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We generalize isometric tensor network states to fermionic systems, paving the way for efficient
adaptations of 1D tensor network algorithms to 2D fermionic systems. As the first application of this
formalism, we developed and benchmarked a time-evolution block-decimation (TEBD) algorithm
for real-time and imaginary-time evolution. The imaginary-time evolution produces ground-state
energies for gapped systems, systems with a Dirac point, and systems with gapless edge modes to
good accuracy. The real-time TEBD captures the scattering of two fermions and the chiral edge
dynamics on the boundary of a Chern insulator.

Efficiently simulating quantum many-body systems
is a central problem in computational physics. Well-
established numerical methods, including exact diagonal-
ization (ED) and quantum Monte Carlo (MC), achieve
great success in many problems, while still suffering from
the accessible system size and the sign problem respec-
tively. For one-dimensional (1D) systems, density-matrix
renormalization group (DMRG) [1, 2] gives practically
exact ground states for all gapped systems and good ap-
proximations for gapless systems. The output of DMRG
is a wavefunction written as a multiplication of matri-
ces, hence the name matrix product states (MPS) [3, 4].
Two-dimensional (2D) tensor network states (TNS) are
generalizations of MPS; they (also known as PEPS) pro-
vide efficient representations for a large class of (if not all)
ground states of local Hamiltonians [5, 6]. However, the
complexity of an exact computation of any physical ex-
pectation value for a given 2D TNS scales exponentially
with the system size. Impressive achievements on approx-
imate tensor contraction methods have been made with
different balances of accuracy and cost [7–10], for both fi-
nite and infinite 2D TNS. Another compromise between
the 2D structure and the contraction efficiency are the
tree tensor networks [11]. Recently, Zaletel and Pollman
sought a different path and proposed a restricted subclass
of 2D TNS whose contraction is efficient by construction,
the isometric TNS (isoTNS) [12]. The key ingredient is
the enforcement of the isometric condition in 2D, gen-
eralizing the canonical form of MPS. In addition to the
reduced complexity due to the efficient contraction of the
TNS overlap, this ansatz has the benefit of only needing
to solve variational problems with condition number 1.
This avoids the numerical instability in the optimization
of the conventional TNS due to high condition numbers,
which becomes more severe with higher bond dimension
[13]. The improved stability opens up many possibili-
ties, such as a DMRG algorithm in 2D [14] and real-time
dynamics (local quench dynamics [15]) to long time.

In this work, we find that in a 2D TNS, the fermion
sign structure is compatible with the isometric structure,
which allows the notion of fermionic isoTNS (fisoTNS).

To accommodate the fermion statistics, the main chal-
lenge in 2D TNS is to account for any local operator
c†i cj as a local TNS operation without a long Jordan-
Wigner string [16]. People have introduced several equiv-
alent [17] formulations of 2D fermionic tensor network
states (fTNS), including the virtual fermion ansatz [18–
20], the swap gate ansatz [21, 22], and the Grassmann
TNS [23]. We adopt the swap gate formalism in the
main text, and provide a detailed derivation using vir-
tual fermions in the Supplementary Materials (SM) [24].

We demonstrate a time-evolution block-decimation
(TEBD) algorithm within the fisoTNS formalism. As
an example, we solve the ground states, via imaginary-
time evolution, of various prototypical fermion systems.
For real-time dynamics, we see that fisoTNS has an ad-
vantage over traditional methods. We demonstrate two
examples, including the dynamics of two fermions scat-
tering in vacuum and low-energy edge excitations in a
Chern insulator, up to a time scale comparable to the sys-
tem size divided by the electron hopping rate, which we
show to be very challenging for MPS algorithms [25, 26].
The system size we consider is also way beyond what ED
can handle even after using the most advanced Krylov
subspace techniques [27, 28]. On the other hand, MC
relies on analytic continuation to handle complex coeffi-
cients in real-time dynamics, which smear out any sharp
feature in frequency [29–31]. The results we present are
among the very few results [32] that simulate 2D fermion
dynamics, whose success we attribute to improved sta-
bility due to the isometric form.

Isometric condition. We review the isometric condition
for bosonic TNS. Consider an isometric MPS: ψk1,...,kN =∑

{in}A[1]
k1
i1
A[2]k2

i1,i2
· · ·Λ[nc]

knc

lr · · ·B[N ]kN
iN−1

for some

site nc (Fig. 1a). The isometric condition for tensors left
(right) to nc is

∑
l,k A

k∗
lr′A

k
lr = δrr′ (

∑
r,k B

k∗
l′rB

k
lr = δll′)

(Fig. 1b). Under this condition, the expectation value
of any physical operator Ok,k′ at nc takes a simple form∑

l,r,k,k′ Λk∗
lr Ok,k′Λk′

lr (Fig. 1c). In 1D, any MPS can be
put into the isometric form without increasing the bond
dimension [1].
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FIG. 1. Isometric tensor network states in 1D and 2D. (a)
A matrix product state in isometric form. The red dot rep-
resents the orthogonality center. (b) Isometric condition for
tensors on the left (right) of the center A (B). A line without
a circle on it represents identity. (c) The expectation of any
physical operator (blue square) on the orthogonality center
equals the contraction of the operator with the central ten-
sor and its conjugate. (d) 2D isometric tensor network. The
red dot represents the orthogonality center. On the shaded
region, the orthogonality hypersurface, all arrows point in.
(e) Isometric condition for tensors in the lower-left and the
upper-right quadrant. (f) The same as (c) but in 2D.

2D TNS wavefunction is constructed in a similar man-
ner (Fig. 1d). The generalized isometric constraint is
the following [12]. First, we assign arrows on each tensor
leg. The arrows on the physical legs always point into
the tensors. On the virtual legs, all horizontal (vertical)
arrows point toward a chosen column (row). The chosen
column and row together form the orthogonality hyper-
surface (OH) (Fig. 1d red shaded), crossing at the orthog-
onality center (red dot in Fig. 1d). Then we require each
tensor, viewed as a map from the outgoing legs to the in-
coming legs, to be an isometry. For example, for tensors
in the lower-left quadrant:

∑
l,d,k A

k∗
lrduA

k
lr′du′ = δrr′δuu′

(Fig. 1e). With this isometric condition, computing cor-
relation functions on the OH reduces to 1D tensor con-
tractions [12]. In particular, expectation values of phys-
ical operators on the orthogonality center only depend
on a single tensor (Fig. 1f). Unlike in 1D, 2D isoTNS
is a strict subclass of general TNS; nonetheless, it still
includes all bosonic topological orders with gappable
boundaries [33].

Fermionic isometric tensor network states– To account
for the fermion sign structure, it is necessary to keep track
of the fermion parity of each site explicitly. We require
every tensor to be Z2 symmetric, and, therefore, both
physical and virtual legs to be labeled with a Z2 par-
ity charge [34]. In the swap gate convention, the physical

legs are drawn to extend outside the system and the end-
points are ordered as k1, k2, . . . kn counterclockwise, as in
Fig. 2(a). Then the fermion wavefunction in the basis of

c†k1

1 . . . c†kn
n |vac⟩ is defined as the contraction of tensors

on each site and additional ‘swap gates’ at each crossing
of physical legs and virtual legs (Fig. 2(a)). The swap
gates are simply a sign (−1)PiPj , where Pi, Pj = 0, 1 are
parity of the two crossing legs, e.g. (−1)PkPl when a
physical leg crosses a left leg [21, 22]. The virtual in-
dices can take any integer value up to any chosen bond
dimension. (See SM [24] for a self-contained review.)

. . .

(a) (b) (c)

=

FIG. 2. (a) Definition of the fermionic wavefunction in the
swap gate convention. An extra sign (diamond) is inserted at
every crossing. (b) In the upper-right quadrant of a fisoTNS,
we require (−1)PkPdA to be an isometric tensor. The minus
sign comes from putting the outgoing legs next to each other.
(c) After the action of a brick wall circuit, we can write the
resulting state as a new fisoTNS by splitting the product of
two tensors, the unitary and the swap gate back into two
isometric tensors. Here we choose a particular way of splitting
the tensor where the original vertical legs are assigned to the
second tensor and the left tensor has trivial up and down legs
(dashed lines)

Similar to the bosonic case, we define fisoTNS by re-
quiring that the double-layer tensor network representing
⟨ψ|ψ⟩ trivially contracts to the center.

Definition 1. (fisoTNS) Given a 2D fTNS with isomet-
ric arrows on its tensor legs, it is a fermionic isoTNS if
I) (−1)PkPdA is isometric for any tensor A to the upper-
right of the orthogonality center; and II) all other tensors
are isometric as in the bosonic case.

The isometric rule for a tensor is the same as the
bosonic case when the outgoing legs of the tensor are
next to each other. This condition is true in every quad-
rant except the upper-right quadrant, where we need to
exchange the order of the physical and the down leg to
make it happen, hence the extra sign. With this defini-
tion, we can state a key theorem of fisoTNS [24].

Theorem 1. For any two fisoTNS |ψ⟩ and |ψ′⟩ that have
the same tensors everywhere except at the orthogonality
center, with Λ̂(x0,y0) and Λ̂′

(x0,y0)
for each respectively,

⟨ψ|ψ′⟩ =
∑

l,r,d,u,k Λ
∗k
l,r,d,uΛ

′k
l,r,d,u.
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Here all the swap gates in ⟨ψ| and |ψ′⟩ delicately can-
cel, which guarantees the contraction of fisoTNS to be
efficient.

Representability. As shown in Fig. 2c, a local two-
site unitary gate affects only two tensors. If a brick wall
circuit acts on an fisoTNS, we can always find an fisoTNS
representation of the resulting state by first grouping the
tensors connected by gates, absorbing the unitary gates,
and splitting the tensor back to isometric tensors on each
site (See SM for details.). This argument shows that if a
state admits an fisoTNS representation, any other state
in the same phase also has an fisoTNS representation.
Thus, all topologically trivial insulators, interacting or
not, have an accurate fisoTNS representation.

Algorithms. As a first application, we develop a TEBD
algorithm [35, 36] for 2D lattice fermion systems (Fig. 3).
We will only speak of the orthogonality column (OC),
with the orthogonality row always on the top. For an

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(a) (b) (c) (d)

FIG. 3. TEBD in fisoTNS. (a) Column i is the OC. (b) Con-
traction of column i and i+1 into one column. (c) Apply the
TEBD gates on the OC using the MPS TEBD method. (d)
After the MM algorithm, column i+ 1 is now the OC.

fisoTNS with OC column i, we first contract column i
and i + 1 into one combined column with two physical
sites on each tensor and apply Oi,i+1 to it using MPS
methods. Then we split the combined column back into
column i and i+1, but with column i+1 now as the OC.
The splitting aims to variationally maximize the overlap
before and after the split while preserving the isometric
constraints. This is solvable with Riemannian optimiza-
tion techniques [37, 38]. Here we initialize the variational
problem with the Mose’s Move (MM) algorithm, intro-
duced in [12] and generalized to symmetric tensors in [24].
The MM and the Riemannian optimization is the com-
putational bottleneck of the algorithm, whose computa-
tional complexity is O(χ7f3), where the bond dimension
is fχ on the OH and χ elsewhere. Repeating these steps,
one can perform real or imaginary time evolution of a
2D fermion Hamiltonian following the Trotter-Suzuki de-
composition [39]. The fermion signs necessary for TEBD
are all shown in Fig. 3 as swap gates.

Ground state results. To benchmark the TEBD algo-
rithm, we study four prototypical fermionic systems on
a square lattice: a sublattice band insulator (Insulator),
a Dirac semimetal (Dirac), a ϕ = 2π/3 Hofstadter model

with total Chern number = 1 (Chern), and a mean-field
p+ ip superconductor (p+ ip SC),

H =
∑
⟨ij⟩

tijc
†
i cj + ηijc

†
i c

†
j +h.c.+Un̂in̂j −

∑
i

µic
†
i ci (1)

In all systems, |tij | = 1, and in p + ip SC, |ηij | = 2.
The phases of tij (ηij) set the flux (pairing symmetry) of
the Hofstadter model (p + ip SC). All systems are non-
interacting with U = 0, except for the Chern band where
U = 0.5 is also explored. We set µi = ±1 for the two
sublattices for the insulator, and µi = −2 in the p + ip
SC. For the Chern band (Dirac), we set a uniform µi such
that the system is 2/3 filled (half-filled).

(a) (b)

FIG. 4. Error in ground state energy density. (a) is presented
with the optimal dτ . The system size is 9× 9 for Chern and
10× 10 for Dirac, Insulator, and p+ ip SC. f = χ. The MM
error is typically 10−4 or 10−5, comparable with the trunca-
tion error of the MPS TEBD within the OC.

We perform 2nd-order imaginary-time TEBD to find
the ground state energies, compared with the exact val-
ues [40]. In Fig. 4, we show the error in ground state
energy density at various bond dimensions χ and Trotter
time dτ . This error consists of accumulated MM error
and second order trotter error: ∆E = a ϵMM/dτ + b dτ4

[12], where the MM error ϵMM decreases as χ increases.
For a fixed χ, there is a system-dependent optimal dτ ,
which gives the lowest ground-state energy (Fig. 4 b) [41].
These results provide information on the representibility
of tensor networks with isometric constraints, in partic-
ular the ability of sequential quantum circuits to rep-
resent fermionic ground states [42]. We also note that
these results can be improved with a 2D fermion DMRG
algorithm [14] free of Trotter error in the future.

Real-time dynamics. fisoTNS reveals its true advan-
tage for real-time dynamics. We start by benchmarking
a two-fermion scattering problem with nearest neighbor
hopping tij = 1 and interaction U . We restrict ourselves
to two particles so that the result can be benchmarked
with exact diagonalization (ED). As shown in Fig. 5,
fisoTNS reproduces the number density on each site dur-
ing the scattering. MPS methods, including the time-
dependent variational principle (TDVP) [26] and the WII
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(a) (c)

(d)

(b)

FIG. 5. Real-time evolution of two fermions scattering with nearest neighbor hopping on a 12× 12 square lattice without (a)
and with (b) interaction. The two fermions are initialized at the top-left and bottom-left corner. We show the ED, fisoTNS,
and 1D TDVP results from top to bottom. From left to right, we show three time slices, before, during and after the collision.
We show the error of various methods in (c-d), including fTNS with different configurations and 1D WII and TDVP methods.
The solid lines show the excitation error and the dashed lines show the background error (see main text for definition).

(d)

(c)(a) (b)

(e)

FIG. 6. Real-time evolution of the ϕ = 2π/3 Hofstadter model
starting with a single-site excitation at the top-left corner of a
9×18 system. (a-c, e) Number density relative to the ground
state. (d) Errors of the excitation sites when U = 0.

method [25], fail to capture even the beginning of the
dynamics. The main reason is that the snake-winding
nature of the MPS prevents the number density to move
across the winding [43]. As for PEPS, fermion dynamics
is considered a very challenging task, as evidenced by the
few number of published studies in the literature, which

evolve the dynamics to relatively short times [32][44].

To quantify the error in the real-time dynamics, we de-
fine the excitation error to be the total error on the sites
that support the first 60% of the added particle number,
and the background error to be the error per site on the
rest of the sites [45]. This way, for local excitations, the
error does not scale with the system size despite random
background noise. With χ = 12, f = 10, the error is
within 5% towards the end of the simulation.

We now consider a truly challenging problem, the chi-
ral propagation of a fermion on the edge of a Chern insu-
lator, which has not yet been demonstrated in an inter-
acting system [46]. We start with a ground state |GS⟩ of
a Hofstader model described in the previous section, add
an electron at the corner, |ext⟩ = c† |GS⟩, and then evolve
the excited state for time t, |t⟩ = e−iHt |ext⟩. We show
the number density of each site relative to the ground
state ni = ⟨t|n̂i|t⟩ − ⟨GS|n̂i|GS⟩ in Fig. 6. For both
the free and interacting cases, the excitation propagates
along the edge without leaking into the bulk even on the
time scale of system size divided by hopping rate. MPS
based methods fail to capture the beginning of dynam-
ics. Comparing Fig. 6(a) and (b), fisoTNS reproduces
not only the velocity of the edge mode but also subtle
features of the density profile (e.g. at t = 4). The er-
ror is shown in Fig. 6(d), within 10% toward the end of
the simulation. This simulation demonstrates the ability
of 2D TNS to qualitatively capture the edge properties
of a finite chiral system, in complementary to the recent
studies of the TNS’s ability to approximately capture the
bulk properties of infinite chiral systems [47, 48].

Open problems. The fisoTNS formalism opens many
interesting questions. First, it would be interesting to
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explore its representability of fermionic topological order
[49–51]. Given that bosonic isoTNS can exactly represent
all string-net fixed-point states [33], it would be very in-
teresting to show that fisoTNS similarly can represent all
gappable fermionic topological states in 2D. Along the
same line, it would be interesting to find the entangle-
ment criterion [52] for a state representable by fisoTNS.
Because of the 2D nature and the fact that the OH par-
tition the systems into four disjoint parts, the entangle-
ment criterion will likely be a multipartite one [53]. In
fact, from a numerical perspective, the fisoTNS is also a
good tool to compute the 4-party properties of a fermion
system, as all information of the 4-party entanglement is
contained in the tensors on the OH, a much easier object
for computation than the full 2D wavefunction. Another
direction around the representability question is to de-
velop a Gaussian formalism [18, 54, 55] for fisoTNS so
that understanding can be gained for the relatively sim-
ple free fermion systems. From the algorithmic perspec-
tive, for example, it should be possible to develop a gen-
uinely 2D DMRG algorithm for fisoTNS, which would
remove the dτ dependence in the imaginary-time algo-
rithm. Another possibility lies in simulating finite tem-
perature many-body fermion systems by generalizing the
METTS [56, 57] algorithm to 2D. This is especially suited
for isoTNS, because, unlike a generic 2D TNS, sampling
of an isoTNS is efficient [58].

Conclusion. We generalized isoTNS to fermionic sys-
tems, which allows for efficient adaptations of 1D MPS
algorithms to 2D fermionic systems. The 2D TEBD al-
gorithm we developed as the first application produces
ground states and real-time dynamics of low-lying states
with good accuracy. The potential in simulating local-
quench dynamics for a long time is particularly interest-
ing. This task is generally believed to be very challenging.
Our study shows that fisoTNS has a clear advantage over
existing methods. With fisoTNS, it is straightforward to
measure any time-dependent correlation functions of lo-
cal operators, directly compare our results with experi-
ments like ARPES, STM, neutron scattering, and trans-
port, and even measure excitations that experiments can
hardly detect.
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[22] P. Corboz, R. Orús, B. Bauer, and G. Vidal, Simula-
tion of strongly correlated fermions in two spatial di-
mensions with fermionic projected entangled-pair states,
Phys. Rev. B 81, 165104 (2010).

[23] Z.-C. Gu, F. Verstraete, and X.-G. Wen, Grass-
mann tensor network states and its renormalization for
strongly correlated fermionic and bosonic states (2010),
arXiv:1004.2563 [cond-mat.str-el].

[24] Z. Dai, Y. Wu, T. Wang, and M. Zaletel, Supplemental
material (2022).

[25] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore,
and F. Pollmann, Time-evolving a matrix product state
with long-ranged interactions, Phys. Rev. B 91, 165112
(2015).

[26] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken,
and F. Verstraete, Unifying time evolution and optimiza-
tion with matrix product states, Phys. Rev. B 94, 165116
(2016).

[27] Y. Saad, Analysis of some krylov subspace ap-
proximations to the matrix exponential operator,
SIAM Journal on Numerical Analysis 29, 209 (1992),
https://doi.org/10.1137/0729014.

[28] B. Kobrin, Z. Yang, G. D. Kahanamoku-Meyer, C. T.
Olund, J. E. Moore, D. Stanford, and N. Y. Yao, Many-
body chaos in the sachdev-ye-kitaev model, Phys. Rev.
Lett. 126, 030602 (2021).

[29] M. Jarrell and J. Gubernatis, Bayesian inference and the
analytic continuation of imaginary-time quantum monte
carlo data, Physics Reports 269, 133 (1996).

[30] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni,
Analytical continuation of imaginary axis data for optical
conductivity, Phys. Rev. B 82, 165125 (2010).

[31] W. O. Wang, J. K. Ding, Y. Schattner, E. W.
Huang, B. Moritz, and T. P. Devereaux, The
wiedemann-franz law in doped mott insulators
without quasiparticles, Science 382, 1070 (2023),
https://www.science.org/doi/pdf/10.1126/science.ade3232.

[32] C. Hubig, A. Bohrdt, M. Knap, F. Grusdt, and J. I.
Cirac, Evaluation of time-dependent correlators after a
local quench in iPEPS: hole motion in the t-J model,
SciPost Phys. 8, 021 (2020).

[33] T. Soejima, K. Siva, N. Bultinck, S. Chatterjee, F. Poll-

mann, and M. P. Zaletel, Isometric tensor network repre-
sentation of string-net liquids, Phys. Rev. B 101, 085117
(2020).

[34] J. Hauschild and F. Pollmann, Efficient numerical sim-
ulations with tensor networks: Tensor network python
(tenpy), SciPost Physics Lecture Notes , 005 (2018).

[35] G. Vidal, Efficient classical simulation of slightly entan-
gled quantum computations, Phys. Rev. Lett. 91, 147902
(2003).

[36] G. Vidal, Classical simulation of infinite-size quantum
lattice systems in one spatial dimension, Phys. Rev. Lett.
98, 070201 (2007).

[37] M. Hauru, M. V. Damme, and J. Haegeman, Riemannian
optimization of isometric tensor networks, SciPost Phys.
10, 040 (2021).

[38] G. Evenbly and G. Vidal, Algorithms for entanglement
renormalization, Phys. Rev. B 79, 144108 (2009).

[39] N. Hatano and M. Suzuki, Finding exponential prod-
uct formulas of higher orders, in Quantum Annealing
and Other Optimization Methods, edited by A. Das and
B. K. Chakrabarti (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005) pp. 37–68.

[40] To benchmark the Chern band with finite interaction, we
use U(1)-conserved density matrix renormalization group
(DMRG) with snake-winding and bond dimension χ =
2400.

[41] The optimal dτ goes to zero as the bond dimension in-
creases.

[42] Z.-Y. Wei, D. Malz, and J. I. Cirac, Sequential generation
of projected entangled-pair states, Phys. Rev. Lett. 128,
010607 (2022).

[43] Future improvements on TDVP and WII that special-
ize on 2D problems, including subspace expansion, might
help to improve their performance. Nevertheless, we are
not aware of any published works on these improvements.

[44] Our comment here is of course not to discredit any of
the PEPS fermion dynamics simulations in the literature.
The previous results are very impressive on their own.
We just would like to note the general challenge of this
problem.

[45] To be precise, At each time step t, we rank sites by their
particle number density and select the top n sites whose
total particle count reaches 1.2, representing 60% of a
two-particle excitation. These are termed “excited sites.”
The normalized excitation error is then calculated as the
sum of the absolute deviations in particle densities within
these excited sites from their true values, divided by 1.2,
which serves as the hypothetical maximum error. For
non-excited sites, we compute the average absolute de-
viation to gauge the background error. This background
error is normalized by multiplying the number of excited
sites and then dividing by 1.2, allowing for a direct com-
parison with the normalized excitation error.

[46] A bosonic version has been demonstrated in Ref. 59.
[47] J. Hasik, M. Van Damme, D. Poilblanc, and L. Vander-

straeten, Simulating chiral spin liquids with projected
entangled-pair states, Phys. Rev. Lett. 129, 177201
(2022).

[48] E. L. Weerda and M. Rizzi, Fractional quantum hall
states with variational projected entangled-pair states:
a study of the bosonic harper-hofstadter model (2023),
arXiv:2309.12811 [cond-mat.str-el].

[49] T. Lan, L. Kong, and X.-G. Wen, Theory of
(2+1)-dimensional fermionic topological orders and

https://doi.org/10.1007/BF01331938
https://doi.org/10.1103/PhysRevA.81.052338
https://doi.org/10.1103/PhysRevA.81.052338
https://doi.org/10.1103/PhysRevA.80.042333
https://doi.org/10.1103/PhysRevB.81.245110
https://doi.org/10.1103/PhysRevB.81.245110
https://doi.org/10.1103/PhysRevB.81.165104
https://arxiv.org/abs/1004.2563
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1137/0729014
https://arxiv.org/abs/https://doi.org/10.1137/0729014
https://doi.org/10.1103/PhysRevLett.126.030602
https://doi.org/10.1103/PhysRevLett.126.030602
https://doi.org/https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1103/PhysRevB.82.165125
https://doi.org/10.1126/science.ade3232
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.ade3232
https://doi.org/10.21468/SciPostPhys.8.2.021
https://doi.org/10.1103/PhysRevB.101.085117
https://doi.org/10.1103/PhysRevB.101.085117
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.21468/SciPostPhys.10.2.040
https://doi.org/10.21468/SciPostPhys.10.2.040
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1007/11526216_2
https://doi.org/10.1007/11526216_2
https://doi.org/10.1103/PhysRevLett.128.010607
https://doi.org/10.1103/PhysRevLett.128.010607
https://doi.org/10.1103/PhysRevLett.129.177201
https://doi.org/10.1103/PhysRevLett.129.177201
https://arxiv.org/abs/2309.12811


7

fermionic/bosonic topological orders with symmetries,
Phys. Rev. B 94, 155113 (2016).

[50] Z.-C. Gu, Z. Wang, and X.-G. Wen, Lattice model for
fermionic toric code, Phys. Rev. B 90, 085140 (2014).

[51] N. Bultinck, D. J. Williamson, J. Haegeman, and F. Ver-
straete, Fermionic projected entangled-pair states and
topological phases, Journal of Physics A: Mathematical
and Theoretical 51, 025202 (2017).

[52] For example, for MPS, the entanglement criterion is the
Renyi entanglement entropy being area-law.

[53] K. Siva, Y. Zou, T. Soejima, R. S. K. Mong, and M. P. Za-
letel, Universal tripartite entanglement signature of un-
gappable edge states, Phys. Rev. B 106, L041107 (2022).

[54] T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac, Pro-
jected entangled-pair states can describe chiral topologi-
cal states, Phys. Rev. Lett. 111, 236805 (2013).

[55] Q. Mortier, N. Schuch, F. Verstraete, and J. Haegeman,
Tensor networks can resolve fermi surfaces, Phys. Rev.
Lett. 129, 206401 (2022).

[56] S. R. White, Minimally entangled typical quantum states
at finite temperature, Phys. Rev. Lett. 102, 190601
(2009).

[57] E. M. Stoudenmire and S. R. White, Minimally entangled
typical thermal state algorithms, New Journal of Physics
12, 055026 (2010).

[58] A. J. Ferris and G. Vidal, Perfect sampling with unitary
tensor networks, Phys. Rev. B 85, 165146 (2012).

[59] X.-Y. Dong, A. G. Grushin, J. Motruk, and F. Pollmann,
Charge excitation dynamics in bosonic fractional chern
insulators, Phys. Rev. Lett. 121, 086401 (2018).

https://doi.org/10.1103/PhysRevB.94.155113
https://doi.org/10.1103/PhysRevB.90.085140
https://doi.org/10.1088/1751-8121/aa99cc
https://doi.org/10.1088/1751-8121/aa99cc
https://doi.org/10.1103/PhysRevB.106.L041107
https://doi.org/10.1103/PhysRevLett.111.236805
https://doi.org/10.1103/PhysRevLett.129.206401
https://doi.org/10.1103/PhysRevLett.129.206401
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1103/PhysRevB.85.165146
https://doi.org/10.1103/PhysRevLett.121.086401


8

Virtual fermion ansatz

We now introduce an fTNS ansatz that explicitly attaches auxiliary fermions to virtual bonds (a variation of the
ansatz in Ref.[18]).

|ψ⟩ = ⟨
∏
(x,y)

Â(x,y)

∏
(x,y)

V̂(x,y)⟩aux|vac⟩, (2)

Â(x,y) = Ak
lrduc

†k
(x,y)δ

D
(x,y)β

R
(x,y)γ

U
(x,y)α

L
(x,y), (3)

V̂(x,y) = (1 + β†
(x,y)α

†
(x+1,y))(1 + δ†(x,y+1)γ

†
(x,y)), (4)

where we assume a physical Hilbert space of one complex fermion per site, c(x,y), and we omit indices of Â(x,y)

for simplicity. Each tensor Ak
lrdu, k ∈ {0, 1}, l, r, d, u ∈ {0, . . . , χ − 1}, is required to be Z2-graded, where the

Z2 symmetry corresponds to the fermion parity conservation. Namely, for each virtual index l, r, d, u, we assign a
parity label Pl, Pr, Pd, Pu = 0, 1. For simplicity, we write these parity labels simply as capital letters L,R,D,U
correspondingly. And We require Ak

lrdu = 0 whenever k + L+R+D + U is odd. On each site, we assign 4 auxiliary
complex fermions α, β, γ, δ, on the left, right, up, and down virtual bonds respectively (Fig. 7(a)). The tensors are
promoted to fermionic operators according to the rule that whenever the corresponding index has a parity label 1,
an auxiliary (physical) fermion annihilation (creation) operator is attached (Eq. 3). Auxiliary fermion operators on
each site are ordered counterclockwise. As for usual TNS, whenever two sites are connected, the corresponding two
virtual indices are contracted. Furthermore, the two auxiliary fermion annihilation operators attached to the bond
are contracted with the bond operator (1 + β†

(x,y)α
†
(x+1,y)) for the horizontal and (1 + δ†(x,y+1)γ

†
(x,y)) for the vertical

bond. The action of the bond-operators and the site-operators on the vacuum of the physical fermions, followed by
the contraction of all virtual fermion operators in their vacuum gives the desired physical state. For example, the
fTNS with bond dimension one, where Â(x,y) = c†(x,y)β(x,y) for even x and Â(x,y) = c†(x,y)α(x,y) for odd x, gives the

fully filled state of one fermion per site. We may allow more than one pair of entangled fermions for each virtual bond
in the definition of fTNS, but the resulting ansatz can always be rewritten in the form of Eq. 2 [24].

(a) (b)

(c)

=

(d)

. . .

(e)

FIG. 7. (a) Fermionic isometric tensor network states in the virtual-fermion formalism. The arrows point to the orthogonality
center as in the case of bosonic isoTNS. The 4 blue squares on each site represent 4 virtual complex fermions. Orange squares
represent physical fermions. Each tensor is promoted into an operator by attaching the physical creation operator and the
virtual fermion annihilation operator. The tensors act on the virtual-fermion state of one bell pair per bond to create the
physical state. (b) To contract two fermionic tensors and order the fermion operators counterclockwise starting from k1, we
need to do the tensor contraction with an additional swap gate (−1)k2D1 (the small square). (c) In the swap-gate convention,
the wavefunction is given by the contraction of all tensors and swap gates at the crossings. (d) Fermion-attachment of the
tensor A and A∗. (e) Isometric condition for fisoTNS in the upper-right quadrant.

This ansatz avoids the problem of the nonlocal string discussed before. Since each site-operator Â(x,y) is parity-even,

the fermion annihilation (creation) operator c(x,y) (c
†
(x,y)) commutes with all site-operators on sites other than (x, y).

Thus the action of nearest-neighbor hopping affects only the two tensors on the corresponding sites.
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The ansatz in Eq. 2 may seem complicated, but it does not increase the complexity of any tensor network algorithm.
The Z2 symmetric tensors are routinely used for Z2 symmetric boson models; the only thing the auxiliary fermions do
is to give extra minus signs when contracting tensors. For example, if we want to replace the two tensors in Fig. 7(b)

by a single tensor Θ̂ = Θk1k2

l1r2d1d2u1u2
c†k1

1 c†k2

2 δD1
1 δD2

2 βR2
2 γU2

2 γU1
1 αL1

1 without changing the many-body state, we need

Θ̂ =
∑

r1=l2⟨Â[1]Â[2](1 + β†
1α

†
2)⟩β1,α2 , where we contract the auxiliary fermion β1 and α2 in their vacuum. By direct

calculation, (indices omitted unless necessary)

Θ = A[1]A[2](−1)k2D1 . (5)

In fact, extra factors like (−1)k2D1 can be deduced pictorially without auxiliary fermions (Fig. 7(b)): The rule is
whenever two fermion legs with parity labels I and J cross each other, an extra swap gate, (−1)IJ is applied [22].
Using swap gates, the fermion wavefunction can be written in the Fock space basis as the regular contraction of the
tensors A(x,y) with additional swap gates applied at the crossings as we extend the physical legs outside (Fig. 7(c)).
In extending the physical legs, we can freely deform them [22] without changing the wavefunction as long as the
order of endpoints is fixed. The latter corresponds to the order of fermions of the Fock space basis. The general
equivalence between the swap-gate method and auxiliary-fermion ansatz is discussed in [17]. A self-contained proof
for our proposal is given in supplemental materials (SM) [24]. In practice, we only need to keep track of fermion signs
that arise from local tensor operations instead of actually computing the wavefunction.

Isometric condition for fermions As in bosonic isoTNS, the isometric condition for fermions should make trivial the
contraction between a state and its conjugate. One may guess that this is just the isometric condition at the tensor
level. This is almost correct. In fact, the isometric condition we define below is equivalent to that A is an isometry in
the upper-left, lower-left, and lower-right quadrants, but (−1)kDA be an isometry in the upper-right quadrant. The
asymmetry among the 4 quadrants is related to how we order fermion operators in Eq. 3.

More precisely, we define a set of conjugate tensor operators Â∗
(x,y) = A∗k

l′r′d′u′ ᾱL′

(x,y)γ̄
U ′

(x,y)β̄
R′

(x,y)δ̄
D′

(x,y)c
k, where

ᾱ(x,y), β̄(x,y), γ̄(x,y), δ̄(x,y) form a set of auxiliary fermions independent from α(x,y), . . . , δ(x,y) (Fig. 7(d)). We de-

fine the isometric condition to be that the contraction of Â∗, Â, and the creation operators on the incoming legs give
the identity tensor with auxiliary fermions attached to it. For example, in the upper-right quadrant (Fig. 7(e)), the
isometric condition is

⟨Â∗Âδuu′γ†U γ̄†U
′
δrr′β

†Rβ̄†R′
⟩ = δdd′ δ̄D

′
δDδll′ ᾱ

L′
αL,

where ⟨·⟩ denotes contraction over γ, γ̄, β, β̄, and c. See an alternative explanation based on swap gates in SM [24].

Proof: the tensor network representations of |ψ⟩ and ⟨ψ′| are

|ψ′⟩ = ⟨Λ̂′
(x0,y0)

∏
(x,y) ̸=(x0,y0)

Â(x,y)

∏
(x,y)

V̂(x,y)⟩aux|vac⟩, (6)

⟨ψ| = ⟨vac|⟨Λ̂∗
(x0,y0)

∏
(x,y) ̸=(x0,y0)

Â∗
(x,y)

∏
(x,y)

V̂ ∗
(x,y)⟩aux, (7)

V̂ ∗
(x,y) ≡ (1 + ᾱ†

(x+1,y)β̄
†
(x,y))(1 + γ̄†(x,y)δ̄

†
(x,y+1)) (8)

To get Eq. 7 we took the conjugate of Eq. 2 and made a particle-hole transformation of the auxiliary fermions. Consider
contracting the fermionic tensors and the bond operators in the expression of ⟨ψ|ψ′⟩ from the lower-left corner toward
the orthogonality center. The tensor at the lower-left corner has trivial left and down legs, l = L = 0, d = D = 0;
the definition of the isometric condition guarantees that contracting the tensor with its conjugate (summing over
the physical index) gives δuu′ γ̄U

′

1 γU1 δrr′ β̄
R′

1 βR
1 . Then contracting δrr′ β̄

R′

1 βR
1 with the bond operator on its right gives

⟨δrr′ β̄R′

1 βR
1 (1 + β†

1α
†
2)(1 + ᾱ†

1β̄
†
2)⟩β1,β̄1

= δl,l′α
†L
2 ᾱ†L′

2 , which contracts with the second tensor on the bottom row and
its conjugate. We get the desired result by continuing this process iteratively from the 4 corners to the center. □
For the computation of correlation functions on the OC, the same argument shows that tensors outside can be

trivially contracted and the computation reduces to a contraction along the OC, as in the bosonic case.

Replacing multiple entangled fermion pairs by a single pair

Consider the following ansatz where Site 1 and Site 2 share n bonds i1 . . . in, with parity label I1 . . . In (Fig. 8).
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|ψ⟩ = ⟨Â[1]Â[2] · · · (1 + β†
1,1α

†
2,1) · · · (1 + β†

1,nα
†
2,n)⟩aux|vac⟩ (9)

Â[1] = A[1]k1

l1i1...ind1u1
c†k1

1 δD1
1 βIn

1,n · · ·β
I1
1,1γ

U1
1 αL1

1 , (10)

Â[2] = A[2]ki1...inr2d2u2
c†k2

2 δD2
2 βR2

2 γU2
2 αI1

2,1 · · ·α
In
2,n, (11)

(12)

=

FIG. 8. LHS: Site 1 (left) and Site 2 (right) connected by 2 fermionic bonds with indices i1 (top) and i2 (bottom). RHS: Site
1 and Site 2 share a single bond with the index i

We claim that replacing the n bonds with a single bond labeled by i (the collection of indices i1 . . . in) and a parity
label I = I1 + · · ·+ In gives the same physical state:

|ψ⟩ = ⟨Â′[1]Â′[2] · · · (1 + β†
1α

†
2)⟩aux|vac⟩ (13)

The new tensors are simply defined as Â′[1] = A[1]k1

l1id1u1
c†k1

1 δD1
1 βI

1γ
U1
1 αL1

1 = A[1]k1

l1i1...ind1u1
c†k1

1 δD1
1 βI

1γ
U1
1 αL1

1 , Â′[2] =

A[2]k2

ir2d2u2
c†k2

1 δD2
2 βR2

2 γU2
2 αI

2. This equivalence follows from the fact that βI
1 (αI

2) has the same fermion parity as

βIn
1,n · · ·β

I1
1,1 (αI1

1,1 · · ·α
In
1,n) and they give the same result after contracting with the corresponding creation operators

⟨αI
2β

I
1(1 + β†

1α
†
2)⟩β1,α2

= 1, ∀I (14)

⟨αI1
2,1 · · ·α

In
2,nβ

In
1,n · · ·β

I1
1,1(1 + β†

1,1α
†
2,1) · · · (1 + β†

1,nα
†
2,n)⟩β1,1,α2,1,···β1,n,α2,n

= 1, ∀I1, . . . , In (15)

Note that this result relies on the counterclockwise ordering convention of fermion operators.

Equivalence of the swap gate ansatz and the virtual fermion ansatz

We provide a self-contained introduction to the swap-gate ansatz and show the equivalence to the virtual-fermion
ansatz by explicitly contracting the virtual fermions.

...

(b)(a) (c)

...

(d)

FIG. 9. (a) Representation of the wavefunction in the swap gate convention. The wavefunction is given by the contraction of
all tensors and swap gates. (b) Deforming the physical legs give does not affect the wavefunction. (c) The contraction of two
tensors. (d) The result of contracting the three tensors in each column.

The swap-gate ansatz is defined by 2 rules. First, each tensor is Z2-graded and has zero total parity: each virtual
index has a parity label 0 or 1, and the tensor element is zero unless the corresponding labels on all legs add to an
even number. Second, whenever two lines with parity I and J cross each other, a swap gate (−1)IJ is added. The

wavefunction ψk1...,kN in the basis of c†k1

1 c†k2

2 · · · c†kN

N |vac⟩ is defined as the contraction of all tensors and swap gates
as shown in Fig. 9(a). In Fig. 9(a), the order of the endpoints of physical lines from left to right corresponds to the
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fermion order of the Fock-space basis. If we were to swap the endpoints of two physical fermion lines, for example,
k2 and k3, we would add a swap-gate (−1)k2k3 . It is easy to see the resulting wavefunction is the wavefunction of

the same state written in a different basis c†k1

1 c†k3

3 c†k2

2 · · · c†kN

N |vac⟩. On the other hand, Deforming the physical lines
without changing the order of endpoints does not change the wavefunction. For example, in Fig. 9(b), the physical
line k1 may pass through the tensor Ak

lrdu (parity label k, L,R,D,U) in two ways (the solid line and the dashed
line). For the solid line, there are 2 swap gates giving (−1)k1(L+U); for the dashed line, there are 3 swap gates giving
(−1)k1(k+D+R). Since the tensor has even parity, the tensor elements are zero unless L + U = k +D + R (mod 2).
Thus, the two choices of swap gates produce the same wavefunction.

Now we show the virtual-fermion ansatz we discussed in the main text produces the same wavefunction by explicitly
contracting all virtual fermions. We first contract all tensors in each column, and then contract the resulting tensors
of different columns. As shown in Fig. 9(c), we can replace the top tensor (A[1]) and the bottom tensor (A[2]) with a
single tensor (Θ, fermion operators ordered counterclockwise starting from physical legs). Using the virtual-fermion
ansatz, we have

Θ̂ =
∑
r1=l2

⟨A[2]k2

l2r2d2i
c†k2

2 δD2
2 βR2

2 γI2α
L2
2 A[1]k1

l1r1iu1
c†k1

1 δI1β
R1
1 γU1

1 αL1
1 (1 + δ†1γ

†
2)⟩δ1,γ2

(16)

Θ̂ ≡ Θk1k2

l1l2r1r2d2u1
c†k1

1 c†k2

2 δD2
2 βR2

2 βR1
1 γU1

1 αL1
1 αL2

2 (17)

We bring the RHS of Eq. 16 to the form of 17 in 3 steps: bringing c†k1

1 to the left, moving αL2
2 to the right, and

contracting γI2δ
I
1 with the creation operator. In the second step, αL2

2 is swapped with the underlined operators, with
total parity k1, hence the sign (−1)k1L2 in Fig. 9. We contract tensors in a column from the top to the bottom.
Each physical leg needs to pass through all horizontal legs on the left of the column below it, hence the minus signs
indicated by the swap gates in Fig. 9(a). After the vertical contractions, we get a tensor for each column (Fig. 9(d)).
It is easy to see that contracting them does not give any extra sign.

The argument above shows the equivalence of the virtual-fermion ansatz and the swap-gate ansatz in the case that
the physical legs are extended outside as in Fig. 9(a). Using the consistency relations discussed earlier in this section,
this equivalence stands no matter how we extend the physical legs outside.

Alternative interpretation of the isometric condition in the swap-gate convention

In the swap-gate convention, it’s important to fix an order of the legs for tensors representing the state |ψ⟩. We
choose to the order in Fig. 2(a). Counting counterclockwise from the physical leg, the order is ‘physical, down, right,
up, left’, the same as the order of fermion operators in the virtual-fermion ansatz. The order of legs for tensors
representing the conjugate ⟨ψ| must be the opposite as the order for tensors representing |ψ⟩ (Fig. 2(b)). This is in
analogy of the reverse of orders when taking the conjugate of products of operators.

(c)

=

A

A*

=

(a)

A

A*

(b) (d)

FIG. 10. (a) The legs of tensors representing |ψ⟩ are ordered counterclockwise according to ‘physical, down, right, up, left’. (b)
The legs of tensors representing ⟨ψ| have the opposite order. (c) The isometric condition for fTNS in the lower-left quadrant.
(d) The isometric condition for fTNS in the upper-right quadrant.

With this convention, we can give a pictorial definition of the isometric condition for fermionic tensor networks.
The isometric condition is shown in Fig. 10(c) for tensors in the lower-left quadrant and in Fig. 10(d) for tensors
in the upper-right quadrant. In the lower-left quadrant, if contracting the left, physical, and down legs gives delta
functions in the right and up legs, the network can be contracted trivially from the lower-left corner to the central
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cross. Since there is no cross of the legs, the isometric condition is simply
∑

k,l,dA
k
lrduA

∗k
lr′du′ = δuu′δrr′ , namely A is

an isometry.
On the other hand, in the upper-right quadrant, we need to contract tensors from the upper-right to the

lower-left. The contraction of the up and right legs leads to 4 swap gates, hence the isometric condition∑
k,r,u(−1)u(L+L′)+r(D+D′)Ak

lrduA
∗k
l′rd′u = δll′δdd′ . This condition is equivalent to that (−1)UL+RDA is an isome-

try. We can equivalently write this condition as (−1)UD+RDA is an isometry, by changing L into D + U + k + R
(total parity even) and using the fact that (−1)U(k+U+R) is a unitary transformation on the incoming legs (diagonal
matrix with ±1 diagonal elements). Finally, we can simplify the isometric condition to that (−1)kDA is an isometry
by changing U +R to k +D + L and using the fact that (−1)D(D+L) is a unitary on the outgoing legs.

A similar argument shows that the isometric condition in the lower-right and upper-left quadrants is also that A is
an isometry from outgoing legs to incoming legs.

Finite-depth-local-unitary circuits preserve fisoTNS

We prove that if a fermionic state has a finite-bond-dimension fisoTNS representation in the thermodynamic limit,
it can still be represented to any accuracy by a finite-bond-dimension fisoTNS after the action of a finite-depth-local-
unitary (FDLU) circuit.

→

(b)(a)

→

FIG. 11. (a) One layer of local 2-site unitary gates. (b) The process of getting the fisoTNS representation of the final state in
the lower-left quadrant

Since any FDLU can be deformed into finite-depth 2-site unitary gates to any desired accuracy, it suffices to derive
an fisoTNS representation after a single layer of 2-site unitaries (Fig. 11). We demonstrate it in the lower-left quadrant.

To do so, we combine the 2 tensors on the neighboring sites and act it by the corresponding unitary gate.

Θ̂ = ⟨A[1]c†k1

1 δD1
1 βI

1γ
U1
1 αL1

1 A[2]c†k2

2 δD2
2 βR2

2 γU2
2 αI

2(1 + β†
1α

†
2)⟩β1,α2

(18)

Θ̂ ≡ Θk1k2

l1r2d1d2u1u2
c†k1

1 c†k2

2 δD1
1 δD2

2 βR2
2 γU2

2 γU1
1 αL1

1 (19)

To derive an expression for tensor Θ, we place the underlined operators between δ1 and β1, contract α
I
2β

I
1 with the

creation operator, and then swap δD1
1 and ck2

2 . Since the underlined operators have even total parity, moving it does
not give a minus sign; the only step that may produce a minus sign is the swap. Thus we have Θ = A[1]A[2](−1)k2D1 .
Note that if A[1] and A[2] are isometries with respect to the arrows in Fig. 11, The contraction A[1]A[2] is the
composition of two isometries, which is still an isometry. Θ is also an isometry since the extra factor (−1)k2D1 is a
unitary transformation on the incoming legs. For the same reason, the physical gate acting on the leg k1 and k2,
Θ′ = UΘ, also preserves the isometric structure.
Then we split the tensor into two isometric tensors as illustrated in Fig. 11(b). The internal bond is just the

combination of k′1 and l1. The left tensor is the identity matrix from the outgoing leg to the incoming legs, with
trivial up and down legs. The right tensor is Θ′.
With minor changes regarding the corresponding definition of isometric form, the same procedure applies to other

quadrants and the central cross.

Moses Move for symmetric TNS

The MM algorithm for isoTNS without symmetry is described in [12]. We repeat it here. The MM algorithm
performs the following decomposition of the orthogonality column (OC) into a left-canonical isometric column and a
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new OC:

(i)

≈

(ii)

=

(iii)

≈

(iv)

≈ ... ≈

(v)

(20)

where the physical legs of the isoTNS are grouped either with the left or the right virtual index. The MM algorithm
effectively “unzips” the original OC by iteratively splitting the (red) 5-leg tensor at the orthogonality center into 3
smaller tensors.

Because of the isometric form, each splitting step in the MM can be reduced to the following local tripartite
decomposition:

≈ f e

d

b

c a
. (21)

where we view the five-leg red tensor in (iii) of Eq. 20 as a tripartite tensor by grouping its lower left and lower right
index respectively with its left and right index. Typically, one needs to place a limit on the maximum internal bond
dimension of the decomposition, which generally disallows an exact equality in Eq. 21. This decomposition can be
done as follows.

1. One first groups index d and e and then performs an SVD decomposition on the grouped matrix Ψf :de =
UsV †. The index between U and sV †, arising from the SVD decomposition, is split into indices b and c. The
permutational freedom in splitting the indices will be fixed by the disentangler u in step 2. The bond dimensions
of b and c are truncated when necessary.

2. Note that the SVD in step 1 has a unitary freedom, u, acting on the indices b and c: UsV † = Uuu†sV †. To
make use of this freedom, the tensor u†sV † is reshaped into a matrix Θ with its b and e indices grouped as the
column index and the c and d grouped as the row index. u is chosen so that the Renyi-α entropy of the matrix
Θ is minimized, for a certain Renyi index α. We choose α = 1/2. The disentangler, u, is optimized in order to
minimize the error of the SVD truncation in step 3. The black tensor is then equal to the reshaped Uu.

3. Perform an SVD on Θ: Θ = U ′s′V ′†. The blue tensor is then equal to the reshaped V ′† after truncation, and
the red tensor is equal to the truncated U ′s′.

In the presence of Z2 symmetry, all operations described above respect the charge structure naturally, except that
in step 1, when the index between U and sV † is split into indices b and c, a charge structure on b and c has to be
prescribed. Let n0 and n1 respectively be the size of the charge-0 and charge-1 block on the bond between U and
sV † before the splitting. Then we have to prescribe the size of the charge-0 and charge-1 block on both bond b and
c. We denote them as nb0, n

b
1, n

c
0, and n

c
1. They have to satisfy the constraint

nb0n
c
0 + nb1n

c
1 ≤ n0 (22)

nb0n
c
1 + nb1n

c
0 ≤ n1 (23)

The charge block of size n0n1 − (nb0 + nb1)(n
c
0 + nc1) will need to be truncated. We choose the ns such that the size of

the truncated block is the smallest. When multiple sets of ns tie, we choose the set for which the standard deviation
of the list [nb0, n

b
1, n

c
0, n

c
1] is the least, i.e. we choose the evenest charge block sizes. In the code, [nb0, n

b
1, n

c
0, n

c
1] is

chosen via explicit enumeration and comparison. The computational cost for this is negligible.
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