooted in the U(1) spin-

rotational symmetry of the Lagrangian about the z-axis
with

§* = sin® 0O+ . (8)



The spin density and the spin current density are given by
j and j = (j%,jY), respectively. Since the Lagrangian
has no explicit dependence on space-time, the energy-
momentum tensor in terms of 6 and ¢, which is given
by

TH = 9400”0 + sin® 00" 60" ¢ — gL, (9)

is also a conserved current satisfying the continuity equa-
tion 0,T"" = 0.

The system can also be studied within the Hamiltonian
formalism. Performing the Legendre transformation to
the Lagrangian yields the following Hamiltonian density:

1 3
H=—|m2+ |V +—2
2 sin

; +sin? 6 (|v¢|2 + 1)] . (10)

where 19 = 0L£/00 = 0 and 14 = IL/Op = sin® 06
are conjugate momenta of the fields # and ¢, respec-
tively [73]. In the Hamiltonian formalism, the time evo-
lution of fields or momenta is determined by their Poisson
brackets with the system’s Hamiltonian, which leads us
to the same Eq. (6) and Eq. (7) as in the Lagrangian
formalism. See Appendix A for the derivation based on
the Hamiltonian formalism.

B. Skyrmion-textured domain walls

To obtain a static domain-wall solution, we set 6=0
and ¢ = 0 in the equations of motion:

V20 —sinflcos (V- Vo+1)=0, (11)
V- (sin? V) = 0. (12)

For a domain wall, we consider the following ansatz by
employing separation of variables:

e(l‘,y) = 9(1‘), (b(ac,y) = ¢(y) ’ (13)
n(z = to0,y) = ££. (14)

The equations are solved by the following solution:

cos f = tanh <\/1+k(2)x> , o=koy. (15)

Here, k¢ is a real number which characterizes chirality of
the domain-wall texture. The domain wall interpolates
two discrete vacua n(z,y) = +2. In a two-dimensional
system, a domain wall is a one-dimensional object which
can exhibit nontrivial textures along with it [74]. With
the considered solution, domain-wall angle ¢ varies uni-
formly along the domain wall (i.e., along the y-axis, see
Fig. 1), which gives rise to the finite Skyrmion charge
density given by
1

yr (0,0 x Oyn) (16)

= —% (14 k3) sech? (MCU) (A7)
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Note that the domain wall carries the Skyrmion charge
density, which is localized in the vicinity of the domain
wall. Along the y-axis, the density is uniform and the
linear Skyrmion charge density (per unit length in the
y-direction) is given by

k
/dxpSky = —ﬁ . (18)

If the periodic boundary condition along the y-axis is
demanded (y + L = y), we would have ¢(L) = ¢(0),
which discretizes the allowed values for kg as kg = 27n/L
for an integer n. The integration of the density yield the
integer Skyrmion charge [ dzdypsiy = —n [00]. In the
case of kg = 0, the domain-wall profile along the y-axis is
uniform and the corresponding Skyrmion charge is zero.

For the static field, the Hamiltonian density is given by
‘H = —L . The explicit expression for the energy density
of the domain-wall solution (15) is given by

H=(1+kj) sech? (\/ 1+ k:gx) . (19)

The energy density per unit length in the y-axis is given
by

E:/dezQ(l—i—kg)%. (20)

Note that the nontrivial magnetic textures on the domain
wall increases the energy.

Experimentally, the obtained domain-wall states with
the finite Skyrmion charge can be realized by injecting a
spin current into the magnet via the spin Hall effects as
shown in Ref. [75] for a ferromagnet and in Ref. [76, 77]
for an antiferromagnet.

III. SPIN WAVES ON TOP OF THE
SKYRMION-TEXTURED DOMAIN WALL

In this section, we formulate the dynamics of magnons
on top of the Skyrmion-textured domain wall. With the
aid of SUSY QM, we find chiral bound modes. Further-
more, we obtain an analytic form of a reflection prob-
ability of the magnon and show their refraction in the
presence of the skyrmionic texture of the domain wall.
This refraction is interpreted from a perspective of the
emergent magnetic field for magnons.

A. Spin waves

To obtain a spin-wave solution on top of the
Skyrmionic domain wall, we consider a small fluctua-
tion on(x,t) on the static domain-wall background n(z)
[Eq. (15)]. The variation of the vector is described by
variations of the angles:

dny =60, ony=-sinbdo. (21)



Linearizing the Euler-Lagrange equations [Eqgs. (6) and
(7)] with respect to the variation (8, ¢) — (0406, p+0¢),
we obtain two coupled equation for ény and dno. The two
equations are combined into one complex equation

[D + (1 + k‘%) (1 — 25sin? 9) + 2qikq cos 9ay] v,=0,

(22)
where ¥, = ény — qidng, ¢ = £1, and O = 0,,0*. Here,
the complex field ¥, represents g-polarized spin waves,
where ¢ = 1 and ¢ = —1 are for right-handed and left-
handed spin waves, respectively [78]. Due to the transla-
tional symmetries with respect to (¢,y) — (t+ dt,y+ 0y)
of the equation,

Uy (t,2,y) = g(a)eFrv=e (23)

is supported to be an eigenfunction. Equation of motion
for the eigenfunction is given by

W, = [78§+k5+ (14 k) (1 —2sin®0) (24)

— 2qkok, cos 9} g -
We interpret the equation as the “Schrédinger” equation
wzwq = H1, with the eigenvalue w? and the “Hamilto-
nian” H = —92 + V, which consists of the kinetic energy
—0?2 and the potential energy given by

V =k, + (1+ k) {1 — 2sech? <\/1 + k%x)}
— 2gkok, tanh <\/1 + k3z> .

Equation (22) with the potential (25) is one of our main
results. Here, the potential energy V is known as the
Rosen-Morse potential [79]. Note that, for the case of
the non-textured domain wall ky = 0, the potential be-
comes the Poschl-Teller potential [30] which is known as a
reflectionless potential [31]. In general, with nonzero ko,
spin waves are reflected; the derivation of the reflection
probability is presented below in Sec. I11D.

(25)

B. SUSY QM

In this section, we solve the equation of motion for the
spin wave with the aid of SUSY QM. To apply the SUSY
QM, we define the annihilation and creation operators

a=0,+/1+ K3 tanh (Mx) +58,  (26)

where 3 = —qkyko//1 + k3. Commutation relation of
the operators is given by

[a,a’] = 2 (1 + k) sech (\/1 + k%x) . (28)

FIG. 2. The solid line represents the original potential (25)
and the dashed line represents the SUSY partner (29). Here,
we consider the case of left-polarized magnons coming from
the left z < 0. The chirality of the Skyrmion-textured domain
wall are (a) ko = 0 and (b) ko = 0.5, where k, = ko.

With these operators, the Hamiltonian is written as
H =a'a—p%+ ki and the SUSY partner Hamiltonian
is defined as H = aa® — 52 + ki The SUSY partner of
the potential is defined by the relation H = —02 + V.
Since, by the definition, H = H + [a,a'], the commuta-
tor (28) eliminates the sech term in the potential (25).
Thus the induced partner potential is simpler than the
original potential, that is

V =kl + 1+ kj — 2qkok, tanh (,/1 - kga:> . (29)

Figure 2 provides comparison of the original potential
V and the partner potential V. Note that the partner
potential for the case of kg = 0 is a constant potential.
Due to the algebraic relation of H and H, eigenfunctions
for both Hamiltonians satisfy the following relations:

Hapy = aHipy = wlar,, (30)
Ha'p, = a' Hipy = &%aly, (31)



n, =0

FIG. 3.  Trajectories of (a) left-polarized bound magnons
and (b) right-polarized bound magnons. Here ko is assumed
to be positive. The arrows piercing the balls represent the
spins of the magnons. The arrows on the plane indicate the
direction of the spin current due to the bound magnons.

where H ﬂq = @%[;q, It means that ay), (aT1/~1q) is an eigne-
function of H(H). We will solve the problem in the part-
ner system which is easier than the original system and
obtain the solution for the original problem by applying
the ladder operator, 1, = aqu.

C. Domain-wall bound spin waves

Before going to elucidate propagating modes, we will
discuss bound modes. Since the bound modes satisfy
relation ap, = 0, the solution is given by

W (x) = sech <mx> e b (32)

whose bound frequency is w? = —32 + kz The solution
for bound modes is one of our main results. Note that, in
this paper, the bound magnon propagates to y-direction
whereas is localized in z-direction. Our solution gener-
alizes the well-known bound solution [82] which corre-
sponds to the case of § = 0. One can define the bound
magnon’s position as the location where the amplitude
of the wavefunction is maximized. By this definition, the
position of the bound magnon is given by

q -1 ky’%)
X=-—2L  tann . 33
Stk o <1+k§ (33)

Equation (33) tells us that positions of bound modes
with different £, are seperated and left- and right-
polarized bound magnon have opposite positions. Fig-
ure 3 schematically illustrates the trajectories of left- and
right-polarized bound magnons.

D. Propagating spin waves

In the partner system described by H, asymptotic be-
haviors of the propagating wavefunction are

Pg(x — —00) ~ k=T 4 peTik- (34)

J)q(m — +00) ~ tetk+T (35)

where k3 = k? — 4kok, (from the conservation of the

energy) and k_ is the Waven}lmber of the incoming spin

wave. By acting of af on 14, asymptotic behaviors of

the propagating wavefunction in the original system are

given by

a' g (x — —00) ~ [—ik_ — 2kok, + (] e*-*

+ 7 [ik_ — 2kok, + Bl e, (36)

ahy(z = +00) ~ t[—iky + 2kok, + 5] €+ . (37)
Reflection probability of the original potential is

ik_ — 2kok, + B

—ik_ — 2koky +

2
R= i =1r*, (38)
and it is known to be equivalent to the reflection proba-
bility of the partner potential from SUSY QM. The part-
ner system has the hyperbolic-tangent potential which is
known solvable. The transmittion probability T =1 —*R
is given by [03, 83, 84]

2 | wky—k_)
sinh [W] .

s 12 | w(ky+ko)
sinh [2\/@ ]
(39)

where © is the Heaviside step function. To capture the
deflection of a magnon trajectory in the real space, we
express the wavefunction in the laboratory frame {Z, §, 2}

Tk, k)= |1— (k% — dkok,),

i) = (—1)We Y as z - —oc0

Lab - (
(1’)61 [(ky—ko)y— wt]
ﬁ‘;f) =in- (& +1iy) = \Ile”coy as 2z — oo
) i[(ky+ko)y— wt]

Y(x
(40)
where the extra factor exp(+ikoy) comes from the fact
that ¥ is defined with respect to the local spin frame
where the azimuthal angle changes along the gy direc-
tion in the domain wall. For the concrete discussion,
let us first consider left-polarized magnons. Note that y-
component of the magnon’s linear momentum is changed
from k, — ko to k, + ko after passing by the domain
wall. In the laboratory frame, wavevectors of incoming,
reflected and transmitted magnons with left-handed po-
larization are given by

k" = (k_,k, — ko,0) , (41)
kL = (—k_,k, — ko,0) , (42)
k' = (ky, ky + ko,0) . (43)



In the laboratory frame, the kinetic energy of magnons
are conserved, which ensures the following equalities:
k| = |k,| = |k¢|. Let us consider a magnon incom-
ing from x < 0 along the x-axis. This is the case of
ky — ko = 0. This magnon initially has no y-component
of wavevector. However, after the transmission through
the domain wall, the magnon has non-zero y-component
2ko. For magnons with right-handed polarization, re-
flection direction is opposite. Wavevectors of incoming,
reflected and transmitted right-polarized magnon are

k® = (k_,ky + ko,0) , (44)
kR = (—k_,k, + ko,0) , (45)
k' = (ky, ky — ko,0) . (46)

Expanding the spin densitiy j°(6, ¢) (8) with respect
to (0 — 0+ 400,  — ¢+ 0¢) up to second order, we can
obtain spin of ¢-polarized magnons. Since unperturbed
fields 6 and ¢ are time-independent, the zeroth order of
the spin density is zero. Using the definition (21), we
expand the spin density

79 = sin® 00,6¢ + 2sin 6 cos 0500,6¢

47

= sin 00;0ny + 2 cos 06n10:0n5 . (47)
From the following expression of the magnon wavefunc-
tion (23)

(L, x,y) = 6ny — qidng = |thy(x)] e?Fv¥=wt+m - (48)
the perturbative fields read as

ony o cos(kyy —wt + 1), (49)
dng ox —gsin(kyy —wt +1n),

where 7 is an arbitrary phase. Pluging Eq. (49) into
Eq. (47) and evaluating its the expectation value with
respect to time averaging, the first order term vanishes
and the remained term yields

<j0>t x qw cos = qw tanh (Mx) . (50)

This equation indicates that spin of the left(right)-
polarized magnon is changed from +(—)h to —(+)A while
the magnon is passing through the domain wall.

E. Perspective of emergent electromagnetism

Here, we describe an alternative way to understand the
deflection of a magnon trajectory by invoking the emer-
gent electromagnetism of spin waves on top of a mag-
netic texture. From the second-order variation of the
Lagrangian of the antiferromagnets, we obtain the La-
grangian of the magnon

Lsw = % (DY) (DF',) (51)

FIG. 4.  Schematic illustration of the motion of dis-
tinctly polarized antiferromagnetic magnons moving across
the Skyrmion-textured domain wall. Similar to Fig. 3, the
blue(red) ball represents the left(right)-polarized magnon and
the color change of the arrow depicts the change of spin an-
gular momentum of the magnon passing through the domain
wall [the change from white(black) to black(white) represents
the change from +(—)h to —(+)A]. Note that, when the same
number of two distinctly polarized magnons move in the longi-
tudinal direction, the resultant net transverse magnon current
vanishes, but the net transverse spin current is finite.

where the covariant derivatives and texture-induced
gauge field is given by [78, 85]
D, =0,+iqa,, a,=—cos80,9,. (52)

Detailed derivation of the Lagrangian can be found in
Appendix B. From the given domain-wall solution (15),
the emergent magnetic field is obtained by [36]

b = —(810,2 — 82&1)

53
= koy/1 + k2sech? (y/l—l—k%m) . (53)

The change of the transverse momentum due to the emer-
gent Lorentz force is given by

By, = [ (v xb) g
:_quOa

(54)

where v is the magnon velocity and b = bZ. This re-
sults is consistent to the result obtained by SUSY QM.
Note that the change of the transverse momentum de-
pends on the polarization ¢ of the magnon. This indicates
that, when the same number of two distinctly polarized
magnons pass the Skrymion-textured domain wall in the
longitudinal direction (e.g., a-direction), there arises a
net finite spin current while having a zero net magnon
current in the transverse direction (e.g., y-direction).
The situation is illustrated in Fig. 4.



IV. TUNABLE THERMAL TRANSPORT

In this section, we obtain the chirality-dependent ther-
mal transport. The injected spin current at the boundary
which is electronically tunable via the spin Hall effect de-
termines mathematical boundary conditions of the sys-
tem. Thus we can control the chirality of the texture
that is represented by ko (15). To compute the tunable
heat flux, we use the Landauer-Biittiker formula [87-89].
Heat flux per unit length is given by

dky [ dk,
j_zq:A 27 /,00 2ws(kx’ky)h

aqu
Ok,

55
pur] O

Oky |’

[qun(qua TL) - wan(wqR’ TR)
where wyp,(r) is the frequecy of a g-polarized magnon
at the left(right) domain x < O0(x > 0), Tyw) is the
temperature of the left(right) domain, and n(w,T) is
the Bose-Einstein distribution. Figure 5 shows chiral-
ity dependence of the heat flow. Ty,ry = kpTy(r)/h is a
rescaled temperature. Note that we use the natural unit
p =K = A = 1. Therefore time, length, and energy are
measured by \/p/K, \/JA/K, and A, respectively. As we
expected, chirality of the Skyrmion-textured domain wall
disturbs the longitudinal magnon transport.

V. CONCLUSION

We have formulated a theory of the Skyrmion-textured
domain wall in a two-dimensional antiferromagnet. Using
the Lagrangian formalism, we have derived equations of
motion for magnons on top of the Skyrmion-textured do-
main wall. Using SUSY QM, we have obtained the exact

SIS
oo

L L L kO
0 10 20 30 40

FIG. 5. Chirality dependence of the heat flux. Here, Tk
denotes the rescaled temperature of the right reservoir and
the temperature difference between two reservoirs is fixed as
AT = 0.1, where T1, — Tr = AT.

solutions of magnon bound modes and investigated their
scattering properties in the Skyrmion-textured domain
wall. With the chiral texture, the domain wall potential
is no longer symmetric under the space inversion, and
thus the position of the bound magnon is shifted from
the domain wall center. Solving the scattering problem
of the domain wall potential for magnons, we have shown
that magnons are refracted or reflected due to the chiral
texture of the domain wall. This refraction can be inter-
preted as the magnon dynamics under the emergent elec-
tromagnetism. Using the gauged sigma model approach,
we also have analyzed the Lagrangians of the magnet
and the magnon and find how the effective electromag-
netism for the magnons emerges in the chiral texture of
the background magnet. We have found the total reflec-
tion of magnons which are absent of enough longitudinal
momentum to overcome the domain wall potential. The
total reflection and the chirality-proportional reflection
probability which can be tuned electronically reduces the
thermal transport.
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Appendix A: Equations of motion from Poisson brackets

Poisson brackets of the fields and its momenta are

{‘pa(x,t)’ (pb(X/,t)} =0, (Al)
{ma(x,t), mp(x',t)} =0, (A2)
{pa(x,t), mp(x',t)} = dapd(x — X). (A3)

Here, indices a and b denote the fields 6 and ¢. With these canonical relations, equations of motion for the fields are
driven, since time evolution is given by a Poisson bracket with the Hamiltonian. For 6§ and my, time evolution are

0= (6.1} = [ &' (o001} = | d%’{@(x),;wg} = [ 600, maymo = [ a'sx - xmlx) (Ad)
=T, (A5)
o = {0, H) = [ ' (o), 1) (A6)
/ 5 1 1 7 1.,
= [ d*z {we(x),2v9~VG}+ we(x),ij +{7r9(x),s1n 0}(V¢>~V¢+1) (A7)
sin® 0 2
= /dZ:c' V20(x')s(x — x') + 773)(%072905()( —x')—sinfcosf(Vep-Vo+1)d(x —x) (A8)
sin
= v29+sin9cos9<q52—v¢-v¢— 1). (A9)
Since 7y = 0, Eq. (A9) is consistent to Eq. (6). Similarly equations for ¢ and 7y are
2
b={¢,H} = /de’ {p(x),H} = /de’ {d)(x), 257:520} = /de'(S(x - x')sinl2 PhG (A10)
__T9
 sin?6’ (ALL)
fo = {mo, H} = / &' {my(x), H) (A12)
= /d%’ {ﬂ¢(x),;sin2 9V¢-V¢} = /d%’ sinzf)z{m,(x),aiqﬁ} D¢ (A13)
= /dza:’ sin? @ Z(—l)@zﬁ(x —x')0;¢ = /de’ Z 5(x — x')9; (sin® 00;¢) (A14)
= /dzx’(?(x —x)V - (sin* 0V ) (A15)
=V (sin’0Vo) . (A16)

Since 74 = sin® 0, Eq. (A16) is identical to Eq. (7).

Appendix B: Second variation of the Lagrangian

The Néel vector is an unit vector on the sphere S2?. Thus the Néel vector can be written as a rotation of a constant
unit vector

n(x,t) = R(x,t)e. (B1)
where the rotation matrix is defined by

R = PCot) Lz )Ly (B2)



and the generators are

00 0 0 01 0-10
L,=(00 -1}, L,=|10 00]), L,={(1 0 0 (B3)
01 0 -100 000
With this representation, derivatives of the Néel vector is written as
oun = [(0,R)+ R0, e (B4)
=R[R'(0,R)+08,]e (B5)

=RI[A,+0,]e. (

The Lagrangian density of the Heisenberg antiferromagnet is given by

os)
=

L= %aﬂn ', (B7)

and this is called the O(3) sigma model. Plugging the Eq. (B6) into the Lagrangian (B7), we can obtain the gauged
sigma model

L= %a#n -0'n (B8)

1
= §R O+ Aule-R[o" + Al e (B9)

1
=5 [0+ Aule - [0" + Ae (B10)
= %’Dﬂe -Dte, (B11)

with the covariant derivate

D,=0,+ A, (B12)

and the SO(3) gauge field A, € so0(3), where s0(3) is the Lie-algebra of the Lie-group SO(3). Since the rotation
generators (B3) form a basis of s0(3), we can write the covariant derivative as

Dy =08+ A, =0,+A,L;, (B13)
[Duel = lel’ + A [Lil [e]* = D, [ef + Aje/) [e]" = [0ue — Ay x €] (B14)

where AL is the ¢-th component of A,, which is the dual vector of A, and € is the Levi-Civita tensor. In the Ref. [90],
the author uses A, as a SO(3) gauge field. The gauge field A, and its dual A, have same information and linked by
the relation

A = eyt

J J e

(B15)

Effects of magnons are captured by the expansion of e & 2 4 de, where de = de & + deay, |de| < 1. We will obtain
the Lagrangian of a magnon via the second order variation with respect to de. The expansion of the Lagrangian is
written as

2L = Dye - D'e (B16)
=A.e - A'e+0,e-0'e+2A4,e-0"e (B17)
=A, 2 - A2 4+ A, e - Alde + 24,2 - AMde + 0, 0e - 0"de + 24, 6e - 0Mbe + 24,2 - 0" de. (B18)

The zeroth order term is the Lagrangian without magnon and the first order terms vanish due to the stationary action
principle. Now, the Lagrangian of magnon(spin wave) is obtained

2Lsw = Oy de - 0"0e + A, de - A'de + 2A4,de - 0"de
= 9,0 - D"de + [[Au]l2 Sead + [Au]?, deri) + ([A,fl Sey + [, 5e2) z] - AlSe + 24,0e - 9'de (B20
= d,de - 0'de + [A,]', [AM]', deades + [AL]', [AM), derder

(B19)
(B20)
(B21)
(AP, den + LA, 6es) (1AM, Ber + (A%, des) (B22)
(B23)
(B24)
(B25)

B21

B23
B24

B25

+2[A,)", deadder — 2] A", de19Mes
= 0, 0e - 0"de + a,a” (der1der + dexdes) + 2a* (dexd,de1 — de10,0e2)

(LA der + LA, dea ) (LA dex + [T, bes )
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Here, we define the texture induced gauge field by the longitudinal component of A,

a, =[A]', = A3, (B26)

which is dominant for the dynamics of high-energy magnons. Let’s introduce a magnon wavefunction ¥, = de; —qides,
then the Lagrangian is written as

2Uosw = O UMYy + 0, a" UV, — igah (VE0, T, — U 0, V) (B27)
+ ([Aﬂf’l Ser + [Au)%, 562) ([A“]31 Sey + [AM°, 562) , (B28)
= (Dp¥q)" (D"Ty) + ([Au]gl dey + [Au}SQ 562) ([Au}sl der + [Aﬂ]gz 562) ) (B29)

where the covariant derivative is defined as
D, =0, +iqa,. (B30)

See the expression (B29), the covariant derivative term induces the k, term while the last term does not. Here, we
consider the high-energy magnon limit which means that the background texture varies slowly and this is equivalent
to the adiabatic approximation. In the high-energy-magnon limit, the derivative term in the Lagrangian is dominant
thereby we can neglect the last term. Hence the Lagrangian of magnon is given by

1

5 (DuW,)" (D1, (B31)

Lyw =

If we add the anisotropy term to the Hamiltonian, then the length scale of field configurations is given by

Y B32
\/; (B32)

where A and K are exchange and anisotropy constants. For the adiabatic approximation, A > K and this is called
the exchange approximation. Thus, in this limit, we discard the anisotropy term in the Lagrangian, even if the system
has an anisotropy.

Let {g;} be a local frame co-rotating with the spin texture and {e;} be a fixed global frame. The twist of frame is
given by

g;-0ue; = Re; - O, Re;j (B33)
=e;- R '0,Re; (B34)
=e;- A€ (B35)
= [Aul; - (B36)

The local rotation of a basis {e1,e2} endows a local phase rotation of the complex scalar ¥,. Thus, naturally,
(Aul, = Ai becomes U(1) gauge field for the complex scalar ¥, and generates the emergent electromagnetism.
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