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The development of sources delivering non-classical states of light is one of the main needs for
applications of optical quantum information science. Here, we demonstrate the generation of non-
classical states of light using strong-laser fields driving a solid-state system, by using the process
of high-order harmonic generation, where an electron tunnels out of the parent site and, later on,
recombines on it emitting high-order harmonic radiation, at the expense of affecting the driving
laser field. Since in solid-state systems the recombination of the electron can be delocalized along
the material, the final state of the electron determines how the electromagnetic field gets affected
because of the laser-matter interaction, leading to the generation of entanglement between the
electron and the field. These features can be enhanced by applying conditioning operations, i.e.,
quantum operations based on the measurement of high-harmonic radiation. We study non-classical
features present in the final quantum optical state, and characterize the amount of entanglement
between the light and the electrons in the solid. The work sets the foundation for the development
of compact solid-state-based non-classical light sources using strong-field physics.

Quantum optics stands as one of the most promising
natural platforms for the development of practical appli-
cations of quantum information science [1–3], light be-
ing the main carrier of information. To pursue such de-
velopments, non-classical states of light are needed, i.e.
those which are necessarily described by quantum elec-
trodynamical tools [4]. Many of the currently available
non-classical light sources rely on nonlinear interactions
between light and matter [5]. Among the most striking
examples of nonlinear interactions, is the process of high-
order harmonic generation (HHG) [6–9]. Here, a pulsed
and strong-laser field interacts with matter leading to
the generation of radiation, emitted as a periodic series
of ultrashort comb of harmonics of the driving laser that
spans dozens, hundreds or even thousands of harmonic
orders [10]. Because of these features, HHG has found
numerous applications in attosecond science (cf. [11–13]),
nonlinear XUV optics (cf. [14–21]), and high-resolution
spectroscopy (cf. [22, 23]). In these, a semiclassical the-
oretical description of HHG, where light is treated clas-
sically while the matter system quantum mechanically
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[12, 24], is enough to reproduce the experimental results,
although leaving unexploited the potential of strong-field
physics towards quantum optics [25]. Recently, atomic-
HHG processes were studied under a quantum optical
framework, proving theoretically and experimentally the
generation of non-classical states of light [26–29] span-
ning from the infrared (IR) up to the extreme ultraviolet
(XUV) [30]. The essential ingredient behind the findings
of Refs. [26–28, 30, 31] was the conditioning operation,
i.e., restricting measurements of the outgoing radiation
to instances in which harmonics were generated.

In this work, we extend the techniques that have been
developed so far for generating non-classical states of
light with atomic-HHG processes, to solid-state systems.
In atoms, the process behind HHG is resumed in the
so-called three-step model [24, 32–34], in which an elec-
tron (i) is extracted from the atom, (ii) accelerates in
the continuum driven by the laser field, and (iii) rec-
ollides with the parent ion releasing the gained kinetic
energy in form of coherent high-frequency radiation. For
solids [11, 35–37], the process underlying the generation
of harmonic radiation becomes more complex [38, 39].
Besides the transitions between valence and conduction
bands (interband transitions), which find their analogy
in gaseous-HHG with the ionization and recombination
steps, the electron undergoes excitations within the same
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band (intraband transitions). This increases the delocal-
ization of the electron, allowing it to recombine, in the
emission step later on, with a different site from the one
in which it had initially started the dynamics. These ad-
ditional processes, previously studied under a semiclassi-
cal framework [38, 40, 41], leave their fingerprints in the
final quantum optical state even in the regime of weak
delocalization, which we consider here. Specifically, the
recombination of the electron with a different site from
which it was promoted to the conduction band, affects
differently the optical state compared to the on-site re-
combination, leading to electron position-light entangle-
ment. This non-classical effect occurs without any need
for conditioning, which might augment the non-classical
features, and lead to the generation of coherent state
superpositions, as those found in Refs. [26–28, 30]. In
Ref. [42], the authors studied, from a quantum optical
perspective, the effect of intraband transitions within the
conduction band on the final quantum optical state, re-
vealing the presence of non-classical states of light after
the measurement of harmonic radiation. Finally, if va-
lence intraband dynamics are very fast, such that recom-
bination may occur anywhere in the solid with a random
phase associated, they lead to decoherence of harmonics
and hinders the phase matching efficiency, as discussed
recently in Ref. [43].

RESULTS

Quantum optical framework. In typical experimen-
tal realizations of intense laser-matter interactions with
solid-state systems, a driving laser field of wavelength be-
longing to the mid-infrared (MIR) regime (λ ∼ 3−8 µm),
hits the target perpendicularly and generates harmonic
radiation along the transmission path [44, 45]. Before
the dynamics start, we describe the input electromag-
netic field mode with a coherent state |αL〉, while all
harmonic modes with a vacuum state |0HH〉 =

⊗
q=2 |0q〉

where q ∈ N denotes the harmonic order. Regarding
the solid, we assume it to be in its ground state, cor-
responding to a completely filled Fermi sea. However,
we first solve the time-dependent Schrödinger equation
for a single electron, and then phenomenologically treat
the many-electron case. Thus, we characterize the ini-
tial state of our electron in the Wannier basis as |wv,j0〉
(such that 〈wv,i|wv,j〉 = δi,j), where the subscript v de-
notes the band in which it is located (valence) and j0 its
initial site. It can be shown (Methods) that the evolution
of the quantum optical state of the system projected onto
a Wannier state |wv,j〉, and neglecting the contributions
coming from the conduction band, is given by

i~
∂ |Φi(t)〉

∂t
=
∑
j

Mi,j(t) · Ê(t) |Φj(t)〉 ∀i ∈ Z. (1)

Here, ~ is Planck’s constant, |Φi(t)〉 is the quantum
optical state when projected into Wannier state |wv,i〉,

Mi,j(t) are the matrix elements of the time-dependent
dipole moment with respect to |wv,i〉 and |wv,j〉, and Ê(t)
is the time-dependent electric field operator. Consider-
ing solids for which the HHG process is localized, such
that the electron occasionally ends the dynamics in, at
most, its nearest-neighboring sites, we can write the so-
lution to Eq. (1), up to first-order perturbation theory,
as (Methods)

|Φj0(t)〉 = eiϕ(t)D̂1(αL)D̂
(
χ(t, t0)

)⊗
q=1

|0q〉 , (2)

when i = j0 in Eq. (1), and

|ΦNN(t)〉 = − i
~
eiϕ(t)D̂1(αL)D̂

(
χ(t, t0)

)
×
∫ t

t0

dt′e−iθ(t
′)D̂†

(
χ(t′, t0)

)
×
(
Mi,j0(t′) · Ê(t′)

)
D̂
(
χ(t′, t0)

)⊗
q=1

|0q〉 ,

(3)
when i = j0 ± 1 in 1D, or generally “nearest neigh-
bors”, denoted NN. In Eqs. (2) and (3), ϕ(t) and θ(t)

are some phase factors (Methods), D̂q(·) is the displace-
ment operator acting on mode q [46, 47], D̂(χ(t, t0)) =∏
q D̂q(χq(t, t0)) and χq(t, t0) is given by

χq(t, t0) = −1

~

∫ t

t0

dt′eiqωLt
′
g(ωL) ·Mi,i(t

′), (4)

where we have taken into account that all Wannier sites
are equivalent and, therefore, χq(t, t0) is independent of
the Wannier site i. In these expressions, g(ωL) arises
from the expansion of the electric field operator into the
quantized modes.

Electron position-light entanglement. The most
important difference between the results for solids and
atoms regarding the HHG process, is that in solids we en-
counter the possibility of electron position-light entangle-
ment without the need for conditioning operations. We
observe that the final Wannier site in which the electron
ends up its dynamics, is crucial in determining the final
quantum optical state. When valence intraband dynam-
ics are slow on the time scale of the laser pulse duration,
both initial and final sites are equal, and results are anal-
ogous to those found in atoms [26–28]: the different field
modes get displaced a quantity χq(t, t0), corresponding
to the Fourier transform of the time-dependent dipole
moment averaged over |wv,j0〉, that determines the HHG
spectrum (Fig. 1). When the electron is found in a differ-
ent site from j0, the quantum optical state of the system
gets affected because of this extra interaction, accounted
by Mi,j0(t′)·Ê(t′), describing a transition from the initial
site j0 to the final site i (in our case i = j0±1) happening
at time t′. The dynamics at the new site lead to an extra
displacement χq(t, t′) in each of the modes, indistinguish-
able from the one we get when recombination happens at
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FIG. 1. Pictorial representation of the high-order harmonic generation process in solid-state systems. An
electron, initially placed at site j0, which can perform intraband transitions to other Wannier sites (green dotted curves), gets
excited to the conduction band (red dotted curves). Driven by the input field, the electron accelerates in the conduction band
(blue dotted curve) and eventually recombines with a given Wannier site of the valence band (purple solid curves). The energy
acquired during its acceleration along the conduction band is emitted in the form of high-harmonic photons, whose spectral
distribution is typically characterized by a plateau region ranging from the bandgap energy Eg, up to the maximum energy
difference between valence and conduction bands, i.e. max(Ec(k)− Ev(k)), as shown in the plot located at the right hand side
of the figure.

site j0, due to the equivalence between different Wannier
sites. We note that the electron could potentially hop to
other sites, although for the regime considered here, these
contributions would be smaller than the ones already in-
troduced, and can be treated with higher-order terms in
a perturbation theory-based approach. When valence in-
traband dynamics are fast enough such that electrons can
recombine at any site with a random phase, we get de-
coherence of HHG radiation and impossibility of efficient
phase matching [43].

For a 1D lattice, the joint state of the system can be
written as

|ψ(t)〉 = |wv,j0〉 |Φj0(t)〉+
√

2 |wv,NN〉 |ΦNN(t)〉 , (5)

where we defined |wv,NN〉 = (1/
√

2)(|wv,j0+1〉 +
|wv,j0−1〉), and took into account that the quantum opti-
cal state |ΦNN(t)〉 is independent of the electron hopping
to site j0 + 1 or j0 − 1 under the regime of weak delocal-
ization.

If we denote by fc the coordinate number of the lat-
tice (i.e. fc = 2d in hypercubic lattices in d-dimensions,
fc = 3 for honeycomb lattice in 2D, fc = 6 for triangular
lattice in 2D), in arbitrary dimension we get

|ψ(t)〉 = |wv,j0〉 |Φj0(t)〉+
√
fc |wv,NN〉 |ΦNN(t)〉 , (6)

where now |wv,NN〉 = (1/
√
fc)(

∑
j∈NN |wv,j0+j〉).

Phenomenological many-electron theory. Hitherto,
we have only considered the single-electron dynamics.
Under the assumption of having localized HHG pro-
cesses, we can extend the solution given in Eq. (5) to the
regime of N independent and phase-matched electrons
contributing to the process as (Methods)

|Ψ(t)〉 = |wv,j0〉 |Φj0(t)〉+
√
fcN

∣∣wv,NN〉 ∣∣ΦNN(t)
〉
, (7)

where |Φj0(t)〉 and |ΦNN(t)〉 differ from Eqs. (2)
and (3) in that the displacement is given as
Nχ(t, t0). In Eq. (7), j0 is an N -dimensional vec-
tor describing the initial Wannier site of the elec-
trons, and

∣∣wv,NN〉 = (1/
√
fcN)

∑
j∈NN |wv,i〉 where

NN := {j : j0 ± (01, · · · , 1i, · · · , 0N ) ∀i}. The state
presented in Eq. (7) has the structure of an entangled
state, as recombination in different Wannier sites leads
to different quantum optical components.

Conditioning on HHG. Current experimental imple-
mentations showed that, quantum operations relying on
correlation measurements between the harmonics and
part of the fundamental mode [26–28, 30, 49, 50], al-
low for the generation of non-classical states of light
[26–28, 30, 31]. Mathematically, this operation can be
written by means of the projective operator P̂HHG =
1−|α〉〈α|⊗ |0HH〉〈0HH|, which we refer to as conditioning
on HHG operation [30, 31]. Applying it onto Eq. (7),
and further projecting with respect to the coherent state
|γ〉 =

⊗
q≥2 |γq〉 in which the harmonics are measured,

leads

|Ψcond(t)〉 = 〈γ|Ψ(t)〉 − ξ(γ, t) |αL〉 , (8)

with ξ(γ, t) = 〈α, 0HH|Ψ(t)〉 〈γ|0HH〉. Hereupon, we set
γq = χq(t, t0).

In general, we have no knowledge about what site
has the electron recombined in, and therefore the quan-
tum optical state of the system is given as the mixed
state ρ̂field(t) = trelec(|Ψcond(t)〉〈Ψcond(t)|). In the fol-
lowing, we characterize two non-exclusive indications of
non-classical behaviors: the presence of Wigner function
negativities in ρ̂field(t), and the presence of entanglement
in |Ψ(t)〉 and |Ψcond(t)〉.
Non-classical properties in the many-electron
regime. In the many-electron regime, we consider the
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FIG. 2. Wigner function representation, fidelity and entanglement for the many-electron case. In (a) to (d), we
show the Wigner function distribution of the state after the conditioning for different values of N , specifically (a) N = 1× 107,
(b) N = 1 × 108, (c) N = 5 × 108 and (d) N = 1 × 109. We have used the terminology presented in Ref. [48], such that
Re(β − α) = x and Im(β − α) = p with x and p are the mean value of the quadrature operators p̂ = (â − â†)/(i

√
2) and

x̂ = (â+ â†)/
√

2. In (e) and (f) we show, respectively, the fidelity of the state in Eq. (7) with respect to the state
∣∣wv,NN

〉
, and

the entropy of entanglement S(ρ̃), with ρ̃ = trfield(|ψ(t)〉〈ψ(t)|) for the dashed curves and ρ̃ = trfield(|Ψcond(t)〉〈Ψcond(t)|) for the
solid curves, when considering different coordinate numbers fc, which correspond to a 1D lattice (fc = 2 in blue), a honeycomb
lattice in 2D (fc = 3 in orange) and a triangular lattice in 2D (fc = 6 in green). In both plots, we consider the state before
and after the conditioning operation is applied, which are respectively shown with the dashed and solid curves, respectively.

case where intraband transitions within the valence
band are either negligible, or weak. For HHG processes,
it was shown that interband phenomena dominate
in the HHG spectrum [51], which we consider in the
computation of Mi,j(t) (Methods). We use ZnO as a
solid system, for which the harmonic emission shows a
weaker dependence with the field’s ellipticity compared
to atoms [45], suggesting a small influence of delocalized
recombination. We excite it with a linearly polarized
laser along the Γ − A direction, a sin2-shaped envelope,
central wavelength λL = 3.25 µm, peak intensity
I0 = 5× 1011 W/cm2 and ∼40 fs of duration.

Quantum state of the fundamental after condi-
tioning on HHG. We study how the Wigner distri-
bution of the quantum optical state in Eq. (8), varies
when modifying the number of electrons N . First, we
present the results obtained directly from the numer-
ical evaluations, shown in Fig. 2 (a)-(d), where N ∈
[1 × 107, 1 × 109] and |χ(t, t0)| ∼ 10−3 − 10−1. Simi-
larly to atoms [26, 27, 30], the obtained Wigner distri-
bution shifts from a displaced Fock state (Fig. 2 (a)), to
an unbalanced superposition between two close coherent
states (Fig. 2 (b) and (c)) until reaching a regime where
one of the coherent states in the superposition dominates
(Fig. 2 (d)). The Wigner distribution does not present
striking differences with respect to those found for atomic
systems. This is a consequence of the regime under which
we are working, i.e., the dynamics within the valence
band are practically negligible. However, note that the
properties of χ(t, t0) depend on factors such as the nature
of the material, the direction along which gets excited,
and the characteristics of the field (ellipticity, field in-

tensity and frequency). Thus, if we consider the case
where N = 4 × 1016, but where |χ(t, t0)| is drastically
reduced, we get Wigner distributions as the one shown
in Fig. 3 (a). Here, we distinguish two contributions:
a big peak around Re(β − α) ' 2.8, and a very small
trough around the origin. While the former corresponds
to the shifted part of the state (as in Fig. 2 (d)), the other
contribution gets highlighted, as recombinations ending
up in the nearest neighbor sites increase with N , intro-
ducing a small (but non-negligible) vacuum component.
Between both, we get Wigner negativities arising from
the quantum superposition of these two components.

Electron position-light entanglement. Here, we
study the light-matter entanglement as a function
of N by computing the entropy of entanglement
S(ρ̃) := − trelec(ρ̃ log2(ρ̃)), where ρ̃(t) either repre-
sents trfield(|ψ(t)〉〈ψ(t)|) or trfield(|Ψcond(t)〉〈Ψcond(t)|),
depending on whether it is computed before or after
the conditioning. We compare the features of this en-
tanglement measure with the ones obtained for the fi-
delity of |ψ(t)〉 and |Ψcond(t)〉 with respect to |wv,NN〉, i.e.
Fdel(ρ) = trfield(〈wv,NN|ρ̂|wv,NN〉) with ρ̂ = |ψ(t)〉〈ψ(t)|
or ρ̂ = |Ψcond(t)〉〈Ψcond(t)| depending on whether it is
computed before or after the conditioning. The results
for ZnO are shown in Fig. 2 (b) and (c) for Fdel(ρ)
and S(ρ̃), respectively. We observe that both quanti-
ties present very small values, as a consequence of the
localized regime under which we are working. However,
even in this range, there are some features to highlight.
First, for N . 2×108 both the fidelity and the entangle-
ment after the conditioning (solid curves) are bigger than
before the conditioning (dashed curves). Here, |χ(t, t0)|
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FIG. 3. Wigner function representation, fidelity and entanglement for the many-electron case when reducing
|χ(t, t0)|. In (a), we show the Wigner function distribution of the state after the conditioning for N = 4× 1016. In (b) and (c)
we show, respectively, the fidelity of the state in Eq. (7) with respect to the state

∣∣wv,NN

〉
, and the entropy of entanglement.

Here, the x axis represents the number of electrons divided by a quantity N , representing the order of magnitude in the number
of electrons. In both plots we consider the state before and after the conditioning operation is applied, which are respectively
shown with the dashed and solid curves, respectively.

is a small quantity (∼ 10−2), allowing the conditioning
to highlight contributions of the electron recombining in
the nearest-neighbors (shown by the increase in fidelity
compared to the situation without conditioning), increas-
ing the value of S(ρ̃). At N ' 2.5 × 108, we observe
an abrupt drop in S(ρ̃) after the conditioning, which
is absent for Fdel(ρ). Here, the quantum optical con-
tributions arising from the |wNN〉 term of Eq. (8), i.e.〈
γ
∣∣ΦNN(t)

〉
− ξ(γ, t) |αL〉, cancel each other, leaving the

separable on-site contribution, and the observed drop in
S(ρ̃). As N grows, ξ(γ, t) becomes smaller as |χ(t, t0)|
gets bigger, since the overlap with the initial state is very
small. In this regime, where conditioning does nothing,
Fdel(ρ) and S(ρ̃) for the state before and after the con-
ditioning coincide. Note that these two quantities be-
come bigger as the coordinate number fc increases. If
the same analysis is done for the case where N is in-
creased to the order of 1016 while |χ(t, t0)| is drastically
reduced, S(ρ̃) and Fdel(ρ) get enhanced (Fig. 3 (b) and
(c)). When |χ(t, t0)| ∼ 10−1, we observe that S(ρ̃) ' 0.2
for N ' 2.2 × 1016, while Fdel(ρ) ' 0.15. For other val-
ues of N , we observe the same behaviour as presented in
Figs. 2 (e) and (f): for N < 2.2×1016, S(ρ̃) drops to zero,
which identifies with the huge dip observed in Fig. 2 (f),
while below this value a small enhancement is observed,
although not shown in this plot; for N > 2.2 × 1016,
both S(ρ̃) and Fdel(ρ) before and after the conditioning
converge.
Non-classical properties in the few-electron
regime. Here, we consider the few-electron regime
and, in counterpart, we increase the intraband dynam-
ics within the valence band by defining a perturbation
parameter ε (Methods) satisfying ε

√
fcN < 0.3. We

note that an increase of the valence band dynamics cor-

responds to an enhancement of the hopping potential be-
tween sites Iv, which is related with the curvature of the
valence band (Methods). Therefore, the localized regime
corresponds to solids for which the valence band is es-
sentially flat, i.e. Iv . 10−2, when excited with pulses of
∼ 40 fs of duration.

Fig. 4 (a)-(d) shows the Wigner function after the
conditioning, respectively for N = 10, 40, 60, 300, for
which |χ(t, t0)| ∼ 10−8 − 10−6, while setting ε/

√
2N =

2.97 × 10−3. Unlike in the many-electron regime and
atomic systems, for small values of N we get a Gaussian
distribution centered at β = α (Fig. 4 (a)). As men-
tioned, when decreasing the value of N , the conditioning
operation highlights the contributions coming from the
delocalized part of the state. However, here we also in-
crease the contribution of delocalized processes, so their
contribution is still significant after conditioning within
the considered range of N . For small values of N the
most important contribution comes from the |wNN〉 term
in Eq. (8), and the Wigner function corresponds to a
Gaussian. By increasing N , this situation reverses, and
the Wigner function presents a small minimum at the
center, which becomes deeper for bigger N (Figs. 4 (b)
and (c)). When N becomes sufficiently large, the |wj0〉
contribution dominates and we recover the Wigner func-
tion of a displaced Fock state, with a huge negative min-
imum at the center (Fig. 4 (d)).

This transition where the delocalized contribution be-
comes less important, has striking consequences on S(ρ̃),
shown in Figs. 4 (e) and (f) for different values of ε. We
observe that for N ≈ 60 and ε/

√
2N = 2.97 × 10−3,

S(ρ̃) ' 0.7 (Fig. 4 (e)), when the localized and delocal-
ized terms contribute equally to the quantum state of the
system (inset plot at the left of Fig. 4 (e)). For increasing
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FIG. 4. Wigner function representation and many-electron entanglement for the few-electron case. In (a) to (d),
we show the Wigner function representation of the state after the conditioning for different values of N , specifically (a) N = 10,
(b) N = 40, (c) N = 60 and (d) N = 300, while in all cases we have set ε/

√
2N = 2.97× 10−3, where we have considered a 1D

lattice such that fc = 1. In (e) and (f) we show the entropy of entanglement as a function of the number of electrons. While in
(e) we have set ε/

√
2N = 2.97 × 10−3, in (f) we have considered different values of ε satisfying ε

√
2N ≤ 0.3. The histograms

shown in the inset of (e) present the norm of the matrix elements | 〈wv,m|ρ̃|wv,n〉|, with ρ̃ the state of the system once the
partial trace with respect to the quantum optical degrees of freedom has been done.

N , the amount of entanglement decays as the localized
contribution to the state becomes more important (inset
at the right of Fig. 4 (e)). For increasing values of ε, i.e.
as more important delocalization processes become, the
maximum of the entanglement entropy shifts to bigger N
(Fig. 4 (f)). Thus, the stronger the electrons interact in
the material, the higher the correlations established with
the field become.

DISCUSSION

This work extends the formalism and techniques that
allow generating non-classical states of light in atomic
systems that undergo HHG processes, to solid-state tar-
gets. In these, and within the regime considered along the
work, the electron not only recombines with the site from
which it got promoted to the conduction band, but also
with its nearest neighbors. This leads to the generation
of entangled states between the electron’s final position
and the light. In the case where the recombination is
highly localized, the amount of generated entanglement
is almost negligible, although the performance of condi-
tioning operations, which allows generating non-classical
states of light [26–28, 30, 31], enhances these character-
istics. We also considered two ways of increasing these
features: one in which the number of electrons partici-
pating in the process is huge, but the generated light shift
(depending on the material, direction along which it has
been excited and field parameters) is drastically reduced;
the other, in which the number of electrons gets reduced,
but in counterpart the interaction between the electrons
in the valence band increases (in the regime where the

valence band is almost flat).
Generating quantum correlations between different

parties, is a key aspect for applications of quantum infor-
mation science such as quantum communication [2, 52–
54] and quantum computation [55–57]. Strong-field
physics could extend these to unprecedented time and en-
ergy scales [30]. We have seen that the use of solid-state
systems could allow for establishing correlations between
electrons and light. We have studied this in the case
where the interaction between electrons is weak, although
non-vanishing. A potential extension to this work could
consider the case where the electrons strongly interact
with their surroundings, leading to a highly delocalized
recombination which might greatly affect the final quan-
tum optical state. Furthermore, in a different direction,
Ref. [29] recently showed that introducing quantum cor-
relations in the initial state of an atomic ensemble, could
lead to non-classical states of light after HHG processes,
and to correlations between the harmonic modes. Thus,
as a more general scope, these works aim at connecting
quantum optics with attosecond science with the purpose
of realizing sources for investigations on quantum infor-
mation processing [25], working at atomic native time
and energy scales.
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METHODS

Solving the time-dependent Schrödinger equation

The Hamiltonian characterizing the dynamics of the
total system is given, under the dipole approximation
and within the length gauge [28], by

Ĥ = Ĥcr + eR̂ · Ê(t) +Hf, (9)

where e is the electron’s charge, Ĥcr is the crystal
Hamiltonian, R̂ is the electron’s position operator, Ê =
−i
∑
q g(ωq)(â

†
q−âq) is the field operator with âq (â†q) the

annihilation (creation) operator acting over the qth mode
(q ∈ N), g(ωq) is a factor arising from the expansion of
the electric field operator into the quantized modes, and
Ĥf =

∑
q ~ωqâ†qâq is the free-field Hamiltonian.

For the numerical analysis, we consider a two-band
model under the tight-binding approximation, and de-
scribe the energy dispersion relations for the valence and
conduction bands, respectively, as [58]

Ev(k) = −2Iv cos(ka), (10)
Ec(k) = E ′c − 2Ic cos(ka), (11)

where k is the crystal momentum, a is the lattice con-
stant, Iv < 0 and Ic > 0 are the hopping parameters
in the valence and conduction bands, respectively, and
E ′c = Eg + 2Ic − 2Iv, with Eg the band-gap energy.

In order to solve the Schrödinger equation in (9), we
first perform some unitary transformations that simplify
the analysis. First, we move to the interaction pic-
ture with respect to the free-field term, i.e. |ψ(t)〉 =
eiHft |ψ′(t)〉 which leads to a time dependence in the elec-
tric field operator (â†q → â†qe

iωqt). Secondly, we work in
a displaced frame |ψ′(t)〉 = D(αL) |ψ′′(t)〉 such that the
electric field operator splits into a classical part Ecl(t) =

〈αL, 0HH|Ê(t)|αL, 0HH〉, with |0HH〉 =
⊗

q=2 |0q〉, and
another term Ê(t) describing the quantum fluctuations.
Thus, at this level the Hamiltonian reads

Ĥ ′′(t) = Ĥcr + eR̂ ·Ecl(t) + eR̂ · Ê(t), (12)

and the initial state of the system is |ψ′′(t0)〉 =
|wv,j0〉

⊗
q=1 |0q〉. Finally, we work in the interaction

picture with respect to the semiclassical Hamiltonian
Ĥsc(t) = Ĥcr + eR̂ · Ecl(t), i.e. |Ψ′′(t)〉 = Usc(t)

∣∣ψ̃(t)
〉

with Usc(t) = T exp
[
− i

~
∫ t
t0

dt′Ĥsc(t
′)
]
, such that the

Schrödinger equation reads

i~
d
∣∣ψ̃(t)

〉
dt

= eR̂(t) · Ê(t)
∣∣ψ̃(t)

〉
, (13)

where eR̂(t) = eU†sc(t)R̂Usc(t) is the time-dependent
dipole operator.

At this point, we introduce the identity under a
Wannier-Bloch mixed representation [40], where we con-
sider Wannier states |wv,j〉 for the valence band and

Bloch states for the conduction band

1 =
∑
j

|wv,j〉〈wv,j |+
∫

dk |φc,k〉〈φc,k| , (14)

and in a similar approach as those in Refs. [26, 27, 30, 31],
we neglect the contributions of the conduction band
terms to the dynamics. Although these studies are based
in atomic systems, we expect this approximation to hold
in solid state systems as well, as the frequency of the
applied pulse is much smaller than the bandgap energy
of the solid [40], and therefore the conduction band gets
hardly populated at the end of the pulse. Moreover, in
solids we have decoherence effects which make the ex-
cited electron to eventually return to the valence band,
decreasing even further the probability of finding an ex-
cited electron in the valence band [43, 59]. However, we
remark that decoherence effects are not taken into ac-
count in our equations. Thus, under this approximation,
we have

i~
d
∣∣ψ̃(t)

〉
dt

≈ e
∑
j

R̂(t) · Ê(t)
〈
wv,j

∣∣ψ̃(t)
〉
|wv,j〉 . (15)

By projecting this equation onto the set of Wannier
states {|wj〉 : j ∈ Z}, we get the following system of
differential equations

i~
d |Φi(t)〉

dt
=
∑
j

Mi,j(t) · Ê(t) |Φj(t)〉 ∀i ∈ Z, (16)

where we have defined |Φi(t)〉 =
〈
wv,i

∣∣ψ̃(t)
〉

and
Mi,j(t) = e 〈wv,i|R̂(t)|wv,j〉. Thus, we encapsulate the
electron dynamics inM(t). In systems where the electron
does not interact with its surroundings, and for which the
initial and final state after HHG is the same, M(t) would
be a diagonal matrix. However, in solid-state systems,
this is in general not the case, and we thus get non-
vanishing values for the off-diagonal elements in M(t).
For instance, solid ZnO presents a much weaker depen-
dence of the high-harmonic yield with the driving field
ellipticity compared to what is found in atomic systems
[45], a signature that suggests the presence of delocalized
processes in solid-HHG, i.e. the final state of the electron
does not need to be the same as the starting one.

Here, we investigate the quantum optical features of
the final HHG state under the assumption that the HHG
process is weakly delocalized, i.e., |Mi,j(t)| � |Mi,i(t)|
with i 6= j. Specifically, under this regime we note
that the matrix elements |Mi,j(t)| are smaller the bigger
the distance |i− j| is. Here, we only consider nearest-
neighbor contributions, i.e. j = i ± 1, and treat them
as a perturbation parameter ε. Thus, we consider a per-
turbation theory expansion of |Φi(t)〉 up to first order in
ε

|Φi(t)〉 ≈
∣∣∣Φ(0)
i (t)

〉
+
∣∣∣Φ(1)
i (t)

〉
, (17)
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such that the zeroth order term satisfies

i~
d
∣∣∣Φ(0)
i (t)

〉
dt

= Mi,i(t) · Ê(t)
∣∣∣Φ(0)
i (t)

〉
, (18)

and whose solution can be written as [26–28]∣∣∣Φ(0)
i (t)

〉
= D̂

(
χi,i(t, t0)

) ∣∣∣Φ(0)
i (t0)

〉
≡
∏
q

eiϕ
(q)
i,i (t,t0)D̂q

(
χ
(q)
i,i (t, t0)

) ∣∣∣Φ(0)
i (t0)

〉 (19)

where D̂q(α) = exp
[
αâ†q − α∗âq

]
is the displacement op-

erator acting on mode q [46, 47], ϕ(q)
i,i (t) is a prefactor

arising from applying the BCH relation (see Refs. [26–28]
for details), and χ(q)

i,i (t, t0) is a coherent state amplitude
given by

χ
(q)
i,i (t, t0) = −1

~

∫ t

t0

dτeiωqτg(ωq) ·Mi,i(τ). (20)

Note that, unlike the main text, here we have explic-
itly added the dependence of χ(q)

i,i (t, t0) with the Wannier
site along which the dynamics take place, in this case,
the ith site. However, we note that dynamics in all the
sites are equivalent, and therefore they lead to the same
high-harmonic spectra, allowing us to drop the i index
in χ(q)

i,i (t, t0). However, for the sake of completeness, we
keep this notation in the following.

On the other hand, for the first-order term we get the
following differential equation

i~
d
∣∣∣Φ(1)
i (t)

〉
dt

= Mi,i(t) · Ê(t)
∣∣∣Φ(1)
i (t)

〉
+

∑
j∈{i±1}

Mi,j(t) · Ê(t)
∣∣∣Φ(0)
j (t)

〉
,
(21)

and whose solution is, in general, given by∣∣∣Φ(1)
i (t)

〉
= D̂

(
χi,i(t, t0)

) ∣∣∣Φ(1)
i (t0)

〉
− i

~
∑

j∈{i±1}

∫ t

t0

dt′D̂
(
χi,i(t, t

′)
)
Mi,j(t

′) · Ê(t′)

× D̂
(
χj,j(t

′, t0)
) ∣∣∣Φ(0)

j (t0)
〉
.

(22)
Thus, and taking into account the initial conditions,

we find two kinds of contributions depending on the final
site j where the electron ends up in:

• If the electron ends up the dynamics in the initial
Wannier site j0, then the final state reads

|Φj0(t)〉 = D̂
(
χi,i(t, t0)

)⊗
q

|0q〉 ; (23)

• If the electron ends up the dynamics in a different
Wannier site j from which it started, then the final
state becomes

|Φj(t)〉 = − i
~

∫ t

t0

dt′D̂
(
χj,j(t, t

′)
)
Mj,j0(t′) · Ê(t′)

× D̂
(
χj0,j0(t′, t0)

)⊗
q

|0q〉 .
(24)

Note that, by taking into account that χ
(q)
i,i (t) =

χ
(q)
j,j (t) = χq(t), the latter given in the main text, we

can rewrite Eq. (24) as

|Φj(t)〉 = − i
~
eiϕ(t)D̂

(
χ(t, t0)

)
×
∫ t

t0

dt′e−iθ(t
′)D̂†

(
χ(t′, t0)

)
×
(
Mj,j0(t′) · Ê(t′)

)
D̂
(
χ(t′, t0)

)⊗
q=1

|0q〉 ,

(25)
where we have defined θ(t′) =

∑
q Im

{
χq(t, t0)χ∗q(t

′, t0)
}
.

Furthermore, we find that for the regime of weak delo-
calization, under which only the nearest-neighbor sites
get populated, the integrals appearing in the expression
above are equal up to the fifth significant decimal (in the
worst-case scenario for which we enhance the intraband
transitions) when j = ±1.

Semiclassical approach under a Wannier-Bloch
picture

Along the main text, we characterize the valence band
states via a Wannier representation. As a consequence,
the final quantum optical state gets affected by how the
dynamics of the electron behave in this picture, via the
matrix elements of M(t) given by

Mi,j(t) = 〈wv,i|U†sc(t, t0)R̂Usc(t, t0)|wv,j〉 . (26)

Here, we are going to present the main expressions
obtained in Ref. [40] (further investigated in Ref. [41]),
where a semiclassical study of solid-HHG is performed
under a Wannier-Bloch approach, that allows us to later
compute the matrix elements in Eq. (26). Assuming a
one-dimensional system, and that the electron begins the
dynamics in site j0, according to Ref. [40] at time t we
get for the time-evolved quantum state

|ψ(t)〉 =
∑
j

aj,j0(t) |wv,j〉+

∫
BZ

dk ac(k, t) |φc,k〉 , (27)

where aj,j0(t) is the probability amplitude of an electron
being in site j at time t given that was initially at site j0,
and ac(k, t) is the probability amplitude of being in the
valence band with crystal momentum k. The expression
for these probability amplitudes, under the tight-binding
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approximation and for nearest-neighbor interactions, be-
come

aj,j0(t) =
∑
q

eiq(j−j0)

× exp

[
2
i

~
Iv cos

(
q +

ea

~c
A(t)− ea

~c
A(τ)

)]
,

(28)
and

ac(p, t) = − i
~
∑
j

∫ t

t0

dt′
∫
B̃Z

dpEcl(t
′)aj,j0(t′)

× d∗jc
(
p− e

c
A(t′)

)
× exp

[
− i
~

∫ t

t′
dτEc

(
p− e

cA(τ)
)]
,

(29)
where in this last expression p = k+ e

cA(t) is the canon-
ical momentum and B̃Z = BZ + e

cA(t) is the shifted
Brillouin zone. Furthermore, we have defined dj,c(k) =

e 〈wv,j |X̂|φc,k〉.
By combining Eqs. (26) and (27), we find that the

matrix elements of the transition matrix M(t) are given
by

Mi,j(t) =
∑
m,n

a∗m,i(t)an,j(t) 〈wv,m|X̂|wv,n〉

+ e
∑
m

∫
BZ

dka∗m,i(t)ac(k, t) 〈wv,m|X̂|φc,k〉

+ e
∑
n

∫
BZ

dka∗c(k, t)an,j(t) 〈φc,k|X̂|wv,n〉

+ e

∫
BZ

dk

∫
BZ

dk′a∗c(k
′, t)ac(k, t) 〈φc,k′ |X̂|φc,k〉 ,

(30)
where we note that Mi,j(t) = M∗j,i(t). Each of the con-
tributions to the matrix elements describe different pro-
cesses. The first term describes an intraband transition
between two Wannier sites in the valence band; the sec-
ond and third terms, describe an interband transition
between the valence band and a given site of the con-
duction band; finally, the fourth term describes an intra-
band transition within the conduction band. Addition-
ally, we note that at t = t0 the matrix is diagonal, i.e.
Mi,j(t) ∝ δi,j . For t > t0 we may get additional off-
diagonal contributions depending on the characteristics
of the considered solid.

We note that, for i = j and in the limit of weak-
delocalization, the first term in (30) remains almost con-
stant as for 1D systems one has 〈wv,i|X̂|wv,j〉 = xjδi,j
(see Supplementary Material), and therefore can be writ-
ten as

∑
m xm|am,j(t)|

2. On the other hand, for i 6= j
we get instead

∑
m xmam,j(t)a

∗
m,i(t), such that at t = t0

the i = j contribution survives while the i 6= j does
not. For the many-electron regime, we neglect this con-
tribution at all times, arguing that the delocalization ef-
fects due to intraband dynamics in the valence band are

very small. Instead, in the few-electron regime we con-
sidered this quantity to be small (in agreement with the
perturbation approach that we have developed) but non-
negligible. Thus, we labeled this term as ε (see Fig. 4),
and increased it in the numerical analysis, in an equiv-
alent way as if we were considering solids for which the
valence band is essentially flat. Specifically, this is valid
for valence band hopping parameter Iv < 10−2 when con-
sidering laser pulses of ∼ 40 fs of duration, or lower. Of
course, if laser pulses of greater duration are employed,
then the electron could potentially end up in other Wan-
nier sites different from the nearest neighbor ones, but
we do not contemplate this case in our calculations.

A. Solving the Schrödinger equation for the
many-electron scenario

As mentioned in the main text, in the many-electron
scenario we have that the initial state of the system cor-
responds to a completely filled Fermi sea, i.e., all Wan-
nier sites are occupied. However, we work under the
assumption that different electrons barely interact with
each other, such that they can be treated independently.
Thus, after introducing the corresponding unitary trans-
formations as done in the single-electron analysis, and
neglecting the contributions of the conduction band, the
Schrödinger equation reads

i~
d
∣∣Ψ̃(t)

〉
dt

≈ e
∑
m

R̃(t) · Ê(t)
〈
wv,m

∣∣Ψ̃(t)
〉
|wv,m〉 , (31)

where |wv,m〉 ≡ |wv,m0
〉 ⊗ |wv,m1

〉 ⊗ · · · ⊗ |wv,mN
〉; and

R̃ =
∑N−1
j=0 R̂j , with N the number of electrons that

contribute in a phase-matched way to the HHG process.
Similarly to what we did in the single-electron anal-

ysis, we consider solid systems for which the HHG pro-
cess is not much delocalized, such that the single-electron
wavepacket does not spread too much over different Wan-
nier sites. Thus, we split the X̃(t) contribution in diago-
nal and off-diagonal elements such that the latter can be
treated using perturbation theory. Thus, by projecting
our equation with respect to |wv,i〉, we get

i~
d |Φi(t)〉

dt
= e

∑
m

〈wv,i|R̃(t)|wv,m〉·Ê(t) |Φm(t)〉 , (32)

where we have defined |Φi(t)〉 =
〈
wv,i

∣∣Ψ̃(t)
〉
, and where

the matrix elements of R̃(t) are given by

〈wv,i|R̃(t)|wv,m〉 =

Nph−1∑
j=0

〈
wij
∣∣R̂j

∣∣wmj

〉 ∏
n∈Oj

δin,mn
,

(33)
where in the previous expressionOj := {n : n ∈ N−{j}}.

Up to the first order in perturbation theory, the equa-
tions we get are identical to the ones found in the single-
electron regime. Thus, taking into account the initial
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conditions, we find two kinds of contributions depending
on the final sites j where the electrons end up in:

• If the electrons end up the dynamics in the ini-
tial Wannier sites where they were initially located,
then the final state reads

|Φi(t)〉 = D̂
(
Nχ(t, t0)

)⊗
q

|0q〉 ; (34)

• If one of the electrons ends up the dynamics in a dif-
ferent Wannier site j from which it initially started
the dynamics, then the final state reads

|Φi(t)〉 = − i
~
D̂
(
Nχ(t, t0)

)
×
∫ t

t0

dt′e−iθ(t,t
′,t0)Min,in,0

(t′)

× D̂†
(
Nχ(t′, t0)

)
Ê(t′)D̂

(
Nχ(t′, t0)

)⊗
q

|0q〉 , (35)

where we have considered that one of the electrons has
transitioned from its initial site in,0 to site in. Note that
the first-order perturbation theory term describes events
where only one of the electrons ends up in a different
Wannier site from which it initially started the dynamics.
In order to consider events where we find n transitions,
we then have to perform a perturbation theory expansion
up to the nth order. However, in the many-electron sce-
nario, we restrict ourselves to solids for which the HHG
process is highly localized, as it happens for instance with
solid argon [60]. In consequence, for the many-electron
regime analysis we neglect the effect of intraband tran-
sitions along the valence band, and study them in the
few-electron analysis.
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