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Abstract

We present a Sugawara-type construction for boundary charges in 4d BF theory and in a

general family of related TQFTs. Starting from the underlying current Lie algebra of boundary

symmetries, this gives rise to well-defined quadratic charges forming an algebra of vector fields.

In the case of 3d BF theory (i.e. 3d gravity), it was shown in [1] that this construction leads to a

two-dimensional family of diffeomorphism charges which satisfy a certain modular duality. Here

we show that adapting this construction to 4d BF theory first requires to split the underlying

gauge algebra. Surprisingly, the space of well-defined quadratic generators can then be shown to

be once again two-dimensional. In the case of tangential vector fields, this canonically endows

4d BF theory with a diff(S2)×diff(S2) or diff(S2)⋉vect(S2)ab algebra of boundary symmetries

depending on the gauge algebra. The prospect is to then understand how this can be reduced

to a gravitational symmetry algebra by imposing Plebański simplicity constraints.

http://arxiv.org/abs/2211.00068v2
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1 Introduction

1.1 Motivations

Recently, a vast effort has been directed towards understanding the structure of gauge theories at

codimension-2 boundaries. This is the location where symmetry charges and their algebras are

revealed and may be studied in order to gain insights into the fine structure of the classical and

quantum theory. In the context of gravity, this is of particular importance because (asymptotic)

boundary charges provide the very definition of physical quantities such as energy and momenta,

and encode a wealth of information about the interior region. This is relevant for the study of

classical phenomena such as (say) radiation, but also holds promise for defining quantum gravity

itself, for example through AdS/CFT and celestial (or flat space, or Carrollian) holography in the

case of asymptotically-AdS and asymptotically-flat spacetimes.

It has been proposed recently that a notion of holography could be meaningful (and potentially

more fundamental) even at finite distance [2–8]. Such a “local holography” is based on the study

of the charges and symmetries associated with finite subregions. These come indeed equipped with

a quasi-local algebra of charges, whose exact form depends on the formulation of gravity being

considered and whose representation theory can in principle be used to define building blocks of

the quantum theory. Since classical gravity contains this rich quasi-local symmetry structure and
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given the availability of geometric quantization tools [9–11], it seems reasonable to try to approach

quantum gravity from the complete understanding of the symmetry structure of the underlying

(semi-)classical theory.

This picture, if taken seriously, suggests that one should aim at understanding the most general

symmetry algebra which can be supported on boundaries of gravitational systems. In the case

of asymptotic boundaries in three and four spacetime dimensions, this has in part motivated for

example the study of various extensions of the BMS algebra. For arbitrary boundaries at finite

distance, a universal notion of quasi-local boundary (or corner) symmetry algebra for metric gravity

has been proposed in [2, 3] (see also [4–7]). An important question which remains open is that of the

dependency of the corner symmetry algebra on the variables and the formulation of gravity being

considered. There are indeed general arguments showing that different formulations of gravity can

turn on different corner charges (and potentially lead to a notion of dual charges [12–16]) and

thereby lead to different symmetry algebras.

An interesting setup to study these questions is 3-dimensional (3d hereafter) gravity. Since this

theory is topological, one can reasonably think that a complete understanding of the boundary sym-

metry algebra should be achievable, both at finite distance and for asymptotic boundaries. It should

also be possible to understand the differences (if any) between the metric and the connection-triad

formulation. This has recently been studied in details in [1, 17], where it has been shown that the

obtention of diffeomorphism charges from charges of field-dependent internal gauge transformations

naturally also leads to a notion of dual diffeomorphisms. This is the construction which we here

aim at extending to 4-dimensional (4d) BF theory. For this, let us first recall the results of [1, 17].

1.2 Summary of the 3d construction

The starting point of the analysis of [1, 17] is a general Lagrangian for 3d gravity, built from a

triad e and an independent spin connection ω, and containing four Lorentz-invariant terms. This

defines the so-called Mielke–Baekler model [18]

L =
σ0
3
e ∧ [e ∧ e] + 2σ1e ∧ F + σ2 ω ∧

(
dω +

1

3
[ω ∧ ω]

)
+ σ3e ∧ dωe. (1.1)

The couplings (σ0, σ1, σ2, σ3) multiply respectively a volume term, the standard Hilbert–Palatini

Lagrangian, the Chern–Simons Lagrangian for ω, and a torsion term. Below we will also consider

a general Lagrangian for 4d topological theories, and explore the role of the various couplings.

In order to understand the meaning of the couplings in (1.1) we compute the equations of

motion

2F + p[e ∧ e] ≈ 0, 2dωe+ q[e ∧ e] ≈ 0, (1.2)

which show that there is a source for internal curvature and torsion measured by the following

combinations of the couplings of the Lagrangian:

p :=
σ0σ1 − σ2

3

σ2
1 − σ2σ3

, q :=
σ1σ3 − σ0σ2
σ2
1 − σ2σ3

. (1.3)
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We restrict to the sector σ2
1 − σ2σ3 6= 0 because otherwise the equations of motion only have the

trivial solution e = 0. The second equation of motion in (1.2), which is the torsion equation, is

solved by ω = Γ − qe/2 with Γ(e) the torsionless Levi–Civita connection. Using this in the first

equation of motion leads to its second order form, which is

Rµν + 2λgµν = 0, R ∋ λ := p+
q2

4
. (1.4)

This metric equation of motion shows that the combination λ of the initial four couplings of (1.1)

plays the role of the cosmological constant.

We are now interested in the symmetries and the charge algebra, which we want to study from

two points of view: 1) the internal gauge transformations parametrized by Lie algebra elements, and

2) the diffeomorphism transformations parametrized by vector fields. First, the theory is invariant

under the internal Lorentz transformations δJ and translations δT acting as

δJα e = [e, α], δTφ e = dωφ+ q[e, φ], (1.5a)

δJα ω = dωα, δTφ ω = p[e, φ], (1.5b)

where (α, φ) are Lie algebra-valued 0-forms. The covariant phase space formalism can then be used

to derive the charges generating these Lorentz transformations and translations. For this we first

compute the symplectic structure

Ω =

∫

M2

δθ, (1.6)

where θ is the symplectic potential and M2 is a 2d Cauchy slice with codimension-1 boundary

S, and we then obtain the charges from the formula /δJ (α) = −δJα yyΩ, where yy denotes the

interior product in field space. Restricting for the moment our attention to field-independent gauge

parameters, we find that the charges are integrable and given by

J (α) = 2

∮

S
α(σ1e+ σ2ω), T (φ) = 2

∮

S
φ(σ1ω + σ3e). (1.7)

We can then obtain the Poisson brackets of these charges from {J (α),J (β)} = −δJα yy δJβ yyΩ.

Defining the generator P := T − qJ /2, we find that these charges form the centrally-extended

current algebra

{J (α),P(φ)} = P([α, φ]) − c1

∮

S
αdφ, (1.8a)

{J (α),J (β)} = J ([α, β]) − c2

∮

S
αdβ, (1.8b)

{P(φ),P(χ)} = λ

(
J ([φ, χ]) − c2

∮

S
φdχ

)
, (1.8c)

where the central charges are c1 = 2σ1 − qσ2 and c2 = 2σ2. This is the current algebra built on the

isometry algebra of the 3d Lorentzian spacetime with cosmological constant λ, i.e. iso(2, 1), so(2, 2),
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or so(3, 1) when λ = 0, λ > 0, and λ < 0 respectively. This current algebra is defined at any location

in the bulk of the theory, for any codimension-2 boundary. An interesting question is that of the

status of the universal enveloping algebra, built from the generators (1.7) by considering arbitrary

field-dependent smearing gauge parameters α and φ. A priori with arbitrary field-dependency the

resulting charges are not integrable. This is the question we have studied in [1, 17] in the case of

a field-dependency of the type1 ξy e and ξyω, which gives rise to charges that are quadratic in the

basic fields (e, ω). This is also what we aim at generalizing to 4d BF theory in the present work.

As we will now explain, such quadratic charges are related to diffeomorphisms, and also give rise

to a notion of dual diffeomorphisms.

Since the theory (1.1) is topological, one can realize its diffeomorphisms on-shell of (1.2) as

field-dependent gauge transformations. Explicitly, one can check that the Lie derivative δDξ = Lξ

can be obtained as

δDξ ≈ δJξyω + δTξy e. (1.9)

We want to see what this entails at the level of the charges. Indeed, field-dependent gauge trans-

formations do not generically lead to integrable charges unless one imposes extra conditions, on

the dynamical fields and/or on the gauge parameters. Typically these conditions are automatically

picked when building the residual symmetries for a spacetime with fixed (e.g. asymptotically-flat

or AdS3) boundary conditions. Here since we want to describe the symmetry charges associated

to an arbitrary codimension-2 boundary we have to be careful about the integrability. One can

easily check, either using the covariant phase space to construct the charge for the symmetry Lξ, or

by computing /δD(ξ) = /δJ (ξyω) + /δT (ξy e), that when ξ is field-independent the diffeomorphism

charge is given by

/δD(ξ) ≈
∮

S
δ
(
2σ1(ξyω)e+ σ2(ξyω)ω + σ3(ξy e)e

)
− ξy θ, (1.10)

where we have used /δ to explicitly denote the fact that the charge is non-integrable. Indeed,

it contains the familiar non-integrable piece ξy θ for diffeomorphisms, where θ is the symplectic

potential. As usual, this can be made integrable without boundary conditions on the fields by

considering diffeomorphism transformations which do not move the boundary, i.e. tangent vector

fields. For tangent vector fields, we then get the integrable charge

D(ξ) = J (ξyω) + T (ξy e), (1.11)

whose expression mirrors (1.9).

The observation made in [1, 17] is that one can extend the present construction by asking the

following question: Is there another combination of field-dependent internal gauge transformations

which leads to integrable charges and to a closed algebra with the other symmetry generators?

In other words, we view the current algebra (1.8) as the fundamental algebra of the theory, and

search for field-dependent generalizations. Since the generators J and P are linear in the funda-

mental fields (e, ω), searching for field-dependent combinations as in (1.11) amounts to considering

1Here y denotes the spacetime interior product.
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quadratic generators. This is the spirit of the so-called Sugawara construction [19–21], which is

usually written in terms of Fourier coefficients on the codimension-2 boundary (this interpretation

will however not immediately be available in the 4d case later on). The answer to the above ques-

tion is that there are indeed other field-dependent charges to consider, as the space of well-defined

quadratics is actually 2-dimensional. More precisely, in addition to (1.11), for tangent vector fields

one may equally well consider the generator

D∗(ξ) := pJ (ξy e) + T (ξyω) +
q

2

(
T (ξy e)− J (ξyω)

)
. (1.12)

Together with the above diffeomorphism charge this forms the algebra

{D(ξ),D∗(ζ)} = −D∗([ξ, ζ]), (1.13a)

{D(ξ),D(ζ)} = −D([ξ, ζ]), (1.13b)

{D∗(ξ),D∗(ζ)} = −λD([ξ, ζ]). (1.13c)

Up to the central extensions, which are not present since here we are considering tangent vector

fields, this is a “diffeomorphism version” of the (J ,P) current algebra (1.8). Starting from this

latter, we have therefore managed to construct a well-defined algebra of quadratic generators whose

parameters are vector fields. This algebra features once again the cosmological constant λ, and

reduced in the case λ = 0 to the centreless bms3 algebra. When λ 6= 0, we can alternatively

introduce D± := (D ± λ−1/2D∗)/2 to obtain the direct sum of two Witt (or centreless Virasoro)

algebras.

It is clear from (1.13) that the existence of D∗ is due to the possibility of swapping the fields

e and ω in the field-dependent gauge parameters, which in turn is allowed since both fields are

1-forms. This immediately raises issues for a potential extension of this construction to the 4d

case, where the fundamental fields are a 1-form and a 2-form. We will however solve this puzzle

and show that the 4d theory also admits similar field-dependent charges in addition to the usual

diffeomorphisms. Another insight into the duality in the 3d case comes from evaluating D and D∗

on the asymptotic Killing vector field preserving e.g. BMS3 boundary conditions. Doing so, one

finds that D∗(ξu, ξr, ξϕ) = D(ξϕ, ξr, λξu) [1], which shows that the duality is a modular duality

between the temporal and angular directions. This is also a property which clearly cannot extend

to a 4d setup since in this case there are two angular directions.

This brief summary of the construction of [1, 17] shows that there is a meaningful way in

which one can realize a 2-dimensional algebra of vector fields, starting form the current algebra

(1.8), by considering field-dependent internal gauge transformations. This algebra of vector fields

reproduces, at finite distance and without the need for any boundary conditions, the centerless

bms3 or double Witt algebra depending on the cosmological constant. It should be noted that this

generic construction cannot be achieved in the metric formulation (unless of course one introduces

BMS or AdS3 boundary conditions).

We now set out to build an analogue of this construction in 4d BF theory. Just like we have

started here from a general 3d Lagrangian (1.1), in the 4d case we will also consider a general

family of topological quantum field theories (TQFTs hereafter) in order to keep track of the role

of the various coupling constants. Let us now turn to the 4d case.
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2 Quadratic charges in 4d BF theory

A similar structure to the one presented above in the 3d case exists for 4d TQFTs, with in particular

a notion of dual diffeomorphisms which can be constructed from field-dependent internal gauge

transformations. The construction is however not as straightforward as in the 3d case. In order to

understand why this is so, let us first discuss the example of 4d BF theory.

The reason for considering 4d BF theory, especially with gauge group so(4) or so(3, 1), is that

it is closely related to Lorentzian or Euclidean 4d gravity (respectively) via the so-called Plebański

formulation [22, 23], which is a rewriting of general relativity as a BF theory with constraints. This

latter is at the basis of non-perturbative approaches to quantum gravity such as Loop Quantum

Gravity and Spin Foams [24–26], which have recently been revisited in the light of the developments

on corner symmetries [6, 27–32]. It was in particular explained in [31, 32] how quantum numbers

in the gravitational theory are inherited from the symmetries of BF theory. It will be interesting

to understand in future work how this extends to the diffeomorphism symmetries constructed from

quadratic charges. Indeed, one can hope that if a holographic dual can be constructed for 4d

topological BF theory, then this boundary theory could be reduced to a gravitational boundary

theory by implementing the Plebański simplicity constraints reducing BF theory to gravity.

2.1 Summary of 4d BF theory

Let us consider as the basic variables a 2-form B and a connection 1-form A, both valued in a Lie

algebra g. We will think of this algebra as being so(4) or so(3, 1), although the details will not

matter at this stage. The Lagrangian of 4d BF theory with quadratic potential is

L = 〈B ∧ F〉 − κ〈B ∧ B〉, (2.1)

where F = dA + 1
2 [A ∧ A] is the curvature of A. The pairing 〈· , ·〉 : g × g → R is given by the

Killing form of g. We keep it explicit because it will play an important role in what follows. The

equations of motion and the symplectic potential are

dAB ≡ dB + [A ∧ B] ≈ 0, F − 2κB ≈ 0, θ = 〈B ∧ δA〉. (2.2)

The symmetries of the Lagrangian (2.1) are given by Lorentz transformations parametrized by

g-valued 0-forms α, and translations parametrized by g-valued 1-forms φ. These internal gauge

transformations act as

δJα B = [B, α], δTφ B = dAφ, (2.3a)

δJα A = dAα, δTφ A = 2κφ. (2.3b)

As a remark, we note that computing the repeated action of these internal gauge transformations

with field-independent parameters leads to

[
δJα , δTφ

]
= δT[α,φ],

[
δJα , δJβ

]
= δJ[α,β],

[
δTφ , δ

T
χ

]
= 0, (2.4)
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meaning that the translations are abelian even for κ 6= 0. This is in sharp contrast with the 3d

theory (1.1), where even in the case σ2 = 0 = σ3 the presence of a volume term σ0 leads to non-

abelian translations. The volume terms in (1.1) and (2.1), with respective couplings σ0 and κ,

therefore play a different role from the point of view of the symmetries. We will come back to this

observation later on.

As in the previous section, we can now use the covariant phase space to compute the charges

generating these transformations. Restricting once again momentarily to field-independent gauge

parameters, we find that the charges are given by

J (α) =

∮

S
〈α,B〉, T (φ) = −

∮

S
〈φ ∧ A〉, (2.5)

and that they form the centrally-extended current algebra

{J (α),T (φ)} = T ([α, φ]) −
∮

S
〈α,dφ〉, (2.6a)

{J (α),J (β)} = J ([α, β]), (2.6b)

{T (φ),T (χ)} = 2κ

∮

S
〈φ ∧ χ〉. (2.6c)

As expected, we recover the familiar fact that the algebra of charges is a centrally-extended current

algebra based on the algebra of infinitesimal transformations (2.4).

By analogy with the 3d construction introduced above, we now want to understand how dif-

feomorphisms are related to these charges of internal gauge transformations. Because (2.1) is

topological, we can once again realize the diffeomorphisms as field-dependent internal gauge trans-

formations. This follows from the fact that

(
δJξyA + δTξyB

)
A = LξA− ξy (F − 2κB) ≈ δDξ A, (2.7a)

(
δTξyB + δJξyA

)
B = LξB − ξy (dAB) ≈ δDξ B, (2.7b)

so as in the 3d case we have δDξ ≈ δJξyA + δTξyB. For field-independent tangent vector fields to the

(now) 2-dimensional boundary, we can therefore obtain an integrable diffeomorphism charge as the

combination

D(ξ) = J (ξyA) + T (ξyB). (2.8)

While this formula is the 4d analogue of its 3d counterpart (1.11), it is clear that the dual charge

(1.12) defined above cannot be transposed to the 4d case since A and B are forms of different

degrees. This is the immediate obstruction to defining an analogue of the dual diffeomorphisms in

the 4d case.

We will now show that this roadblock is only apparent, and that it can be bypassed by per-

forming a split of the fields A and B based on a split of the underlying algebra g. When such a

split is performed, a notion of duality becomes available and can in turn be used to define dual

diffeomorphism charges.
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Interestingly, this mechanism puts in a sense 4d BF theory on the same footing as 3d Chern–

Simons (CS) theory. Indeed, if we consider 3d CS theory with g = su(2), then there is only a single

set of quadratic charges, corresponding to the usual diffeomorphisms. If, on the other hand, we

consider CS theory where g is for example one of the isometry algebras of 3d gravity, then one can

decompose the CS connection A into e and ω using the decomposition of g (e.g. into rotations and

boosts or rotations and translations depending on g). The CS Lagrangian for A then becomes a

Lagrangian for e and ω as for example (1.1) [17]. As we have seen above, the possibility to consider

the two independent quadratic charges (1.11) and (1.12) then arises since the new fields e and ω

can be swapped. The same mechanism is at play in 4d BF theory, where a decomposition of the

algebra g induces a decomposition of both A and B. Although there is no duality between A and

B because of the mismatch in form degree, there is then a duality between the two components of

A and a duality between the two components of B. It is this duality which we want to explore and

exploit in order to write down the independent quadratic charges. This is precisely what will lead

to a 4d generalization of the “dual” diffeomorphisms built in 3d.

We first motivate and illustrate this construction on BF theory, and then present it in the case

of a general 4d TQFT in order to mimic closely the structure of the 3d model (1.1).

2.2 Construction of quadratic charges

Let us now consider 4d BF theory with an algebra g whose generators can be decomposed into

(Ji, Pi)i=1,2,3 with brackets

[Ji, Pj ] = ǫij
kPk, [Ji, Jj ] = ǫij

kJk, [Pi, Pj ] = λǫij
kJk, (2.9)

where λ is a scalar parameter. Depending on the signature of ǫ (whose indices are lowered and

raised with a Lorentzian or Euclidean η) and on the sign of λ, these commutation relations can be

those of so(4), so(3, 1), so(2, 2), iso(2, 1), or iso(3). We can then decompose the fields A and B in

this basis as

A = AiJi +CiPi, B = BiJi +ΣiPi. (2.10)

We also present in appendix B a construction of the quadratic charges using the self-dual basis. In

order to decompose the Lagrangian in terms of these new fields, we need to pick a Killing form.

There are two choices for this, given by

〈Pi, Jj〉I = ηij, 〈Pi, Pj〉I = 0, 〈Ji, Jj〉I = 0, (2.11a)

〈Pi, Jj〉II = 0, 〈Pi, Pj〉II = ληij, 〈Ji, Jj〉II = ηij. (2.11b)

One should note that the second bilinear form is degenerate when λ = 0. With these two choices,

the Lagrangian (2.1) becomes either of the two Lagrangians

LI = Σ ∧ F − 2κB ∧Σ+B ∧ dAC +
1

2
λΣ ∧ [C ∧ C], (2.12a)

LII = B ∧ F − κB ∧B + λ

(
Σ ∧ dAC − κΣ ∧Σ+

1

2
B ∧ [C ∧ C]

)
. (2.12b)
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In order to study these two Lagrangians in one go, we introduce below a general family of TQFTs

described by (3.1). The Lagrangians above are embedded in this family as

Lgen σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

LI 0 1 1 0 0 0 −2κ 0 λ

LII 1 0 0 λ −2κ −2κλ 0 λ 0

(2.13)

When 4d BF theory is decomposed as in (2.12), one has access to dualities which were not

manifest in the initial Lagrangian (2.1). First, there is a duality between the 1-forms A and C,

and, second, there is a duality between the 2-forms B and Σ. The presence of these dualities then

allows to follow a construction similar to that present above in the 3d case, and to obtain quadratic

charges which are independent from the “usual” diffeomorphisms. We are going to present the

details of this construction in section 3, starting from the general family of 4d TQFTs described

by (3.1).

Before going into the details of this construction, let us collect the results in the case of 4d

BF theory. The construction follows the same logic as in the 3d case. First, starting from (2.12a)

or (2.12b), one should find the internal gauge transformations, and then compute the associated

charges and their algebra. This leads to the 4 charges (3.8), which we call (J1,J2,T1,T2), and which

correspond to a decomposition of the charges (2.5) under (2.10). Starting from these 4 charges, one

can then build field-dependent charges by considering the contractions of the vector field ξ with the

fields (A,C,B,Σ). In the case of the Lagrangians (2.12), the analysis of (3.1) with the parameters

(2.13) leads to 2 independent quadratic charges, which are moreover integrable when ξ is tangent

and field-independent. These charges are

D(ξ) = J1(ξyA) + J2(ξyC) + T1(ξyB) + T2(ξyΣ), (2.14a)

D∗(ξ) = λJ1(ξyC) + J2(ξyA) + λT1(ξyΣ) + T2(ξyB). (2.14b)

As announced, one can see that the essential difference between the new charges D∗ and the

usual diffeomorphisms D resides in the duality between the 1-forms and that between the 2-forms.

Schematically, and up to the couplings, D∗ is obtained from D by swapping the 1-forms A and

C on the one hand, and the 2-forms B and Σ on the other hand. When ξ is tangential and

field-independent these charges are integrable and form the algebra

{D(ξ),D∗(ζ)} = −D∗([ξ, ζ]), (2.15a)

{D(ξ),D(ζ)} = −D([ξ, ζ]), (2.15b)

{D∗(ξ),D∗(ζ)} = −λD([ξ, ζ]). (2.15c)

One can therefore immediately see that this is a 4d generalization of the 3d algebra (1.13), where

the vector fields ξ now have components along the codimension-2 boundary S. The parameter λ

now controls the “flat” limit in which one of the two diff(S2) algebras becomes abelian. At the

difference with the 3d case, where λ is a combination of the initial couplings of the Lagrangian

(1.1), in 4d BF theory λ comes from the structure (2.9) of the gauge group, and the coupling of

the Lagrangian (2.1) does not appear in the quadratic charges nor in their algebra.
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We now address the difference between the choices of pairings (2.11), or equivalently the differ-

ence between the Lagrangians (2.12). First, one should note that when λ 6= 0 both Lagrangians in

(2.12) give the same equations of motion, which are nothing but a decomposition using (2.10) of

the equations of motion (2.2). Both Lagrangians also lead to the same algebra (2.15). The choices

I and II become however inequivalent when λ = 0. Indeed, one can see that in this case the pairing

II is degenerate. Because of this, in the limit λ = 0 the Lagrangian LII degenerates, and reduces

to that for a single “half” of the initial BF theory (for example su(2) if we start from so(4)). More

importantly, by carefully constructing the charges as we will do in the next section, one realizes

that for LII the charges J2 and T2 are actually proportional to λ, so that in the limit λ = 0 we

get D∗ = 0 altogether, and we are only left with D as the well-defined quadratic diffeomorphism

charge. This echoes the remark which we have made at the end of section 2.1.

Let us now turn to the detailed study of the general family of TQFTs in which the Lagrangians

(2.12) are embedded. This will enable us to prove that the charges (2.14) are indeed integrable and

forming a closed algebra.

3 Quadratic charges in a family of 4d TQFTs

In this section, we introduce and study a family of 4d TQFTs which generalize, in a manner similar

to (1.1) in 3d, the Lagrangian for 4d BF theory, and which are also related to some specific examples

of so-called 2-BF (or BFCG) theories [33–35]. We use this general TQFT to illustrate and present

the details of the construction of the quadratic charges (and of the “dual” diffeomorphisms). At

the difference with what we have presented above, here the starting point Lagrangian is written

immediately in terms of the 4 fundamental fields: the connection 1-forms A and C, and the 2-forms

B and Σ. We use an index-free notation, the pairing is left implicit and does not play a role.

3.1 Lagrangian and equations of motion

Let us consider for the moment 9 arbitrary parameters σi, which we use as the couplings for 4

kinetic terms and 5 potential terms in order to build the Lagrangian

Lgen =
(
σ1B + σ2Σ

)
∧ F +

(
σ3B + σ4Σ

)
∧ dAC +

σ5
2
B ∧B +

σ6
2
Σ ∧Σ

+ σ7B ∧Σ+
(σ8
2
B +

σ9
2
Σ
)
∧ [C ∧C], (3.1)

where F = dA + 1
2 [A ∧ A] and dAC = dC + [A ∧ C]. One can see that when only σ1 and σ5 are

non-vanishing we recover the standard BF Lagrangian with cosmological term. When only σ1 and

σ4 = −σ1 are non-vanishing, we recover a specific 2-BF Lagrangian with 2-gauge symmetry [33–35].

When the 9 parameters σi are all independent, the Lagrangian Lgen does not yet describe a

topological theory. We will explain below, based on a symmetry argument, that in order to obtain

a topological theory there needs to be an algebraic relation between the σi’s. These couplings

therefore give an 8-parameter family of TQFTs. We will come back to this shortly.

To obtain the symplectic potential and the equations of motion we now perform the variation
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of this Lagrangian, to find

δLgen = dθ + δB ∧
(
σ1F + σ3dAC + σ5B + σ7Σ+

σ8
2
[C ∧ C]

)

+ δΣ ∧
(
σ2F + σ4dAC + σ6Σ+ σ7B +

σ9
2
[C ∧ C]

)

+ δA ∧
(
σ1dAB + σ2dAΣ+ σ3[C ∧B] + σ4[C ∧Σ]

)

+ δC ∧
(
σ3dAB + σ4dAΣ+ σ8[C ∧B] + σ9[C ∧ Σ]

)
, (3.2)

where the symplectic potential is

θ =
(
σ1B + σ2Σ

)
∧ δA+

(
σ3B + σ4Σ

)
∧ δC. (3.3)

We will use this symplectic potential below to compute the charges associated with the symmetries

via the covariant phase space formalism. When σ1σ4 − σ2σ3 6= 0 (which is equivalent to the non-

degeneracy condition for the 3d Lagrangian (1.1)), the equations of motion can be rearranged in

the form

F = p1B + q1Σ− r1
2
[C ∧C], (3.4a)

dAC = p2B + q2Σ− r2
2
[C ∧C], (3.4b)

dAB = p3[B ∧ C] + q3[Σ ∧ C], (3.4c)

dAΣ = p4[B ∧ C] + q3[Σ ∧ C]. (3.4d)

The new parameters appearing here are defined in terms of

[ijkl] :=
σiσj − σkσl
σ1σ4 − σ2σ3

(3.5)

by

p1 = [3745], p2 = [2517], p3 = [3428], p4 = [1833] r1 = [4839],

q1 = [3647], q2 = [2716], q3 = [4429], q4 = [1934] r2 = [1928].
(3.6)

The structure of the Lagrangian (3.1) and of its equations of motion already reveals that this is

a 4d analogue, in the case of TQFTs, of the general 3d Lagrangian (1.1). Note that there could

in principle be extra terms in (3.1) in order to symmetrize further the roles of A and C on the

one-hand, and B and Σ on the other hand. These can however be obtained via field redefinitions.

Now that we have the Lagrangian that will serve as our starting point, we can proceed with

the construction of quadratic charges following the 3d case. For this, the first step is to analyse the

internal gauge symmetries and the resulting charge algebra.

3.2 Symmetries, charges, and algebra

We now turn to the study of the symmetries and the associated charges. Since we want the

Lagrangian (3.1) to describe topological theories, we need to ensure that it has enough gauge
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symmetries to remove possible physical degrees of freedom2. Furthermore, for a topological theory

the diffeomorphisms can be written as field-dependent gauge transformations, so we need enough

gauge transformations to realize this. In the example of BF theory studied in section 2, there are

two gauge symmetries, which are the Lorentz transformations and the translations. Here, since

(3.1) has four fields one can expect that in the topological sector it admits four gauge symmetries.

This is indeed the case provided we enforce a single algebraic constraint on the couplings σi.

More precisely, let us consider two Lie algebra-valued 0-forms (α, χ) as well as two 1-forms

(φ, τ). If the couplings satisfy the constraint

σ1[7968] + σ2[7859] + σ3[3647] + σ4[4537]
!
= 0, (3.7)

then the Lagrangian (3.1) is invariant under the following gauge symmetries:

0-form Lorentz 0-form translations 1-form translations 1-form Lorentz

δJ1

α A = dAα δJ2

χ A = r1[C,χ] δT1φ A = p1φ δT2τ A = q1τ

δJ1

α C = [C,α] δJ2

χ C = dAχ+ r2[C,χ] δT1φ C = p2φ δT2τ C = q2τ

δJ1

α B = [B,α] δJ2

χ B = p3[B,χ] + q3[Σ, χ] δT1φ B = dAφ+ p3[C ∧ φ] δT2τ B = q3[C ∧ τ ]

δJ1

α Σ = [Σ, α] δJ2

χ Σ = p4[B,χ] + q4[Σ, χ] δT1φ Σ = p4[C ∧ φ] δT2τ Σ = dAτ + q4[C ∧ τ ]

This can be checked explicitly by plugging these symmetry transformations in the variational for-

mula (3.2). Of course, since any combination of these gauge symmetries is again a gauge symmetry,

this parametrization is not unique. We have chosen it because it generalizes naturally the gauge

structure of the so-called 2-BF theories studied in [33–35].

Now that we have identified the symmetries of the Lagrangian, we can use the symplectic

structure Ω derived from the potential (3.3) in order to obtain the associated charges. Contracting

each of the symmetry transformations found above in the symplectic structure, we find

δJ1(α) =−
∫

M2

α δEOMA +

∮

S
α(σ1δB + σ2δΣ), (3.8a)

δJ2(χ) =−
∫

M2

χ δEOMC +

∮

S
χ(σ3δB + σ4δΣ), (3.8b)

δT1(φ) =−
∫

M2

φ ∧ δEOMB +

∮

S
(σ1δA+ σ3δC) ∧ φ, (3.8c)

δT2(τ) =−
∫

M2

τ ∧ δEOMΣ +

∮

S
(σ2δA+ σ4δC) ∧ τ, (3.8d)

where EOMX refers to the equation of motion imposed by the field X in (3.2). From now on we will

go on-shell of these equations of motion and consider the boundary charges. We will also consider

for the moment field-independent gauge parameters, so these charges are manifestly integrable.

2Essentially, in a topological theory there are enough symmetries to make any solution gauge equivalent to the

trivial one.
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Their algebra is found to be

{J1(α),J1(α
′)} = J1([α,α

′]), (3.9a)

{J1(α),J2(χ)} = J2([α, χ]), (3.9b)

{J2(χ),J2(χ
′)} = r1J1([χ, χ

′]) + r2J2([χ, χ
′]), (3.9c)

{J1(α),T1(φ)} = T1([α, φ]) − σ1

∮

S
αdφ, (3.9d)

{J1(α),T2(τ)} = T2([α, τ ]) − σ2

∮

S
αdτ, (3.9e)

{J2(χ),T1(φ)} = p3T1([χ, φ]) + p4T2([χ, φ]) − σ3

∮

S
χdφ, (3.9f)

{J2(χ),T2(τ)} = q3T1([χ, τ ]) + q4T2([χ, τ ]) − σ4

∮

S
χdτ, (3.9g)

{T1(φ),T1(φ′)} = −σ5

∮

S
φ ∧ φ′, (3.9h)

{T2(τ),T2(τ ′)} = −σ6

∮

S
τ ∧ τ ′, (3.9i)

{T1(φ),T2(τ)} = −σ7

∮

S
φ ∧ τ, (3.9j)

and therefore contains 7 central extensions. In particular, one sees that the generators (T1,T2)
span a centrally-extended abelian current algebra, while the generators (J1,J2) span a centreless

so-like current algebra. Defining the new generator J̃2 := J2 − r2J1/2, one finds indeed that the

subalgebra takes the form

{J1(α), J̃2(χ)} = J̃2([α, χ]), (3.10a)

{J1(α),J1(α
′)} = J1([α,α

′]), (3.10b)

{J̃2(χ), J̃2(χ
′)} = λJ1([χ, χ

′]), (3.10c)

with

λ := r1 +
r22
4
. (3.11)

Interestingly, this is analogous to the structure (1.8) which we have found in the 3-dimensional case,

and it also represents a “Lie algebra version” of the diffeomorphism algebra which we are going to

obtain below in the 4-dimensional case. Let us now explain how this algebra of diffeomorphisms is

obtained from quadratic field-dependent charges.

3.3 Field-dependent charges and (dual) diffeomorphisms

The theory (3.1) is manifestly invariant under diffeomorphisms. We have also seen that when the

couplings satisfy (3.7) it describes a topological theory. As such, we expect that its diffeomorphisms
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can be rewritten on-shell as field-dependent gauge transformations, just like in the case of d-

dimensional BF theory. One can explicitly check that this is indeed the case. More precisely, we

find the natural analogues of (2.7), given by the relations
(
δJ1

ξyA + δJ2

ξyC + δT1ξyB + δT2ξyΣ

)
A = LξA− ξy

(
F +

r1
2
[C ∧C]− p1B − q1Σ

)
≈ δDξ A, (3.12a)

(
δJ1

ξyA + δJ2

ξyC + δT1ξyB + δT2ξyΣ

)
C = LξC − ξy

(
dAC +

r2
2
[C ∧ C]− p2B − q2Σ

)
≈ δDξ C, (3.12b)

(
δJ1

ξyA + δJ2

ξyC + δT1ξyB + δT2ξyΣ

)
B = LξB − ξy

(
dAB − p3[B ∧ C]− q3[Σ ∧ C]

)
≈ δDξ B, (3.12c)

(
δJ1

ξyA + δJ2

ξyC + δT1ξyB + δT2ξyΣ

)
Σ = LξΣ− ξy

(
dAΣ− p1[B ∧ C]− q1[Σ ∧C]

)
≈ δDξ Σ, (3.12d)

where Lξ(·) = d(ξy (·)) + ξyd(·).
To obtain the charges associated with diffeomorphism transformations in the topological sector

of (3.1), we can either directly contract the transformation δDξ with the symplectic structure or,

equivalently, use the field-dependent gauge transformations. In any case, we find that the charges

are non-integrable, and that integrability can be achieved without boundary conditions on the

dynamical fields if we restrict ourselves to field-independent tangential vector fields, as we did

above when going from (1.10) to (1.11). For such tangential vector fields, we then find that the

integrable diffeomorphism charges are given in terms of the gauge charges (3.8) by

D(ξ) = J1(ξyA) + J2(ξyC) + T1(ξyB) + T2(ξyΣ). (3.13)

As expected, this expression is simply the analogue, in the case of the topological sector of (3.1),

of the relationship (2.8) obtained for 4d BF theory. We have indeed obtained the same formula

(2.15) when decomposing the fields of 4d BF theory using (2.10). We stress once again that here

we are restricting ourselves to tangential vector fields in order to guarantee the integrability of the

charges and so diffeomorphisms are span by a two-dimensional set of parameters.

Now, similarly to what was done in [17] in the 3d case, we can show that the diffeomorphism

(3.13) is not the only integrable combination of quadratic field-dependent gauge transformations

admitting a well-defined algebra with the gauge charges. There is an independent combination

of field-dependent gauge charges which happens to be integrable in the case of field-independent

tangential vector fields. This charge is given by

C(ξ) := J1

(
ξy (r1C − p3A)

)
+ J2

(
ξy (A+ q4C)

)
+ q3T1(ξyΣ) + T2

(
ξy (p4B + q4Σ− p3Σ)

)
. (3.14)

We refer the reader to appendix A for the explicit proof of the integrability of this charge in the

case of tangential ξ, and for the proof of the fact that its algebra with the charges (J1,J2,T1,T2),
and hence D, is closed. This proof shows that the space of well-defined3 quadratic charges is 2-

dimensional, and spanned by C and D. One can note that the symmetry generated by this quadratic

charge is

δCξ = δJ1

ξy (r1C−p3A) + δJ2

ξy (A+q4C) + q3δ
T1
ξyΣ + δT2ξy (p4B+q4Σ−p3Σ), (3.15)

3Here by well-defined we mean that the charges i) are integrable in the case of tangential vector fields, and ii)

have a closed algebra with the gauge charges (J1,J2, T1, T2).
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which gives the following infinitesimal transformations of the fields:

δCξA = Lξ

(
r1C − p3A

)
, (3.16a)

δCξC = Lξ

(
A+ q4C

)
, (3.16b)

δCξB = q3LξΣ, (3.16c)

δCξΣ = Lξ

(
p4B + q4Σ− p3Σ

)
. (3.16d)

With all these ingredients, we can now compute the Poisson algebra between the two sets of

quadratic charges. We find that this is given by

{D(ξ), C(ζ)} = −C([ξ, ζ]), (3.17a)

{D(ξ),D(ζ)} = −D([ξ, ζ]), (3.17b)

{C(ξ), C(ζ)} = (p3 − q4)C([ξ, ζ]) − p4q3D([ξ, ζ]). (3.17c)

Introducing now the generator

D∗(ξ) := C(ξ) + 1

2
(p3 − q4)D(ξ), (3.18)

we find that the algebra takes the form

{D(ξ),D∗(ζ)} = −D∗([ξ, ζ]), (3.19a)

{D(ξ),D(ζ)} = −D([ξ, ζ]), (3.19b)

{D∗(ξ),D∗(ζ)} = −λD([ξ, ζ]), (3.19c)

with λ introduced above in (3.11). This is a generalization to the case of the Lagrangian (3.1) of

the diffeomorphism algebra (2.15) obtained above in 4d BF theory. One can also note that this

diffeomorphism algebra is a “vector field version” of the current Lie algebra obtained above in

(3.10). We have therefore constructed a 4d generalization of the results of [17] for the topological

sector of the theory (3.1).

One can note that these results are of course compatible with the ones obtained in (2.15) in

section 2 for 4d BF theory, since plugging the couplings of table (2.13) into r1 and r2 leads indeed

to r1 + r22/4 = λ, in agreement with the definition (3.11).

The algebra (3.19) features two commuting copies of a diff(S2) algebra. As in the 3d case, this

can be made more explicit with the change of generators D± := (D ± λ−1/2D∗)/2. We can also

take the “flat” limit λ → 0 in order to obtain diff(S2)⋉ vect(S2)ab, which is a 4d generalization of

bms3 in the particular sense that S1 is replaced by S2. We recall that the unusual algebras (3.19)

for λ 6= 0 and λ = 0 have no gravitational interpretation, and have here been constructed as the

algebras of tangential vector fields in a 4d topological theory. The novel feature, which extends the

3d results of [17] to the 4d topological case, is that we have considered the quadratic charges in the

current algebra (3.9) of the topological theory (3.1). This shows that, when considering charges

associated with finite regions in 4d BF theory, one can construct two diffeomorphism charges and

obtain in a canonical manner the algebra (3.19).

15



4 Perspectives

In this paper we have proposed a Sugawara-type construction for a class of 4d TQFTs including 4d

BF theory. This Sugawara construction starts from the current algebra of boundary symmetries,

and then constructs quadratic generators forming a diffeomorphism algebra with vector fields as

the parameters. More precisely, for 4d BF theory with an algebra (2.9), starting from the current

algebra (2.6), we have built the quadratic generators (2.14) and shown that their algebra is (2.15).

In section 3 we have then generalized this construction to the family of 4d TQFTs described by

the Lagrangian (3.1).

This construction extends to 4d the 3d construction presented in [1, 17]. As we have recalled,

in 3d the existence of two independent sets of quadratic charges relies on a duality between the

1-forms e and ω. In the 4d case this duality is not available since the fields A and B of BF theory

have a different form degree. However, we have argued that 4d BF theory is in fact the analogue

of Chern–Simons theory in 3d, and that it is therefore natural to split its fields according to the

decomposition (2.10) of the algebra (2.9). When this split is performed, there is then a notion of

duality within the 1-form and 2-form sectors, which allows to define the general quadratic charge

(A.1).

Surprisingly, as we have shown in the detailed proof of appendix A, for the examples of TQFTs

described here the space of well-defined quadratic generators (which are integrable for tangential

vector fields and which form a closed algebra) is 2-dimensional, just like in the 3d case. Although

the quadratic generators D and D∗ are not functionally independent from the generators J and T
of the current algebra, they parametrize the independent symmetries of the theory. In 3d gravity

in connection and triad variables, the diffeomorphisms are not the only gauge symmetries to which

one can associate non-vanishing codimension-2 charges, since there are also the Lorentz transfor-

mations. Equivalently, one can replace these latter by the other set of (dual) diffeomorphisms,

so as to preserve the size of the symmetry algebra. In 3d these extra quadratic generators have

an interpretation in terms of a duality between the variables (e, ω), and also between the u and

φ directions in e.g. Bondi coordinates. Such an interpretation is not readily available in 4d, but

should be investigated in future work, in particular to understand if the other set of quadratic

charges (on top of the diffeomorphism charges) can be interpreted in terms of gravitational dual

charges [12–16].

We should stress that it is not yet clear which condition should be satisfied by the internal

gauge group in order for extra quadratic charges to exist. It is already clear from the construction

of appendix B that one can exhibit BF theories for which the space of well-defined quadratic

generators is more than 2-dimensional. One could hope for an algebraic criterion relating the

properties of the gauge algebra to the size of the well-defined family of quadratic generators. Going

even further, one can also wonder if the construction can be extended to cubic and higher order

generators, so as to obtain wN algebras [36–38]. This is particularly interesting in light of the recent

discussions on the w1+∞ symmetry present in (self-dual) gravity [39–42]. We should however stress

that already in the case of 3d gravity the extension of the construction [1] beyond second order has

not yet been performed.

For future work, it would be interesting to investigate how the two sets of quadratic diffeomor-
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phism charges relate to the bi-metric interpretation of BF theory [43–45]. It could indeed be the

case that each quadratic diffeomorphism is a diffeomorphism charge for a specific metric sector of

the bi-metric theory.

We also note that the construction presented here relies on a split of the internal gauge algebra,

which essentially amounts to picking a preferred vector. In order to keep the internal covariance

one should keep this vector as a variable and in particular include it in the covariant phase space

analysis, as was done in [32]. Just like in the case of gravity [31, 32], which as we recall can be

obtained from BF theory by imposing simplicity constraints [24–26], it would be interesting to

perform the full covariant phase space analysis and the analysis of asymptotic symmetries for BF

theory, either in terms of the bi-metric formulation or in terms of the bi-vector formulation. This

would help understand the nature of the second set of quadratic charges (and in particular if they

are “dual” charges as in the gravitational case [12–16]). This could also help develop a boundary

fluid interpretation for 4d topological theories such as BF theory [10, 46, 47], and once again enable

to reach gravitational results by imposing the simplicity constraints via the symmetry structure.

Finally, an interesting question is that of how to include central extensions in the algebra of

quadratic charges by performing a higher-dimensional analogue of the twisted Sugawara construc-

tion which exists in 3d gravity (see e.g. appendix C.4 of [17]).
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A Derivation of the dual diffeomorphism charge

In this appendix we give the detailed derivation of the set of quadratic charges built from field-

dependent generators of the current algebra. We require these quadratic charges to be integrable

for tangential vector fields and to form a closed algebra with themselves and with the charges of

the current algebra.

In order to perform this construction, let us consider the most general quadratic field-dependent

combination of the charges (J1,J2,T1,T2). This is given by

/δG(ξ) = /δJ1

(
ξy (aA + cC)

)
+ /δJ2

(
ξy (bC + dA)

)
+ /δT1

(
ξy (eB + gΣ)

)
+ /δT2

(
ξy (fΣ+ hB)

)
,

(A.1)

where the parameters (a, b, c, d, e, f, g, h) are to be determined and the vector field ξ is field-

independent. We now impose the following two requirements on this general quadratic charge:

1) The charges must be integrable when the vector fields ξ are tangent to the codimension-2

surface S.

2) The charges must form a closed algebra (up to possible central extensions) with the gauge

charges (3.8) of the initial current algebra.
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Let us start with the condition of integrability. Using the explicit form of the gauge charges,

we find that /δG(ξ) takes the form

/δG(ξ) = ξy (aA+ cC)(σ1δB + σ2δΣ) + ξy (bC + dA)(σ3δB + σ4δΣ)

+ (σ1δA+ σ3δC) ∧ ξy (eB + gΣ) + (σ2δA+ σ4δC) ∧ ξy (fΣ+ hB) (A.2a)

= δ
(
ξy (aA+ cC) ∧ (σ1B + σ2Σ) + ξy (bC + dA) ∧ (σ3B + σ4Σ)

)

− ξy
(
(aδA + cδC) ∧ (σ1B + σ2Σ) + (bδC + dδA) ∧ (σ3B + σ4Σ)

)

− (σ1a+ σ3d− σ2h− σ1e)δA ∧ ξyB − (σ2a+ σ4d− σ1g − σ2f)δA ∧ ξyΣ

− (σ1c+ σ3b− σ3e− σ4h)δC ∧ ξyB − (σ2c+ σ4b− σ3g − σ4f)δC ∧ ξyΣ. (A.2b)

Equation (A.2a) is the explicit expression for /δG(ξ) in terms of the gauge charges (3.8) of the

current algebra. Equation (A.2b) is then a rewriting of /δG(ξ) which isolates the integrable part

and the part which vanishes when ξ is tangent to S. The last two lines are four independent and

generically non-integrable contributions to /δG(ξ). To obtain (A.2b), we performed a δ integration

by part over the first line of (A.2a), followed by an “integration by parts” on ξy in the non-exact

term arising from the δ integration by part. Note that this procedure is of course not unique.

Instead of using the first line of (A.2a), we could have used the second one. While this choice does

affect the intermediate results, the final result of this appendix is of course independent of it.

Without additional conditions on the fields and/or on the vector field ξ to render the last two

lines of (A.2b) integrable, we need to enforce the following four conditions on the parameters in

order for /δG(ξ) to be integrable:

σ1a+ σ3d− σ2h− σ1e = 0, (A.3a)

σ2a+ σ4d− σ1g − σ2f = 0, (A.3b)

σ1c+ σ3b− σ4h− σ3e = 0, (A.3c)

σ2c+ σ4b− σ3g − σ4f = 0. (A.3d)

We now assume that (a, b, c, d, e, f, g) are such that the constraints (A.3) hold, and we therefore con-

sider the 4-dimensional space (spanned by (a, b, c, d, e, f, g) respecting (A.3)) of integrable charges

of the form

G(ξ) = J1

(
ξy (aA + cC)

)
+ J2

(
ξy (bC + dA)

)
+ T1

(
ξy (eB + gΣ)

)
+ T2

(
ξy (fΣ+ hB)

)
. (A.4)

We now look at the Poisson brackets of these charges with the charges (J1,J2,T1,T2) of the

initial current algebra. We first consider the bracket with T1(φ), which reads

{G(ξ),T1(φ)} = T1
(
[ξy (aA + cC), φ]

)
− σ1

∮

S
ξy (aA + cC) ∧ dφ

+ p3T1
(
[ξy (dA + bC), φ]

)
+ p4T2

(
[ξy (dA + bC), φ]

)
− σ3

∮

S
ξy (dA + bC) ∧ dφ

− σ5

∮

S
ξy (eB + hΣ) ∧ φ

− σ7

∮

S
ξy (gB + fΣ) ∧ φ. (A.5)
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Here the first line corresponds to the Poisson bracket between J1

(
ξy (aA + cC)

)
and T1(φ), the

second between J2

(
ξy (bC+dA)

)
and T1(φ), the third between T1

(
ξy (eB+gΣ)

)
and T1(φ) and the

fourth line between T2
(
ξy (fΣ+hB)

)
and T1(φ). To go further, we now use the explicit expressions

for the charges T1 and T2 to write

{G(ξ),T1(φ)} =

∮

S

(
σ1a+ (p3σ1 + p4σ2)d

)
[A, ξyA] ∧ φ+

(
σ3c+ (p3σ3 + p4σ4)b

)
[C, ξyC] ∧ φ

+

∮

S

(
σ1c+ (p3σ1 + p4σ2)b

)
[A, ξyC] ∧ φ+

(
σ3a+ (p3σ3 + p4σ4)d)

)
[C, ξyA] ∧ φ

− σ1

∮

S

(
ξy (adA+ cdC)

)
∧ φ− σ3

∮

S

(
ξy (ddA+ bdC)

)
∧ φ

− σ5

∮

S

(
ξy (eB + hΣ)

)
∧ φ− σ7

∮

S

(
ξy (gB + fΣ)

)
∧ φ, (A.6)

where we have integrated by parts on dφ and used the relation [P ∧Q]∧R = (−1)(p+q)r[R∧P ]∧Q

in order to isolate φ. Now, noting that the couplings satisfy the relations

p3σ1 + p4σ2 = σ3, p3σ3 + p4σ4 = σ8, (A.7)

one can rewrite the bracket as

{G(ξ),T1(φ)} =

∮

S

(
σ1a+ σ3d

)
[A, ξyA] ∧ φ+

(
σ3c+ σ8b

)
[C, ξyC] ∧ φ

+

∮

S

(
σ1c+ σ3b

)
[A, ξyC] ∧ φ+

(
σ3a+ σ8d)

)
[C, ξyA] ∧ φ

− σ1

∮

S

(
ξy (adA+ cdC)

)
∧ φ− σ3

∮

S

(
ξy (ddA+ bdC)

)
∧ φ

− σ5

∮

S

(
ξy (eB + hΣ)

)
∧ φ− σ7

∮

S

(
ξy (gB + fΣ)

)
∧ φ. (A.8)

Finally, using Cartan’s magic formula, the fact that the vector field ξ is tangential, and massaging

the various terms, the bracket becomes

{G(ξ),T1(φ)} = b1T1(Lξφ) + b2T2(Lξφ)

−
∮

S
ξy
(
(σ1a+ σ3d)F +

1

2
(σ3c+ σ8b)[C ∧C] + (σ1c+ σ3b)dAC

+ (σ5e+ σ7g)B + (σ5h+ σ7f)Σ
)
∧ φ

−
∮

S
(σ1c+ σ3b− σ3a− σ8d)[ξyA,C] ∧ φ, (A.9)

where

b1 =
σ1σ2c+ σ2σ3b− σ1σ4a− σ3σ4d

σ1σ4 − σ2σ3
, b2 =

σ1σ3a+ σ2
3d− σ2

1c− σ1σ3b

σ1σ4 − σ2σ3
. (A.10a)

One can see in (A.9) that the Poisson bracket of G with T1 has two types of contributions. The

terms on the first line are once again charges of the current algebra. The last three lines however are
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neither expressible in terms of gauge charges nor central extensions. Therefore, the only possibility

for the algebra to close is that somehow these terms cancel or vanish on-shell. More precisely, we

would like to find a condition on the parameters such that the bracket takes the form

{G(ξ),T1(φ)} ?
= b1T1(Lξφ) + b2T2(Lξφ)−

∮

S
ξy
(
αEOMB + βp4EOMΣ

)
∧ φ, (A.11)

where (α, β) are arbitrary parameters and where the rescaling by p4 has been introduced for later

convenience. The reason for which only the equations of motion enforced by B and Σ appear here is

because the terms which need to be cancelled in the bracket (A.9) only involve contributions from

these equations of motion. It is clear that the last line in (A.9) never appears in the equations of

motion. We therefore need to impose that this term is vanishing, which amounts to the condition

σ1c+ σ3b = σ3a+ σ8d. (A.12)

Then a comparison with the equations of motion (3.4) tells us that the remaining terms in (A.9)

can be written in the form appearing in (A.11) provided we have the following relations:

ασ1 + βp4σ2 =σ1a+ σ3d, (A.13a)

ασ8 + βp4σ9 =σ3c+ σ8b, (A.13b)

ασ3 + βp4σ4 =σ1c+ σ3b, (A.13c)

ασ5 + βp4σ7 =σ5e+ σ7g, (A.13d)

ασ7 + βp4σ6 =σ5h+ σ7f. (A.13e)

In summary, the coupling therefore have to satisfy the 10 equations (A.3), (A.12), and (A.13). This

system is overdetermined, but luckily some of these equations are redundant. The system can be

solved and the space of solutions is in fact 2-dimensional. It can be easily parametrized by two

parameters (x, y), in terms of which we get

a = x− yp3, (A.14a)

b = x+ yq4, (A.14b)

c = yr1, (A.14c)

d = y, (A.14d)

e = x, (A.14e)

f = x+ y(q4 − p3), (A.14f)

g = yq3, (A.14g)

h = yp4, (A.14h)

provided that the σ’s satisfy

σ5q3 + σ7q4 − σ7p3 − σ6p4 = 0, (A.15)

which is in fact equivalent to the condition (3.7) which needs to hold in order for the theory to be

topological.
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We have therefore found a 2-dimensional space of parameters within (a, b, c, d, e, f, g, h) which

gives integrable charges G(ξ) satisfying a closed algebra with T1(φ). Remarkably, the conditions on

the parameters also guarantee that the other Poisson brackets are closed. If we denote a quadratic

charge which solve the above conditions by Gx,y(ξ), where (x, y) are the solutions of the above

systems, then the Poisson brackets with the gauge charges are

{Gx,y(ξ),T1(φ)} = −xT1(Lξφ)− yp4T2(Lξφ), (A.16a)

{Gx,y(ξ),T2(τ)} = −yq3T1(Lξτ)−
(
x+ y(q4 − p3)

)
T2(Lξτ), (A.16b)

{Gx,y(ξ),J1(α)} = − (x− yp3)J1(Lξα)− yJ2(Lξα), (A.16c)

{Gx,y(ξ),J2(χ)} = −yr1J1(Lξχ)− (x+ yq4)J2(Lξχ). (A.16d)

We note that the brackets with J1 and J2 are closed regardless of the constraint on the parameters.

We can now pick two convenient representatives in the 2-parameter family Gx,y of quadratic

charges. The usual diffeomorphism corresponds to taking (x, y) = (1, 0), for which we find

G1,0(ξ) = D(ξ) = J1(ξyA) + J2(ξyC) + T1(ξyB) + T2(ξyΣ). (A.17)

An obvious other independent quadratic charge is found by taking (x, y) = (0, 1). In this case we

obtain the charge (3.14) mentioned in the main text, i.e.

G0,1(ξ) = C(ξ) = J1

(
ξy (r1C − p3A)

)
+ J2

(
ξy (A+ q4C)

)
+ q3T1(ξyΣ) + T2

(
ξy (p4B + q4Σ− p3Σ)

)
.

(A.18)

These two charges (D, C) form a basis of the integrable quadratic charges for tangent vector fields,

and we have

Gx,y(ξ) = xD(ξ) + yC(ξ). (A.19)

Finally, we want to compute the bracket between these quadratic charges themselves. To do so,

we can either use the definition of the quadratic charges and the elementary brackets of the current

algebra, or alternatively use the action of the quadratic generators on the fields. By construction,

the diffeomorphism acts by the Lie derivative. On the other hand, C acts as

δCξA = Lξ

(
r1C − p3A

)
, (A.20a)

δCξC = Lξ

(
A+ q4C

)
, (A.20b)

δCξB = q3LξΣ, (A.20c)

δCξΣ = Lξ

(
p4B + q4Σ− p3Σ

)
. (A.20d)

Using these expressions in the covariant phase space formula for the Poisson brackets, it can be

shown that the algebra between (D, C) is closed and takes the form

{D(ξ), C(ζ)} = −C([ξ, ζ]), (A.21a)

{D(ξ),D(ζ)} = −D([ξ, ζ]), (A.21b)

{C(ξ), C(ζ)} = (p3 − q4)C([ξ, ζ]) − p4q3D([ξ, ζ]), (A.21c)

which can further be rewritten as (3.19) upon redefining the new generator (3.18).
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B Self-dual basis and additional quadratic charges

In this appendix, we present another derivation of the two sets of quadratic charges in 4d BF

theory. While this derivation is less general than the one presented in the main text, in the sense

that it requires an additional property on the underlying algebra, it allows to understand possible

generalizations to the construction of the admissible quadratic charges. We illustrate this at the

end of the appendix on the example of BF theory with gauge algebra g = su(2) ⊕ su(2)⊕ su(2).

In the following we focus on the case of g = so(4) (the generalization to so(3, 1) or so(2, 2) can

easily be done). Recall that the algebra then has the form (2.9)

[Ji, Pj ] = ǫij
kPk, [Ji, Jj ] = ǫij

kJk, [Pi, Pj ] = λǫij
kJk, (B.1)

where λ is never vanishing. This is the Cartan decomposition. These exists however another

decomposition of these algebra, the so-called self-dual decomposition, which allows to have another

viewpoint on the existence of multiple quadratic charges. The self-dual basis is induced by the

following change of basis4

σ1
i = Ji +

√
λPi, σ2

i = Ji −
√
λPi, (B.2)

such that the brackets become

[σa
i , σ

b
j ] = 2δabǫij

kσa
k . (B.3)

The self-dual basis therefore splits the algebra into two commuting subalgebras. For example, in

the case of so(4), each subalgebra is isomorphic to su(2). Note that this construction only works

if λ is non-vanishing, which is why we are imposing this condition. The fields A and B can be

decomposed in either of the above basis, and we have

A = AiJi + CiPi = Ai
1σ

1
i +Ai

2σ
2
i , Ai

1 =
1

2
(Ai + Ci), Ai

2 =
1

2
(Ai − Ci) , (B.4a)

B = BiJi +ΣiPi = Bi
1σ

1
i +Bi

2σ
2
i , Bi

1 =
1

2
(Bi +Σi), Bi

2 =
1

2
(Bi − Σi). (B.4b)

The main advantage of the self-dual basis is that it allows to diagonalize the Killing forms of the

algebra




〈Pi, Jj〉 = 0

〈Pi, Pj〉 = ληij
〈Ji, Jj〉 = ηi,j




(
〈Pi, Jj〉 = ηij

〈Pi, Pj〉 = 0 = 〈Ji, Jj〉

)





−→





(
〈σ1

i , σ
2
j 〉 = 0

〈σ1
i , σ

1
j 〉 = 2ηij = 〈σ2

i , σ
2
j 〉

)

(
〈σ1

i , σ
2
j 〉 = 0

〈σ1
i , σ

1
j 〉 = 2

√
λ ηij = −〈σ2

i , σ
2
j 〉

) (B.5)

4The notation 1, 2 instead of the standard ± will become clearer at the end of this appendix, when we consider

the case with more subalgebras in g.
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Similarly to what was done in equation (2.12), we can rewrite the 4d BF Lagrangian (2.1) in the

self-dual basis. We then get the two Lagrangians

L+ = 2(L1 + L2), (B.6a)

L− =
2√
λ
(L1 − L2), (B.6b)

which are built from a pair of uncoupled BF Lagrangians

Li = Bi ∧ Fi − κBi ∧Bi. (B.7)

Now, the whole construction of section 2.1 can be applied to each Li independently of the other

one. For each Li we have two usual gauge symmetries, associated to two charges

/δJi(αi) =

∮

S
αiδBi, /δTi(φi) =

∮

S
δAi ∧ φi, (B.8)

and a diffeomorphism symmetry which can be realized as a field-dependent combination of these

gauge transformations. For a tangential vector field this diffeomorphism leads to the integrable

charge

Di(ξi) = Ji(ξiyAi) + Ti(ξiyBi). (B.9)

From the viewpoint of the initial BF Lagrangian, the algebra of quadratic charges is then naturally

spanned by D1,2, which form the algebra

{D1(ξ),D1(ζ)} = −D1([ξ, ζ]), (B.10a)

{D2(ξ),D2(ζ)} = −D2([ξ, ζ]), (B.10b)

{D1(ξ),D2(ζ)} = 0, (B.10c)

corresponding to two commuting copies of diff(S2). In order to recover the form (2.15) of the

algebra, we need to go back to the Cartan basis by inverting the change of basis (B.2). This is

easily done by considering the combinations

D(ξ) = D1(ξ) +
1√
λ
D2(ξ), D∗(ξ) = D1(ξ)−

1√
λ
D2(ξ). (B.11)

It is then immediate to generalize this construction. Indeed, the main point was that we were

able to rewrite the BF Lagrangian in terms of two independent Lagrangians (which are also of the

BF type in the present case). However, it is evident that there is no reason to limit the construction

to a rewriting in terms of only two independent Lagrangians. For example, let us consider 4d BF

with gauge group given by g = su(2)⊕ su(2)⊕ su(2). The total connection A and the 2-form B can

then be split into three components

A = Ai
1σ

1
i +Ai

2σ
2
i +Ai

3σ
3
i , B = Bi

1σ
1
i +Bi

2σ
2
i +Bi

3σ
3
i , (B.12)

where each σa for a = 1, 2, 3 generates su(2) and satisfies

[σa
i , σ

b
j ] = 2δabǫij

kσa
k . (B.13)
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Using this basis, the 4d BF Lagrangian for g = su(2) ⊕ su(2) ⊕ su(2) can be rewritten into three

independent Lagrangians Li for su(2) as we did previously. Each Lagrangian has its corresponding

diffeomorphism charge, such that the full theory is equipped with three generators for the quadratic

charges. Explicitly, the Lagrangian (2.1) depends, as usual, on the choice of a Killing form. In this

particular case, three independent Killing forms exist, which are given by

〈σa
i , σ

b
j〉+,+ = 0 , 〈σ1

i , σ
1
j 〉+,+ = 〈σ2

i , σ
2
j 〉+,+ = 〈σ3

i , σ
3
j 〉+,+ = ηij , (B.14a)

〈σa
i , σ

b
j〉−,+ = 0 , 〈σ1

i , σ
1
j 〉−,+ = 〈σ2

i , σ
2
j 〉−,+ = ηij = −〈σ3

i , σ
3
j 〉−,+ , (B.14b)

〈σa
i , σ

b
j〉+,− = 0 , 〈σ1

i , σ
1
j 〉+,− = 〈σ3

i , σ
3
j 〉+,− = ηij = −〈σ2

i , σ
2
j 〉+,− . (B.14c)

Note that one can naturally construct a Killing form 〈· , ·〉−,− where both the coupling for σ2
i and

σ3
i have a −1 factor in terms of the above pairings. In terms of these (four) choices of pairings, the

action (2.1) takes the form

Lǫ1,ǫ2 = 〈B ∧ F〉ǫ1,ǫ2 − α〈B ∧ B〉ǫ1,ǫ2 = L1 + ǫ1L2 + ǫ2L3, ǫi = ±1, i = 1, 2. (B.15)

As explained previously, each Lagrangian Li then has its own diffeomorphism charge Di, i = 1, 2, 3,

with the standard Poisson algebra for the diffeomorphisms. Since we have now three charges, the

space spanned by the diffeomorphism charges is now three-dimensional from the viewpoint of the

full theory. As above, instead of considering the basis Di, we can consider the basis given in terms

of the natural diffeomorphism associated to Lǫ1,ǫ2 , which is

Dǫ1,ǫ2(ξ) = D1(ξ) + ǫ1D2(ξ) + ǫ2D3(ξ). (B.16)

Indeed, it is immediate to check that each diffeomorphism charge Dǫ1,ǫ2 is the natural one associated

to the Lagrangian Lǫ1,ǫ2 , while the other diffeomorphisms are the “dual” ones. The interpretation

of these diffeomorphisms is a generalization of the previous case. In the sector 1, we always have a

diffeomorphism along ξ, but in the sectors 2 and 3 we have diffeomorphisms directions ǫ1ξ and ǫ2ξ

respectively. Indeed, looking at how Dǫ1,ǫ2 acts on the fields we find

δD
ǫ1,ǫ2

ξ A1 = LξA1, δD
ǫ1,ǫ2

ξ A2 = Lǫ1ξA2, δD
ǫ1,ǫ2

ξ A3 = Lǫ2ξA3, (B.17a)

δD
ǫ1,ǫ2

ξ B1 = LξB1, δD
ǫ1,ǫ2

ξ B2 = Lǫ1ξB2, δD
ǫ1,ǫ2

ξ B3 = Lǫ2ξB3. (B.17b)

These diffeomorphisms form of course a closed algebra, given by

{Dǫ1,ǫ2(ξ),Dǫ3,ǫ4(ζ)} = −Dǫ1ǫ3,ǫ2ǫ4([ξ, ζ]), ǫi = ±1. (B.18)

As we have shown in the main text, the existence of a self-dual basis is not necessary for the

construction to work. It therefore begs the question of which conditions on the algebra are necessary

for the existence of additional quadratic charges, and how many of them can be constructed. We

are leaving this interesting question for future work.
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