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ABSTRACT. Many classical examples of models of self-organized dynamics, including the Cucker-Smale,
Motsch-Tadmor, multi-species, and several others, include an alignment force that is based upon density-
weighted averaging protocol. Those protocols can be viewed as special cases of ‘environmental averaging’. In
this paper we formalize this concept and introduce a unified framework for systematic analysis of alignment
models.

A series of studies are presented including the mean-field limit in deterministic and stochastic settings,
hydrodynamic limits in the monokinetic and Maxwellian regimes, hypocoercivity and global relaxation for
dissipative kinetic models, several general alignment results based on chain connectivity and spectral gap
analysis. These studies cover many of the known results and reveal new ones, which include asymptotic
alignment criteria based on connectivity conditions, new estimates on the spectral gap of the alignment force
that do not rely on the upper bound of the macroscopic density, uniform gain of positivity for solutions
of the Fokker-Planck-Alignment model based on smooth environmental averaging. As a consequence, we
establish unconditional relaxation result for global solutions to the Fokker-Planck-Alignment model, which
presents a substantial improvement over previously known perturbative results.
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1. INTRODUCTION

Many mathematical models of swarming behavior reflect the tendency of every agent to align its velocity
to an averaged direction of motion of the crowd around. Although the rules that describe the average may not
be given explicitly, most adhere to a few basic principles. First, agents react more to the closest neighbors,
and second, the density of the swarm plays constructive role in defining a particular communication protocol.
Such rules, in a broad sense, give rise to what is called environmental averaging.

Early computer simulations that incorporated an alignment mechanism along with other interaction
forces produced first realistic visualizations of flocks and schools, see [A0k82, Rey87]. A wide variety of
applications ranging from swarming behavior of animals to technological implementations, see these sources
[ABFT19, Axe97, BNO5, Jac08, EK01, VZ12, MT14, MP18, Shv21, Tad21] and references therein, has ignited
mathematical inquiries into theoretical foundation of alignment dynamics.

A prototypical example of a static averaging model arises in opinion dynamics, where each agent labeled
by index i € [1, N] has a set of other agents N; to which it is connected. The opinion vector p; aligns to the
opinions of connected agents via

(1) Pi=AY a;(P; —p)+Fi Y ayt)=1.
JEN; J
Here, F; incorporate all other forces such as adherence to convictions or random noise. If the graph of players
is connected then the system naturally reaches the total consensus p; — p. Forces may lead to non-trivial
limiting states, such as Nash equilibria, see [MT14, DeG74, O1f06, LRS21].
In swarming dynamics the pioneering work of Vicsek el al [VCBJT95] introduced a discrete model of
self-propelled particles with local interactions

Zj:|wj—wi\<ro v

vi(k+1) = ! + o0&,
(2) Zj:|wj—wi\<ro Vi
xi(k+1) =x;(k) + vi(k +1).

where §,, are random variables and o > 0 is the noise intensity. The Vicsek averaging is spatially local and
includes normalization to reflect the tendency of agents to adhere to a fixed characteristic speed. The model
produces a number of emergent phenomena developing into global patterns such as mills or periodically
rotating chains. Solutions undergo phase transitions from ordered to disordered states depending on the
noise level, see [VZ12] for discussion.

A growing number of studies on flocking behavior is based on the Cucker-Smale system introduced in
[CS0T7a, CSO7h],

T = Vy,

(3) (zi,v)) ER" xR™, i=1,...,N.

N
b=y myb(x; —x;)(v; — v),
=1
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Here, ¢ is a smooth radially symmetric and decreasing kernel, originally ¢(r) = W, where A\, 8 > 0.
The model provides a well-defined mathematical framework which admits justifiable kinetic and macroscopic
descriptions, see [HT08, HL09, CFRT10, BCnC11, FK19, Shv21, TT14]. It appeared, in part, in response
to the need for a model whose long time behavior is not associated with perpetual connectivity assumptions
on the flock as in prior studies. In fact, a simple criterion for alignment can be stated solely based on rate
of decay of the kernel.

Theorem 1.1 ([CS07a, CS07b]). If B < 1, all solutions to (3) align exponentially fast to the mean velocity

- N .
V= S ijl m;v;, while flock remains bounded

max |v; — 7| < Ce™®, max |z; — ;| < D,
max : N

where C, 8, D depend only on the initial condition and parameters of the kernel. If B > 1 there are solutions
that do not align.

Since its inception the Cucker-Smale system has seen numerous applications. A remarkable implementa-
tion to satellite navigation was proposed in [PEG09], where value of 8 = 0.4 was found to be most optimal for
the purposes of the mission. Adaptations to control problems are addressed in [BFK15, CFPT15, CKPP19].
Interacting agents immersed in an incompressible fluid lead to hybrid systems with Cucker-Smale com-
ponent modeling the alignment force, [HKK14]. Multi-scale and multi-species flocks have been studied
in [HT21, ST21]. An important modification of the system with thermodynamic features was proposed
in [HR17], see also [ABFT19]. Flocking analysis can be extended to nonlinear alignment protocols as
well [Tad23, JJ15, HHK10, Marl8]. A comprehensive review of various other features of the Cucker-
Smale dynamics based on hierarchy, angle of vision, and emergence of leaders can be found in [CFTV10].
In the context of alignment dynamics which includes potential attraction/repulsion or Rayleigh frictions
forces, the emergent behavior has not yet been fully understood, although it is clear from these studies
[CDMT07, ST20a, ST19, ST21, LRS21], that the effect of such forces on collective outcomes could be dra-
matic. In particular, the quadratic confinement potential drives the system to an aggregated harmonic
oscillator, [ST20a]. Some general N-dependent results in this direction can be achieved for the 3Zone model
of Reynolds [Rey87] with the use of the corrector method introduced in [DS19], see [Shv21]. Lastly, we
mention that the alignment criterion itself stated in Theorem 1.1 does not require the kernel to have any
explicit form and has seen numerous extensions to include general fat-tail kernels and kernels with degenerate
communication in short range, see [DS19, HL09] and Section 4.1 below.

It is insightful to rewrite the Cucker-Smale system as follows

T; = v, x; € Q, )
(4) b =si(lo], —v:), v ERT i1=1,...,N.
where 2 is an environment (for most of our discussion either T™ or R™), [v], is an averaging protocol of the
ith agent, v = (v1,...,vn), and s; is a specific communication strength. Here,

Yoy mib (s — 35)v;
Yoomy mid(wi — )

This form highlights two separate structural components of an alignment model — the averaging and commu-
nication strength. Varying these components allows to adapt the system to a particular modeling scenario.
For example, it is argued in [MT11, MT14] that if a flock consists of clusters with unbalanced sizes it is more
realistic to incorporate a static strength parameter s; = A > 0, leading to what is called the Motsch-Tadmor
model

(6) i = A[v]; — vi).

Analysis of this model presents many challenges related to the lack of symmetry and momentum conservation.
However, the analogue of Theorem 1.1 still holds, [MT14]. A modification that restores the symmetry was
proposed in [Shv21],

N
(5) si= ) myd(wi— ), )=

S M€ — x5)v; d

(7) S S s ey
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This particular averaging appears instrumental in several other studies of flocking such as hydrodynamic
limits [Shv21], relaxation and hypocoercivity in kinetic dynamics [Shv22], see also Sections 8 and 9. Its
continuous variant emerged in the analysis of non-homogeneous turbulence in [LS16].

Another interesting example of a non-Galilean invariant environmental averaging is given by a class of
segregation models. Let {g;}%; be a smooth partition of unity Zle g1 = 1 subordinated to an open cover
UE Q= Q, where 2 is a compact environment. Let

Yooy mivigi(x;)
Sl myg(x;)
Here, the agents communicate predominantly in their own communities and exchange of information is
facilitated through the borders. Consensus can be reached provided the border is sufficiently populated at
all times, see Section 4 for rigorous formulation. Many more examples are discussed in Section 2.
In the large crowd limit as N — oo the components s;, []; take macroscopic forms, which makes them suit-

able for statistical description of the alignment systems. For example, denoting f, = f * ¢ for a distribution
f, we can see that the Cucker-Smale model corresponds to

L
(8) si=Ll Pl =) glw)
=1

SP:p¢7 [u]p: Do

This averaging rule is also known as the Favre filtration, [Fav83], which was introduced in the context of
numerical simulations of turbulent flow. In the same manner, the averaging of (7) is given by the over-
mollification of the Favre filtration

(9) fu], = (%L

and the averaging of (8) becomes

Jo ugipdy
(10) [u], (z) = ) gi(a)~F——.
? ; Joaipdy
All the operations above make mathematical sense for any probability measure p € P(Q2) and any bounded
field u € L (p). In particular, we can go back to the discrete analogues by applying averaging on empirical
pairs

N N
N E N E
p = mi(smia Uu = Ui]lwiu
i=1 i=1

[v], := [uN]pN (z5), si:=s,v(25).
It is therefore more inclusive to define averaging rules via macroscopic formulas.
Physical features of the system (4) are intimately connected to analytical properties of the pair (s,, [-] p).
In most situations those properties are more naturally expressed in terms of the strength measure given by
dk, =s,dp. Thus, the preservation of xk-momentum

/[u]p dﬂp:/udﬂp,
Q Q

implies conservation of the physical hydrodynamic momentum, % fQ udp = 0. The symmetry

/QU-[u]p dfs'p:/ﬂ[v]p-udﬁp

implies a natural energy dissipation law

(12 G [ ante) = =3 [ ouepluta) — ulw)P o) doto).

where ¢, is a communication kernel representing a given averaging, see Section 3.2. The long time behavior
analysis becomes connected to coercivity and positive-definiteness of the averaging, see Section 4.

In order to get more insight into such connections, it is useful to disassociate the averaging/strength pair
(Kp, [1] p) from any particular differential law they are involved in, and take a ‘birds eye’ look on its kinematic

(11)
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properties. For this purpose, we will delegate the concept of an environmental averaging model to a family
of pairs

M =A{(rp,[],) : p € P},
parametrized by probability measures p € P (), and satisfying a list of continuity assumptions stated below
in Section 2. Through the study of such models it appears possible to build a unifying framework for many
flocking and regularity results that have appeared scattered before, and to find substantially new ones that,

otherwise, are obscured by specificity of a particular model. This will be the main objective of the present
work. So, let us give a brief overview of the studies undertaken here.

(I) First, we develop basic functional analysis of the averaging models. Here we focus primarily on those
properties that have direct physical interpretation in terms of dynamics of a particular system they are
involved in. Those include representability (existence of a communication kernel), conservation, symmetry,
and most importantly a quantitative version of positive definiteness — ball positivity, see Section 3. We
also describe regularity conditions on the pairs s, [u] , hecessary for developing a meaningful well-posedness
theory for kinetic models done in Sections 5 and 7.

(IT) Next we address the classical flocking result of Cucker and Smale for general environmental averaging
models. We choose the kinetic description in the context of measure-valued solutions:

(13) NWf+v-Vuf =V (sp(v—[u],)f)

Here p and up are the macroscopic density and momentum, respectively. It is the most inclusive framework
since it encapsulates the microscopic system (4) if applied to empirical measures f = Zfil m;idz,; ® 0y, and
the pressureless hydrodynamic system if applied to mono-kinetic solutions f = p(z,t)do(v — u(z,t)), see
(107). For global communication kernels the analogue of the original Cucker-Smale alignment criterion is
stated in Theorem 4.2, see also Carrillo et al [CFRT10] for the first result of this kind in kinetic formulation.

In the case of local communication, which is our primary focus, all alignment criteria can be sorted into
two types — ones that rely on a chain-connectivity of the flock, and ones that make use of the spectral gap
condition. The former approach is dynamic. It is based on the idea that connected misaligned components
of the flock lose energy through the law (12) until full alignment is achieved. For the classical Cucker-Smale
and topological singular models this was addressed in [ST20b, MPT19]. Here we present a new result stated
in Theorem 4.5 which gives a sufficient condition of ball-thickness, see (73): as long as the flock is connected
at a local communication scale r of the kernel, and p,.(supp p) = # in the open space or p,.(2) = tl% on
the torus, the flock aligns. No control on the upper bound of the density is necessary.

The spectral gap approach is kinematic in nature. It relies on finding efficient bounds on the spectral
gap of the averaging operator set in a proper function space. In fact, spectral gaps are relevant to flocking
behavior in several contexts including relaxation problem for the Fokker-Planck-Alignment model. So, it
will be our primary focus in Section 4.4. A criterion proved in [Tad21] states that a symmetric model aligns
provided [, A(t) dt = oo, where

(u, ﬁpu)p

14 = inf ———F = —
( ) /\ uelilg(p) (U,U)p ’ ‘CPU‘ sp(u [u]p)a

and (u,v), = fQ w-vdp. In Proposition 4.9 we present an extension of this result to the non-symmetric case.

For the Cucker-Smale model the bound X\ 2 % was proved in the same work [Tad21], see also Remark 4.11.
This result is consistent with the chain-connectivity criterion stated above provided p; remains bounded.
For systems with a singular kernel a similar result was established in [ST20b]. With a view towards the
relaxation problem, where reliance on p is prohibitive, it is imperative to find bounds on the spectral gap
independent of p. .

To this end we propose a somewhat different methodology — one that focuses directly on the averaging
[], in the framework of ,-weighted spaces:

(15) (u, [u],)n, < (1= ) ulZa(y,):

We introduce the low energy method tailored to finding estimates on € solely in terms of p_. The method
applies to a special, but quite broad class of so called ball-positive models, see Proposition 4.16. These
include the segregation (8), the overmollified Motsch-Tadmor variant (7), and most notably the classical
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Cucker-Smale model (5) provided the defining kernel is Bochner-positive: ¢ = 1 x ¢ for some ¢ > 0. In
particular, if applied to the Cucker-Smale model the method gives the following bound:

(16) £ > ().

(ITI) The next study is dedicated to justifying the kinetic description through a mean-filed limit in both
deterministic and stochastic contexts. As the number of agents grows N — oo, the microscopic system
settles in the weak sense to a solution to the kinetic Viasov-Alignment equation (13)

N
pN =Y " mids, ® 6, — f.

i=1
So far the limit has been rigorously justified for the Cucker-Smale and (7)-models, [HT08, HL09, Shv21]. In
Section 5 we establish a much broader result which covers models with certain uniform regularity properties,
see Definition 3.17, and is insensitive to the symmetry of a model. It applies in particular, to the Motsch-
Tadmor and other similar models.

When system (4) is supplemented with density-weighted stochastic forces

dIi = U; dt,
dv; = Si([’U]i — 'Ui) dt + 20s; dB;,

where B;’s are independent Brownian motions in R™, the limit ‘in law’ settles to a solution of the Fokker-
Planck-Alignment equation

(18) Of +v-Vaf = 0800 f + V- (sp(v = [u] ) f)-

For the additive noise and general convolution-type models the result was proved in [BCnC11], while the
present case is treated in Section 6. The non-homogeneous diffusion requires a separate consideration, and
is introduced for two reasons. First, it makes physical sense to put stochasticity where communication
actually happens and is proportional to its strength. Random deviations get stronger with more active
communication, so s; acts as a thermalization parameter. Second, it ensures that the kinetic model (18) has
a natural Maxwellian equilibrium. This will be instrumental in the study of relaxation.

(17) i=1,...,N.

geeey

(IV) Reading off the evolution of macroscopic quantities from (13) we obtain the hydrodynamic Euler-
alignment system (EAS)

Or(pu) + V- (pu@u) + V- R = ([u], — u) iy,
where R is the Reynolds stress given by

(19)

R= (v—u)® (v—u)fdv.
R’n
Here, we encounter the classical closure problem. One can achieve a specific form of R by introducing various
scaling regimes. This has been addressed in two situations. The monokinetic regime f — p(z, t)do (v —u(z,t))
results in the pressureless EAS, R = 0, and the analysis of this limit for the classical Cucker-Smale model
goes back to [MV08, KV15, FK19] see also [Shv21]. The convergence was established quantitatively in
Wasserstein-1 metric. In Section 9.1 we produce a general result and upgrade the convergence to Wasserstein-
2 under mild continuity assumptions on M. It applies, in particular, to all the models listed here, including
non-symmetric ones such as M.

By incorporating a strong penalization force of Fokker-Planck type one can achieve another regime where f
settles to a Maxwellian. This results in the Euler-alignment system with isothermal pressure tensor R = pId.
The Cucker-Smale model was analyzed in [KMT13, KMT14, KMT15], and (7) was analyzed in [Shv22], see
also [CK23] for a new development in the mildly singular case. Section 9.2 presents a general result.

We note that kinetic closure is not the only way to model flocking on the macroscopic level. A general
class of systems with entropic pressure introduced in [Tad23], which includes kinetic ones as a particular
example, is amenable to flocking analysis as well.

(V) The most comprehensive study in this present work is related to well-posedness and relaxation of the
Fokker-Planck-Alignment model (18) on the periodic environment € = T™. The motivation for this study is
rooted in the original question of emergence — formation of collective outcome from purely local interactions.
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On the periodic domain, if the communication kernel ¢ has a short reach, supp ¢ C [0, r¢], then there exists
a family of unaligned solutions where agents rotate along parallel geodesics with various velocities (or even
perpendicular geodesics with mutually rational velocities). These are called locked states. Such solutions
form a measure-zero set in the ensemble of initial data (x1,...,2n,v1,...,vn). No deterministic approach
to establishing alignment based on generic data that avoids locked states has been explored yet, except for
1D case [DS19]. It is natural, however, to look into this problem in stochastic settings of (17), where locked
states are being disrupted instantly. One can expect a collective outcome in two limiting steps: first t — oo,
then ¢ — 0. For large crowd distributions governed by (18) this can be viewed as a relaxation problem: on
the first step we obtain convergence to Maxwellian

1 _lw—a)?

Q|@ro) 2

which in turn aggregates on the monokinetic state dg(v — @) ® dz as o — 0. The latter represents a perfectly
aligned configuration.

This program has seen some success in the past. The relaxation itself for the linear problem is a classical
and well-understood subject, see [Vil09] and references therein. With the nonlinear alignment force the
works [DFT10, Chol6] establish relaxation for perturbative solutions near equilibrium in the case of the
Cucker-Smale and purely local models, respectively. The first global result was proved in [Shv22] in the
context of the (7)-model, where linear technique was adapted to the nonlinear problem enabled by special
cancelations in the alignment forcing.

In Section 8 we extend this technique further and prove a much more general result that pertains to a wide
variety of models. Proposition 8.1 lists a set of functional requirement on a given solution to imply exponential
relaxation. This applies in particular to perturbative solutions, but the main application manifests itself in
global relaxation for ball-positive models. It comes in conjunction with the detailed well-posedness theory
for the Fokker-Planck-Alignment equations developed in Section 7. We prove that most models M with
good regularity properties facilitate the classical kinetic diffusion effect — spread of positivity of solutions
expressed by the instant gain of Gaussian tails

(21) f(t 2, v) = be v

(20) f — Ho,a =

‘ 2

The spread of positivity is a well-known result observed in many kinetic equations, see [Car33, AZ21,
GIMV19, HST20, Mou05, IMS20] and references therein. The novel additional aspect of our result stated
in Proposition 7.3 is that the constants a,b depend only on the entropy and L*°-bound on the drift s, [u] o
For many models, including the Cucker-Smale, the latter two can be controlled by initial condition only.
Consequently, for those models we obtain uniform control over the lower bound on the density, and hence,
the spectral gap through (16). In such cases relaxation result is unconditional. Let us summarize the result
specifically for the original Cucker-Smale model.

Theorem 1.2. Any classical solution f to (18) based on the Cucker-Smale model with Bochner-positive
kernel ¢ relazes exponentially fast to the global Mazwellian (20).

Theorem 8.8 contains the full list of models to which a similar result applies. We note again that previously
this result was established only in perturbative regime by Duan et al [DFT10]. Concerning other models, in
particular non-symmetric models such as Motsch-Tadmor, we obtain relaxation near equilibirum in Fisher
information sense. The complete statement is given in Theorem 8.7.

Finally, let us comment on what is not included in our study and what would be highly desirable to
address in the near future. First, we include no forces, focusing mainly on the core alignment mechanism.
Potential forces, such as confinement, attraction/repulsion etc, have a great impact on collective outcomes
and play major role in applications, [ST20a, ST19, CCP17, CFTV10, CDM"07]. Second, we treat only
linear couplings in the alignment force. Several recent studies [Tad23, JJ15, HHK10, Marl8] highlight the
importance of non-linear couplings as well. In our general framework nonlinearity I" can be incorporated by
considering the system

’L.)l' = S; [F(’U — ’Ui)]i .
Developing regularity and relaxation theory, say, for the kinetic counterpart would be crucial to under-
standing more intricate nonlinear phenomena of self-organization. Third, our framework does not pre-
sume communication to be singular, either mildly or strongly. Such models were introduced in [Pesl5,
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ST17a, ST17b, ST18, DKRT18, ST20b] to analyze the effects of enhanced local communication and its
role in emergent dynamics, see the survey [MP18]. Finally, we leave the analysis of hydrodynamic mod-
els in our general framework to future research as it shifts the focus far from the thread of this work, see
[TT14, CCTTI16, Shv2l, LS19a, MT14, HT17] and the literature therein. However, we will share a new
prospective on modeling macroscopic alignment in Section 9.3.

2. BASIC CONCEPT AND EXAMPLES

Let © denote an n-dimensional environment. We mostly focus on the cases when 2 is either the open
space R™, periodic domain T™, a finite set of points, or Cartesian products of the above. Denote by P ()
the set of probability measures on Q2. An environmental averaging model is a family of pairs

M ={(kp,[],) : p € P(Q)}
satisfying the following functional requirements:

(evl) For every p € P(f2), k, is a finite positive measure on 2. We call it communication strength.
(ev2) [], is a linear bounded operator on the weighted space L3(Q, dk,) = L?(k,).
(ev3) [], is a linear bounded operator on L>(k,), with the properties (x,-a.e.)

(22) [u]p 2 0 for all u 2 0, and []lg]p = ]lQ.

Here and throughout 14 denotes the characteristic function of a set A. If u = (u1,...,u,) i a vector
field (where m may be unrelated to the dimension n) we assume that the operator [u], is acting on each
coordinate:

(23) [u], = ([wa], - [um])-

Although the averaging models are generally assumed to be defined over all densities p € P(Q2), to fulfill
further regularity assumptions on the averaging operation it may be necessary to restrict the probabilities p
to a narrower admissible class D C P. The most encountered examples include “thick” flocks, see Section 3.7.

Most natural models are material - a property of adherence to the support of the flock. Namely, we say
that the model M is material if

(ev4) there exists bounded family of non-negative functions s, € L3°(Q) with sup,cpq) [[8pllL=(0) < S
such that k, = ps,. We also call s, a (specific) strength function.
(evb) [u], =0, provided u = 0 p-almost everywhere.
On the microscopic level one considers discretely distributed density and velocity fields associated to a
set of N agents {z;} Y,
N N
(24) = Zmiémi, u = Zvillzi.
i=1 i=1
Assuming that the model is material we can unambiguously compute the values of the average and strength
at the agents’ locations

(25) [v], := [UN} o (w5), si:=s,n(2).

The agent-based system (4) is stated precisely in terms of these discrete components.

2.1. Examples. Let us list several classical examples, and some new ones, and show how they fit into the
definition of environmental averaging.

Ezxample 2.1. The most obvious example is the global averaging

(Mglob) Sp = 1, [U]p = / updx
Q

and the system (4) in this case expresses alignment with all-to-all communication
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The extreme opposite is the pure identity model
(M) sp =1, [“]p = U Lsupp p-

The agent-based version obviously leads to a stalled system. However, the utility of this model in the kinetic
formulation will present itself in the study of hydrodynamic limits, see Section 9.

Example 2.2. The classical Cucker-Smale system has been discussed in detail in the introduction. Let us
recall that in this case the pair is given by

(up)e

Pe
Here and throughout we denote for short fy = f * ¢, and ¢ is assumed to be infinitely smooth. In this case
the averaging [u] , = ur is also known as the Favre filtration used in large eddy simulations of compressible
turbulence, [Fav83]. Its remarkable property comes from the fact that if p satisfies the continuity equation

(Mecs) Sp=pg,  [ul, =

then the filtered density py4 satisfies the continuity equation relative to the Favre-filtered velocity field
Opy +V - (urpg) = 0.

An important implication of this equation will be discussed in Section 9.3.
Properties (evl) and (ev3) are obvious here. To verify (ev2) we notice that k, = ppg. So using that for
any p € P(Q2)

(26) [(up)ol? < (lul*p)pps,
we obtain

dp
| [ul, Izdﬂp:/ |(up)yl>— </(IUI2p)¢dp:/ ul*py dp = |lullF2(, -
Q Q Po Q Q

We can see that the Mcg-model is contractive. The contractivity generally holds even in LP-spaces for any
conservative model, see Lemma 3.9.

Fzxample 2.3. If we set s, = 1, the example above turns into another well-known model, so called Motsch-
Tadmor model [MT11, MT14]:

(M) sp =1, [u], = M.
P

The model was introduced to mediate some issues arising in application of the Cucker-Smale averaging to
multi-scale flocks, where a large and distant sub-flock overpowers the dynamics of a smaller sub-flock, see
also [ST21, Shv21] for more discussion.

The only non-trivial property (ev2) holds for the admissible class of thick densities D = {p € P : inf py >
0} under no assumption on the kernel ¢. However if the kernel ¢ is local and compactly supported, i.e.

(27) Ajyj<r, < () < Cligcp,, Ro > ro,

(the latter holds automatically on compact €2), then the L?-boundedness holds for any p € P(£) uniformly
over P(Q2). Indeed, using (26),

dp p
U 2dp§/ ul?p ——/u2<—) dp.
/Q [u], | [l = [ (7).

According to [KMT13, Lemma 5.2], and see also the Appendix, under the condition (27) we have

(28) (£)¢<a

where C' depends only on the constants the appear in (27) and dimension. This implies the desired.
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Example 2.4. We can interpolate between Mg and My and consider a general power law for the specific
strength function:

_ B _
(Mps) So=pp [, =2 B0,

All these models satisfy the requirements (evl) and (ev3) obviously, and (ev2) follows as above provided
we have the following generalization of (28), which is proved in the Appendix: under (27)

(29) (1’1[3) <Cph, Y0<B<LL,
Py o

where C' depends only on the constants the appear in (27), 3, and the dimension.

Ezxample 2.5. More suitable for modeling local communication, a symmetric version of the Motsch-Tadmor
model can be defined by applying extra convolution to the Favre filtration:

(M) sp=1,  [u],= (M>¢.

Po

This gives rise to the discrete averaging given by (7). Here we assume as always that ¢ € C* and it is a
mollifier: ¢ € L} (Q) with [ ¢dz = 1.

The model was introduced in [Shv22, Shv21] and played various roles. It was proved to define a globally
hypocoercive kinetic dynamics, and was also used to extend Figalli and Kang’s hydrodynamic limit in the
monokinetic regime [FK19] to flocks with compact support, see also Section 9.

More versions of M, can be obtained by looking into different strengths by analogy with the M g-model,
or by replacing p with a more general baratropic pressure:

(up)g
(Moy) w=ple = (M22)
20 &
where p > 0 is a function of p. Here, the support of the strength function may not coincide with p, or s,
may be unbounded, which makes it a non-material model. Also the class of admissible densities D may be
restricted depending on the pressure law p(p). For example, in the ideal gas case p = p? we naturally assume
D =L"(Q).
One interesting case is obtained when p = 1, resulting in

(M) kp=1,  [u], = ugsp.

In this case the average and the strength do not depend on the density at all, and consequently define a
non-material model.

Ezample 2.6 (Topological models). A new way of modeling interactions which implement topological, rather
than Euclidean measure of distance, has long been advocated by many empirical studies [SB14, NMG14,
BCCT08, CCGT12]. The first symmetric topological model was introduced in [ST20b], see also [LRS22,
RS20, MMP20], although it incorporated singular communication. Its smooth variant fits within our frame-
work of environmental averaging.

To define such a model let us consider a basic symmetric domain Oy = O(—ey, e1) connecting two points
—e; and ey, and for any pair (z,y), let O(x,y) be the domain connecting  and y obtained by rotation and
dilation of Op. Let xo(s,) be some mollification of the characteristic function 1¢(,,,). We introduce the
topological “distance” given by

(30) 4(@0) = [ X0t (©)d0()
Now let ¢(d, z) : Ry x  — R, be a smooth non-negative kernel, radial in z. We define

(31) (bp(xvy) = (b(dp(xvy)a T — y)

The kernel incorporates both metric and topological distances. Note that due to the symmetry of the domain
O(z,y), the kernel is also symmetric.
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Let us define

topo o () = . ’ ~ Jo 9oz, y)uly) dp(y)
(MEE) W@ = [ )t I, = T

This is the full topological variant of Mcg. As these models bear relevance to biological applications it
makes most sense to assume inverse dependence on the topological distance. For example,

¥(2)
an 20,

(32) ¢(d, z) =

where v is a smooth kernel and € > 0 is a parameter (¢ = 0 would correspond to the fully singular case).
By analogy we can also define a topological version of Myp:

(M) sp(x) =1, [u], = same,

or the S-model

(M) so(o) = ([ anteotw dy)ﬁ, [u], = same.

There is no reasonable topological counterpart of the mollified model M., since there is no way to
guarantee that ¢, integrates to 1 at all times.

Ezample 2.7 (Models with strict Segregation). A family of examples with segregated alignment protocol
can be built by setting s, = 1, fixing a o-algebra F of Borel subsets of ) and considering the conditional
expectation E,(f|F) relative to dp. Define

(Meona) [u]p,]-‘ = K, (ulF).
For a given filtration {Q,0} C F1 C Fo C --- — B we can define a martingale chain of averages
[u]p,n = EP(U’"F")

which naturally connects the global averaging model with the purely local one, as [u] pn 7 U in any L?(p),
1<p<oo.

Such an averaging operation models strict segregation between disjoint subalgebras of F, so-called “neigh-
borhoods”. Let us consider one specific example. Suppose F is the algebra spanned by a partitioning of €2
into subsets Ay,..., Ar. Then

L

(Mzx) [u]p1f=Z ](ljlll)/A up dz.

=1 P

If up = u) within each cube A;, and initial density pg is stays away from the borders dA;, then for a short
period of time the solution satisfies a pure transport equation

pe+ 1 - Vep =0

on each A;. So, the flock will travel with constant velocity within each neighborhood and will remain
segregated until one piece reaches the boundary of its neighborhood and starts communicating with others.

Ezample 2.8 (Smooth Segregation). Since in practice there is always a gradual transition between neigh-
borhoods, it makes sense to consider a smooth version of the model above, which is also more amenable to
analysis. Let us assume that € is compact, and consider any smooth partition of unity g, € C*° (), ¢g; > 0,
and Ele g1 = 1. Most naturally, such a partition can be obtained by subordinating it to an open cover
{O}E | of Q, so that supp g; C O;. We define the model by setting all s, = 1, and

L
= gl(m) u = X
(Macg) [u],, () —;p(gl)/ﬂ gipdy,  p(g1) /ngpd :

In this model the boundaries are not sharp as in the previous version, and there is some exchange of
information that occurs across the adjacent neighborhoods.
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There are ways to combine several averaging models into one that describe evolution of a multi-flock. Here
“multi” may mean several things — either multiple subflocks with their own communication rules combine
into a mega-flock with some global communication between subflocks, or it could mean the use of several
communication rules within and between subgroups which we call ‘species’. Both of these variants were
studied in [HT21, ST21].

Ezample 2.9 (Multi-species). When a big flock contains groups of agents with distinct characteristics, com-
munication between different groups may be facilitated by different rules, or communication kernels ¢®?. A
model that accommodates such various communication rules was introduced in [HT21] :

& = v i=1,...,.N% a=1,..., A,

A i

(33) SR 5
v = sz]‘ (baﬁ(xj - I?)(’Uj — ;).
B=1j=1
Here, each communication protocol is of Cucker-Smale type.

Such multi-species models can be generalized and fit into the framework of environmental averaging we
discuss here. To do that, suppose we have an array of A% material models Mgz, o, 8 = 1,..., A defined
over the same environment 2. We can combine them into a new multi-model on the product space 2 x A.
To account for possible variations of masses of sub-flocks, we fix a set of masses {M*},, with the total mass
being M = > M, and encode them into the set of admissible densities DA over Q x A. Namely, we say
that p € D4 is admissible if

A
p= %;M%a ® day
where p® € P. We define a cumulative strength function by
A
sp(z,0) = Z Mﬁsiﬁﬁ(m).
B=1

The corresponding averaging of a function v = {u®},, is given by

af
Py

A
(34) [ul, (z,0) = _ > Ml (@) (W] ().
sp(z, o) =

In terms of this average one can see directly, that the model (33) takes the canonical form
b =s,([v], —v).

Ezample 2.10 (Multi-flocks). Let us recall the multi-flock model introduced in [ST21]

&7 =g,
Ng A
(35) oY = Zm?¢a(xf‘ —zf)(vf —vf) e Z MPyp(X*, XP) (VP — o).
o

The model represents A groups of agents evolving according to their own communication, Cucker-Smale type
in this particular case, while communication between groups is facilitated through another protocol which
involves a kernel ¢ and alignment to macroscopic parameters of each subflock, namely their center of masses

and momenta
1
Ve = W Z mf‘vf‘.
i=1
This idea can be made more formal via an asymptotic analysis detailed in [ST21].
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In general, let {M}4_, be a family of material models defined over the same environment 2. We define
the admissible set of densities D# as in the previous example. For any p = {p®}, € D we define the
strength function by

sp(w, a) = M5 (z),
and for u = {u®}, the average is given by

[u],, (z,0) = [u]. ().
So far this model incorporates only internal flock communications. To combine these into an interactive
multi-flock we assume that the communication between sub-flocks is facilitated through another averaging

model (55, [u];Xt). The multiflock model (35) can be written as a system over Q x A :

o = s,([0], — ) + s (VI — ),

P
where p? = 22:1 M%xa,and V = 22:1 Tya.

Ezample 2.11 (Models on finite sets). The last but not least example on our list is the family of models
on finite environments Q = {z1,...,zx5}. These will be an essential tool to prove results about continuous
models, see Appendix 11. Finite models illustrate a situation when all the agents are planted in their places
and simply play the role of labels. They do not give rise to any inertial systems of type (4). However, they
do give rise to families of first order linear systems for v; = v(x;) € R™,

oy = si([v]; — vi),
for each distribution of masses p = (my, ..., my). Since the averages act coordinate-wise, (23), the systems

for each coordinate decouple and we can assume that v; are scalars. In this case the properties of the model
can be reduced to the properties of the corresponding reproducing matrix associated with the average:

N
A = (aij)i =1 aij = [Ta] ().
Property (ev3) implies that A has non-negative entries, and A1 = 1, i.e. A is right-stochastic.
3. CLASSES OF MODELS AND THEIR PROPERTIES

In this section we will systematize functional properties of environmental averaging models without asso-
ciation with any dynamical law. We introduce several important classes based on their operator-theoretical
classification, which will be used extensively in subsequent studies.

3.1. Mapping properties. Jensen inequality. Let us discuss functional basics of environmental averages,
and direct consequences of mapping properties stated in (ev2) and (ev3).
First of all, order preserving maps (22) obey the maximum principle

(36) min f < [f], < max f,
and consequently are contractive on L™ (k,):
(37) 111, oo < N1 flloo-

Next, let us look into L*-adjoint operator []*. Technically, it maps (L>)* — (L>°)* and if restricted
to L1 it still lands into (L°°)* from this general prospective. However, the extra structure of the averaging
allows us to conclude more.

Lemma 3.1. The operator [} has the following properties:
(1) H; t L'(k,) = L'(k,), and hence, [], is weak”-continuous on L*(k,);
(2) []; is order preserving;
(3) [1,: Li(kp) = LY (ky) is an isometry.

Proof. Let us fix f € L'(k,) and for every measurable set A define
Vf(A) = f[]lA]p dlip.
Q
This defines finite o-additive measure. Indeed, if A = U2, A4;, a disjoint union, then ]lugv:lAi — Luee 4, in

L?*(k,). By (ev2), we then also have []luNlA} — [ﬂu?glAi]p in L?(k,). Then up to a subsequence, the
i= K p i=
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same convergence holds r,-a.e. By the Lebesgue dominated convergence theorem we obtain v¢(1~ ) a,) =
Vy (ﬂUfiIAi)'

Furthermore, if £,(A) = 0, then by (ev2) [14], = 0 a.e., and hence v;(A) = 0. This implies that v is ab-
solutely continuous with respect to «,. Hence, there exists a function g € L'(k,) such that [, f [1 al, dr, =
Jo 914 dk,. By approximation and continuity (37) we obtain the same relation [, f [h], dk, = [, ghds,,
for any h € L*(k,). This means that [f] =g € L'(k,). We have proved (1).

Preservation of order (2) follows d1rectly from (ev3) since if f € L% (k,), then [ [f] gdk, = [ fg], dr, =
0 for all g € LS (k,). Hence, [f]} > 0. Moreover, [ [f]] dr, = [ f[1], dr, = [ fdk,, which proves (3).

O

As a consequence, we obtain the following point-wise Jensen inequality for averagings.

Lemma 3.2. For any u € L>(k,) the following Jensen inequality holds k,-a.e.,
(38) ¥([u], (2)) < [$(uw)], (),
where 1 s a continuous conver even and monotonically increasing on R™ function.

Proof. By Lemma 3.1, for every A C Q, there exists fa € LY (k,), [|falls =1, such that

1
Then by the classical Jensen inequality we have
> < (/ |ulfa dfip>

(s e ame) = o (| [ wran

< [t taan, = [ veotsan, = — [ ), s,

Since this holds for any A, by the Lebesgue differentiation theorem and continuity of ¥, as A — {z} for a.e.
x we obtain (38), as desired. O

One of the useful consequences of Jensen’s inequality is extrapolation to LP-spaces for p < 2 and a bound
on the LP-norms.

Lemma 3.3. Suppose [1]; € L*(kp). Then [],: LP(k,) = LP(k,) for all 1 < p < oo, and

(39) 1Ty Wew iy rte,y < NI NIREP.

Proof. For p = oo the result is simply the axiom (ev3). For p < oo, we use Jensen’s inequality

o [ ul, P drp < /Q [[ul], dr, = /Q [ulP (1] dkp < Jlulll 115 floo
and the result follows. O

In some of our studies we will encounter the need to quantify boundedness of the weighted averages s, [-] o
on L?(p). This is weaker than the previous mapping property thanks to the uniform boundedness of Sp-

Thus, a weaker condition is required for it to hold.

Lemma 3.4. Suppose s, [sb~ 1} € L>(p), 1 <p<oo. Thens,|[]

b : LP(p) — LP(p), and

P
(40) 5o [, lzr(o)—r (o) < llsp [s571] ) 1132P-

Proof. Using Jensen’s inequality,

Iso il [y = [ b0l P < [ ol spao= [ Gl s aw, = [ [577);

:/QSP [Sp 1] ul?dp < lsp [Sp 1] ool ”Lp(p)'

We refer to Section 3.7 for further discussion.
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TABLE 1. Reproducing kernels

MODEL | Mgloh | MCS | MI\IT | Mﬂ | _/\/l@ | M%eg
d(x—y) | olx —y) (x —2)p(y — 2) g1(z)gi1(y)
1 — d 9gi\r)gi\y)
" ‘ ‘ o) ‘ @ | 2w ‘ R E R Py

3.2. Reproducing kernel. For material models we often deal with the weighted averaging s, [u] , rather
than the bare averaging [u] - In most models the weighted average is an integral operator represented by a
kernel.

Definition 3.5. A reproducing kernel of the model M is a non-negative function ¢, € L_l‘_ (p® p), such that

/¢p($,y)dp(y)zsp(fﬂ), p-a.e.
Q

and so that for all u € L*(p)
(41) sp[ul, (x) = A Po(,y)uly) dp(y), p-ae.

A list of examples including our core models is provided in Table 1.
Generally, the kernel can be recovered from a right-stochastic reproducing kernel of the average itself,

®, € L (k, ® k), / O, (z,y)dr,(y) =1, Kp-ae.
Q

[u], = / B (., y)uly) dr, (y).

The correspondence between the two is given by

(42)

(43) Po(,y) = 5p() @ (2, y)5,(y)-
The representation of the adjoint averaging is given by
(44) 5p(0) 0] () = /Q by, y)o(e) dp(z),  p-ae.

Reproducing kernels are useful for many reasons. Not only do they provide more specific structure to the
averaging operator, many properties of the averaging that we will introduce later can be restated in terms
of regularity of the kernel, see Section 3.7. The alignment forces that appear on all levels of description take
a more conventional form:

N
(45a) si([o; = vi) = D> mdn (@i, 2) (05 — vy),
j=1
(15) sollal, = o) = [ 6w =) f(gw) du dy

(45¢) sp([u], — u) = /Q b (2 ) (uy) — u()) dp(y).

3.3. Conservative models and contractivity. Recall that due to (36) every alignment system that is
based on an environmental averaging has a maximum/minimum principle and therefore tends to align. If
one can quantify the rate of change of the amplitude of u based on properties of the couple (k,, [] p) one
can potentially obtain an alignment u — @ to some constant velocity vector 4. However, not every model
has a predetermined u. Typically % is uniquely defined by the initial condition if the system preserves the
momentum. This property is insured if the underlying model is conservative.

Definition 3.6. We say that the model M is conservative if for any p € P(Q2), u € L?(k,)

(46) /Q udk, = /Q [u],, drp.
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At all levels of description (4), (13), (19), conservative models preserve momentum,

d
—u =0, ﬁ:/pud:z:.
dt Q

Since we assume that the total mass of a flock is 1, this also predetermines the limiting average velocity from
the initial condition w = fQ poug dz. Non-conservative models such as My may also align, see Section 4.1
below. However, for those models the limiting velocity emerges dynamically and is not predetermined by
the initial condition.

In operator terms being conservative simply means that the adjoint average [-]" also preserves constants

(47) []lQ]:; =1gq, kp-almost everywhere, Vp € P(Q2).

This in turn implies that the space of mean-zero fields

Li(k,) = {u € L*(k,): /Qudlip = 0}

is invariant for both [-], and [-]}.
Together with the positivity proved in Lemma 3.1, (47) implies that []: : L>®(k,) = L*(k,), and so the
adjoint model M* consisting of pairs (x,, [];) fulfills all the requirements of environmental averaging.

Lemma 3.7. If M is conservative, then M™* also defines a conservative model. If My and My are conser-
vative with the identical set of strength functions, then My o My and %(Ml + My) are also conservative.

For a material model that possesses a reproducing kernel being conservative is equivalent to ®, being
doubly stochastic, or equivalently for ¢, to satisfy:

(48) [ vt dpto) = s,

A useful reformulation of conservative property can be done in terms of contractivity.
Definition 3.8. We say that the model M is p-contractive, 1 < p < oo, if for any p € P(Q), u € LP(k),)
(49) 1w, 1oe(ry) < lullege,)-

Note that straight from the definition part (ev3) all models are co-contractive. It is easy to show that
contractivity is equivalent to being conservative.

Lemma 3.9. The following are equivalent:

(i) M is conservative;

(i) || [Lal) lzoe(s,) <1 for all p € P(Q);
(iii) M is p-contractive for all 1 < p < oo;
(iv) M is 1-contractive.

Proof. (i) = (ii) is trivial. Conversely, assume (ii). Then we have

/]leliPE/ []lQ]:; dliPZ/]lQ []].Q]p dﬁPZ/]leIip,
Q Q Q Q

which proves that []lQ]:; = 1q k,-almost everywhere.

The implication (ii) = (iii) is a direct consequence of Lemma 3.3.

Since (iii) = (iv) is trivial, let us now assume (iv). By duality []: is oco-contractive, and hence (ii)
holds. O

Contractivity also implies that the alignment force is dissipative. For example, for the pressureless Euler-
Alignment system, see (107) below, we obtain

d1

(50) T /Q plu|® dz = /Q[u [u], — lu?] dr, < 0.
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3.4. Symmetric models. Most of the models on our list are in fact symmetric: for all p € P(Q) and
o' u" € L*(k,)

(51) (U’/7 [u//]p)ﬁp = ([u/]p 7u//)fip7
where we generally adopt the following notation for the inner-product relative to a measure x:
(52) (f,9)n = / fgds.
Q
In other words, []; =[] ,- In terms of reproducing kernel, if one is available, symmetry is equivalent to

®, being symmetric. Setting u” = 1o we can see that every symmetric model is conservative. However,
not every conservative model is automatically symmetric. Plenty of examples are provided by defining the
averages with non-symmetric doubly stochastic reproducing kernels.

For symmetric models the energy law (50) takes a more explicit form

(5) G [ otas == [ 0@l — uw)P @) aoto)

We can see that the dissipation burns energy for as long as communicating agents of the flock are not yet
aligned. This creates a mechanism for flocking behavior to be discussed in more detail in Section 4.

If M is a conservative but not symmetric model, then canonical ways to symmetrize it would be to
consider the model %(M + M*) or M* o M. According to Lemma 3.7 those define proper environmental
averages.

3.5. Galilean invariance. We say that the model M is Galilean invariant if for all x € 2 and v € R”
(54) Fp(-+v)(T) = Kp(x + ),
(55) (- 4+ 0)] 4 (@) = [, (2 + ).
In terms of reproducing kernel, if one is available, the Galilean invariance is equivalent to
Sp(-+v) (z) = SP(‘T +v),
Dp(40) (@, Y) = dp(z + v,y +v).

For a particular differential system M is involved in, this property implies the conventional Galilean
invariance with respect to transformation

(56)

(57) r—x+tV, v—ov+V, u—-ut+V.

All the models considered above except for segregation and conditional expectation ones are Galilean
invariant. The segregation protocols are planted into a given geography of the map and therefore are not
translation invariant.

3.6. Ball-positivity. If an operator T on a (real in our case) Hilbert space Hp is positive semi-definite, i.e.
(58) (Tu,u) =0,

geometrically this means that Tw and u lie on the same side of the hyperplane u. If T lies in an even
more restricted location, namely, in the ball %BHUII (u), ie.

1 1
(59) |7 5] < 31
then we call T' ball-positive. A more useful definition of ball-positivity can be stated equivalently as follows
(60) (Tu,u) > ||Tul?, Yu € Hp.

In other words, it is positivity (58) that comes with a more coercive flavor. Although, as far as we can
trace, there is no standard term associated with this property in the literature, such operators appeared for
instance in [LT98] (with n = 1) and [Tad02].

In the context of environmental averaging models, where Hg = L?(k,), and T = [/] ,» the ball-positivity
is stated as follows
(61) (w, [ul )i, = [l T2,y V€ L2 (k).

This property has profound implications to flocking behavior of the system as we will see later in Section 4.4.
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We identify many ball-positive models on our list with the use of a simple lemma.
Lemma 3.10. If M is symmetric, then M is ball-positive if and only if it is positive semi-definite.

Proof. The forward implication is trivial. Conversely, if M is non-negative and symmetric, then (u,v)r =
(Tw,v) defines a (possibly degenerate) inner product on the real Hilbert space Hr = L?(k,). Hence, the
Cauchy-Schwartz inequality applies

(62) [(Tu,v)| < v/ (Tu,u)/ (Tv,v).

Taking supremum over all unit v and using the contractivity of 7', we obtain the result. O
Corollary 3.11. If M is conservative, then M* o M is ball-positive.

Clearly, the conditional expectation model M.,,q is ball-positive because it consists of orthogonal pro-
jections. For M., we have

_ - plug)?
(63) (s [ul,)p =D >0.

The classical Cucker-Smale model Mg is ball-positive, provided the kernel ¢ is Bochner-positive, i.e. ¢ =
1 * 1), for some smooth ¥ > 0. We have

(64) (s lul )y = [ (w0) (wp)ods = [ (up)}do >0,

The symmetric M, model is also ball-positive

2
(65) (u, [u],)p = [Cup)sl® dz > 0.
Q  Pe
The same argument shows that all M ,-models are ball-positive.

Among symmetric but not necessarily ball-positive models are the topological models M Y. Here, the
kernel is not Bochner-positive to even imply sign definiteness of the averaging. Incidentally, ball-positivity
does not imply symmetry either. This will be shown in Appendix 11. So, these two properties are completely
independent.

Nonetheless, ball-positivity, does imply a host of other properties including of course positivity and 2-
contractivity. The 2-contractivity alone does not seem to be sufficient to imply conservation, in spite of
Lemma 3.9, it is still possible to show that all ball-positive models are conservative. The proof of this result
is not so straightforward. We include it in Appendix 11.

Proposition 3.12. Fvery ball-positive model is conservative.

Let us summarize the list of properties, relations between them, and examples.

symmetric —> conservative <= contractive
ball-positive <= T
positive semi-definite <= ball-positive

MODEL | conservative | symmetric | ball-positive | Galilean invariant

M; v v v v
Maiop v v v v

Mcs v v Vifo=9yxy v
MEE° v v X v
M X X X v

My v v v v

Mg v v v X

The most important applications of ball-positivity will be seen in the context of flocking and spectral gap
calculations to be discussed in Section 4.4.
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3.7. Thickness, regularity, and well-posedness of microscopic systems. In order to develop a mean-
ingful analysis of alignment models it will be necessary to make a list of continuity and regularity assump-
tions. We state those in terms of representing kernels and strength functions, which appears to be the most
economical way.

3.7.1. Locality of communication. First and foremost we assume that representing kernels support commu-
nication at a short range, i.e.

(66) Gp(x,y) = coljg_y|<r,, for some 79 >0, and all p € P(9).

Typically, for Favre-based models, such locality follows from the corresponding locality of the defining
convolution kernel ¢:

(67) (;5(7‘) 2z colrcrg.

Many models in our list satisfy this condition automatically. For the classical Cucker-Smale, it simply
means that ¢ > 0 near the origin. The Motsch-Tadmor model fulfills the same via

_ oz —y) LV
(%) PO = 7 Tl Y

since py(x) < ||@|loc. Similarly, for the M4-model, we have

d) ( ) H(b”ood) ¢( ) = CO]l|m—y|<r0'

The locality also holds for the segregation model M., on a compact environment ). Indeed, since

Zle gi(x) = 1, for every z there exists [ such that g;(x) > 1/L. Using continuity and compactness, there
exists a 19 > 0 such that for any |z — y| < ro we have ¢;(y) > 1/2L. Then, since p(g;) < 1,

Zgz gz 1

= Co, VI,y:|iE—y|<T0-
972

— 2L

Thus, (66) is satisfied.

A better way to express (66) and similar conditions that follow is through the use of a smooth cut-off
function. Let us fix x € C§°(B1(0)) such that x(z) = 1 for 2 € B;/5(0) and 0 < x < 1 throughout. We
denote the rescaling of x by x,(z) = x(z/r). Thus, (66) implies

(69) Gp(T,Y) = coXro (T — Y).

3.7.2. Thickness. Flock with a certain weight present throughout its support or even the entire environment
are called thick. One can use masses of balls, p(B,(z)) as a measure of thickness. This concept was adopted,
for example, in [MPT19]. While useful in many situations (see Sections 4.2, 4.4) for some models, however,
thickness takes more individual form which is easier to satisfy. For example, in the Mg case it is more
natural to measure thickness as pgs, while for M., the thickness can be measured in terms of masses of
neighborhoods, p(g;). We adopt the following general definition.

Definition 3.13. A thickness of a density p € P(Q) is a function ©, : Q@ — RT satisfying the following
conditions

(i) ©(p,-) is lower semi-continuous;

(i) p({z: ©(p,z) = 0}) =0, for all p € L}(Q) N P(Q);

(iii) There exists ¢ > 0 such that ©(p, z) > cmin p, for all p € Q;

(iv) Continuity-in-p: there exists a ¢ > 0 such that for all p/, p” € P(Q2),

(70) 10(p",) = O(p", )l < cllp” — " l|p.
(v) Compatibility with the continuity equation: if p satisfies
Oep+ V- (up) =0,
then for every point x € Q, the function t — ©(p(t), x) satisfies
(71) 90(p, ) 2 —cllul[L2(p),

in distributional sense.
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Thickness of the flock over a subset S C €2 is defined by
(72) O(p,5) = inf O(p, z).

If S = Q we call ©(p, ) the uniform thickness of the flock.

Ezample 3.14. If no specific structural information is known about ¢,(x,y) except for locality (66) then
a universal choice for the thickness would be the mass of a smoothed ball at a scale 0 < r < 7o (called
ball-thickness):

(73) 6(p,2) = pr(z) = p* X ().

Most properties are easy to verify: for (i) we even have © € C*, for (ii) we observe that
{z: O©(p,z) = 0} Nsuppp =0,

(iii) and (iv) are trivial, and as to (v) we have

(74) Oupr() = =V - (up)y, = —(up)vy, > —clull (.

Ezample 3.15. Thickness associated with a local convolution type kernel ¢, (67), is given by

(75) 6(p,2) = pola).

Here all the properties are trivial. Note that locality (67) is necessary for (ii). This choice will be suitable
for all Favre-based models.

Ezxample 3.16. Another example is associated with the segregation model M,:

(76) O(p,x) = min p(g).

l:xzesupp g;

Here we also assume for technical reasons that |d(supp g;)| = 0.

To show the lower semi-continuity, let z €  be such that ©(p,x) > a. Suppose l1,...,[; is the list of
indexes such that « & supp ¢;,. Then there exists 6 > 0 such that Bs(x)Nsupp g;, = 0. Then for all y € Bs(z)
the list of I’s for which y € supp g; is a subset of the list of I’s corresponding to z. So, ©(p,y) = O(p, z), and
hence the set {x : ©(p,z) > a} is open.

To show (ii) suppose we have  : ©(p, z) = 0, hence there exists | such that x € supp ¢g; and p(g;) = 0. If
gi(z) > 0, then p(B:(x)) = 0 for a small ¢, hence = ¢ supp p. Otherwise, x € d(supp g;). So,

{z:6(p,r) =0} C (Q\suppp) Ud(suppgi) U---UJ(supp gr),

and the p-measure of the set on the right hand side is 0.
(iii) and (iv) are trivial, as to (v) we have similar to (74)

Oep(gr) = /Qu-ng dp = —cllullL2(p)

for any [ =1,..., L. So, for any fixed x € Q there is a finite collection of {’s such that = € supp g;. Denote
it L(x). Since the minimum is taken over a fixed compact set L(z) at any moment of time, Rademacher’s
lemma applies to deduce (71) is distributional sense.

3.7.3. Regularity of M and continuous dependence on p. Let us discuss now regularity and continuity-in-
p of our models. We will encounter two type of models — ones whose regularity depends on thickness
(and therefore can be violated if the density in question is not thick), and ones that are uniformly regular
independently of thickness.

Before we make these definitions precise, let us make an observation — in all our models the strength
is bounded from below by the native and ball-mass thicknesses: there exists an non-decreasing continuous
function s : Rt — R such that

(77) sp(x) = 8(0(p,x)), sp(x) = s(pry(x)) forall z € Q.

Let us recall the classical Kantorovich-Rubinstein distance between any two finite measures u', u”” over €:

(78) Wa(s, i) = sup / h(a)[ i () — A (2]

Lip(h)<1
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TABLE 2. Regularity type and associated thickness of selected models.

MODEL | Mcs | M2 | Mur & Mg, 0<B <1 My Mg
Op,x) | po(x) | pul) po () po () min;:zesupp g, A(91)
regular v v v v/ on compact {2 v
uniform v v >0 ¢ ¢>:0 <OII>1+C::II;[;1&IC£”Q supp g; = (2
(83)-(84) v v cljyj<r, < P(x) < Cligcp, | v on compact € v

Definition 3.17. We say that a model M with is regular if for every R > 0 and p, p/, p” € P(Bg) we have

Ck7R(®(poR))7 ]{5:0,17,,_,
Cr(©(p', Br), O(p", Br))W1(p', p").

(79) HakSpHLw(BR) + H65¢p||LOO(BR><BR) + ||al;¢p”L°°(BaxBR

<
(80) 8oy = SprrllLoe(Br) + @0 — prr || Lo (BrxBr) <

Definition 3.18. We say that a model M with is uniformly regular if for every R > 0 and p, p’, p” € P(Br)
we have

(81) 10"l o< (Br) + 10500l oo (B x Br) + 105 bpll Loe(Brx BR) <
(82) I8or = 8prllLoo(Br) + 1P — Pprr || Lo (BrxBR) <

If no information is known about the thickness of one of the densities involved in (80), some of the models
still retain a level of continuity if at least the other density is thick: for every R > 0 and p’, p” € P(Bg) one
has

(83) /Q |80 () = s () dp” () < Cr(O(p', BR)WT (0, p"),
(84) /Q A b (2, 9) = dpr (,y)|* dp” (x) dp” (y) < Cr(O(p', BR))Wi (0, p").

This will be useful in the study of the hydrodynamic limits.
Let us go through the main examples on our list, identify their associated thicknesses and determine which
level of regularity they satisfy and under which conditions. Our findings are summarized in Table 2.

Ezample 3.19 (Mcs, M{E°). The Cucker-Smale model is trivially uniformly regular with ©(p, ) = py.
While ./\/ILOPO is uniformly regular with ©(p, z) = py.

Ezample 3.20 (Mg, 0 < § < 1). The model has the same associated thickness ©(p,z) = py. Under no
conditions on ¢, the models is trivially regular. If ¢ > 0, then

(85) O(p,z) > inf ¢(r) =6>0

on Bp for any p € P(Bg). So, in this case the model is uniformly regular, and all the estimates are
straightforward.

Let us assume that ¢ is local and satisfies (27). We will prove that in this case the model is continuous
in p, (83)-(84). Indeed, as to (83), by an elementary inequality, we have

(86) () = ()71 < Clogl?~ oty — Pl < CO )Vl Wi, ),
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and (83) follows. As to the kernel continuity (84), we have

//mwm-w&mwﬂwww
QJQ

<loll [ [ | |
1 1

Sz —y)dp” (z)dp” (y)
‘“““/‘@<w> W
)

nfx>1ﬁ—< ()15P o3 49" (2)
loll | LB S

1
(o () =F

pe () dp” (2)

/
(P (2

<co(y, BR))Wf(p’, ") /B (Z(S) '

Note that

dp”(.’L‘) 1 dp”(.’L‘) 1 o
o - - dy = = dy.
7 /BR po@) ¢l /BR+R0 Br e Pg() ! [¢ll1 ~/BR+R0 <9g>¢(y) ’

According to (28), the expression inside is uniformly bounded, and hence the whole integral is bounded by
a constant depending only on R, Ry. This proves (84).

Finally, we note that if ¢ is local, then the ball-thickness (73) with r < rg can also be used in all the
estimates. This observation will be useful in the relaxation study, see Section 8. However it should be noted
that pg(x) > cpr(x), and so it is easier for densities to be natively thick than ball-thick.

Ezample 3.21 (Mgey). The computation is quite similar for the segregation model Me,, where the thickness
functional © is given by (76). The model is clearly uniformly thick if suppg; = Q, I = 1,..., L, since then
O(p, Q) =1 for any p. Generally, the global thickness is given by ©(p, Q) = min; p(g;). So, it is clear that
regularity holds for this model as well. All these conclusions hold for the ball-mass thickness (73) where r is
a small radius so that for every [ there exists an zg € {2 such that g B (w0) > ¢ for some fixed ¢g > 0.

Let us establish (84) relative to the native thickness (the ball-thickness (73) will not work here)

/ / b (2,y) — o (, ) 1> dp” (x) dp” (y)

1 1 /! /!
/ﬂ;m | ta1 ™ | H v @@ a0 )
< i(pl/ a 1 _ 1 2 _ i p/(gl) — p”(gl) < C(@(p/ Q))W (p P )
T a) )l =l ) e

Ezample 3.22 (My). Because of the non-local dependence on pgs in the kernel, there doesn’t seem to be
another thickness quantity that would fulfill the local continuity and regularity assumptions. However, if we
set ©(p, z) = py(x), the model becomes regular on any compact environment €2 and for any kernel ¢. Also
on compact 2, the model is uniformly regular when ¢ > 0. Finally, the strong continuity-in-p, (83)-(84),
holds as well:

/ / b (2,y) — o (,y)> dp” (x) dp” (y)
QJN

/Q/Q Q(bx_z ( _Z)
-,

1
oh(z)  plz)

2
Q
" 2 < | 20 0 N
(p (2)) dz = @2(p/,Q)W1 (pup )

dzdp”(z) dp" (y)

1 1

/!

Pp(2) P
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On the open space, if ¢ is compactly supported then the model would fail to fulfill any regularity assump-
tions. However, for the integrable kernel ¢ satisfying the following conditions

¢ e WhLQ), VkeN,

(88) 1

Shul<lzl<2lyl = olx) ~ o(y),
one can establish uniform regularity. The choice ¢ = <m>+ﬂ, v >0, (z) = (1+ |z[2)2, is an example of such
a kernel.

To see that let p € P(Bg). We have
k(o _ k(o _ kg(p — _
Shoptan) = [ LU= g, [ Pela o)y, [ Feam s,
0 ps(2) Ban pe(2) O\Ban pe(2)
Inside the ball Bog we have pg(z) = 0 by (85). So,

Fop(x —2)p(y — 2)
/B2R, ps(2) dz < C(R)||¢llwn

For z € Q\Bar we have by (88)

pole) = [ 60z —w)dolw) 20() [ dplw) = o).
BR BR
On the other hand, by the same (88), since y € Bp,
Py — 2) < 9(2).
Thus,

*(x — 2)p(y — 2) i
dz 3 9 - d X k1.
/sz\B2R po() oo /Q\B2R| ¢z — 2)|dz < || ¢llw

Since the kernel is symmetric the same holds for 8§¢p. We have proved (81). To show (82) let us write
1P(2) = 1 (2)]
Po(2)pg ()

1P5(2) = py(2)]

160 () — by (2,9)] < /Q oz — )y — 2) dz

= B ¢(I - Z)¢(y - Z) p;(z)pg(z) dz
Vbl — s 15 (2) = ply(2)] .
+ /Q e er (et

Using again that inside the ball Bag, p(2), pij(2) > 0, we obtain

ron ’on ¢($—Z)¢(y—2)
SISV [ e i, Tt 0l

Arguing as before we conclude that Hz=2)é(y—z)
Py ()P (2)

SUPyegy, |[Vwd(z —w)| € L*(dz). This finishes the estimate.
The native thickness in all of the above can be replaced with the ball-thickness (73) as well.

is uniformly bounded on Q\Br. At the same time,

3.7.4. Well-posedness of agent-based systems. Let us establish basic well-posedness of the agent based system
as a consequence of the uniform regularity:

(39) L N
89 . i=1...N.
bi = si([v]; —vi)
Here, 2 can be any environment. Recall that s; and [v], are defined in (11). The maximum principle implies
that max; |v;| < max; |v;(0)] := A, and therefore, max|z;| < ¢ a priori. So, in order to establish global
existence by the standard fix point argument it suffices to check that the right hand side of (89) is locally
Lipschitz on QV x R™V.
So, let us assume that M is uniformly regular. Let us fix masses mq, ..., my and two configurations

/ oL / N N 1 "o, 1" " N N
(), 2y v, . vy) € By x By, (2,...,2%;v],...,v)) € By x By.
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We only need to show Lipschitzness of the momentum equation. We have
S000') — sl — ") + 50 ) < [Sif0') — [0l + [t — o) = T+ 11,
As to II, B
1T < 8§ = silvil + I8 [[vi — v | < Alsg — 8| + S|v; — vf|.
Using (81)-(82),
[0 (27) = 80 (@) + I8, () — s (2)] < Calf — 2| + CWa(p', p")
x|+ UZmﬂx; — x| < max |z} — 2]
J
We now estimate the weighted averages term using the same regularity assumptions,

Zm3|¢p L J)U — G (2 xyx ;/)U;‘/
ij¢p L g |U _UH|+ZmJ|¢p L J) bz, J)”U/Il

<COmaX|Uj_U;I|+Aij|¢P’ L j) (bp”( L J |+Azm]|¢/7” L J) ¢P”( 217 J)|
J
< Comax [vf —vf| + AW1 (o, p") + 2AC, Z mjla — x|
J
< max [v) — v | + max |2 — 27|
We have proved the following result.
Proposition 3.23. If M is uniformly regular, then the system (89) is globally well-posed.

Note that this well-posedness result is robust — the Lipschitzness is independent of the number of agents
or their masses. That is why it can be extended to kinetic formulation as well, see Section 5. However, the
well-posedness in a less robust form also extends to some non-regular models such as Myp if ¢ is finitely
supported and satisfies (66). This is based on the fact that for any atomic p we have py(x;) = m;¢(0). So,
there is a residual mass-dependent thickness of the flock left on its support. Indeed, we have in this case

W) - ") "¢"°° = Sl ol + A S mlay (ea}) by a2

and
batal) ety - P o)
P T O ) T S o] — a) | Sy mko(a] — o)~ m?
Similar computation works for Mg. Models M., and M, do not seem to have good well-posedness prop-
erties when it comes to agent-based systems with purely local communication kernels.

max |z}, — x}|.

Proposition 3.24. The models My, Mg are globally well-posed provided the defining kernel ¢ is locally

supported (67).

3.7.5. Uniform mapping properties. When studying well-posedness of kinetic models it will be essential to

have a uniform boundedness of the weighted averages at the base level independent of p. These can be readily

stated in terms of Lebesgue integrability conditions on the kernel. We will isolate two such conditions.
First, the uniform boundedness on L?(p):

(90) sp [, L*(p) = L*(p)
can be stated using the result of Lemma 3.4. It is guaranteed to hold under a simpler condition:
(91) sup s, [1], [loc < oo
pEP
Recalling the action of the adjoint in terms of reproducing kernel (44), (91) can be stated as ¢, € Ly°LL(p)
uniformly in p:

(92) sup sup | ¢,(z,y)dp(x) < cc.
pEP(Q) yeQ JQ
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TABLE 3. Conditions under which models are uniformly bounded

MODEL Mes | MEE | Mur & Mg, 0< B<1 M, Mg
LQ(/)) — LQ(/)) v v C]l|m|<ro < ¢(CL‘) < Cll\zKRo v v
L?%(p) — L*>(p) v v 8= % or inf¢ >0 info >0 | suppg; =

This condition was first documented in the context of My;r-model in [KMT13]. Tt holds trivially for all
conservative models, see (48). For Mg, including the Motsch-Tadmor model My, this follows from (29).
So, all the core models on our list satisfy (92).

Second, a stronger uniform boundedness

(93) spl], : L*(p) = L=(p)

is guaranteed by the membership ¢, € L°°L2( ) uniformly in p (by the Hélder inequality):

(94) sup sup [ 0y, do(y) <

pEP(Q) z€Q
Examples on our list include all M5 and M'y”° models for 3 > 1, and in particular, the classical Cucker-
Smale model Mcg. Indeed, we have for Mg,
2
¢z —y) P4 (@)

do(y) < lI9llo 555~ 2 = [@llocpy’ ™ (@) < I 9ll2-

/p;"() 5 @)

Unfortunately, My, Mgy, and Mg, are not regular enough to satisfy (94) for arbitrary kernels. However,
if inf ¢ > 0, that is of course the case for My and all Mg, and similarly if supp g; = Q for M.
The results are summarized in Table 3.

4. FLOCKING

4.1. The Cucker-Smale Theorem. We start with an extension of the classical Cucker-Smale Theorem
that originally appeared in [CS07a] for the Mcg-model. The result declares how strong the long-range
communication must be in order to ensure alignment from any initial condition. The discrete, kinetic, and
hydrodynamic analogues of this result are proved in exact same way, due to essentially the same structure
of the characteristic equations taking one of the forms (45), see [Shv21] for a detailed account. We adhere
to the context of kinetic Vlasov-Alignment model

(95) hf+v-Vof =Vy-(sp(v—1[u],)f), diam(supp fo) < oo
where

pa) = [ S, up@) = [ oieod

R’Vl n

It incorporates the agent based dynamics as a special case of a weak solution, and does not require any
particular closure assumption, for more on this see [Tad21, Tad23]. The pressureless Euler-alignment system
allows the same treatment if written in Lagrangian coordinates, see Theorem 4.3 below. The main idea
conveyed here is that the result does not require any special properties of the model and can be extended to
any general material environmental averaging that has a reproducing kernel ¢,.

We consider 2 to be an arbitrary environment, although the unbounded ones, such as R™, is where the
result is most meaningful. If f is a measure-valued solution to (95) starting from a compactly supported
initial condition fy, then at any point of time f is given by the push-forward of fy along the characteristics
(see Section 5)

(96) %X(t,x,v) =V(t, z,v), X(0,z,v) ==,
(97) d—V(t,:C,v) =5,(X)([u],(X)=V), V(0,z,v) =wv.

dt
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We abbreviate w = (x,v) for short. The representation formula (45b) gives the V-equation a more specific
form (using the characteristic change of coordinates)

(98) GV = [ 600 XNV () = V) dfole).

from which the maximum principle for V-characteristics is evident. This fundamental principle holds even
for models without a representation kernel which we prove next.

Lemma 4.1 (Maximum Principle). Suppose M is a material model, and supp fo C Q x R™ is compact.
Then for any w € supp fo and any t > 0, we have

V(t,w) € convsupp (/ fo(z,v) dx) .
Q

Proof. The convex hull in question can be represented as the intersection of hyperspaces:

conv supp ( /Q fo(:c,v)dx) = ) <al

(EFCR™
Let us fix an £ € F. Since the action of £ is just a linear combination of coordinates we have

%E(V(MJ)) = sp(X)([t(w)], (X) = £(V)) = 8,(X) [¢(u) = £(V)], (X).

By Rademacher’s Lemma we can evaluate the above at a point w € supp fo where maximum of £(V (¢,w)) is
achieved. Looking into the field under the average we have

aw@@—avy;&{fggg%ﬁgmw
R™ IS

Now let 5 be a standard compactly supported mollifier. We have using the transport property

Lw—V)f(t,y,w)dw = lim Lw—V)s(y — 2)f(t, z,w)dwdz
Rn 0—0 Jpn

= %irr(l) V(W) = V(t,w)bs(y — X (W', 1)) fo(t,w') dw’ < 0.
—0 Jpn

Thus, (u) — (V) < 0 point-wise. By the order preserving property of the averages (ev3), we have
d
— LV (t <0.
UV (W)
In other words, maxsupp f, £(V(t,w)) < ¢ for all times. This finishes the proof. O

As a consequence, the macroscopic velocity u of f remains bounded by the initial condition:

f(lx]Rn V(tv 2, w)th(x - Z)fO(Z, ’w) dz dw
Jaxgn Ys(x — 2) fo(z,w) dz dw

Theorem 4.2 (Kinetic Cucker-Smale). Suppose there exists ¢ € C*, a positive, non-increasing, radially
symmetric kernel with fat tail, fooo @(r) dr = 0o, such that

Then any measure-valued solution to (95) starting from a compactly supported initial condition fo aligns and
flocks exponentially fast

(100) D)= max |X(t,w')—X(t,W")|<C, VE>0

w’,w’” €supp fo

|u(z,t)| = lim

550 g ||V||L°°(suppf0) g max | supp f0|

(101) At) = max |V(t,w') = V(t,w")| < Ce™?,

w’ ,w! esupp fo
where C,6 > 0 depend on the initial condition and the parameters of the model. Moreover, there exists
Uso € R™ such that

(102) max |V (t,w) — te| < Ce™?.
wesupp fo

If the model M is conservative then us = u = fﬂ up dx, the total conserved momentum.
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Proof. Following characteristics let us fix at any point of time a label w. € supp fo where V? achieves its
maximum and minimum, respectively, V}. So, by the Rademacher lemma, we have distributionally,
d

(103) GV = [ X)XV (1) ~ VI dfofe)

In view of (99),

Lyi < /Q O () = X (W) (V00) = V) dfo(e) < 9(D) [ i) - vi ).

dt QxR"
And similarly,

d _ . ) )
V> qb(D)/ (V' (t,w'") — V) d fo(w).
dt OxRn
Subtracting the two, we obtain for the amplitude A* = Vi — V|
d 4i g —¢(D)A’
e '
Taking the Euclidean amplitude A = /(A1)2 + .- + (A")2, we obtain the system
d d
—D <A —A<—-¢(D)A.
dt dt ¢(D)

Following [HL09] we form the Lyapunov function

D
L=A+/ ¢(r) dr,
0

which remains bounded. Hence, in view of the fat-tail condition, D remains bounded, and going back to the
A-equation we obtain exponential decay on the amplitudes.
To conclude (102) let us notice that as a consequence of (101), we have
max |[V| < Ce %,
wesupp fo
So, every characteristic V' (w,t) will converge exponentially fast to a limit ue(w). In view of (101), use must
be a constant vector. |

The alignment of characteristics stated in Theorem 4.2 implies corresponding behavior of the distribution
f itself by transport. First, we can see that its v-marginal f* = fQ f(t,z,v) dx converges weakly to Dirac,
1 = 00(v — teo).

Moreover, since f is a push-forward of fy along (96) - (97), the v-support of f will belong to an exponentially
shrinking ball around u,. This implies uniform convergence of the macroscopic velocity
f‘vfuoolgce—ét (U - Uoo)f(fﬂ, v, t) dv

U, ) — Uoo = ,
( ) OO Lﬁv,um‘gce—& f((E,’U,t) d’U

S0,

(104) sup  |u(z, ) — uso| < Ce 0.
TESupp p

And it also implies exponential alignment in the energy sense, to be discussed in greater detail in Section 4.3:
(105) a= / updz,
Q

1
(106) 6E = —/ lv — a|?f dvda < Ce .
2 Jaxrn
Unfortunately the result doesn’t seem to provide much insight into behavior of the macroscopic density

p. See, however, [ST17h] for a convergence result to a traveling wave in 1D case.



28 ROMAN SHVYDKOY

The exact same result can be stated for the hydrodynamic alignment model without pressure, so called
pressureless Euler-Alignment system (see Section 9.1 for derivation)

pt +V - (up) =0,

(107) w4+ u - Vu = s,([u]

, W)

If passed to Lagrangian coordinates

(o, t) = v(a, t) = u(xz(a,t),t), a€Q,
(a,t) / bp(x(t, @), z(t, ")) (v(t, o) — v(t, @) dpo ().

the system is structurally similar to (96) - (97). So, the proof goes through exactly as before.

Theorem 4.3 (Hydrodynamic Cucker-Smale). Under the assumptions of Theorem /.2, any classical solu-
tion to the pressureless Euler-alignment system (107) with compactly supported initial py aligns and flocks
exponentially fast
(108) sup(diam(supp p)) < oo, sup  |u(t, z) — o] < Coe™®
t>0 TESUpPP p

For the Mcg-model where ¢,(z,y) = ¢(z — y) the statements above are classical. The kinetic and
hydrodynamics versions appeared in [CFRT10] and [TT14], respectively.

In the Motsch-Tadmor case, we can apply the same fat-tail condition on the defining kernel ¢ due to (68).
However, the limiting velocity u. is not determined by the initial condition and emerges dynamically.

The theorem does not apply to either the over-mollified model Mg or the segregation model Mg as
those are inherently local, which brings us to the next main question — what conditions guarantee emergent
behavior when communication is strictly local?

4.2. Chain connectivity. The tl% and tl% results. It is obvious that locality (66) itself is insufficient
for unconditional alignment of the system. In the open space R™ one can simply direct two agents away
from each other starting at a distance larger than communication range. On T™ one can launch two agents
with misaligned velocities along two parallel geodesics at a distance larger than communication range. So,
it is clear that some kind of connectivity is necessary to obtain alignment. In this section we explore how to
achieve this for symmetric models and for quantitatively thick flocks.

Definition 4.4. We say that the flock (u, p) is chain connected at scale r if for any two points z’, 2" € supp p

there exists a chain

/ 1
r =T1,22,...,TK =T

such that z; € suppp and |z; — ;| < r.

Our main result shows alignment under connectivity assumption at a sub-local scale ry and proper thick-
ness rate. Here we use the term thickness to refer to the ball-thickness defined in (73).

Theorem 4.5. Let Q@ = R"™, and M is a symmetric model with kernel satisfying (66). If the flock remains

chain connected at the scale r = ro/8 for all time and has thickness satisfying p,(supp p) = 77z, then the
flock aligns
(109) sup  |V(t,w) —V(t,w")] S
w,w’Esupp fo
On the torus Q = T" the result holds under weaker condition p,(supp p) =
In the case of the torus we can consider a non-vacuous flock p— = minp» p > 0. Such a flock remains

trivially connected at any scale and is uniformly thick p,(supp p) 2 p—. So, one important consequence of
the above theorem is a statement in terms of quantitative no-vacuum condition.

Corollary 4.6. Let Q =T"™, M is symmetric and material, and the kernel satisfies (66). If p—
the flock aligns (109).

oz, then

Before we get to the proof we first explore how one can reduce the number of links in a chain.
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Lemma 4.7. If the flock is chain connected at scale r, then between any pair of points there is a 3r-chain
with the number of links limited to K < m.
If the diameter of the flock is bounded, then K can be chosen independent of thickness but dependent on

the diameter, K < C(diam(supp p)).

Proof. Suppose we have a chain 2’ = x1,x2,...,2x = 2" € supp p with the properties listed in the definition.
We now choose a subchain in the following manner. Let x;, = x1. Then let us pick i2 — 1 to be the largest
index > iy for which |z;, — z4,—1| < 2r. So, all subsequent elements will stay at a distance at least 2r from
x;, - In particular |z;, — x4, | = 2r, and yet since |z;,—1 — z4,| < 7, we have |z;, — ;,| < 3r. Pick i3 similarly
to 19, etc. Eventually xx will be selected last unconditionally.

According to construction we have a new chain y; = x;,, j = 1,...,J, such that |y; — y;11| < 3r and
ly; —yx| = 2r for any j # k < J. Hence, the chain is connected at scale 3r. At the same time, by disjointness

J—1
pr(supp p)(J - 1) < Zp(Br(yj)) =p (UJJ;1IBT(3JJ‘)) <Ll
j=1

Hence, J <1+ = L < 2

pr(suppp) = pr(suppp)
Alternatively, if the flock is bounded, and the balls around y;’s are disjoint, J is limited by volume to
¢, diam(supp p)™ /r™. This proves the lemma. O

The primary technical use of this lemma will be in construction of chains with thick links. Specifically, if
the flock is r-connected then we find it also 3r-connected by chains of size K < ——=2 , and since any ball

5r(SUPD p)
By, (x;) contains the balls B,.(x;—1) U B,(x;+1), then
(110) p(Bar (i) N Bay(vit1)) = pr(supp p).

Proof of Theorem 4.5. Let us assume for now that 2 = R".
By symmetry of the model we have the following energy law

d 1
(111) &5 =3 /Q ) Gp(x, 2" )|v — ' P f(t, ) f(t,w) dw’ dw.
“RP
Hence, in view of (66),
(112) /0 /{| - lv — o2 f(t,w') f(t,w) dw’ dwdt < oco.
x—x'|<ro}xRn™

Consider the averages of macroscopic momenta over balls of radius 4r:

_ - 1
U(I) B p(B4r (,T)) /]RanM(m) wf(t, v W) dw dy.

The quadratic deviations from the averages are all subordinated to the dissipation rate:

/ lv — o(z*) 2 f(t, z,v) dvde
Rn XB4T(:E*)

/R"XBM(z*)

el
gi
P(Bar(2*)) JRnx Bay (a) xB" x Bay (a+)

using that |z — y| < 8r = ry,

2

1
/ (v —w)f(t,y, w) dwdy| f(t,2,0)dvde
RnXB4T(I*)

p(Bar(z*))

o — wl? f(t,y, w)f (¢, @, v) dwdy dv dz

1
< e —
p(Bar(z*))
Thus, in view of (118), and the fact that p,(supp p) < p(Byr(z*)),

/ lv — o' P f(t, W) f(t,w) dw dw.
{|lz—2’|<ro}xR™

(113) / sup pr(supp p)/ lv — o(x*)|? f(t, 2, v) dvdrdt < co.
0 z*e€Q R™ X By (z*)
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Let us now estimate the flattening near extremes. Let us fix one coordinate of v supp f, say v’ and denote
by v = V'(t,wy) = maxuesupp fo V' (t,w), and x4 = X(t,w;). We drop superindex i for shortness of
notation. Then

d
4, = / Gp(4sy) (w0 — v4) (1,9, w) dy duw < ¢ / (w — vy)f (£, w) dy duw
dt QxR Bur(x4)

— cop(Bar(4))(5(x+) — v1) < o (supp p) (Bla+) — v4).

Similarly,
d _ _
V- = copr(supp p)(o(2-) —v-).
Consequently,
(114) | ortsuwp plot-) = o) + 01 = o)) e < .
0

Combining (113) and (114), and fixing an 77 > 0 large enough we can ensure that for any T' > 0 there is
a time t € [T, T + T’] such that

1

z*€Q pr(supp p)tInt’

(115) (O(x=) —v=) 4+ (vy —0(z4)) + sup / lv — o(x*)|2f(t, x,v) dzdv <
R™ X By, (m*)

In particular, the extreme values are close to the averages around them. Let us now show that all the

averages are close to each other, and this will finish the proof.

We have for any z* € Q,

1
— %\ |2
v—o()| f(t,z,v)dedy  —————— .
/RanM(m | IR ) pr(supp p)tInt
Denote § = m. Then by the Chebyshev inequality,
* * 1 —( % 1 -
(16)  f({lo = o) > 8} x Bar(e)) < 55 o~ 8(a")? (£, 2, 0) dadv < 75y (supp ).
1) R™ X By (z*) 4
Let us now consider a 3r-chain 1, ..., zx with K < C/p,(supp p), which connects two points z_ and x.

According to (110), p(Bar(2;) N Bar(2i1)) = pr(supp p). Thus, f(R™ X (Byr(2;) N Bayr(zi41))) = pr(supp p).
Yet according to (116),

—_

f(({lv = v(zi)| > 8} x Bar(2i)) U ({[v = 0(@is1)| > 6} X Bar(wit1))) < 5pr(supp p).

Consequently,

[\]

Bs(0(zi)) % Bar(2;) N Bs(0(xis1)) X Bar(wit1) # 0.
Hence,
|1_}({EZ) — 1_)(171'+1)| § 25

Summing up over all ¢, we obtain

1 1
117 o(zy) — v(z_)| < 20K < ~ .
(117) [o(a+) - o(a_)| NG ARV

Combining with (115) we have
1

Vint
Since this holds at time ¢t < T + T”, it must hold at time T + 7’ by the maximum principle. But since
1 1 < 1 . . . . . .
t>T, Tt < VT N e Since T is arbitrary, this finishes the proof in the open space.

On the torus the diameter of the flock is uniformly bounded, and consequently, by Lemma 4.7, K remains
uniformly bounded. In this case the estimate (117) gets improved to the following

1 1
pr(supp p)vVtInt  /Int’

provided p,(supp p) 2 tl% The rest of the proof is the same. |

vy — V- <

[o(zy) —v(z-)| 26K S
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Remark 4.8. The exact same result holds for solutions of the pressureless Euler-Alignment System (107),
thanks to the fact that it has a similar form of the energy dissipation

(118) / h [ e lule. )~ u(y 0P doly) do(a) dt < o.

4.3. Alignment in the energy sense. Spectral gaps. The alignment of characteristics stated in Theo-
rem 4.5 implies alignment in the energy sense. Recalling that o = fQ up dz, we have

1 1
55:—/ |u—a|2fdvdx</ [V —V'|2fof)dwdw’ < ——.
2 Jaxrn QxR X QXR™ 0 Vint
In this section we explore alignment in this weaker sense
(119) 0 — 0,

by appealing to the most basic energy law of the Vlasov-alignment equation (95).
We will not make any special assumptions on the underlying model M except that M is material just to
make sense of the strength function in equation (95). In particular, the momentum @ may not be conserved.
In order to write the equation for §&, let us note the identity

1 1
5;:-/ Wl f dvdz = 66 + L]af2.
2 Jaxgrn 2
The momentum satisfies
d1l, , ~
(120) E§|u| = (uv [u]p u)ﬁpv
and the equation for total energy is given by

2
&5 = /Qan sp|v|” f dvdx + (u, [u] )x, -
Subtracting the two we obtain
d
CoE = - /Qan Sp[0f2f dv e+ (u, [u],), — (@, [u], — ),
Let us further notice the identity
/ s |0 f dvda = / oo — a2 f dvda + 2(u, @), — (@ @), -
QxRn® QxRn®
Collecting the macroscopic terms together we obtain
d
—68:—/ splv — @) f dvdz + (du, [0u] ), ou=u— .
dt QxRn® P
Next, let us decompose the energy on the right hand side into the internal and macroscopic part,
/ sp|v—ﬁ|2fdvdx:/ splv — ul? f dvdz + (Ju, 6u),, .
QxR QxR"™
We obtain the energy law
d
(121) —§€ = —/ splv — ul*f dvdz + (Su, [6u] ), — (6u,6u),, .
de QxRn™ P ’

Naturally, we will seek to relate the right hand side back to the energy. This comes from two assumptions.
First, we require that the averaging operator has a numerical range separated from 1, i.e. at any time there
exists € = &(t) € (0,1) such that

(122) sup {(u, [u] )i, + u € L (Kp), u=0, |ullr2(s,) = 1} <l-—e
This in turn implies

(123) (6u, 6u), — (6u, [0u] ))x, = e(du,6u)s,.

Second, we require the strength function to have a positive lower bound

(124) inf s,(z,t) = s(t).

T ESupp p
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Plugging these back into (121) we obtain

d—(55 < —/ splv — u|*f dvdz — £(u, Su),,
dt QXR?
(125) < —¢ (/ splv — ul?f dvdz + (Su, 5u)ﬁp>
QxR™

:—5/ splv —a]*fdvdr < —esé€.
QxR"

This implies a general sufficient condition for alignment.

Proposition 4.9. Let M be a material model on an arbitrary environment Q. The kinetic model (95) aligns
in the enerqgy sense provide the following condition holds

(126) /OO e(t)s(t) dt = oo.
0

A few remarks are in order.

Remark 4.10. Let us note that for symmetric models with s, = 1, the space of vanishing momentum L3(p)
is invariant under [-] ,» and the numerical range determines the range of the spectrum. So, condition (122) is
equivalent to a spectral gap between the trivial eigenvalue 1 and the rest of the spectrum to the left

(127) spec{[],; Lg(p)} C (—00,1 —¢],
where

L(p) = {u € L*(p): /Qudp = 0}-

For this reason, although in general (122) is not a spectral property, we still refer to it as a spectral gap.
In general, however, conservative models leave the null-space

Li(k,) = {u € L*(k,): / udk, = O}
Q
invariant. In this case it is possible to relate ¢ to the actual spectral gap of [-]p on L3(k,) if s, is bounded

from below. Details are provided in Appendix 12.

Remark 4.11. Proposition 4.9 can be viewed as a generalization of Tadmor’s [Tad21] to the non-symmetric
case. The argument there is slightly different in the interpretation of the spectral gap condition (123). As
opposed to (123) where all the inner products are related to the common ,-weight, one can make a more
direct relation to the physical macroscopic energy, i.e. the p-weighted product:

(6u, 6u)n, — (6u, [0u] )k, = A(du, 0u),.
The corresponding alignment statement in terms of A reads

(128) /000 min{s(t), A(¢)} dt = .

Such A\ can be expressed in variational form as the second (approximate) eigenvalue of the alignment
operator

(129) Lou=sy(u—[ul,).
We have
(130) A= oinf LW

ueL2(p) (u,u),

The advantage of this approach consists in the fact that for symmetric models represented by a kernel the
formulation (130) takes a more explicit form:

(131) A= inf /Q . u(z) — u(y)[*¢, (2, y) dp(y) dp(x).

u€LF(p),llull2=1
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Theorem 2 of [Tad21] gives a kinematic estimate in terms of lower and upper bounds on the density, in case
when = T™. Namely,

2
(132) A=
P+
The result is proved under condition (133) below, however it can be recast for physically local kernels (66)

as well. Let us reproduce the argument as it will be used later in Example 4.14.

Proof of (132). We obtain
L)y > copt [ fula) - uly) dedy.
lz—yl<ro
As shown in [LS19b, Lemma 2.1] this can be further estimated from below by

/ lu(z) — Ave(u)|? du,
Tn

co
(2m)"

where ¢1 = ¢1(ro), and Ave(u) = ﬁ Jo u(x) dz. Recalling that u has momentum zero, we finish with

2
= coc1p”

p? p?
> Jule) - Ave(w) 2 dp(e) > 2= (u,u),.
P+ JTn P+

O

Estimate (132) shows that under global control on py one obtains alignment under the root-assumption
p— = 1/4/1, the same result as proved in Corollary 4.6 under no assumption on p. The difference between the
two approaches is fundamental — dynamic vs kinematic. It appears that the dynamic approach is not sensitive
to the density growth and gives a better result for symmetric models on the torus. However, as we will see
later in Section 4.4 the kinematic approach, although in somewhat different form than presented here, gives
estimates independent of p; as well, and in some cases can even beat the root-result, see Proposition 4.16.
Any bound on the spectral gap that does not rely on p; will prove to be a crucial in the study of relaxation
for kinetic Fokker-Planck models in Section 8.

Let us present two applications of Proposition 4.9 that are distinctly different from the root-result. In
both cases we assume Q = T".

Ezample 4.12 (Mcg-model). Let us assume that ¢ is a mollification kernel, ¢ > 0, fQ ¢dz =1, local or not.
Then its non-zero Fourier modes will necessarily be smaller than unit:

(133) co= sup |o(k)| < 1.
keZ™\{0}

Let us compute the spectral gap as defined by (122). Using that [wupdz = 0 by the Plancherel identity,
(sl oy = [ wptup)ade = 3 [@P RGO < o [ fupl?
Q KeZm {0} Q

We now relate it back to the L?(k,)-norm:

2 P P 2
(il ), < o [ ofpnde <o | 2]l
Suppose now that HLH < L. We define

P¢ ||l oo co

(134) e=1-— Co

2

Po 1l oo

Naturally, € < 1 — ¢y since at the point of maximum of p we have p > py, and so the L*>-norm is at least
1. Also, note that if p is convex in a ball B,.(z), where r is the range of the communication kernel, then
p(x) < pg(x), and (134) holds if restricted to that ball. So, the spectral gap (134) essentially quantifies
flatness of the density p in those regions where it is not convex.
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Also, note that for e = 1 — ¢, the only flock that satisfies (134) is the uniformly distributed one. So, the
smaller the £ the more room there is for variations in distribution. However, (134) still ensures sufficient
spread of the support across the domain (for otherwise the geodesic counterexample applies).

Now, a lower bound on s, can be interpreted as a measure of thickness, see Section 3.7,

(135) s(t) = ©(p,supp p).
Collecting the computations above and applying Proposition 4.9 we obtain the following alignment result.

Corollary 4.13. For the Cucker-Smale model Mcs a sufficient condition for alignment in the energy sense
is the flatness (134) and thickness (135) to satisfy fooo e(t)s(t) dt =

Ezample 4.14 (Myrr-model). For the Motsch-Tadmor non-symmetric model My computation of the gap
is more technical and require heavier assumptions on the density.
Let us assume that the defining kernel ¢ is local, (66), and [ ¢dz = 1. We have

(= wlid)o = [ ate) (ute) — ul)otoin) -
symmetrizing in z and y
(130) 3 | e = ) Potnnt) “ P ayds
5w ) = ool (i = ) oo -y

Now, using that pg(z) < ||¢]|« we bound the first term from below by a multiple of (u, £L,u),, which by (132)
2

is bounded from below by c%|\u|\% As to the second term, note that the component with the dot-product
u(y) - u(z) vanishes by symmetry, and hence we are left with

—% /stz u(y)]*p(y)p(x) (%tlﬂ) — @) $(x —y)dyde = —% /ng u(y) ( ) y)dy + —||“||2
e
Po

=§/m|u<y>|2 )(1- )

We now impose the following condition on the smallness of variation

3
(137) pe—po <=
P+

_ 2
(1_£) () < P20 < P2
[

Po p— P+

Consequently, this term becomes less than half of the main dissipation term (136),

Then

(uvu)l’ - (ua [u]p)P = __(uvu)l"

So, similar to the symmetric case under the flatness assumption (137), the size of the spectral gap is still

estimated at A =¢ 2 = S
Pt

Corollary 4.15. There exists a ¢ > 0 which depends only on the parameters of the model such that any

solution to the kinetic equation (95) on T™ governed by the Motsch-Tadmor averaging aligns in the energy
sense, provided
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4.4. Spectral gap of a ball-positive model. Low energy method. As we have seen the spectral gap
condition (122) plays a central role in alignment dynamics and will be important in the study of relaxation,
see Section 8. It will be essential to find bounds on € that are independent of py, since the growth of the
density cannot be controlled away from equilibrium. In this section we present the so-called low energy
method which allows one to obtain such bounds for ball-positive models on T".

To describe the method let us first discuss energetics of ball-positive models. Since || [-], [[z2(s,) < 1, we

obtain a streak of three inequalities,

(138) (u,u)w, 2 (u, [ ), = ([u],, [u],)x,-

This defines the hierarchy of three x-energies (not to be confused with the physical p-energies)
(139) &o = (wu)x,, &1 =(u,[ul)x,, &= (u],,[u]))x,-

As seen from (50) the difference between the first two energies Ay = £ — &1 controls the rate of alignment
in collective systems. The next difference A; = & — &; is also non-negative by the very definition of
ball-postivity, and in fact by the Cauchy-Schwartz inequality one has the relation

Ao = A

So, it is clear that the strength of ball-positivity measured by .A; bears direct relevance to alignment.
To adopt it for spectral gap calculations, we note that the spectral gap condition (122) can be expressed
directly in terms of top tier energies

(140) Ao = €&, Yu € L?(k,), @ = / updz = 0.
Q

The lower energy method seeks to achieve (140) through comparison between the two terms down in the
hierarchy (low energies)

(141) Ay = g€, Vu € L*(k,), u=0.
Indeed, let us observe that (141) is equivalent to
(142) (1=l ), > (ol [l ey V€ (), 5 =0
and hence
I, lz2ee,) < (L= e)llullrzgs,),  Yu€ L¥(k,), a=0,

which implies (122)~(140).

One can see from (142) that the method is necessarily restricted to the class of ball-positive models. It
turns out that estimating the low energy gap (141) sometimes gives substantial improvements over the direct
approach (140) in the sense of giving a bound independent of p. Let us present several examples from our
list.

Throughout we assume that the kernel in question is local (66) - (67), and the environment is periodic
Q = T". The summary of estimates to be obtained below is given in the following proposition.

Proposition 4.16. For each of the ball-positive models Mcs, My, Mges we have the following bounds from
below on the spectral gap up to a constant multiple:

MODEL | Mcs | M, | Mg
spectral gap ‘ ﬁfo/z(ﬂ) ‘ Pro/2() ‘ ﬁgig (Q), see (156)

In particular, if the kernel is all-to-all, inf ¢, > 0, then the spectral gap is automatically uniform.

Proof of Proposition /.16 for the M s-model. For the M ;-model the following formula was proved in [Shv22]:

1
A=—AQ%NWMN)ﬂMM%M%

(143)
p¢¢($,y):/¢x— (y — &p(§) d¢,
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where up is the Favre-filtration given by M. The proof goes as follows
v = [ (poluel? = pl(uesP)do = [ (pgue - ue = plu)s - (ur)e) do
Q Q

= /Q(pquF = (p(ur)g)g) - ur dz = ¢(x = &)p(§) (ur (2) — (ur)s(E)) - ur(z) A dx

QxQ

- / o — €6y — €)p(€)(ur (x) — up(y)) - up(x) dé dw dy
OxXOAXN

/ Poo(T,y)|ur () —uF(y)|2 dx dy,
QxQ

N =

= [ poal)(un(e) — un(y) - ue(s) dady =
QxQ

where in the last step we performed symmetrization in z,y.
We now estimate pge from below: let |x — y| < ro/2, then

pool,y) = /Q oz —y + (E)ply — €) de > /5 oz —y+ O)B(E)ply — €) A

‘<T‘0/2

> 03/ p(y — &) d€ = c§pry /2().
[€l<ro/2

Thus,
(144) p¢¢(:c,y) Z ﬁm/Q(Q)]lw,me/g.
With this at hand we have
A1 2 2@ [ (@) — e (y) P do dy
lz—y|<r0/2

by [LS19b, Lemma 2.1],
2 Pro/2(Q2) /Q |up — Ave(uF)|2 dx 2 pry/2(2) /Q polur — Ave(up)|2 dz.

Using the vanishing momentum , Ave((up)s) = 0, we continue

= Pro/2(9) /QP¢|UF|2 dz — 2 Ave(ur) - Ave((up)) +(2m)"| Ave(ur)|”
=0

Noting that [, py|ur|* dz = &, we conclude

2 Pros2(2)E1.
So, we have a bound
(145) € = CPry/2(9),

where ¢ > 0 depends only on the parameters of the model.

We obtain the following improvement over the general root-result of Corollary 4.6.

Corollary 4.17. Under the M g-averaging protocol a solution to the Viasov-Alignment equation (95) aligns

. 1
ifp- 2 -

Let us note that under this weak assumption on the density the only known alignment result was estab-
lished in [ST20b] for singular topological models. And in 1D it was proved to hold automatically for any
non-vacuous solutions to the Euler-Alignment system (284) based on the metric or topological Cucker-Smale

averaging protocol. For the system based on the M ,-model such a bound is unknown a priori.

Proof of Proposition /.16 for the Mcg-model. By the assumptions of ball-positivity and locality, ¢ = 1 * 1),

where v is a non-negative smooth kernel satisfying

(146) 1/)(513) 2 CO]l|m|§r0'
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Let us apply the low energy method. We aim to prove the following bound:

(147) € 2 Pry2(Q).
To prove (147) we will quantify the alignment term .4; in a way similar to the previous example. To achieve

this we notice that for the Bochner-positive ¢ the M cg-averaging is nothing but a nested application of two
distinct Favre filtrations. Indeed, let us denote

u
(148) M COTR
Py
Then denoting vp = & 9‘2 we obtain
((UP)w )
Py
Oy Oy

Observe that

A= | () dx—/| Popode = [ oPapsde~ [ lurlpoy dn

Let us examine the second term now: |vp|?poy. We use the fact that the Favre-filtration with respect to
1, 0 is a symmetric operation relative to the measure pg,. So, we can write

/|UF|2Pde$:/UF' (vFB) dex:/v- <UF£> dex:/v-(vFP)w@dx-
Q Q 0 Q 0/ Q

Now let us factor out the common v term:
dv= [ oo (por = (orp)y)do = [ o(@hp(@)ola) - (0(0) = oot = ) dyda
expanding further in vp(y), we obtain

- / 22)P) ) (ww)on () — (vo) ())ile — v) dy da

2v(y)
— MU x)-(vixr) —viz z— T — z X
_/93 0u(v) (@) - (v(z) (2))( y)o( y)dzdyd

symmetrizing in x, z,

71 va_vZ«Q z— T — z T
_2/93 ou(y) M@ — @ - y)e(e —y) dzdy da.

Notice that the integral in y represents the application of the variable doubling convolution to p/ps as in
(143) using kernel ¢. So we obtain the following exact formula for A;:

1

(150) A = 5/ o(x)o(z) (ﬁ) (z, 2)[v(x) — v(2)|* dz da.

02 Pé /) pap
Since pg < ¢1 pointwise, we have, using (144),
p _
(—> 2 c1pypp 2 Pros2(Q)Ljz—z)<r2-

P J pap

So,

A2 (@) [

|z—z|<ro/2

le)o(@o@) ~v(P dzde 2 p%n@) [ polo) - ula) dedo

|lz—z|<ro/2

proceeding as for the M ,-model,

> 7 (0 / o) — Ave(v)[? da 2 2, () / olo(@) — Ave(v)P? dx

(u P)¢
Py

> 7, 5(9) /Q olo(@)? dz = 72, ,5(9) /Q dz 2 72, (@) /Q (up)? dz = %, ,(Q)Er.



38 ROMAN SHVYDKOY

We arrive at (147).
0

Proof of Proposition 4.16 for the Mgc.-model. Since this model is symmetric and non-negative definite it is
automatically ball-positive by Lemma 3.10. So, it is natural to apply the low-energy approach. We start
with the analogue (143) which in this case reads

(151) A — EZp(gzgy) plug)  plugy)|”
P2 T plgr)  plor)
Indeed,
_ e (plug)?® plugr) ’ N
A= zl: p(g1) /Q <Zl:gl () pd
(p(ugi))? plug) p(ugr)
_zz: plgr) %;p(glgl/) plgr) plov)
p(ug) <~ plgigr) plugr)
‘Z”“gl ( olg) 2 pla) p(gm)

noting that the coefficients % add up to 1 over I/,

_ w plgigr) [ plugr) p(“Ql’)
Zp g1 ; ( )

(9)  plor)

plug) (plug))  plugr)
- %;p 99 ) ( pla) — plgr) )

symmetrizing over [, [/,

2

1 | plug) — plugr)
lz a ‘ (@) plor)

[\)

The formula indicates that the energy keeps dissipating as long as discrepancies remain between local
averages in adjacent and connected neighborhoods, p(g;g1/) > 0. To extract a working criterion out of it, we
rewrite A; is a different way:

A Z ugl) Z ( 9 )

LU

Where
p ngl/

plg)plar)
Considering those as entries of the symmetric matrix G = {G”/}fl,:l and denoting the vector

_ <p(ug1) p(ugr) )
Velg) T Velar) )
the above expression can be written as
= |X|? - (GX, X).

The vanishing momentum condition means that the vector X belongs to the hyperplane orthogonal to the
vector of roots Y = (1/p(g1),---,1/p(gr)), denoted Y. Such plane remains invariant under the action of
G, while GY =Y. So, the low-energy bound (141) becomes equivalent to the spectral gap condition on G:

(152) spec{G; Y} <1 —e.
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It is not easy, however, to compute the spectrum of G exactly. A more practical approach to (152) would
be to find a condition on the entries of G that implies a bound like (152). To this end, let us assume that
non-zero entries are uniformly bounded from below, i.e. the neighborhoods have ‘populated intersections’:

(153) plaigr) = 6/ pla)plar), Vi,1": supp g Nsupp gr # 0,

for some 4 > 0.
Under this condition let us consider the eigenvalue problem

(1-6)X=GX, X -Y=0.

Renormalizing X = (Xq,...,X) via z; = \/% we obtain the system
Pl

(154) (1-e)y = 3 p;leg’gl)xl,.

Note that the sum on the right represents a convex combination of coordinates.

Denote x+ = ;4 the positive maximal and = = z;- the negative minimal values. Since X € Y, those
must be strictly signed. Since ¢’s form a partition of unity, there is a sequence of indexes It = lo,l1,...,1, =
I~ with p < L such that supp g;, Nsupp gi,,, # 0. Let us start with (154) at [ = ly. Then [y is one of the
neighbors. We can assume without loss of generality that z;, < zT for otherwise, we relabel and start with
the first index [; having this property.

We leave the [;-term unchanged, and estimate rest of x’s by 2™ to obtain

o)t ~ P(giegi) - P(gzogzl)x
(=) <(1 p(gzo)> - plge)

I’: supp g,/ Nsupp g; #0

Solving for z;, we obtain

€ +
p(gi91,)
p(g1y)

Ty, 2

Since z;, < o™ it implies in particular that € > 0. It also follows from (153) that % > 62 and hence,
i

By the same computation centered this time at x;, and with € reset to 55 we obtain

Ty, = (1 — %) xT.

Continuing the process to the last term we obtain

_ € L € i
2 (1) w2 (1 ) o
Recalling that 2~ < 0, it implies € > 62X, Thus, the spectral gap is estimated to be at least
(155) e =62,

To estimate ¢ in terms of thickness, let us observe that by continuity in any overlapping neighborhoods there
exists a ball of fixed radius rgee > 0

(156) By (x) C supp(g:) N supp(gr)
such that g;, g > ¢1 on B, (z) for some fixed ¢; > 0. Thus, we have using that p(g;) <1,
P G1gr .
# > c%prseg (Q)'
p(g1)p(gr)

SO) 5 Z stcg (Q)
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4.4.1. Application of the low energy method to non-ball-positive models. For non-ball-positive models such
as Motsch-Tadmor, or more generally, for M the low energy method can still produce estimates on spectral
gap for almost uniformly distributed densities,

1
(157) Hp ——|| <.
192014
Here, we make the same Bochner positivity assumption on the defining kernel ¢ = v % ¢ and the locality
(146).
Let us start as in Example 4.14 by symmetrizing and using cancellation
¢(z —y)
(e, = (1l ), = [ ule) (o) — u))pla)pl) 252 dyda
QxQ Py (x)
L oz —y
=3 [t = o) A ay s
QxQ py ()
1 9 1 1
-5 lu@)"p(@)pW) | == 75—~ | ¢z —y)dyde =T+ II.
2 Jaxa ps (@) py " (y)

First, note that
I'=e / u(z) - (u(z) —u(y))p(x)p(y)é(z —y) dy dz = crf(u,u)p,p — (u, [u] ,)p,pl;
QxQ

which is exactly the spectral gap form that appears for the Mg model. So, using Proposition 4.16 and
(157) we obtain

1> capyy o ()(usu)p,p > cales — 6)°(ca — 8)' 7 (u,u)

o > cs(u,u)x,,

provided 6 < 3 min{cs,c4}. Next,

1 1
=3 /an @) P (v) |1 - = <1Lﬁ>¢ v

Using again (157),

§m| = §m| =

p > Po 204—621_ 20
pl_B p ca+6  cg+6 )

So, if 0 is small enough we have

We arrive at
11| < ced(u,u)x, .
Combining the two together we obtain
(w,w), = (u, [u] )i, = (c5 = c66)(u, u)w, = c7(u,u)x,,

provided § < cg, where cg is an absolute constant depending only on the parameters of the model. We have
thus proved a version of Proposition 4.16 for Mz models.

Proposition 4.18. There exist constants §,co > 0 depending only on the parameters of the model Mg,
0 < B <1, such that for any density satisfying (157) the size of the spectral gap is estimated as €9 > cy.
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5. DETERMINISTIC MEAN-FIELD LIMIT

In this section we consider either the periodic or open environments 2 = T”, R".
The goal of this section will be to derive the Vlasov-Alignment equation (95), as the weak limit of empirical
measures

N
(158) pr = Mibe, ) ® bu,0),
i=1
where (x;,v;), solve the agent based system (89). We will focus on the measure-valued solutions with
bounded support. Although this is not a necessary assumption, it simplifies some of the technical issues
considerably.

Definition 5.1. We say that {u;ogi<r € Cuw=([0,T); P(Br x Br)) is a measure-valued solution to (95)
with initial condition po if for any test-function g € C°°([0,T") x € x R™) one has, for all 0 < ¢ < T,

/ g(t, z,v) dpy(x,v) = / 9(0,z,v) dpo(z,v)
(159) QxR QxR

¢
-|-/ / (Osg +v-Vag +s,,([us], —v) - Vug)dus(z,v) ds.
0 JOxRn® i

The definition makes sense provided s,, and s, [us] ,, are bounded and continuous functions in (s,2).
This typically can be derived from the regularity of the model as stipulated in Section 3.7. But since we
cannot rely on any a priori thickness of solutions we must assume that the model M is uniformly regular.

With this assumption, the continuity of s, (z) in z follows from (81). Continuity in s follows from (82):

‘oo 5 Wi (Ps/,Ps”) <W (,LLS/,,LLS//).

Since for compactly supported measures W7 determines the weak*-convergence, the claim follows. As to the
weighted averages, we have

185, = Sp,u

Spe [U’S]ps :‘/B B ¢ps(x,y)vdus(y,v).
RXDR

So, again the continuity in z follows from (81). In terms of time, we use (82)

/ ¢ps/ (IE, y)’U d/LS' (ya 1)) - / ¢PS// (IE, y)’U d:us” (ya 1))
BrXxBr

BrXBr

- / G, (@, 9)0l dtar (y,0) — dpsr (3, 0)]
BrXxBRr

+ / By (@29) — G (s )]0 dpter (3, )
BrXBRr

< 61W1 (Ms’ ) /'I’S”) + a]%I/Vl (ps’a ps”) 5 Wl (Ms’ ) ﬂs”)-

The crucial and elementary observation is that the empirical measure (158) satisfies (159) if and only
if {(z;,v;)}: solve the agent-based system (89). As a consequence, solutions to (89) fall naturally into the
framework of the Vlasov-Alignment equation. Our goal will be to prove the following theorem by showing
contractivity of the map po — p+ on any finite time interval.

Theorem 5.2. Suppose M is uniformly regular. Let ug € P(Q x R™) be any measure with compact support.
Then for any T > 0 there exists a unique measure-valued solution { i }o<t<T € Cuw=([0,T); P(Br(r)) to (95)
which can be reconstructed from solutions to (89) as follows. Let all (z9,v)) € O, where O is some fived

neighborhood of supp po and such that pY — po weakly. Then ul — ;. weakly uniformly on [0,T).

As a corollary we obtain validity of the mean-field limit in all the cases listed in the last row of Table 2.
The theorem will be proved via a Lagrangian approach using the transport structure of (??). To this end,
we introduce the characteristic flow

(160) %X(t, s,x,v) =V(t,s,z,0), X(s,s,2,v) =z,
(161) %V(t, 8,2,0) =sp(X)([u], (X) = V), V(s s,z,0)=0.
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We also denote X (t,0,z,v) = X(¢t,z,v), V(¢,0,z,0v) = V(¢ z,v), and (x,v) = w. Note that the right
hand side of (161) is Lipschitz in (X,V), so the flow is well-defined on [0,7]. Define the test-function
g(s,w) = h(X(t, s,w), V(t,s,w)) for some h € C§°(R?"), for which we have
959 +v-Vag+sy([ul, —v) Vyg=0.
So, plugging it into (159) we obtain
(162) / h(w) dps(w) = / h(X(t,w), V(t,w))dpo(w).
QxR® QxR

This means that that u; is a push-forward of the initial measure pgo along the flow-map (X, V), s =
(X, V)#u0.

The proof of the mean-field limit consists of two steps: establishing control over the deformation (VX, VV')
on a given time interval, and proving Lipschitzness of the push-forward map in the W;-metric.

So, let us assume that on a time interval [0, T'] we have a solution y; € P(Bg). By the maximum principle
of Lemma 4.1

(163) IV(#t)|Le) < max [v] < diam O.
(z,v)€O

Let us fix a compact domain O with supp po C O. Then
d
3 1VX =) < IVViL=(0)-
Next,
d
Vv < VX V(s [u],)(X) + VX Vs, (X)V +5,(X)VV,
so, in view of (ev4), (163), and (81), we obtain the inequality up to a constant depending only on R, m, O, S,

d
&HVVHL“’(O) <|IVX L0y + [IVV] Lo (0)-
We thus conclude that

Let us now proceed to continuity estimates. Let us fix two measures puj}, i € P(Bgr) for all t € [0,T]. We
also fix a common initial domain O, supp pf U supp py C O. Clearly,

d
(165) &HXI_XH”LOO(O) <V =V L0y
For velocities we have

d

gV = V) = sy (XN [0, (X7) = s (X7 [u"] (X7) 45,0 (X)W =5 (XV?.
So, from (81)-(82), we have

Ispr (X7) ['] 0 (X7) = 80 (X)) [u"] 0 (X)) S WA, ") + Wi (/o' u”p") + | X" = X" || oo ()
and
I8 (X)) =50 (X)) S Wi (', p") + | X — X[ Loe () -

Thus,

d
aHV/ = V"L 0y SWip', p") + Wiu'p',u”p") + V! = V| Lo (0) + 1 X = X7 || oo ().

But for any ||g||Lip < 1 we have
/ g(2)(dg, — dpl)) = / o) (gt — dpi) = / g(X") duty — / g(X") dyi
Q QxR™ QOxR" QOxR"

- / 9(X")(dpty — dul) + / (9(X") — g(X")) dyty
QxR QOxRn

SNVX Lo @) Wi (10, 10) + [|1X" = X" || ()
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In view of (164) we conclude that
(166) Wi(ps, pf) S Wilpo, o) + 1 X" = X" || e (.-
Similarly, for any | g||Lip < 1 we have

/g(:v)(d(u’pi)—d(u”pi’)) =/ g(x)v(du; — dui’)=/ g(X’)V'dué—/ g(X")WV" dpg
Q QxR"” QxR"? QxR™

- / g (XYW (dpy — dul)) + / (XYW — g(X"V") dy
QxR™ QxR

< (dlam O|VX || (0) + 19/l Lo (B) [VV | Lo (0)) Wi (10 16 )

+mdiam O X" — X"|[ L= (0) + |9l LB V' = V" [|L=(0)-
In view of (164) we conclude that
(167) Wi (u'p',u” p") S Wipo, no) + I1X" — X”HLOO(O) + V' - V”||L°°(o)-
Thus, we obtain

%HV/ —V"lLe0y S Wilpo, o) + X" = X" |0y + V' = V|| Lo (0
Combining with (165) we conclude that
(168) X" = X |0y + IV = V[ (0) < C(R, T)Wa(pg, 11g)-
Let us now fix a function h with Lip(h) < 1, and use the transport identity (162):

[ b= [ nwat = [ v - [ ne v
QxR™ QxR™ QxR™ QOxR™

_ / WX, V) (diy — dul)) + / WX, V') = h(X", V)] il
QxR™ QxR™

< Lipo (W(X", V') Wi (g, 1g) + | X = X[l (0) + Vi = Villz=(0)-
Using that
Lipo (W(X", V")) < IVV|[L=(0) + IVX L~ (0),
and applying (164), (168) we conclude the following bounds
(169) Wi (py, ) < C(R, O, T)W1 (1, 1g)-

This immediately implies uniqueness and stability of measure-valued solutions.
So, we start now with an arbitrary measure ug, and approximate it weakly with a sequence of empirical
measures

N
(170) pd = mids, ® by,

i=1
with all (z;,v;) € O, where O is some fixed neighborhood of supp . Then let us run the agent-based
alignment model alignment (89). For any time T, we have supp ul¥ C Bjoj+14, X Ba,, t < T. Thus,
according to (169), ul¥ is weakly Cauchy, and hence p¥ — u; for some ju;. To finish the proof Theorem 5.2
we now prove a short lemma showing that the limit solves the Vlasov-alignment equation weakly.

Lemma 5.3. Suppose a sequence of solutions u~ € Cy=([0,T); P(BRr)) converges weakly pointwise, i.e.
uN — g for all0 <t <T. Then p € Cyp-([0,T); P(BR)) is a weak solution to (?7).

Proof. The weak*-continuity of the limit will follow immediately from (159) once it is established. Clearly,
all the linear terms in (159) converge to their natural limits. As to the force let us note for any s < T, we
have (by computations done above)

Wi (o, p2") + Wi (ul p ul pl") < CWa (Y, pd') < CWA (g "),
since both are solutions to the Vlasov-alignment equation. Sending M — oo we obtain

Wi(pl, ps) + Wiul pll s usps) < CW(pg', o),
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which by continuity (82) implies that
lIspr ([l ] = v) = 8p, ([us],,, = V)l =) = 0

uniformly in s. Together with the weak convergence assumed for p¥ we obtain

t t
[ ],y -oadeods— [ ], - v)duteo s
0o Jaxrr ° Ps 0 Jaxgre :
This finishes the proof. O

Finally, let us discuss the implementation of Theorem 5.2 to global well-posedness of smooth solutions.
Since all solutions are transported according to (162) regularity of a solution will depend on the regularity
of initial data and the parameters of the model. First, let us notice that the Jacobian of the characteristic
map, by the Liouville formula, is given by

det Vo (X, V) (t,w) = exp {—n /Ot $,(X (5,0)) ds} .

Then if o = fo dw, with fo € C*, k € N and compactly supported, then for any ¢ > 0,

(171) ft, X (t,w),V(t,w)) = folw)exp {n/o 5p(X (s,w)) ds} )

Inverting the flow and noting that (X, V') and s, are C* implies f € C* at all times with support in v being
confined to its original bounds and support in x growing at most linearly.

Theorem 5.4. Suppose M is uniformly reqular. Let fo € CE(Q x R™) be any compactly supported distri-
bution. Then for any T > 0 there exists a unique solution f € L>([0,T); C§) to (95) which is supported on
supp fo + Bia, x {0}, where Ay is the mazimal initial velocity.

6. STOCHASTIC MEAN-FIELD LIMIT

As discussed in Section 4.1 one of the main obstacles for alignment on the torus T" is existence of so-called
locked states: solutions with agents locked on periodic orbits that stay at a positive distance greater than
the communication length scale rg. A natural way to avoid such unstable states is to introduce stochastic
noise

dl‘i = V; de

dv; = Si([’U]i — 'Ui) dt + v/20s; dB;,

where B;’s are independent Brownian motions in R™. Note that the noise here is assumed to be “material”,
i.e. it places stochasticity only within the influence of the flock. As N — oo and assuming that the agents

(172)

are indistinguishable, i.e. my =--- =my = %, the system comes in natural correspondence with what we
call the Fokker-Planck-Alignment equation
(173) NWf+v-Vaof =05,0,f + Vi(s,(v—[u] ) f).

A major advantage of using material noise is that the kinetic model (173) possesses a family of thermo-
dynamic equilibria
1 _lv—al?

fot T ol ey

If the underlying model M is conservative every solution is centered around the constant averaged momentum
w4, which predetermines the corresponding equilibrium and opens a possibility for potential relaxation towards
that distribution. The collective behavior interpretation of this result would say that, as expected, the
noise disrupts the locked states and redistributes initial velocities symmetrically around the mean value .
Alignment is then restored in the sense of the vanishing noise limit:

(175) lim lim f7(¢) = ! Sp—q ® dz.

o—0t—o00 o ﬁ

(174)

The problem of relaxation and hypocoercivity will be discussed in Section 8. In this section we provide
a rigorous derivation of equation (173) as a mean-field limit of solutions to the stochastic system (172).
To make this statement precise, let us consider f a solution to (173) on a time interval [0,7] with initial
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distribution fy. Consider now N independent identically distributed random variables (z?,v?), i < N, with
fo = law(z9,v?), and let (z;,v;) solve (172). Form the empirical measure-valued random variables

1 N
AR N Z Ozi(t) @ vy (t)-
=1

The mean-field limit consist of showing that for all + < T, we have uY — f; in law, i.e. for any Lipschitz
function h on 2 x R",

2

1 N
(176) E N;h(xi(t),vi(t))—/ﬂxw h(x,v) f(t,z,v) dzdv| — 0.

Note that fdxdv in this context is considered as a constant random measure.

In general, the convergence (176) is equivalent to propagation of chaos, see Sznitman [Szn91]: if £V denotes
the joint probability distribution of the process (z1,v1,...,2n,vn) solving (172), then for any k > 1, the
k-th marginal f*) converges weakly to the product of k copies of f, f®* as N — oo:

k
(177) (fP o0 =" 0e. . 0uele--al) = [[(fe) ©; € Cp(R*™).

j=1

The strategy of proving (176) is based on the classical coupling method. Note that if (z;,v;)’s were
independent and identically distributed by f, then (176) would have been nothing but the Law of Large
Numbers. So, to achieve the limit we couple (172) with another system of separate N copies of the charac-
teristic processes for (173):

dz; = v; dt
(178)
dl_)i :sp(:fi)([u]p (fl) —1_)i) dt + QO'SP(IEZ') dBZ7
with initial condition (29,v?). Here, p and u are the macroscopic values of f. Note that because the equations

are decoupled, the pairs (Z;,7;) remain independent and identically distributed. By the It6 formula, f is
their common law.
To establish (176) one can add and subtract the intermediate average of h with Z;(t), 7;(¢) pairs:

1 & 2
E N ; h(z;(t),v:(t)) — /Rzn h(z,v)f(t, z,v)dedv
1 & 1 X 2
(179) <E|% Z hiw(t), vi(t) — Z h(zi(t), 5s(t))
- - 2
+E N ; h(Z; (1), 0;(t)) — /Rzn h(z,v)f(t,z,v)dxdv

The second term goes to zero by the Law of Large Numbers, while the first can be estimated using symmetry
by
2

1 N
< ||Vl oEl|zy — Z1* + oy — 51]%].

N
> hlai()vi0) = 5 > hlaa(t), wi(t))

=1

1
E

2|

i=1
So the proof of (176) reduces to obtaining control over separation of characteristics:
(180) E(t) = El|lz; — &) + [vi — )] = 0, as N — oo.

This approach was carried out by Bolley, et al., [BCnC11] in the case of convolution-type alignment
systems and with additive noise (no strength s, thermalization). We now provide a proper extension that
includes general environmental averaging models and material noise as stated.
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Let us also note, following [BCnC11], that a bound on (180) entails a bound on the rate of decorrelation
f) — f®k Indeed,

k
W2(f®, 95 SE | Y |z — @il + v — 62| = kE(t) — 0.
=1

where W5 is the Wesserstein-2 distance.

6.1. Law of large numbers. We will work on the torus 2 = T™ and assume that M is uniformly regular
in the sense of Definition 3.18 with a minor modification. For all our averaging models the Wi-metric used
to define continuity in p can in fact be replaced with a weaker W7 semi-metric determined by finitely many
fixed Lipschitz functions: for hi,...,hx € Lip(Q) with [|hg||Lip < 1,

181 Whl,...,hK Iy
(181) 1 (', p") = max

/ hi(@)[ g (z) — dp"(@)]].
Q

Such is the case for all Favre-based models where h = ¢, or for M., where h; = ¢;. Thus, the uniform
continuity can be understood as follows

Bisosh
(182) ”Sp’ - Sp”Hoo + ||¢p’ - ¢p””oo <owpt K(p/,p”).

Let us now discuss consequences of the assumed regularity of the model on the Law of Large Numbers.
The basic idea is that the model is compatible with the LLN in the averaged sense. Let us recall the classical
law first, see [Szn91]: for a sequence of i.i.d. random variables X : ¥ — R? with bounded second momentum
E|X;|> < Ey and mean EX; = m we have

2

N
1
(183) E N;Xj—m <%

Consequently, if h € C,(R?) and p is the law of X;’s, then in terms of y the above reads
2

N 2
(181) /.. %;hw) - [ pente)] duten)... auton) < L.

We will encounter (184) in two interpretations. Namely, for any h € C,(Q2) and f € P(Q2 x R™), we have

2

N 2
(185) /QN %;h(yj) —/Qh(Z) dp(2)| dp(y1) ... dp(yn) < —C”;\L[”“,
2
al 2
(186) /QNX]R"N %j_l vih(y;) — /Q h(z)u(z)dp(z)| df(yi,v1)...df(yn,on) < %7

where £(f) = foR" [v|2df.
The next two lemmas show that the analogue of these two laws of large numbers also holds with respect
to the components of the model M.

Lemma 6.1. We have

1

2
(187) any = sup /QN ‘SpN (yi) — sp(yi)’ dp(y1) ... dp(yn) < N

pPEP(R)

where pN = % Zjvzl dy;. Note that an is independent of i by symmetry.
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/ — dp]

Proof. To see that we have by (182) and (185),

) K
b0 st anto)-. aotom) £ [

2
dp(y1) - - - dp(yn)

2

K
= Z/ th (y;) / k(2)dp(2)| dp(y1) ... dplyn)
k=1
C
—(||h1]]s0 g || so)-
< Sllilloe + - o)
O
Lemma 6.2. We have
2 1
(188) Oy = s [ ) [V 0) = solos) [, 0] i) df o) S
F:E(F)<Eo JQN xRN
where p is as before, uN = Zjvzl vjly,.y, and p,u are the macroscopic density and velocity of f.
Proof. Let us assume ¢ = 1 for definiteness. We have
s () [ 0) =550 [, 1) = [ (@ (0.2 = 0y .20 () 4™ ()
(189)
+ [ ol ()0 () = ule) dpe)] = T +11.
Let us examine I first. We have by (181),
X
< (o, p) 5= > L]
j=1
Thus,
2 RS 2 pp i (N VN2
I7df(y1,v1) ... df(yn,on) < N > v [*(Wy (™, p)"df(yr,v1) ... df (yn,vw)
QN xRN i=1 QN xRN
and by symmetry in j,
= [ POV ) ) A o)
QN xRN
2
X
S Z/N o |5 o) = [ ) dAn(a)| dfan ) d o)
XR™ j:l

Let us focus on one kth term. We single out the 7 = 1 term from the rest:

1
—2/ o1 ?|he(y1) P df (g1, v1) - .- df (yn,on)
N QN xRN

2
N

+/QNanN jor[? %;hk(yj)—/sﬁk@)dp(@ df(y1,v1) ... df(yn,vn)
2

N
1
Ihkllioc‘fo+50/ — E hk(yj)_/ hi(2)dp(z)| dp(yz)... dp(yn)
QN—1xRn(N-1) = Q

1
<m|

The latter integral is < + with a minor adjustment to N — N — 1 in the average. Thus, by (185),

1

/ [I)?df(y1,v1) ... df(yn,on) S —-
QN xRnN N
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It remains to analyze II. We will treat y; as a parameter, and let us denote hy, (2) = ¢,(y1,2). By the
regularity assumption, h,, € C,(€2) and is even Lipschitz. We have

N

1
1= 5 v 0) = [ han(u(e)dn(o)

j=1

Again, we single out the j = 1 term, and by (186),

1
/ LI df(y1,v1) ... df (yn,on) < m/ 012 hy, (y1)|? df (y1,v1) - .. df(yn,vn)
QN xRN QN xRN

2

N
+/QN - /Q%-Zvjh/yl(yj)—/thl(Z)U(Z)dp(Z) df(y1,v1) ... df(yn,vNn)

1 2 1 2
<zlldol%fo + S 1,128
with a minor adjustment to the index N — N — 1 in the latter. g

6.2. Main result. As discussed earlier we now focus on obtaining an estimate on separations of charac-
teristics to achieve (180). The result holds on a finite time interval [0,7] where f is a smooth solution to
(173) by which we mean existence of sufficiently many derivatives in weighted Sobolev spaces to sufficient
to understand (173) classically, see Section 7.

Theorem 6.3. Suppose M is uniformly regular satisfying (182). Let f be a classical solution to the Fokker-
Planck-Alignment equation (173) on a time interval [0, T satisfying

(190) O(p, Q) =6, YO<t<T,
and
(191) / ealv‘zf(:zz, v,t)dedv <cs, VOLStLT.

QxR®
Then for any solution to the particle system (172) and (178) on the time interval [0,T] with i.i.d. initial
datum (x9,0?) distributed according to the law fo one has the following estimate

_ _ 1

(192) Eflzi — ] + v — 0*] < C1W,

for some Cy,Cy > 0 depending on T and all the constants involved in the assumptions above. Consequently,
the mean-field limit (176) holds.

Proof. We set 0 = 1 for simplicity. First, we notice that the solution has a uniformly bounded energy on
[0,T] and thus (188) applies uniformly on [0, T
Let us denote
E=E, +E,

193
( ) Em = EH.IZ — fi|2], EU = EH’Ul — 6i|2]-

Taking the derivative of the z-component we obviously obtain

d
For the velocity component we use the It6 formula,

d 2

B = El(vi —00) - (si([v]; — vi) = 8,(a)([u], (7:) — 0))] + E ‘\/X =/ 28,(%:)

Let us start with the noise term using (190) and (77),

2 _ 2
- si — Sp(T4) 2
E|v2s; —1/28,(%;)| =2E|—222 | < CE|s; —s,(Z)|°.
‘ p(Zs) NG | (%)
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Recalling that s; = s,~(2;), where p"V = + Zjvzl 65, and denoting pV = + Zjvzl dz,, we add and subtract
intermediate terms

2 2 _ 2
(194) Elsi — sp(@i)|” S E s, (@) —s,n (2)]” +E |spn (2:) — s,(24)|

By regularity of the strength function (81) and symmetry,
2 1 &
E |SpN(xi) - SﬁN(fEi)| SE:+E N Zl |z; — :fj|2 = CE,.
i=

The second term is bounded by av as defined in (187), since p is the law of Z; and the latter are independent,

E |s;v (#:) — s,(%:)|° :/

2
- 55586, W) =sp()l”dp(y1) .- dp(yn) < an.

In conclusion, we obtain
2

E <CE+CYN.

V2si - \ 25, (T;)

Let us now turn to the alignment term. By adding and subtracting several intermediate terms we expand
it as follows

E[(vi — ) - (si([0]; = vi) = 8,(Zi)([u], (Fs) — 0:))] = —Elsilvi — 0:]?]
+E[(vi = 03) - (80 []; = 8p(&i) [u], (20))] + E[(vi — ) - 05(8,(Zi) — 8:)]-

The first term is non-positive, so we simply drop it. Let us estimate the last term. We fix an R > 0 to be
determined later and split the integrand as follows

El(vi — ) - 0i(s5(Z:) — 8i)] = E[(vi — 3) - 0ilj5, < r(5p(Zi) — 84)]
(196) +E[(vi = 0;) - 015,12 r(55(T5) — 84)]
< R2E|’Ui — 5i|2 +E |Si - Sp(,fi)|2 + CE|UZ' — T)i|2 + CEH@Z'F]IIE\}RL

(195)

where in the last term we simply used the global boundedness of the strength functions. For the second term
we use the same estimate as before (194), hence continuing

< (R? + O)E + an + CE[|5;[* 15, > r).
Now,
E[0:* 115, ] < BY2[|0:] |V [1}5,5 ).

Here the first term is bounded by the fourth moment of f which is clearly bounded from the assumption
(191). And using again (191) we estimate the last term by

C.
EMWHZR] = / / fi(z,v)dvda < a—4R2'
QJv|2R e

The latter remains bounded on the interval [0, 7] by a constant by assumption. We thus obtained
(197) E[(v; — 5;) - 0:(5,(%1) — 5:)] < (R? + C)E(t) + an + e /2,
Lastly, let us estimate the second term on the right hand side of (196). We have, denoting u” =
Z?f:l v,y and alN = Zjvzl vl z,y,
El(vi — ) - (si [v]; — 8p(Zi) [u], (T3))] < B

E [, (@) [0V] v (1) = spn (1) [0] 0 (a2) i

198
(19%) E [0 (22) [8V] o (22) = spn (32) [

E [spn (1) 0] (20) = 55(@2) [u], (22)
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The last term here is bounded by Sy, see (188). The elements in the first term are evaluated at the same
point x;. So, by a similar computation as in (189) we have

E ’SpN (x;) [uN] N (z5) — spv (24) [ﬂN} s (x;) ’

1L ) o
(199) SE N;IWIQ W™, 7) | +E W2 (u® o™, 2V 5)]

N N
Sz 3l Pl — 2+ D Bl — 3] 4 B,
i,j=1 i=1
Each term here will be estimated by the same splitting method as before:
E(|9;1%|a; — Zi|*] = E[|9; 15, < glzi — 2% + E[|0;1* 115, > rlws — T3]

< R2Em +E1/2[|5j|4]E1/2[]]"'D]‘|>R] < R2E+C€_QR2/27
and similarly for the middle term. Thus,

(199) < R*E + Ce /2,

It remains to estimate the middle term in (198). Here we use the regularity of the kernel (81) and obtain

2<1 ad = 1215.12
NN;EU%‘—IH |0;1°] -

This term becomes exactly as the previous one. So, the same estimate applies.
Putting the above estimates together and denoting » = aR?/2 and vx = ax + By, we arrive at

d
(201) EE <O (T + I)E + CQ")/N + Cze™".

Inequality (201) is exactly the one that appeared in [BCnC11]. Let us recap the conclusion for com-
pleteness. First, by choosing »r = 1 we see that £ remains uniformly bounded on [0,7T], E < Eq. Thus,
—In(E/eEg) > 1. Denoting v = E/eEq and picking » = — Inv we obtain

(200)

E [spn (@) [0Y] o (@) = spv (@) [0"]

N (jl)

v < —civlnv + coyy < —cvlnv + ey,

where ¢ = max{cy, ¢1}. Rescaling time u(t) = v(t/c) we further obtain

v < —ulnu+ yy.

Letting w = uv;,eft we conclude
w < —whw+1<e 1+ 1.
Thus, w < T'(e™! + 1) = Cr and hence unwrapping the notation, E < Cwﬁ,ﬁcﬁ as claimed.

7. FOKKER-PLANCK-ALIGNMENT EQUATION

In this section we develop a well-posedness theory of classical solutions to Fokker-Plank-Alignment equa-
tions (173) that is suitable for applications to flocking. This means that in addition to the standard regularity
questions we will pay close attention to thickness as related to the spectral gap computations discussed in
Section 4. We will restrict ourselves to the periodic domain 2 = T™ as that is the setting where most of our
results will be used in the sequel. We also set 0 = 1 as it plays no role in the analysis. So, we consider the
FPA equation

(202) hf+v-Vaof =spAuf + Vo (sp(v—[u],)f)-

Classical solutions to (202) are defined to be solutions that belong to a high regularity weighted Sobolev
class. For reasons that will be clarified later it is essential to distribute velocity weights in the manner defined
as follows

(203) HEOxrR)={r:3 Y / (o) 25K 19K F2 dydar < o0 b,
QxR™

K<k [k |=k'
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where (v) = (1 + |[v]?)2. Some remarks are in order to elaborate on this choice. First, we note that the
alignment term in (173) prevents the persistence of a sub-Gaussian bound f < Cpu if it holds initially.
So, setting the problem traditionally in sub-Gaussian Holder classes, c.f. [IM21, AZ21], is not natural for
the FPA equations. One exception is the class of perturbative solutions developed for particular models
in [Chol6, DFT10]. Inclusion of the weights in (203) is necessary to achieve uniqueness primarily due to,
again, the presence of alignment components, see however [Vil09] for the classical much weaker result. The
use of progressively increasing weights for lower order terms is required to control terms coming from the
inhomogeneity in front of the Fokker-Planck operator, which prevents closing a priori estimates for any
single-weight choice. Single weight spaces, however, would have been sufficient for models with s, = 1.

7.1. Local well-posedness. Let us first discuss local well-posedness for thick data on compact domain.

Theorem 7.1. Suppose the model M is regular in the sense of Definition 3.17, and & = T™. Let fy €
HF(Q x R™), k,1 > n+ 3, be an initial condition such that

@(po, Q) > 0.

Then there exists a unique local solution to (202) on a time interval [0,T), where T > 0 depends only on the
initial energy & and thickness ©(pg,Q), in the regularity class

(204) feC,(0,T);HF), V,feL*|0,T]; HF).
Moreover, if f € L2 ([0,T); Hf) is a given solution such that
205 inf O(p, ) >0
(205) inf ©(p, ) >0,

then f can be extended to an interval [0, T + €) in the same class.

We can view the right hand side of (202) as a sum of a weighted Fokker-Planck operator and a smooth
drift

(206) Of+v-Vaof =spLepf +w,-Vof,

where

(207) Lrpf =V (Vof +0f), wWp=—s,[u],.

Let us first disassociate the weights s, and w, from the solution and consider the linear problem
(208) Of+v-Vuf =s(x,t)Lrpf +w(z,t) V,f,

where s, w is a given smooth set of data on € x [0, 7] with uniform bounds
(209) s2c >0, |sllgr+ [wllcr < Co on Q x [0,T].

Lemma 7.2. Under the assumptions (209) for any initial condition fo € HF there exists a unique solution
to (208) on [0,T] with f € Cy([0,T]; Hf'), Vo f € L} ([0, T]; HF), and moreover,

loc

1 < I foll e,

where C' depends only on ¢y and Cy.

Proof. To construct a solution to (208) from initial data fo € HJ one first considers a fully viscous regular-
ization

(210) Of +v-Vaof =sLrpf+w-Vyof +eAs,f.

A local solution to (210) on a time interval [0,7:] is obtained via the standard fixed point argument, see
[Kry96]. In order to extend it to all of [0,00) we provide a priori estimates for (208) which automatically
apply to (210) independently of £. As a result we obtain a bound on || f|| z» which depends only on its initial

value, on ¢y and C*-norms of s and w. So, we have a family of solutions f¢ uniformly in C([0,T]; H, ﬁ), and
clearly also in ff € L>([0,7]; L?). By the Aubin-Lions compactness lemma we can pass to the limit € — 0
in any HY for k' < k, I’ < I and weakly in H} extracting a subsequence converging to a solution to (208).
Weak continuity in H, lk also follows classically.

Thus, the problem reduced to obtaining proper a priori bounds for solutions to (208).
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Let us estimate the top v-derivative X f first (here and further on we use a less formal notation for the
partials, only keeping track of the order)

OOKf +v V0K f + 0K 0, f = sLppOsf + 05 f +w - V,0F.
Testing with <v>l OX f we obtain

d 1
p <v>l|&i‘f|2dvdx+—/ <v>lv-vm|a}jf|2dvdx+/
dt Joxmrn 2 Jaxrn

() 510, fO f dv dz
QxR»
:_/ s<v>l|8b+1f|2dvdx+l/
QxRn™ 2

SAU(<U>Z)|8})‘f|2 dvdx

QxR™
+/ sav(<v>lv)|agf|2dvdx+/ s (v)! |a}§f|2dvdx_/ w - Vo ((0))[0% f? dv dz
QxRn? QxR" QxRn?

While the first integral on the left hand side vanishes, the second is bounded by || f”iﬂe All the terms on

l
the right hand side, using that 9, (v)” < (v)?", are also bounded by | f (|2, except for the dissipation which
1
has a uniform bound from below by (209). Thus,

d
G ek <Ol — o [
QxR™ !

(0) |0 £ dv da,
QxR™
where C' is a constant depending on all the L°°-norms of s, w.

2

Let us now estimate the rest of the other top derivatives 811)‘_1‘/891;/ f, k' > 0. Sparing the tedious details,
most of terms are all bounded by C| f||%,x,

l
is given by

where C' is an upper bound for the C*-norms of s, w. The rest

d ’ ’ ’ ’
) 0 KOk fPdode S CIFIy — o [ ()l <0 fP dvd
dt Joxgrn ! QxRn
+ / (0) Dps A OKTK X 1 FARK 9K 1 dy da + / Bys (V) v - V, 08K GK 1 ok K oK' £ qyy da.
QxRn? QxRn?
For the penultimate term we have

/ (V) 9p5 ALK K K 1KoK £ Qv da < — / (W) 9,5V, 0K KK ~1¢. v, 05K oK fdvda
QxR QxR"™

+Cl f 17
1

/ () 8,8 0,|V, 05 KK L f2dudz + C| f|| %
2 QOxR™ !

- / (0)) 0250k K H1K 12 dude + O|| ]2
QxRn t
< CJf%

In the remaining term we take advantage of the dissipation and the higher weight assigned to the lower
order derivatives. Integrating by parts in v we have

/ Bps () v -V, 08K 9K 1 rok—K oK £y da
QxRn?

- / 0,5V, - () 0)OK K 9K~ Fok—K oK' ¢ qy da — / Ops (V) K 9K 1y v, 05K 9K fdvde
QOxR™ QOxR™
C
<clfi+3 [
l 2 Jaxgn

<CIfy+ 2 [ @) ol KoK P dva.

l 2 Jaxgn
As a result we obtain
d

% () |05 9 f 12 dv da < C||f||§ilk - %0/ ()" |R K 1K £12 qy da.
QxR™ QxR™

(v)! |ORK 1K 12 dy da + c/

i (o) 21O K 12 du dar
XRm™
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The same argument works to estimate any positive order derivatives, each time taking advantage of the
higher weight put on one order below. It remains to estimate the zeroth-order term,

d 1
— W2 |12 dvda = _/ sA, (v) TR f2 dvdx—/ s () TV, fI? dv da
dt Joxgn 2 Jaxgn OxR"
(211) —/ sV, ()P o2 dode — / sV, - ()27 0) 2 do da — / (w-V, ()Y 12 dv dz
QxR"” QxR™ OQxR"

< c/ <v>l+2k|f|2dvdx—c0/ )"V, f)? dv da.
QxR™ QxR™

So, the estimate on the 0-th order term closes on itself.
We obtained

d Co
Eﬂf”fqlk < C||f||fqlk - §||va||§{;c,

and the estimate stated in the lemma follows. It also proves uniqueness since the equation is linear.
|

Proof of Theorem 7.1. To construct solutions to the fully non-linear problem (206) we use iteration scheme
based on solving a sequence of linear problems

6tfm+l +v- wam"—l = Sp7n£Fme+1 + Wpom * vvfm+l7
fm+1(0) = fo,

for m = 0,1,.... In order to pass to the limit as m — oo we need to ensure that f™*! remain uniformly
bounded in Hl’C on a fixed time interval [0,7T]. According to Lemma 7.2 a bound on f™*! depends on
smoothness of s,m and w,m and a lower bound on s,~. Thanks to the regularity of M and (77), those can
be controlled by the thickness ©(p™, Q) and the energies

1
Em = —/ [o2f™ dv d.
2 QxR’n

Let us show that there exists a common time interval [0, 7] on which all the energies are uniformly bounded
and the all the densities p™ are uniformly thick.

Starting with the energy, testing (212) with $|v|> we can see that the Fokker-Planck component yields a
bound ||spm [[ccE™ T < SE™TL. Let us denote 25 = O(py,2). Assuming for a moment that the m-th flock
remains thick ©(p™, Q) > ¢ then using the bound

[Wpmlloo < Co(6)VE™,

(212)

we obtain
d—5m+1 <C —/ w" - do da
de QxR"
—C +/ gm [um]pm ,um-i-lpm-i-l dz
Q
<C+ Co(&)\/ﬁm/ ™| da < C 4+ Co(5)VEmEm T
Q
< C + Cy(0) max{E™, EmH1}.
Hence, denoting £™ = max{&°%,&',...,E™}, we obtain from the above
(213) %5’”“ < C + Co(0)Em T,

At the same time, by (71)
(214) 9O(p™, Q) = —cl|u™|| p2(pmy = —cVEMTL

Let us argue by induction. The initial interval of existence for m = 0 is Ty = oco. On that interval
O(po, ) =20 > 4. Then from (213) we have

gl g 50600(6)t + 01(6)600(6)t
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So, for t < C};‘(%) we have i
EL(t) < 280 + 201 (9).

Using (214) we conclude on the same time interval (recall that p™(0) = p° initially)

O(p', Q) = O(po, Q) — tC1(8)\/2E0 + 201 (8) = 26 — tC1(8)v/2E0 + 2C1(9).

) 1 >
Consequently, for ¢t < T OTEToT) we have O(p*, Q) > 0.
Setting T' = min{ A% g } we obtain exact same estimates for the next elements in the
Co(0)? 1 (6)/2E0+2C1(5)
sequence:
E2(t) <26 +2C1(6), t< T
and

O(p*, Q) =25 — tC1(8)y/28 +2C1(8) = 6, t < T.
Continuing in the same manner it follows that £™ < 2& 4+ 2C1(5) and ©(p™, Q) > § on the same time
interval [0, 7] for all m € N.

Lemma 7.2 implies that each solution in the sequence f™ will exist and be uniformly bounded in class
Cyw([0,T]; HF). By compactness we conclude that there exists a converging subsequence in any lower reg-
ularity class, and that the limit solves the equation (206) classically by continuity properties of the model
(80).

From the above we see that the local time of existence T depends only on the initial energy & and
thickness 6. With this observation let us assume that we are given a solution on an interval [0,7”) in the
Sobolev class H and such that (205) holds for all t < 7”. Then the estimate analogous to (213) shows that
the energy £(t) remains bounded on [0,7”) by a constant depending only on § and &. Starting from 7" — e
where £ > 0 is small we construct a solution on a time interval [T” —e,T” — ¢ +T) where T depends only on
0 and Ey and not on €. This extends the solution beyond T” by uniqueness, which we address next.

Let us have two thick solutions f and f in class (204) starting from the same initial condition fy. Denote
g = f— f. We will estimate evolution of this difference in the weighted class L? = HY and show that
estimates close if [ is large enough. Note that according to definition of H, l’“ for k large as assumed, we have
Vof, va, Lypf, Epr S le uniformly.

Let us take the difference

atg +v-Veg= SpACFPg + (Sp - Sﬁ)£FPf+ Wp - Vg + (Wp - Wﬁ) : vvf

Testing with (v)l ¢ and integrating the z-transport term drops out. The rest of the terms are estimated
using continuity assumption (80) and the usual energy estimates

d B ~ . N ~
31191z S glZz + o= plll Lee fllzzlgllzz + (low = pall + 1o = ALENIVo 2 9] -

Here, we replaced the Wi-metrics with L' since this is not essential. The f components and the energy are
uniformly bounded as noted above. So, we have

d _ _
311912z S MgllZz + o= Allllglze + lou = pullillgll 2

Now,

(215) lo— lls < / 9] dv da = / )2 gl ()™ dvdz S llgl 22,
QOxRn QOxRn
provided [ > n. Similarly,

~— l -1
(216) lou — pills < / jollg] do dz = / ()72 gl ()"** dvdz S gl 22,
QxRn QOxRn

provided [ > n + 2.
So, we arrive at

d
gl S lgli2e,

and uniqueness follows.
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7.2. Spread of positivity. In order to extend local solutions globally it is clear that we have to generate
a lower bound on the macroscopic density. Since regularity of the local solution can deteriorate propagation
of the thickness is impossible to prove with the local existence estimates. Instead we resort to what is called
spread of positivity.

Solutions to many kinetic equations tend to develop instantaneous spread of support across the domain,
in the sense of gaining a Gaussian bound

(217) f(t,z,v) = be ol

see [AZ21, Kol34, H67, DEP06, GIMV19, AZ21, DV00, HST20, Mou05, IMS20]. The constants a, b, however,
depend on either the regularity of the solution on a given time interval or bounds on macroscopic quantities
such as the mass-density, energy-density and entropy-density. Such bounds may deteriorate in time which
puts constants a, b in dependence on time as well. With a view towards flocking and regularity the primary
purpose of a bound like (217) would be to translate into a global lower bound on the density p > p_
dependent only on the basic quantities such as drift and entropy. At this point we are essentially using the
advantage of a compact environment. As a consequence, for those models where the drift and entropy can
be controlled in time we can develop global existence and relaxation results.

So, our primary goal in this section will be to establish the Gaussian bound (217) with parameters that
depend only on the entropy/energy and the drift.

2
)

Proposition 7.3. For a given classical solution f € Cy,([0,T); HF(T™)) of (202) on a time interval [0,T)
there exists a,b > 0 which depend only on the parameters of the model M, time T, and

W= sup |ls,[u], [,

tel0,T)
H = sup / |’U|2fd’Ud:E—|—/ f|log f]| dv dx,
te[0,T) J T xR™ Tn xRn
such that
(218) Flt,z,v) = be "’ (tx,0) € T" x R™ x [T/2,T).

Central to our proof will be the weak Harnack inequality proved in [GI23]. To state it we need to introduce
some notation.
We will be looking at solutions on kinetic cylinders defined by, for zo = (to, zo,v0) € R x R™ x R™,

Qr(20) ={z: —r* <t —1t9 <0, |z — o — (t —to)vo| <7, |v—wo| <71}
One can define the Lie-group action on triplets z by
2002z = (to +t,x0 + x + tvg, vy + v).
Then
27 = (—t,—x + tv, —v).
And we define the kinetic multiplication by a scalar as
rz = (r’t, vz, rv).
The cylinders @, (zo) can then be considered as the shift and rescaling of the 0-centered cylinder @, = @Q,-(0)
Qr(20) = 20 0 Q-

And by scaling, rQ1 = Q.
We consider super-solutions to the following general Fokker-Planck equation

(219) Of+v-Vof 2Vy-(AV,f)+B-V,f.
The equation has natural scaling invariance. If
fr20(2) = f(z0 012),
then f, ., satisfies
(220) Otfrizo +0 Vafrzg 2 Vo (ArzVofrzo) + Brzo - Vofrz,
where

(221) A, (2) =Azo0rz), By(z) =1B(20 0rz).
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Thus, the following rule applies:

Claim 7.4. If f solves (219) on @, (z'), then f ,, solves the rescaled equation (220) on QT//T((Z(;I oz')/r).
Furthermore, if A, B satisfy

(222) AL < A <AL IB| <A, zeQn(2),

for some A\,A > 0, then the new coefficients A, ,,B, ., satisfy the same bounds on QT//T((zo_l o z2')/r),
provided r < 1.

For w > 0 small let us introduce the following two non-overlapping cylinders
QF = Qu(1,0,0), Q= Qu(w?0,0).
That is, QF is attached to the top of the basic cylinder Q1(1,0,0), and Q7 is lying on the bottom.

Theorem 7.5 (Weak Harnack inequality, [GI23]). There are constants Rg,wo,p,Co > 0 which depend
only on \, L,n satisfying the following property. If f is a super-solution to (219), in the cylinder QT =
[0,1) x {]z] < Ro} x {|v| < Ro} with A, B satisfying (222), then whenever

(L

We now turn to proving Proposition 7.3. The proof goes in several steps. First, we rewrite the FPA (206)
as follows

1/p
fP dz) < Cy irif f

wo 0

(223) Oif +v-Vaf =s,A0f + (spv+w,) - Vo f +ns,f.
Since the last term is non-negative, f is a super-solution to the truncated equation
(224) Ocf +v-Vaf Z8,A0f + (spv+w,) - Vo f,

which has the structure of (219). We will be mindful of the fact, however, that B = s,v + w,, is unbounded
in v, and this will be taken into account in due course.
In the subsequent course of the proof the various constants denoted

Co,Cly-. .y Wo,W1y.-., T(),Tl,..., To,T1y. .-y Ro,Rl,...

depend only on the parameters of the model, T', and W, H. We call such constants admissible.

STEP 1: CHOOSING DOMAIN OF ELLIPTICITY. Let us recall from (77) that the strength function is supported
from below by a measure of ball-thickness at scale 1y across the domain €2 = T™. Since T" has finite volume
by a covering argument, there exists a constant ¢; depending on n, and there exists 2’ € T" such that

(225) Prosa(0,2") = e,
Consequently,
pro(0,T) > ca, Vz € BTO/Q(:E’).
Next, notice that p,, satisfies the following equation
Oupra = =i+ WD)y = ~(up)vre, > ~csllullzagy) > —esTl.
So, for any ¢ > 0, and any = € B, /2(2), we have

Pro(t, ) = co — tesH.

This implies that on the time interval ¢ € [0, T}], where T} = (J%) AT, we have
3

Pro(t, ) = c2/2, Vx € Bm/z(:zr/),

and in view of (77),
sp(t,x) = s(c2/2) = A, V(t,x) € [0,T1] x By a(2’).
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Let us come back to (225) and extract a thick subdomain for f not too far in v-direction. We have

/ £(0,2,v) dvdz

T0/4 R
:/ / O:vv)dvdx—i—/ / f(0,2,v)dvdz
lv|[<R T0/4(;E [v|>R
</

H
/ f(0,z,v)dvdx + -5
lo|<R R

7'0/4

7‘0/4
So, for R =Ry =1V /=% we have
(226) / / f(0,z,v)dvdr > 1 cs
Byya(e') vl <Ry 2
Let us define our domain of ellipticity Q = [0, T1] x By, 2(2") x Bag, (0), where we have
(227) A <s, <A, Ispv] + [w,| <A

where A = max{S, 2SR, +W?}, and S is the common bound on the strength function by (ev4). The constants
A, A determine Ry, wp,p, Co > 0 from Theorem 7.5, which depend only on A, A, n, so they are admissible.

STEP 2: FINDING THE INITIAL PLATEAU.

We want to find a center of inflation (0, 2o, vg) in such a way that the point (zg, vo) lies within the interior
subdomain B, /4(z") X Bg, (0) and a small w-cylinder around it has a substantial presence of f. That cylinder
will be blown into @, resulting in f having a substantial LP-mass in it. At the same time the domain of
ellipticity © will be blown to engulf the needed wide cylinder Q% to fulfill the assumptions of Theorem 7.5.
The theorem then applies to obtain an admissible lower bound on f at a later time.

Thanks to (226) by the standard covering argument, for any small w one can find a point (xg,v9) €
B, /4(2") x Bg,(0) such that

(228) / £(0,2,v) dvda > czeq| Bys(20) X By (vo)] = csw™,
B 3(I0)><BW(U0)

We will choose w later. Let us prove now that the initial weight of f in a cylinder as in (228) stretches in
time on the natural scale w?.

Lemma 7.6. Suppose initially

/ £(0,2,v) dv dx > csw™.
ng (wo)XBw(U())

Then
(229) / f(2) dz > cew® T2
Q2w (4w o 'U())

Proof. Let us fix a smooth cut-off function h(r) = 1,<1 and h(r) = 0 for r > 2, bounded by 1. Let
he (z,v) = h(z/w®)h(v/w).

Define the kinetic convolution
g(t) = / ft,xo + x + tvg, v + vo)hy(z,v) dvde
QxR™
Then initially, g(0) > csw®™. Let us compute the derivative

d
—g:/ ((%f—i—vo-vmf)hwdvd:v:/ ((’%f—l—(vo—i—v)-vwf)hwdvdx—/ v - Vafhe dvda.
dt QxR7 QxR7

QxR
Note that

< cHVhHOOuF2

/ v+ Vg fhy,dvde / fv-Vyh,dvdx
QxRn QxRn
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So,
d -2
79 > [8pAuf + (sp(v +v9) +w,) - Vy flhy dvde — cw
QxR™
(230) = / Fl8pAvhy — n8phy — (3,(v +v0) +w,) - Vyhy | dvdr — cw™
QxR"
> —Aw2—nA-— (A2R; + W)w_l —w 2> w2
Hence,

g(t) > csw'™ — crw™?t.

Integrating again we obtain
t2

t
/ g(s)ds > csw™t — C7w725
0

4n+2

Setting t = csw ¢7 < w? we obtain

2

w
/ g(s)ds > ceuw® 2.
0

Noting that h,, is supported on Bg,s X Bs, and bounded by 1, we obtain the desired result.

We now make a transformation
w
(231) z—=z00rz, 29=(0,20,v0), T = —1, wy = 2w.
wo
This insures that, whatever w is, the box Q7 gets transformed into our Qa0 (4w?, 29, v0). We now choose w
such that the ambient domain QF° transforms inside our the lower half of the domain of ellipticity. Given
that xo is within B, /4(2") and vo € Bg, (0) it suffices to choose

o —wnmin d B [ o B
Lo 4\ 16R,’ 2R, [

Under so defined rescaling the we have
Quy = Quy (Wi, 20,10),  Qf, = Qu, ((w1/wo)?, 2o + vo(w1/wo)?, vo),
and moreover 2Q%0 = [0,2] X Bar, X Bag, gets transformed inside the domain of ellipticity
2Q™ < [0,7/2] x By, /2(2") x Bag, (0) C Q.

At the same time, the ellipticity bounds (227) remain the same (and in fact improve on the drift). Observe
also that all the parameters involved so far are admissible.

In order to apply the weak Harnack inequality, we need to essentially interpolate the L'-information on
f expressed by (229) between L? and Llog L in order to extract information on the L? level.

Since w; = 2w has been picked already and it is dependent only on the parameters of the model, and
T, W, H, let us write (229) as follows

(232) / f(z)dz = cs.
Quq (WF,0,v0)

We have
/ fllog f|dz < wiH.
le (w%,mo,vg)
Thus,
|12 )0 Qu (ko 00l (| ogal + snfa — 1)) da < Wi,
0

Consequently, for ag > 1,

-
wiH.

/’Hf>Manw%mmwMa<
g

log cvg
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. 4w?H
Choosing ap = exp{—_—} we have
o0
2 Cg
|1 = ah Qe zn )l da < 2.
o 4
At the same time for a = ﬁ we have
1
[e5] CS
/ {f = a} N Qu, (Wi, z0,v0)| da < 1|Qu, (Wi, m0,v0)| = arwi ™" = 4
0
Consequently,
ag
c
[ = )@ @hao, )l da > $.
o
This implies that
cs
> a1} N 2 20,v0)| > ———— = co.
Hf = a1} N Qu, (w1, z0,v0)| > Ao — ay) Cg

Note again that all the constants depend only on the parameters of the model, and T, W, H.
Using transformation (231) which has Jacobian (w1 /wg)*"*? we obtain

{frzo = 1} NQL, | = (wi/wo)* g := ci0.

Hence, by the Chebychev inequality,

1/p 1/p
) Z a1y = C11.

1/p
( ff,zo dz) = (O‘ﬂ{fnm P 041} N QJO
Qug

Theorem 7.5 applies to show that
Hif fr,zo = C12,
wo

or in terms of the original function f,

in f = cia.
Qu; ((w1/wo)?,x0+wv0 (w1/wo)?,v0)
STEP 3: HARNACK CHAINS. It will be more efficient, in terms of notation, to remain in the new system of
coordinates defined by (231). Since the transformation involves only admissible parameters, any bound on
f obtained in the new system will translate into an admissible bound in the old system.
So, in the new coordinates, f satisfies

(233) Of+v-Vaof Z2s(t,x)Af + (b(t,z)v+w(t,z))  V,f.
We make another time-shift to make notation even simpler z — (1,0,0) o z. Thus, we have
(234) ASs<A, [bul+ |w <A,

on the new wide domain of ellipticity
ﬁ = [—1, 1] X BQRO X BQRO.

Notice that the new quantities W, H turn into another pair of admissible constants.
On the previous step we established a bound, which in the new coordinate frame reads

(235) inf f > co,
Qug

where cq is admissible. The goal now is to show that by the time ¢ = 1 the solution spreads across the entire
torus €.

It will also be more accommodating to use Theorem 7.5 where @, is replaced by Q.,. This is clearly
achievable by a slight rescaling and a shift which is allowed by our enlarged ellipticity domain Q. Also, notice
that be rescaling the theorem also applies to the cylinders Qfo /2 with Cy being replaced with an absolute
multiple of Cj, also admissible.

Now let us proceed with the construction of Harnack chains. The original idea goes back to [AS67a, ASG7D]
and has seen more recent adaptations for Fokker-Planck equation in [AZ21]. Our construction will be similar
in spirit to the latter, although quite different in two technical aspects. First, we produce a chain that reaches
the targeted velocity field in fewer steps, thus achieving the exact Gaussian tail on the first run. And second,
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the estimates along the chain will take into account the loss of information that comes with the use of a
weaker version of the Harnack inequality.

Lemma 7.7. Let (235) hold. There exist admissible constants a,b > 0 such that
(236) f(t,z,v) = be !
for all (wo/4)? <t < (wo/2)?, |z| < (wo/2) and all v € R™.

2
)

2|v|
woN *

Proof. Let us fix an N € N to be determined later, and let r =
sequence of points

Denote v = ﬁ Let us define the

20 =0, zl+1=zlor(1,0,%ﬁ), l=0,...,N—1.

In other words,

21 = (ZTQ,ZTP’%{),ZT%@ = (t, xy, vp).

Notice that the end-point
_ AP AP
v =y v
reaches the target velocity vector v by cost of a small shift in time-space variable.
Also notice the following embeddings of cylinders

(237) Z1 orng/Q - rQwo(17070)7
which follows by direct verification. Applying z;o from the left we obtain
(238) 2141 0 7Quy 2 C 210 7Qu, (1,0,0).

We will be looking at the rescalings
fi(z) = f(ziorz).
All these functions can be thought as defined on the same domain Q with the same ellipticity constants.
Indeed, if z = (s,y,w) € Q, then
zorz = (ty +1%s, x + 13y +r?sv;, rw + ).

We have
Aol | 4Pl _ 8o

2
provided N > 8“;'2. Next,
0
4|3 8Jv|? 4|3 16]v]3
3 2
|y + 7y 4+ r7sv| < EN? +2ROwS’N3 + AN < (2Ry + 1)wS’N2 < 2Ry,

provided N? > %%. This puts the (¢,2) pair into the box [—1,1] x Bag,, and so, the ellipticity for
s(z; o rz) enjoys the same bounds (234). As to the drift term which gets rescaled to
B =b(t; +12s, z + 3y + r2sv)r(rw + v) + rw(ty +ris, xp + 3y + risv)
notice that
|rw + vy| < 2Ror + |v|
s,
|Bi| < Ar(2Ror + |v]) +rA <A,
provided N > ¢1|v|*, where ¢; is admissible.

The conclusion is that all functions f; if considered defined on €2 satisfy the equation with the same
ellipticity constants provided

| 2

N> e (),
where ¢y is admissible.
Let us now start iteration of the weak Harnack inequality. We have for fy(z) = f(rz) from the assumption

(235), and since 1Quw, C Quo,
1/p
ant2
I5(2)d= > cowy P
Qusg
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According to Theorem 7.5,

4n+2
inf 2
o8 fo= Cgleo(wo/2) 7,
(we artificially divided wp by 2 in order to fit with the general pattern later). According to (237) we have in
particular

An+2

inf fl 2 0 1Co(w0/2)

wp/2

Then by restricting to the cylinder @, /2,

4n+2

1/p
< 7(z) dz) > Oo co (w0/2)
Qug

According to Theorem 7.5,

n+2

inf 2
By > Cyeofun2)

We proceed in the same manner using (238) and applying repeatedly Theorem 7.5.
On the last step we achieve the following bound

An+2
anf Iy = col(wo/2) P = Cgl]N :cocév.

wo/2

In particular at the origin we obtain
fn(0,0,0) = f(zn) = f(tn, 2N, )
Let us now fix a pair (¢, ) such that (wp/4)? <t < (wo/2)?, |z|
g(z) = f((t —tn,z —zn,0) 0 2).

This function satisfies the equation on the slightly shrunk domain of ellipticity [—0.9,0.9] X B1.9r, X B1.9R,-
At the same time

CoC

2 c
< (wo / 2) and consider the function

inf >
(tn—t, N —2,0)0Qu, 9z

The same holds on the subcylinder Q. /2 C (ty—t, 7y —2,0)0Q., (the inclusion follows from the assumptions
n (¢,2)). Applying the above proof to the new function g, we obtain

gltn, zn,v) = f(t,z,v) = cocl .
Picking the minimal N under which the above holds we find N = ¢5 (v)*. Hence,
ft,z,v) > CO€N1n04 _ 006765\1n¢24\(v>2,
and the proof is over. |

STEP 4: SPREAD OF POSITIVITY IN . Let us fix any point of time (wg/4)? <t < (wp/2)? and reset it to 0.
So, at the moment, we have

(239) £(0,z,v) > be—alvl”,

for all |z < (wo/2)® := 73 and all v € R™. Note that 73 is admissible.

The next goal is to establish spread of positivity across the entire periodic domain. Recall that after the
rescaling (231) our distribution f is defined on LyT™ x R™, where Lg is an admissible new period. Also,
recall that since the scaling parameter r < 1, we still have global bounds on the coefficients

(240) 5| <3, <3, Wl <.
First, let us adopt a barrier construction from [AZ21] to our situation.

Lemma 7.8. Suppose
f(O,:E,’U) 2 511{\m\<r, [v|<R}-
Then for any T > 0 we have

1)
flt,z,v) > Zﬂ{\m—tv\<r/2, lv|<R/2}-
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for

1 1
(241) t<tp:=min< 1,7, — — (-
'8 nS(&+ 7))+ (SR+W)(Z + %)
Proof. Let us fix A > 0 to be determined later and consider the barrier function

[z~ Jo]?
X_—At+5(1—T BT

Note that f(O z,v) = x(0,z,v), and also for all t > 0, f(t,z,v) > x(¢t,z,v) = 0, on the boundary 1 =
Jz—tv|® tv| I’U
+

. So, we have f > x on the parabolic boundary in question. We now need to show that y is a

2 2
sub—solutlon inside the ellipsoid 1 > ‘z;—?" + %. By the classical comparison principle it implies f > x on
the same region.
So, differentiating we obtain

Yo+ Vax = —A,

2t n 2n 1 1
(242) [sAyx| =86 |—— R < 2n 5S( R2>
_ — |z —tv] = 2|y 27' 2
Let

1 2
A= 2n55’< R2>+5(SR+W)<T +Tz)'

In view of the bounds above this implies that x is a sub-solution.
It remains to observe that as long as t < % and |z — tv| < 7/2, |v] < R/2, we have x > 2. O

We will be applying Lemma 7.8 for » = r3. Let us pick 7 and R now. Our aim is to make sure that the
time limitation giving by the bound (241) is long enough that every corner of the torus LoT" is reachable
in that time with velocities from the ball |v| < R/4. In other words, we ask for t;R > 4Ly, or

(243) TR > 4Ly, R > 4L

(244) R > 32L, [nS(l ;2> +(SR+W) <%+%>]
So, first we fix 7 = /2. This ensures that the leading order term in (244) has coefficient 7. Next, we fix the
minimal R = R; satisfying both (243) and (244). Note that R; is admissible.

Setting & = beE% which is also admissible, in view of (239) we have

F(0,2,0) > 01 qjoi<ry, ol<Ba)-
Then 5
Ft,2,0) 2 S Ljo—to|<ra/2, l<Rij2y,  tS
Fix any 29 € LoT™. Then at time t; there exists |vg| < Ry/4 such that t;ug = xo. Notice that if
|z — zo| < r3/4, |v—1wo| <r3/4,

then |z — t1v] = |x — 2o + t1(vo — v)| < 7r3/2, and certainly, |v] < R1/2. So,

)
f(ty,z,0) > 1 Hle—wol<rs/a, lv—uvo|<rs/4}-

Let us recall that we have started from any point of time (wo/4)? < t < (wo/2)?, and obtained a time t;
independent of t. So, we found that for any zy € LyT" there exists a vg, |vg| < R1/4, which depends only
on g such that

1)
(245) F(,2,0) 2 71 {o/0)2<t—t1<(w0/2)2, [o—zol<rs/a, [vo—vo|<rs/4}-
In particular,
p(t,l’o): f(t,.’L'Q,’U)d’U) / f(t,l'o,’l))d’l)> )\17
R™ |[v—vo|<r3/4
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where \; is admissible, and (wo/4)? < t —t; < (wo/2)%. So, for all such times, the density has a uniform
lower bound A;. At the same time there exists an admissible A; such that

s(t,z) + |b(t, z)v + w(t, z)| < Aq,

for all (t,z,v) € [(wo/4)? +t1, (wo/2)? + t1] X LoT™ x Byr, = Q.

This implies that we have another initial plateau (245), but now around an arbitrary point xg € LoT",
and inside a large domain of ellipticity ;. Applying Lemma 7.7 to shifted and if necessary rescaled solution
f, we find a time t5 < (wo/2)? + t; and admissible wy, a;,b; > 0 such that

2
f(t27 x, U) = ble_al‘v| ]l\zfzo|<w1-
The obtained admissible constants are independent of o by virtue of the argument on Step 3. Thus,
(246) f(ta,z,v) = bye—alvl®,

Now, let us go back to Step 1 and recall that we started with time 0 and found an admissible time
0 <ty < & such that (246) holds. Starting at any other initial time 1 — ¢, > ¢ > 0, we find that (246) holds
at t + to. This finishes the proof.

7.3. Entropy and global well-posedness. The main implication of Proposition 7.3 can be expressed in
terms of lower bound on the density.

Corollary 7.9. For a given classical solution f € Cy([0,T); HF(T™)) of (202) on a time interval [0,T)
there exists p_ which depends only on the parameters of the model M, time T, and W, H such that

p(t,x) = p_, V(t,x) € [T/2,T) x T™.

So, controlling W and H over any finite time interval prevents formation of vacuum, which by Theorem 7.1
implies global extension. For a special class of our models control over W and H can indeed be given a priori
in terms of energy. We start with H.

First we recall that H is controlled by the true entropy

1
’H:—/ |v|2fdvd3:—|—/ flog f dvduz.

2 Jaxmrn QxR"

Indeed, by the classical inequality, [Lio94, GJV04], there is an absolute constant C' > 0 such that
1
(247) / |flogf|dvd:v</ flogfdvd:c—i——/ o> fdvdz +C < H + C.
QxRn® QxRn® 4 QxR

So,
(248) H<2H +C.

We also have control over the energy
(249) EL2H+C.

Lemma 7.10. Suppose M satisfies (90). Then H is finite on any finite time interval. Moreover, if the
model M is conservative, then H is globally bounded by initial data

(250) H < 2Ho +C.
Proof. We have directly from the equation
d Vo fI?
251 —7—[:—/ S [—+2v—u Vof+v-(v—|u dvdz.
(251) e I R (R R SRR ORY,

Using the identities

/ sp [u],, - Vo fdzdv =0, / spv - [u], fdzdv = (u, [u] ,)x,,
QxRn QxR"
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and replace [u]  with u in the second term and compute the third as follows

p

/QXRHSPU-(U—[u]p)fdvdxz/ﬂstpv-(U—u)fdvdx—i—/ﬂstpv-(u—[u]p)fdvdx

= [ sl avde + fulag, — (),
QxR™

We obtain
d Vof + (v —u)f|?
(252) G [ s OO dde - g, + (i)

We can see that # < Ho for conservative models and (250) follows.
Under (90) we use (249) to conclude that H < C1H + Cs. The conclusion follows. O

Immediately from Lemma 7.10 we obtain control over W as well under L? — L* boundedness on the
averages.

Lemma 7.11. Suppose M satisfies (%) Then H,W are finite on any finite time interval. Moreover, if
the model M is conservative, then H, W are uniformly bounded by a constant depending only on the initial
condition.

Theorem 7.12. Suppose the model M is regular and satisfies (93). Then any local solution f to the
Fokker-Planck-Alignment equation (202) in class HF(Q x R™) extends globally in time. Consequently, (202)
is globally well-posed for thick data

fo€ HF(Q xR"), k,l=n+3, O(p,R) >0.

If in addition M is conservative, then there exists a p— > 0 depending only on the initial entropy Ho and
the parameters of the model, such that

(253) p(t,x) = p_, V(t,z) € [1,00) x T™.

A simple rescaling argument shows that in fact for any time ¢g > 0 there exists p_— > 0 depending on the
initial entropy Ho, to, and the parameters of the model such that

(254) p(t,x) = p_, Y(t, ) € [to,00) x T™.

So, vacuum disappears instantaneously.

As shown on the third row of Table 2 all our models are regular on compact environment, and hence the
corresponding FPA are globally well-posed for thick data. In addition, the model Mcg, My, and M., due
to being conservative, also enjoy the uniform bound from below on the density (253).

8. GLOBAL RELAXATION AND HYPOCOERCIVITY

The discussion in this section will be taking place on the compact domain 2 = T™. The Fokker-Planck-
Alignment equation

(255) Wf+v-Vaof =08p80f + Vo (sp(v—[u] ) f),
has an obvious equilibrium

1 _v—a)?

et

for any constant vector #. In this section we demonstrate relaxation towards such equilibrium for large data.

There are several issues that arise when comparing this result to the classical linear Fokker-Planck re-
laxation, see [Vil09]. First, the nonlinear alignment force pumps energy into the system as will be seen
from (262), which prevents direct sliding of the solution towards global Maxwellian. Second, the degeneracy
of thermalization os, needs to be avoided in order to retain uniform hypoellipticity of the equation. And
third, since we are not assuming that M is conservative, it is not immediately clear that the time dependent
momentum # settles to a limiting vector uqo.

We settle these issues in steps. Our first general result lists all the necessary functional requirements on
the solution to ensure relaxation towards a moving Maxwellian. We then examine how these requirements

(256) fio.a
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are met in the context of regularity properties stated in Section 3.7 for specific classes of models and how
the stabilization of momentum can be deduced.

Proposition 8.1. Suppose M is a material model. Let f € HF(Q x R™) be a classical solution to (173)
with density p satisfying the following conditions uniformly in time

(1) there exist constants co,c1,ca > 0 such that co < s, < c1 and ||Vs,|leo < c2 for all p € D;

(ii) there exists a constant €9 > 0 such that

(257) sup {(u, [u],)r, © u€ L*(kp), 0 =0, |ullr2(s,) = 1} <1-—eo.

(iii) lIsp [, lz2(0)—sr200) + IVa(sp [ ) 22(0) > 2(0) < €3-
Then f relazes to the corresponding Mazwellian exponentially fast,

(258) [ £(t) = to.aw L1 @xrny < can/o~1Z(fo) e,
where ¢y, c5 > 0 depend only on the parameters of the model M and ¢y, c1, ca, c3,e0. Here, Z(fo) is the Fisher
information defined in (267), and

ﬁ:/ vf(t, z,v) dv de.
QxRn?
Proof of Proposition 8.1. We seek to estimate the relative entropy defined by

(259) H = a/ flog / dvdz.
QxR” Ho,a

By the Csiszar-Kullback inequality, we have
CU"f - ﬂa,ﬁ”% < H,

for some absolute c. So, an exponential decay of the entropy would imply the desired result. Let us also recall
that Sobolev densities f € Hf(Q x R™) have finite Fisher information (see below) which in turns control #,
see [TV00, Lemma 1]. We can therefore analyze H classically.

Since the model at hand is not assumed to be Galilean invariant or conservative the mean velocity @ is
time dependent and generally may not be assumed 0 without changing the equation. It will, however, be
beneficial to pass to the reference frame centered at @. So, we consider the change of variables

f@ot) = f@o+at), G=u—1, F=p.
In the new variables the equation becomes a system (dropping tildas)
Of 4+ (w+a)-Vof =t -Vof + 08,80 f + V- (sp(v—[u],)f)

(260) Uy :/Q([u]p—u)dlip

/ updzr = 0.
Q

We also denote p1, = fi5,0. Again, let us note that the extra transport term @, - V, f appears because we
do not assume that our model is conservative. We keep in mind that u; is a constant vector at any point of
time.

The starting point in the proof is two forms of the entropy law. One is (252), which after o-rescaling
reads

2
dvdz — [lull72(,) + (u, [u])x,

d oV v —u
(261) EH_—/QXWSP' f+} ki

Using the spectral gap assumption (ii) we conclude
d 2
FTEARS —eollullz2(,)-

And another form of entropy law follows directly from (251) (note that the extra transport term @ - V, f
does not effect either of them)

d Vo 2
o / ,JoVud +of]
QOxR™

(262) o= 7 dvdx + (u, [u],)x, -
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Although this form is not dissipative, it gives access to the partial Fisher information

2
I’uv:/ 7|vaf+vf| dvdz.
QxR f

In view of (i) and (iii), we have

d
(263) EH < —coZpy + (u,[u],)r, < —coZow + cHuH%g(%).

Combining with the previous form (263) we obtain
d
(264) &H STy — ||u||2L2(np)'

The next stage of the proof consists of showing that the classical hypocoercivity of the linear Fokker-
Planck equation extends to the fully non-linear alignment model. In contrast to the M ;-model analyzed in
[Shv22] the general system (260) requires special attention due to presence of several additional ingredients
such as inhomogeneity of diffusion and w@-shift in the transport term. These result in the slower exponential
rate o, as opposed to o'/ for the M 4-model.

Let us write the equation for the new distribution

h=-,
tho

(265)  hy+ (v+@) - Vah =i - Voh — g ST+ 8,(0Ah — v Voh) +s,(07 ([u], - v)h — [u], - Voh).

p

The Fokker-Planck part of the equation (265) has the traditional structure of an evolution semigroup.
Denoting

B=@W+a) Vs, A=V, A = -v,),

o
where A* is understood relative to the inner product of the weighted space L?(u,), we can write

(266) hy = —os,A*Ah — Bh + spA*([u]p h) — A*(hay).
We consider Fisher information functionals
’Uh 2 mh : ’Uh
Zyw(h) = 02/ M dpto,  Liw(h) = ‘73/2/ u dpte,  Tpa(h) = ‘7/ dpte,
axge D QxR" h axge R

where du, = pe dvdx. The full Fisher information defined by

(267) T=Ty + T

dominates the relative entropy by the classical log-Sobolev inequality
Loy +ZLye 2 NH.

We now differentiate each of these functionals and obtain estimates on the obtained equations. The
coercivity will be restored by putting them together in a proper linear combination along with the entropy
law (264).

We will use the following notation: (g), = fﬂan gdies.

Lemma 8.2. We have
d
= Lo (h) < —20°Dyy — 20Ty — 20" Ly + 2|l 2.

where

Dy = (5,0 V2AI) s h = logh.
Proof. Let us write Z,, = (V,h - V,h),. Computing the derivative we obtain

1d

FEIM; - 2(vvht : VU}_L);L - (|VU}_L|2ht)y - JA + JB + Ju + Jﬁa
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where
Ja = —20(s,VyA*Ah - V,h), + 0 (s,|Veh|2A* AR),,
Jg = —2(VyBh-Vh), + (|V,h|*Bh),
Ju = 2(SPVUA*([U],; h) - Vvh)u - (SP|VUB|2A*([u]p h)u
Ju = =2(VoA*(hity) - Voh), + (V| Voh|? - @ih) .
Let us start with the most straightforward transport term B. We have
Jg = =2(Vah - Vyh), —2(((v + @) - Vohy, o)y + (IVoh|* (v +0) - Voh), = Jp + Jp + J3.
Observe that
Jh = —207%/%1,,
Next, as to the second term:
Jg = =2((v+1) - Vohyho,h ™)y = —((v+0) - Vb, P71,
= ~(lhv, (v + @) - Vohh™2) 0 = —(|he,

*(v+1)- Vah), = ~Ji
and so the two cancel. We obtain
Jp = —20"%7T,,.
Let us turn to the dissipation term J4. Using the identity
Oy, (A*Ah) = A*Ah,, + 0 'h,,,
we have
Ja = —20(s,A* Ahy,hy, )y — 2(3,Vuh - Vo) + 0(3,|Vuh|?A* Ah),,.
Note that the term in the middle is bounded above by —2coo~2Z,, in view of (i). In the other two we switch
A* to the opposite side,

Ja < —20(s,Ahy, - Ahy,)y — 2c00 2Ty + 0(s,A|V A2 - AR),
= —20(s,hAhy, - Ahy,)y — 20(sphe; Ah - Ahy,), — 200 2Ly + 20(3pho; Ahy, - AR),,.
The second and last terms cancel, while the first is exactly —20D,,,:
Ja < =20Dyy — 2¢00 " * L.
For the alignment term we obtain the following the exact identity
(268) Ju=20"2([u], - u)s,-

We note, however, that there is no advantage of keeping the low energy here as the full energy will emerge
later in the proof. So, we replace it with the full energy

(269) Ju <201 = £0)o 2 ||ul 72, ) < 207 2[|uZ 2, -
To prove (268) we manipulate with the formula for J,, as follows
Ju = 28,V A (], B) - VR),s = (s, Vo hI2A ([l 1),
— 2(5, V(0 0+ [ul, b — [ul, - Vuh) - Vuh), = (5, VR - ], B,
=207 (sp [ul, b - Voh) + 207 (sp(v - [ul ) Voh - Voh),, = 2(s,Viah [u] - Voh), = 2(s,VoR(Vh) - [u]  h),.
= Jo+Jo+ Jo+ T,
where V2h is the Hessian matrix of h.
Observe that the first term is exactly the lower energy
Ty =20""(sp [ul, - Voh), = 207%(s, [ul, - vh)u = 20—2([u]p "Wk,
Now comes the crucial observation that the remaining terms that cannot be controlled cancel altogether

J2+ 2+ T8 =0.
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Indeed, using

- 1

(270) Pucsy = Mo, + 3o,

let us compute J32,

_ _ 1
JS = _2(Sphvi1}j [U‘j]p hvi)u = _2(Sphhij [uj]p hvi)u _2(517%]7’%‘ hUj [U‘J]

u

o oy = Ju—2(s,Voh- [ul, IVoh[?),

Also note that
T2 =20 (s, 0 [u, )|V B,
Then we have
Ja+ du = Ty +207 (sp(v - [ul, ) IVoh ) — 2(8,Voh - [u], [Voh[?) = Ty + 2(sp A" ([u], D)V o) ..
Switching A* in the last term we obtain
2(sp A" ([u], W)V oh|?) = 2(s,ph [u], - Vo|Voh]?)u = =2J,.
The obtained terms sum up to zero.

Finally, we show that the momentum term vanishes J;z = 0. Let us expand

o 2 AN 3.—M T2 ol 72, 73
Ja = 2AVERVoh i) =2 (2 i (Vo Vol - aeh), = JL+ J2 + J2.

(o
o

Let us look into the first term,

2 2 2
£ (I3 ) (4% ) (o)
W W Iz

Vo.hl?2v-a _ B
- (%Tt) + (Voh[*Voh- ),
M
So,
oh 2.4 _ _ _
Jg+Jz =~ (%%) + (IVohVoh - ), = =(IVoh A (ht)) = —(Vo|Voh[*hite), = —J5.
I

Thus, J; + J2 + J2 =0.

Lemma 8.3. We have

d 1 1 1
ZTao(h) < —Zal/QIm + (o™ V2 1)1, + §o3DW + 5021?m + c(a™2 £ 1)|ul)?,

where B
Doy = (8,0 Vo Vah|?)

Proof. Let us write

1 d

o3/2 dt

where as before Jyu, Jg, Jy, Jz collect contributions from A, B, and alignment components, respectively.
For the B-term we have

Jp = —(Va((v+a)-Vih)-Voh),— (Vih-Vo((v+@) - Veh)u+ (v4+a) - Ve h)Voh-Vih), = Jh+ T4+ 3.
For the middle term we expand
JE = —(Vih- Vah)y = (ha, (v; + Uj)ha v, ) -
The first term is exactly —o~'Z,, and in the second integrating by parts in x;, we obtain
=—0 Ty + (haya; (0 + )0, )
using that hg,u; = b hy,e;, — hayha,

Zow(h) = (Vb - Voh), + (Voh - Vb)), — (WY oh - Voh), o= Ja + Jp + Ju + Ja,

= _Uilzmc + (hzizj (Uj + ﬁj)ﬁvi)u - (Br-hmj (vj + ﬂj)hvi)u = _Uilzm - Jé - J%-

i
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Hence,
(271) Jp=—0 T,
Let us look into the J4-term:
%JA = —(Vu(spA*AR) - V,h), — (8,Vih - VyA* AR, + (s,A* AWN yh - V.0, = T4 + J5 + 5.
For J} we obtain

Jil = _(SPA*AhIiBUi)M - ((SP)%A*Ath)H = _(SPthwi : VUBW)H - ((Sp)wivvhvvhvi)ﬂ

- - T T (S )Iw Vuh h
_(SpthhIi : Vvhvi)u - (Sphmvl)h : thUi)H - ( Sllj/2 hl/2 .8117/2h1/2v1)hvi
P w

In view of assumption (i),
Jh < —=(5phVoha, - Voho, )y = (Spha, Vol - Vioh, )y + c0 /Ly, Dy
For J% we obtain

Ji = —0’71(SPVIB'VU}I)#—(SpﬁxiA*Ahvi),u = _0'71(Spvxh'vvh>u_(sphvvhzi'Vvhvi)#_(sphvivth ’
The two add up to

h Voh _ _ L B
Vah 'V ) 2(3phV pha; - Vol )y — (8pAh - A(Vyh - Vih)), + co™ '/ Zyy Do

Jhi+J3=—-0"! (spm 1

< _COO'_S/2 \/ImmIv'u + \/Dvavv + Co_l IUUDUU - J,34

Thus,

JA g 60‘3'73/2 \/Izzzv'u + U\/Dvavv +c I’uvav-

Let us examine the alignment term now,

Dy = (Tl A" (ul, ) - T+ (T V(A ([ )y = (8547 (1], 1) - V)
= ()i A" ([l D))+ GA” (] eV (A ([l )
Sphe, A" ([l o)) + 0 (sphVh - [u], ) = (sph - V0 (Vb - Vo),

vi)
h(sp [u ]p)zi - Vohu, )+ (sph [u ]p ha, - Voho )
S$phVy ha, - [u BW)M + 0_1(Sphvwh : [u]p)u — (sph [u]p - Vo(Vyh - th))u

AA

+ p

AA

We can see that the 2rd, 3th, and 5th terms cancel, and we arrive at
Ju = (h(sp [“]p)wi : Vvﬁvi)u + 0_1(Sphvwﬁ : [u]p)u =Jy+J2.
We estimate J! using the assumption (iii), and the fact that L?(k,)- and L?(p)-norms are equivalent under
(),
J& < CHU‘HLZ(NP) V Dy
And again, by (iii),
- — 1 _ -
J,g <o 3/2||U||L2(np) Tpw < 50' IImm +o 2”””%2(1‘%)'

Noticing that %U‘llm is absorbed into (271) and summing up all the terms we arrive at

d

1
Ezmv(h) < _501/2ILE:E + ¢co IwmIm} + 003/2 IUUDUU + 05/2 Dvavv + CU3/2||’U/||L2(;{D) D’UU

+U_1/2HUH%2(KP)
_1 1/2 —-1/2 1 3 l 2 —1/2 2
< 40’ Imm'i‘C(U +1)Iv'u+ 20 Dyy + 20 Dwv+c(0 +1)HU’HL2(R )

Finally, let us look at the momentum term

Ja = (A (00, 10)D, 1) — (0,100, A (Wh)),s + (A" (0eh)Dy, Wi, ) = T+ J2 4+ T2
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Let us note the identity
1

Oy, A" = A¥0,, + p Id,
and expand on J2
J2 = —(04, RA* (0, 0p; h)) . — 01 (O, ity -

The last term vanishes since @; is a constant vector. Thus,

J2 = —(VyOy,h - 40y, h),
In the other two terms we switch A* as well

Jr = — (0, bty - V,0u,h),

J3 = (httg - Voy(0p; ROz, )
The sum of the three is clearly zero by the product rule. So,

Jz = 0.

Lemma 8.4. We have J

Ezmm(h) < yy — UQIDJCU + CHU‘H%Q(NP)'

Proof. We have
1d
odt
The B-term cancels entirely,
Jp = =2(Vu((v+a) - Vzh) - Vih), + (|Vah[*(v 4+ @) - Voh),
= —=2(((v + 1) - Voha, ) ha,h 1) + ([Veh? (v + @) - Vih),
=—(((v+1) - Vu|Vah[Ph™"), + (|Vah* (v +0) - Vih),
= —((v+a) - V;h|Vih[*h™?), + (|Vah[*(v + @) - Vih), = 0.

Tow(h) = 2(Viohy - Vieh)y — (Vah|?he) = Ja + Jp + Ju + Ja.

So is Jg,
Ja = —2(V A% (uh) - Vih), + (Vo h|> A% (ach)),,
= —2(0y, My - VOy, 1)y + (Vo |Vih|* - @h), = 0.
The A-term is given by
Ja = —2(Vi(spA*Ah) -V h),, + (s,|Vh|>A* AR),
= —2((8)a; Al - Ahg,)p — 2(3pAhg, - Ahy,), + (5,A|V 2h|% - AR),
< co ' DuvTow — 2(3, Vo (hhy,) - Voha )y + (8,V0|Vih|? - Vyh),
= co ' /Do Low — 2(8ph Vo hs; - Vish)y — 2(8phe; Vo - Vohy, )y + (8,V0|Vih|? - Vb)),
= 0 '/ DavZiw — 2Duv — (5, Vo | Veh|? - Voh) + (5,Vo|Vh|? - Vih),
=co '/ DyoLyy — 2Dys.
Thus,

JA < Cy/ DI’UI’UU - 20Dmv-
Finally, the alignment term is given by
Ju = 2(Va(spA*([u], 1)) - Vah) = (55| Vah* A ([u] , ) ..
In the second term we switch the operator A*:
(272) ~ (8, Vah2A* ([u], 1)) = = (55V ol Vahl? [u] , h)ye.
For the first term we obtain

2V, A" ([u], 1)) - V) = 2(h(s, [u]

p)zi ’ Vvﬁmi)u + 2(sphﬁmi [u]p ’ Vvhmi>u-
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We can see that the last term cancels with (272). We thus obtain, using assumption (iii),

Jy = 2(h(sp [u]p)wi : vvﬁwi)u < CH“HLQ(KP) V Dyy.
Putting together the obtained bounds we have

d

EIM(}L) < o/ Dy — 202Dy + CUHUHL2(HP)\/DCE'U < Tyy — 2 Dyy + c||u||%2(ﬁp).

To conclude the proof, let us combine together all the Fisher functionals in the following format
j =2y + 50'1/21901; + C_OICCCC;
c

where § > 0 is small but dependent only on the parameters of the assumptions (i), (ii), (iii). Since o < 1,
for 0 small enough we have Z ~ Z. Then,

d -
&I < —coLyy — 10Lyz + Cllull3.

Invoking the entropy inequality (264), we obtain with a properly chosen constant C' > 0,
d - N

&(I—i— CH) < —coZyy — 10Ty < —C20(Lyyy + Lyz) ~ —0(Z + CH).
Hence,

(273) T+ CH < e3Z(fo)e 2,

and the result follows.
O

8.1. Applications. Let us now explore how Proposition 8.1 implies relaxation for various situations.
First, we have convergence near equilibrium for all models whose spectral gap is under control for densities
near uniform.

Proposition 8.5. Suppose that M is reqular and has a uniformly positive spectral gap for any densities
close to uniform

(274) inf{eo(p) : [lp - 1/]2]11 < 8o} > 0.

Then there exists a constant ¢ > 0 depending only on the parameters of the model such that for any initial
condition fo € HF(Q) satisfying

(275) Z(fo) < cado,
there exists a global classical solution converging to the Maxwellian exponentially fast.

Proof. By Definition 3.13 (iii),(iv) we can further reduce the size of d¢ if necessary to have not only the uniform
spectral gap condition but also the uniform thickness condition satisfied, ©(p, Q) > ¢4. By the regularity
assumption (79), the assumption on the spectral gap, and (77), such densities fulfill all the conditions (i), (ii),
(iil) of Proposition 8.1, with constants cg, ¢1, ¢2, ¢3, &0 depending only on §p. And according to Theorem 7.1
such data give rise to local classical solutions f € HF.

If (279) holds, then by the Csiszar-Kullback inequality ||po — WllH 1 < cs5¢dg for some absolute c5 > 0. If
c< ﬁ then by continuity we have ||p(t) — |_§12\ I < 0o at least on some short time interval [0,T"). Let T be
the maximal time of existence of the local solution which satisfies the above. Note that the solution cannot
blowup before it reaches the equality ||p(t) — |_§12\ |lLr = do, due to the continuation criterion (205). Hence, if
T is finite it is only because we have ||p(T) — WllHLl = §p for the first time.

The Proposition 8.1 then applies on [0,7]. As a consequence, ||p(T) — I_fll\”Ll < cpedp for all £t < T
and some c¢g depending on the parameters of the model only. Assuming further that ¢ < ﬁ we conclude
that T cannot be finite. Thus, the solution exists globally and satisfies ||p(t) — ﬁ” 11 < do for all time.
Proposition 8.1 applies again to conclude the result. O
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Before we state application of this result to particular models, let us address the issue of the time-
dependent momentum for non-conservative case. It turns out that for all our core non-conservative models
M, including the Motsch-Tadmor model, the average momentum stabilizes.

Lemma 8.6. Suppose M satisfies the assumptions of Proposition 8.5 and
(276) 15 =1

]
For any solution f that relaxes at an erponential rate in the sense of relative entropy there exists uo, € R™
such that u(t) — uso exponentially fast, and consequently,

(277) () = Houe L1 @xmn) < coe™ 0.
In particular, the conclusion applies to all conservative and all Mz models.

Proof. By the Csiszar-Kullback inequality we have |[p — |_§12\||1 < e, Thus, as we argued in the proof

of Proposition 8.5, the density eventually enters into a class satisfying all the functional requirements of
Proposition 8.1 uniformly in time.
We have

at—/ bp(x, y)u(y)p(y) dyp(z )dw—/sp(y)U(y)p(y) dy

Q

/Q (0p(2,y) = &1 (z,y))uly)p(y) dyp(x) dz

//Q¢% (@, y)u(y)p(y) dy [p(x)—ﬁ] dz

[ [ o —s 0] utow)ay

1]

+ /Q [S* (y) — Sp(y)} u(y)p(y) dy.

1]

By continuity assumptions all the terms on the right hand side are bounded by a constant multiple of
lp— Wll [ 1V/E€. Since the energy remains uniformly bounded all these terms are exponentially decaying. This
proves the exponential convergence @(t) — uoo for some uo € R™.

Next, we have

/ flog / dvd:vz/ flog / dvd:v—i—/ flog —— Hot gy dz.
QxR® Ho o QxRn Ho,a QxRn Ho o

The last term is a constant multiple of
/ FJuse —v]? = @ —v]*)dvdr = |us|* — |a|* + 2/(11 —Uso) - updr S e
QxR? Q

This finishes the proof. O

According to our computations of spectral gaps stated in Proposition 4.16 and Proposition 4.18, we can
apply the above results to conclude local relaxation for all core models. Let us gather all this in one statement.

Theorem 8.7 (Relaxation near equilibrium). Suppose that M is a regular model satisfying
(278) inf{eo(p) = llp—1/IQx < do} > 0,

and
[1]1 =1.

<]
Then there exists a constant ¢ > 0 depending only on the parameters of the model such that for any initial
condition fo € HFF() satisfying

(279) (fo) 60'50,
there exists a global classical solution f and there exists uoo € R™ such that
(280) () = poue Lt @xmn) < coe™ 0"

In particular, the conclusion applies to all core models Mcs, My, Mg, Mg, M.
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We now gather a set of conditions which guarantees global relaxation.

Theorem 8.8 (Global relaxation). Suppose M is a reqular conservative model satisfying (93) and such that
(281) inf{eo(p) : pr(2) > o} > 0,

for some r,00 > 0. Then any classical global solution to the Fokker-Planck-Alignment equation (255) relazes
to equilibrium as stated in Proposition 8.1 with @ = uyg.
In particular, global relaxation holds for the following models

o the Cucker-Smale model Mcs with a Bochner-positive kernel ¢ = 1 x1);
o the M -model with inf ¢ > 0;
o the segregation model Mo, with suppg, =€) foralll=1,...,L.

Proof. According to Theorem 7.12 under the given conditions on M any classical solution gains a uniform
bound on the density from below p(z,t) > p_, for (z,t) €  x [1,00). This automatically puts the solution
into a class satisfying the assumptions of Proposition 8.1 uniformly. g

Let us remark that the only requirement that prevents global relaxation for My and M., models with
general local kernels is the uniform L? — L* boundedness (93), which is needed to control W. However,
this control can be regained if the solution is known to have uniformly bounded macroscopic velocities

(282) sup | u(t) oo < 0.

=

This is precisely the result obtained for M, in [Shv22].

9. HYDRODYNAMIC LIMITS

Supplementing the Vlasov equation (95) with a strong penalization force
1
(283) Ocf + v Vaf® =V (sp(v = [uf] ) f) + ZF(f°),

one can achieve regimes in which the distribution f asymptotically takes a special form explicitly expressible
in terms of the macroscopic quantities u, p. The limiting system satisfied by u, p is called the Euler-alignment
system (19), in which the pressure law depends on the particular force F' used in the limit. In this study we
will cover two types of limits — monokinetic and Maxwellian.

The monokinetic limit is achieved by enforcing strong local alignment F = V,, - [(v — u®) f¢]. The force
penalizes deviation from the Dirac concentrated on «®, which drives the solution towards monokinetic dis-
tribution f = p(x,t)dy(z,¢)(v), where p,u solve the pressureless EAS

(284) Bpu +u - Vu = sy([u] , — u).

Solutions to (284) will always be understood in smooth regularity classes such as
(285) (u, p) € Co([0,T); H™ x (H* N L)) NLip([0,T); H™ ! x (H*'n L)),

for m > k+1> 5 + 2. Local and global well-posedness theory for such solutions can be established for a
variety of models and data, see [Shv21] for a detailed analysis. Because of the maximum principle on u which
applies to solutions of (284) any initially compact flock supp pg C Bpr, will remain compactly supported on
any finite time interval

(286) supp p(t) C Bry, R(t) < Ro+ Aot.

The history of this limit goes back to [MV08, KV15] where the alignment term in (95) is considered
centered around zero velocity. In the settings of the classical Cucker-Smale model the hydrodynamic limit
was studied in [FK19]. In both studies the force F' = V,, - [(v — u®) f¢] includes the rough macroscopic field
u® causing issues with uniqueness of characteristics of (283) and subsequently the transport of f. These
issues have been dealt with in [FK19] by imposing no vacuum condition p > 0 and restricting analysis to the
periodic domain. A more recent remake of Figalli-Kang’s argument done in [Shv21] avoids all these issues
by replacing u® with a mollified version if it, u$, based on the M-protocol. Such change allows to extend
the limit to vacuous and compactly supported flocks on either T" or R™.
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In the context of the general environmental averaging models this result can be broadly extended to
include all uniformly regular models. Moreover, in contrast to the previous studies the convergence f< — f
can be upgrade quantitatively to Wasserstein-2 metric, see Theorem 9.2.

In the Maxwellian regime the force F' is given by the Fokker-Planck-Alignment operator

F=A,f"+V,-[(v—u)f].
The local thermodynamic equilibrium becomes the Maxwellian
and so the corresponding macroscopic model is given by the EAS with isothermal pressure
Op+V - (up) =0,
Oe(pu) + V- (pu @ u) + Vp = psy([u],, — w).

f=

(287)

In the Cucker-Smale settings, this limit was justified in [KMT15] via the relative entropy method. Again,
because of the roughness of u¢ the result had to be cast in the settings of a special class of weak solutions
established in [KMT13], see also [KMT14] for the justification of a local alignment limit. The work [Shv22]
implemented similar method to prove hydrodynamic limit in the context of the M ;-model.

Now, we can cast the Maxwellian limit in the framework of general environmental averaging models with
the additional implementation of the mollified local alignment field u§ — the same methodology we will be
using in the monokinetic case. This allows to work in the class of classical solutions as stated in Theorem 7.1
and Theorem 7.12. The limiting solution must be non-vacuous and the domain is restricted to the torus
Q = T". Theorem 9.6 shows convergence f¢ — f in the relative entropy sense, which implies stronger
convergence in L' by the Csiszar-Kullback inequality.

9.1. Monokinetic limit. In this section we discuss the monokinetic limit. The analysis will be carried out
on any environment €2, compact or not under the assumption of uniform regularity of M.
Let us consider solutions to the following Vlasov model with forced local alignment

(288) O 0 Vaf* = Vo (e (0 = [0, )7) + 290 - (0= w)F),

where subscript 0 designates a special mollification. To define it let us fix a smooth mollifier ¢s(x) =
% (2/9), where 1» > 0 on  and in the case of @ = R™ we assume that ¢ satisfies the algebraic decay
condition (88). Then let us be the average of u based on the M, -protocol,

(289) us = (%) '
Pis s
Formally, (288) corresponds to the Vlasov equation (95) based on the model given by

1 s €s 1
S;:S’H_E’ ™ = sspil o s, + 100

Clearly, since My and M are uniformly regular, then so is the model above. Consequently, the global
existence of classical compactly supported solutions to (288) is warranted in this case by Theorem 5.4.
Moreover, characteristics of (288) satisfy the usual maximum principle for velocities Lemma 4.1. Hence,
|X=(t)] < Ro+tAp, where Ry is the initial radius of the support in z and Ay is the maximal initial velocity.
Thus, on any time interval [0, 7], the family f¢ will be supported on a bounded region uniformly in ¢ if
initial fy is compactly supported.

Before we focus on the main convergence result let is go back to the defined mollification us and note an-
other remarkable approximation property — if u is a smooth field, then us approximates u with a quantitative
bound independent of any regularity of p. This allows to implement it to situations where the only informa-
tion known on p is its mass. The following is a generalization of such approximation property presented in
[Shv21, Lemma 5.1].

Lemma 9.1. For any u € Lip and for any 1 < p < co one has
(290) llus — ullr(p) < COljullLip,
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where C' > 0 is a constant depending only on the kernel 1» and p. The estimate also holds for all 1 < p < oo
with C independent of p if 1 is compactly supported.

Proof. Let us fix a test-function f € L9(p), where ¢! 4+ p~! = 1. Then, let us split
/ flus —u)pde = / flus — uy, )pde —|—/ flugp, —u)pde =1 + L.
Q Q Q

For I, we simply use the standard approximation property of mollification

I < ollulluipll fllzrpy) < SllullLipll fllLa(o)-

For I we have, using Minkowskii and Holder inequality,

I = /Q (o), {4225 gy /Q (f0)us 222 dy

Pis Pis
:/ (fp)ﬂla((up)% - qus) dz :/ (fp)dla (up) — UPys da
Q Pps Q pll/sp pll/s

< |qu/1£6 ) ( / )y p%q“/’wal dx) /p
< ([0, dx)l ([ 1ot =@ otayestc —v dydx>”"

1/p
1
< |l zago lullLip (/Q Q|!E—y|pﬂ(y)¢6($—y)dydw) = 811 £ll Lo IullLinChE,
X

where Cp v = o [z[P1(x) dz. This implies (290) for all p < oco. If however ¢ is compactly supported, then
Cpy < (diamsupp 9)?, and so the estimate holds also in the limit as p — oo. |

The main convergence result of this section will be quantified in terms of Wa-metric:

W3 (f1,f2) = _inf /Q2 . w1 — wa|? dy(w1, wa),
>< n

YEI(f1,£2)

where II( f1, f2) is the set of probability measures with marginals fi and fa, respectively.

Theorem 9.2. Suppose M is a uniformly regular model. Let (p,u) be a classical solution to (284) on the
time interval [0, T) with compact support (286), and let f = p(x,t)dy(q) (v). Suppose f§ € CEQXxR") is a
family of initial conditions satisfying

(i) supp f§ C {|lw| < Ro};
(i) Wa(f5, fo) <e.

Then there exists a constant C' such that for all t <T one has

(291) Wa(fe, fi) < Cyfe + g

Remark 9.3. Let us note that the scaling regime § = 2 appears to be the most optimal: if § < €2, the
model becomes over-resolved without improvement on convergence rate of solutions, if § > €2, the model is
under-resolved and the convergence rate slows down. We obtain in this case the optimal rate of y/e:

(292) Wa(f, f) < CVe.

Remark 9.4. Not that Wa(f¢, f) — 0 also implies convergence of densities, simply because p’s are marginals
of f's: Wa(p®, p) < Wa(fe, f). Similarly, since all distributions are confined to a bounded set, we also have
Wi (usp®,up) < CWi(fe, f) < CWa(fe, f). So, this also implies the convergence of momenta.

Remark 9.5. The theorem applies to a range of core models listed in Table 2. However, we also note that
the uniform regularity is only needed to facilitate global existence of solutions. The actual assumptions that
are needed to run the argument for a given family of solutions are (90), (83) - (84), where p’ = p is the
limiting density, and [|0y¢,|lcc < C. Thus, if the limiting density is known to be thick and the model is
simply regular and satisfies (90), (83) - (84), then the theorem applies just as well to putative solutions and
extends to a much wider class of models listed in the last row of Table 2.
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Proof. Let us first note that since all densities are compactly supported the model satisfies all the estimates
(81)-(82) for p and p® uniformly on [0, 7.
Denoting

1

=3 | Pfwo)ded,
2 QxR’n

we have the following energy balance relation for solutions of (288):

1 £,,E 2 2
E = —/ spe |v|? f€ dvda + (u®, (W] e )ipe + —/ wdx - =&
QXR™ €Ja €

(293)
P

dt

Noting that

/ spa|v|2f5 dvdz > (u®,u®), .
QxR"

we obtain

d | 2
294 —& < (uf, [uf] o —u)y . r— —&..
(294) P pws .

Obviously the last two terms store a lot of dissipative information. The crucial observation is that they
control internal energies of f¢ both the native one relative to the local field u® and relative to the filtered
field u§. To see that let us note the following two identities

1 1
o= _/ o — P frdvde = & - ‘/ p°|u|? da,
2 Jaxgrn 2 Jgn
) = = N [V T PRI WY A
e(f|ug) = lv—us|"f*dvde = & dzx + p°|us]” da.
2 QxR™ Q pw5 2 9

Summing up we obtain

1 1
o(fIuf) + o(f|ug) = / ool gy L [ otipae—3 [ slupa,
p¢5 " Rn

and since the Myg-model is contractive, the last two terms add up to a non-positive value. Thus,

(P 2
2, — [ sl g > o) + e 7).
Q Py

Consequently, plugging this pack into (294) we obtain

e < (], — 0, — Z[ef7Tu) + el 5]

The energy inequality (295) already shows that the solution concentrates to a monokinetic form near its
own macroscopic field. However, the quantity that controls how far that concentration is from wu, is the
modulated kinetic energy:

(295)

1
e(fflu) = 5/9 . |v —u|>f¢ dvda.
X n

This quantity plays a key role in the argument. It should be noted that it controls the corresponding
macroscopic relative entropy

[ ol =P do = [ (0 = 207 g + ) da
Q Q

(296)
s / ([0 f* = 2u-vf® + ul*£°) dz do = e(f%|u).
QxR"

According to (ii) we can fix an initial v € II(f§, fo) such that
/ w1 — wa|? dyo(wr,ws) < 262,
02 xR2n

Let us now propagate vp along the direct product of characteristic maps of (288) and (95), i.e. let v by the
measure-valued solution to the transport equation

1
Ory +v1 - Vv 402 V¥ 4 Vi [7(8pe (v1 = [u7] 0) + (01 = u§))] + Vo, [18,(v2 — [u] )] = 0.
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Integrating upon pairs (z1,v1) and (z2,v2) we can see that the marginals of 7 satisfy the same transport
equations as f and f€, respectively. Consequently, by uniqueness, v € H(fF, f) for all time. This means
that the cost of 7; dominates the Ws-distance at any time,

W= w1 = wa|? dye(wi,w2) = W (f*, f).
Q2 xR27
Let us split W into potential and kinetic components
W = |vl—v2|2d’y+/ |a:1—332|2d’y =W, + W,.
02 xR2n 02 xR2n
Evolution of the potential component is easily estimated using the transport of -

d d

_Wz:_ Xe ,t - X ,t 2d
dt dt /ngXR2n| (wr,1) (wz, )" dvo

:2/ (XE (w1, 1) — X(wa, ) - (VE(wn, ) — V(ws, 1)) do < Wy + W,
02 xR2n

Instead of writing the evolution equation for W, we subordinate it to the internal energy, and trace its
evolution. Let us make the following estimate

Wos [ p-uPdrs [ jue) -y [ fule) el
Q2 xR2" Q2 xRR2" Q2 xRR2"
g/ |v—u(x)|2f5(3:,v)dvd:1:+0/ lz1 — 222dy +0
QxRn? Q2 xR2n

where the last term canceled thanks to the monokinetic nature of f,
=e(f|u) + CWy.

We have obtained so far
d

W, <
(297) dt
W, <

e(fflu) + a1 Wy,
e(f%lu) + caWy.

To complete this system we now investigate evolution of the internal energy itself.

Before we write the equation for the modulated energy e(f¢|u), let us recall that we are dealing with
smooth solutions to both so all the computations are legitimate. From (288) we can read off the macroscopic
system for the e-density and momentum

p; + V- (p7u) =0,
1
(P7u)t + Vi - (p°u @ u + Re) = kpe([u] 0 —u®) + gpa(uf; —uf),

where the Reynolds stress is given by

Re = (v—1u®)® (v—u®)f(z,v,t)dv.
R

Let us expand e(f¢|u) into three parts
1
e(f%lu) = & —/ pfuf -udr + 5/ 0 |ul? da.

From the energy inequality (295) we will only retain the alignment component (to be used later) and the
native internal energy

d € € € 1 (S S
(298) &55 g (u ;[u ]ps — U )Kps - ge(f |’lL )
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Let us work out the equation for the macroscopic part:
d
(299) —/ pfuf -ude = / O (pu) - udx —|—/ pfu’ - Qpudx
dt Jo Q Q

= / (P*u® ®@u® +Re): Vude — / p°u® @u: Vudr  (inertia)
n (9]

+ ([ug]pg — U, U) e+ /Q pout ([u]p —u)s,dx (native alignment)
1

+ Z / pf(uf —u®) - ude (local alignment)

Q
d1 €1,,12 5 1 £l,,12
(300) ol lu|*de = | pu-Owudx + B O ul|” dz
Q Q Q

= —/ pPfu®u: Vude —|—/ pPfu®ut : Vude (inertia)
Q Q

+ /Q piu- ([u], —u)s,da (native alignment).

Putting the two equations together and collecting all the inertia terms and using (296) we obtain
— /Q p°(uf —u) ® (u® —u): Vuder < ||Vu||oo/ﬂpg|u6 —ul?dz < e(ff|u).
The Reynolds stress is estimated similarly
/QRE s Vudr < ||Vu||oo/Q [v — uf (2, )| £ (2, v,t) do dv < e(f5]uf).
XR™

As to the local alignment term, we use the symmetry and approximation property of the M ,-averaging
used to define u§, which is crucially independent of regularity of p°. Namely, by Lemma 9.1 with p = 2, we
have

/ po(us —u®) - ude = / pius - ude — / pouf -udr = / pouf - usdr — / pfuf - ude
Q Q Q Q Q
= / pfuf - (us —u)dr < Cllu||p2(p0) 0| V| o
Q

Thus, the local alignment term can be estimated by

1 )
(301) Aue =2 [ 9705 = 1) ude S ol
Note that the energy [|u®||12(,) remains uniformly bounded in ¢, so,
]
302 Ae S —.
(302) o S -
Let us collect the obtained estimates (298), (299), (300), and simplify the native alignment components
d ]
(303) —e(ffu) Se(flu) + - + (v —u, [u] 0 — ), +/ p=(u =) - ([u], — u)s, dz.
dt € P ? Q P

It remains to estimate the alignment terms. Let us rearrange them as follows

0A = (u® —u, [uf] 0 —u)p,c + /Q P (u—uf) - ([u], —u)s,dx

= /st(u —u®) - (8pe [u] e —Sp [u], +8pu —speu’) da

= (u" —u,[u” —ul e )n, —|—/Qp8(u —u®) - (8pe [u] o —sp[u],)dx

—/Qp8|u—u€|zsps dx—l—/ﬂpg(u—ua)-u(sps —sp)de =T+ 11+ 11T+ 1V.
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Note that I and IIT would add up to a non-positive constant had we assumed that our model was contractive.
Instead, we simply drop IIT and use the uniform boundedness (90) which is implied by (81) to estimate I by
the macroscopic relative entropy

IS/p8|u€—u|2d3:.
Q

Since u € W1 using (82) the second term is bounded by

2

/Q 50— ) - (5 [, — 5, [u,) dz < /Q ol — uf? da + /Q \ /Q (b (@,9)5° () — by, 9)ply))uly) dy| () da

2
p°(z)da

< /Qflua —u?da +/Q ’/prs (2,) — B (@, 9))p" () uy) dy
2
4 / b0, 1) (0° () — p())uly) dy| p* () da
Q Q
< /Q pluf —uf? de + Jull2 /Q /Q (60 (2,9) — b (2 9)I20° ()" (2) dy

which by (81)-(82) (or in fact by a weaker assumption (83) - (84)) is bounded further by

S [ ol = u o+ R ).
Q

Finally, by (82) the last term is bounded by the same quantity
/ po(u—u®) - u(spe —sp)da S / P luf — ul*dz + / P°lspe — 2 dz < / P luf — ul* da + W32 (%, p).
Q Q Q Q
In summary, the alignment term is bounded by
(304) SAS [ ol —uP o+ WH6%p) < elf7lu) + W67, ).
Q
Collecting all the estimates together we obtain
d € < £ g 2/ €
e lu) S e(flu) + = + W5 (o7, p).

Note that since the (x1,x2)-marginal of v belongs to II(p, p) we further find W (p°, p) < W,. So, we have
obtained the system
d
dt

%e(fﬂu) < e (e(f€|u) + W, + g) )

W;E < e(f€|u) + C].W$7

Note that the initial value of e(f€|u) + W, is bounded by a constant multiple of & in view of the choice of
yo for W, (even €2 in this case), and

c(flun) = [ fo—wldfi= [ o wlldf - df < CWASS. o) < CWalfs. fo) <

< e+ ¢, and thanks to (297),

~ €

Gronwall’s Lemma implies e(f¢|u) + W,

1)
Wv<€+—.
3

We have established (291).
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9.2. Maxwellian limit. In this section we provide a derivation of the Euler-alignment system with isother-
mal pressure for material models on the torus 2 = T",

pt+ V- (up) =0

(305) (pu)s + V- (pu @ w) + Vp = ps([ul, — u).

Well-posedness of this system has been established for non-vacuous solutions for various models, see [Chol9,
CDS20].

As outlined in the beginning of this section our strategy will be to consider the equation with strong
Fokker-Planck penalization force

(306) 0% + 0 Vuf* = 2D+ Vo (0 = u) N + Vo e (0 = [0],)7°),

where u® is the macroscopic velocity field associated with f¢, and u5 is the same mollification as defined in
the previous monokinetic study.

Let us briefly discuss regularity of (306). In what follows we will study solutions of (306) that exist
on a common tine interval [0, 7] independent of e. Unfortunately the local existence result alone stated in
Theorem 7.1 will not provide such solutions, because the energy bounds (or entropy for that matter) will
deteriorate with €. So, the only way to ensure common existence is to guarantee global well-posedness of
(306). According to Theorem 7.12 the equation is globally well-posed for thick data if both models — the
native M and the mollification us based on M, — are regular and satisfy (93). Assuming that suppy = Q
the model M, will fulfill these conditions, and as to the defining model M, we will make it as an assumption.
The focus will now be turned to establishing convergence of the hydrodynamic limit for a given family of
solutions.

Let us write out the corresponding macroscopic system

6+ V- (upt) = 0
1
c,,€ c,,E g £ — A€ g € (3 € g
(307) (p*u)e + V- (p°u” @u) + Vp© + ;m'Rs—pspi([u]ps_u)‘ng (u§ — u)

Re = (('U - ua) ® (’U - ’U/E) — H)f‘E dv.
Rn
Here, I is the identity matrix.
We measure the distance between pairs (u®, p®) and (u,p) by using the relative entropy between the
corresponding local Maxwellians:

(308) W= (p(i[],t) _M c pE(ZC,t) _M'

REN T amyne©

In fact such entropy is encoded into the total relative entropy between f¢ and p:

M) = [

QxR™

1w
f€log — dvdx.
I

Indeed, the following identity holds,

(309) H(f ) = H(f7|15) + 1| w),
(310) H(p|p) = %/Qpalua—u|2dw+/ﬂpalog(pa/p)dw-

So, if H(f%|u) — 0, then also H(u®|u) — 0. Recall that by the classical Csiszdr-Kullback inequality, see for
example [Shv21], the relative entropy controls L!-distance between the probability densities,

H(flg) = el f — g7
So, vanishing of the relative entropy H(uf|u) — 0 implies strong limits
p° = p,
(311) piut = pu,
PP = plul®.
in LY(Q).
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Theorem 9.6. Suppose M is a regular model on T™ satisfying (83) - (84) and (93). Let (u,p) be a given
smooth non-vacuous solution to (305) on a time interval [0,T]. Suppose that initial distributions f§ € HJ'
converge to g in the sense of entropies as € — 0:

H(f5lpo) = 0.

Then for all € small enough there exists a unique global solution f€ & Hlk, and as long as § = o(e), we have

(312) sup H(f|u) — 0.
te[0,T]

Remark 9.7. Going back to the discussion of Section 3.7 we can see that the theorem applies to many core
models on our list. Spec1ﬁca11y, we have it for Mcg and M (ODO unconditionally, for Mz we have it for all
local kernels if 8 > 5 and for all-to-all kernels ¢ > 0 for any /3, the M requires ¢ > 0 as well, and Mg,
requires supp g; = (2.

Remark 9.8. We also note that in the course of the proof, just like in the monokinetic case, the regularity
and (93) conditions are only needed to facilitate global existence of solutions, while the bounds (90), (83)
- (84) are used in the actual estimates. So, for putative classical solutions to (306) the result extends to a
wider range of models listed on the last row of Table 2.

Proof. First let us notice that by the Csiszar-Kullback inequality,
H(f5l10) = llpg — poll?-
Since, pp > 0 on €, it implies that ©(pp, 2) > 0 by Definition 3.13 (iii), and by (iv) we have
1905, €2) = O(po, Y| < cllpg = pollr = 0,

so starting from some gy we have ©(p§,Q) > 6 > 0, for € < 9. Such initial conditions give rise to global
solutions by Theorem 7.12.
Let us break down the relative entropy into kinetic and macroscopic parts:

H(f ) = He + Ge

_ € € 1 2 re 2
(313) H. _/Qan (f log f€ + 2|U| f ) dvdz + 5 log(2m)

1
G- :/ <§PE|U|2 —pTut u— p* logp) da.
Q

Let us state the energy bounds for each component. In the sequel we denote for short £K% = K -.

Lemma 9.9. There are constants ci1,ca,c3 that depend only on the model such that we have the following
entropy law:

(314) He,E € L([0,T)) uniformly in ¢,
d 1
(315) T He < — Tt eze(fuf) = uflGagee) + (05, [u] o) e,

where

€ _ € fE|2
E:/ Vo + (L4 e, /(0 = w2
QxR? Ie

Proof. Differentiating,

d 1 . €2
_HE:__/ {M+2vvf5-(v—u§)+|v—u§|2f5 dvdz
dt QxR" fe

1 5o U ) pe — (uf, uf) pe]

(316) o

\m

[Vof- (v =[] ) + 0 (v =[] ) f] dvda.

QXR"
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To prove (314) we simply dismiss the first information term, and recall that the é-mollification constitutes
the M ;-averaging which is ball-positive. So, the second term, according to (61) is also non-negative and we
dismiss it too. We estimate the third term as follows

[ s o= ) o = ) dvd
QxRn™

= n/ spe f€dvda — / Spe [v]2 £ dvda + (uf, [uf] e )ne < C' = / 8pe p°|us|? da + (uf, (U] e ) e
QxR™ QxR™ Q
= 1 — e[ ey + (0%, [UF] o ) e

Now, according to (90) the averaging operators are uniformly bounded on L? (Kpe). So, we obtain

d 1
— —/ |v|? £¢ dv dz,
de QxR"

He < e+ 02855 gs

2
and according to (249),

d
&Hg < g+ cqHe.

This proves (314).
To show (315) we replace all the macroscopic velocities in (316) with the native one u®. Indeed, in the
information term we have

1 r v £|2 T
——/ Vo /] + 2V, [ (v —uf) + v —u5|?f| dvda

€ Jaxgn | f° |
1 § v €2

:__/ Vo] + 2V, f¢ (v —uf) + v — w2 + [uf —u§|fe| dvde
e Jaxgn | f°
1 § v €2 1

g——/ Vo /7| + 2V, f¢ (v —uf) + v —u 2| dvda
€ Jaxrn | f¢ |

1

Vo + (v —us) foP?

dvdz.

/QXR"

€

fs

For the alignment term we obtain similarly,

—/ Spe [V " (v = [u%] 0) + 0+ (v = [u7] 2) fT] dvda
QxRn?

/QXR"

Spe Vo f© - (v —uf)dvde —/

Spev - (v — u) f°
QxR™

Combing the two expressions and completing the squares

d 1

He <

[Vofe+ (1 +esp/2)(v — uf) £

/QXR”

dt e

fa

1
< =T +eee(f7uf) = Ul Fague) + (05, [u7] o) e

We have obtained (315).

Lemma 9.10. We have the following inequality

d

dt

where C' is independent of €.

(317)

€
dvd -
vx—|—4

+ v (u = [u],) f]dvda

e (Tt (0= ) o= ) dvde = 0 e + (0 [0, e
QxR™

)
Ge SCH(f%|1) + CVIc+Ce+ -t [0 172y = (U, [u7] 2 ) e,

/ $pe|v — uf|? f€ dvdz
QxR"

|U€||%2(Ks) + (u®, [u] e ) e
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Proof. Let us compute the derivative of each component of G,

d1
dt2/p |u|2dx—/ﬂ[p5(u5—u)-Vu-u—psu-VIng—i—pssp([u]p—u)-u]dx
d

% pous -udgcz/[p‘f(u‘5 —u)-Vu-u® +p°V-u—p°u®-Viogp — Vu: R,
an Q

£ € I £ I 1
5y ([0, — )+ s ([u], = 0) - + = (5 — 7)) d

d
T pglogpdx:/ﬂ[paua~Vlogp—pau-Vlogp—pEV-u]dx.
Thus,
d
Eggz/[Vu:Ra—pa(ua—u)-Vu-(ug—u)]dx—i—A—i—Aloc,
Q

where Aj, is the same local alignment terms as appeared in the previous section, and
A= /Q 5[], — w) - — pospe ([0, — ) - — pPs,([u], — ) - u?] da

= 0A + U T2 ey — (U, [0] o) e

where J A is again the same alignment term that appeared in the previous section. We estimate A, and 6 A
as before using (302) and the intermediate estimate in (304). We recall that only (83) - (84) and regularity
of the kernel ¢, are necessary to prove (304). Since p > p— > 0 we have both by the assumptions. Thus,

)
(318) A+ Ajoc S/Qpﬂua —u|2d:1c+W12(p€,p)+g.

Keeping in mind that both the macroscopic relative entropy [, p°|u —ul* dz and Wi (p®, p) < ||p° — pl|7 are
controlled by H(f¢|u), see (309), (310) we obtain

(319) 0A + Atoe S H(fE|1) + =
Next, given that u is smooth we have
[ =) Vu — w)de| £ [ - de < W)
Q Q

As to the Reynolds stress, we will use a well-known estimate from [MVO08] that establishes a bound in
terms of information and energy. Let us rerun this argument to account for the e-correction. We simply
note that

(320)

Re= | 2Vov/fo+ (0 = u )V @ [(v —u)/fe] do.

R’Vl
then we reinsert the e-correction to obtain

Re = 2V fe+ (1 +espe/2)(v —u®)V/ el @ [(v — u®)+/ fe] dv — Esp5/2/ (v—1u°)® (v—u®)f®dv.
R™ n
So,
/IR |do S Ve(Fu)Ze +ee(f°|u) S VT + <.
Collecting the obtained estimates together we obtain (317). O

Combining the equations on H. and G., (315), (317), we see that the residual alignment-energy terms
cancel and we obtain

d ] ]
CH ) S )~ 2T be+ 0 4 VE < HUFI) — T 4254 2 SHO) +et 2

By the Gronwall’s Lemma we obtain

)
M) < H(f5lno)e™ + Ce + g)eCTv vt < T,

where C' depends only on the parameters of the model and the regularity of (u, p). This finishes the proof.
O
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Remark 9.11. The same observation can be made here as in the monokinetic case. If we quantify the initial
entropy

H(f5lmo) <,
then the proof produces the bound

1)
() < e+ 2.

So, again, the optimal convergence is achieved when § ~ 2. However, unlike in the monokinetic case, here
we do not loose on the magnitude of the entropy at positive times.

9.3. Remarks on the pressureless Euler Alignment System. We will leave discussion of the well-
posedness of macroscopic systems that arise from general models M to a future research, see [TT14, CCTT16,
Shv21, LS19a, MT14, HT17] for the literature on this problem specifically for smooth communication models.
The most clear-cut result obtained in [CCTT16] pertains to the regularity of the 1D pressureless EAS based
on the Cucker-Smale protocol

O + uty = ppu — (up)g.
Here, one finds an additional conserved quantity

€=Uz + P¢
which controls u, and hence regularity of the system. In fact, e satisfies
Ore + 0y (ue) =0
or in Lagrangian coordinates associated with w,

d
6= P e? = e(py —e),
which is a non-homogeneous logistic ODE. The critical threshold for regularity becomes ey > 0.

In multi-D, the law of e is given by
e=divu + py,
e + V- (ue) = (V- u)? — Tr[(Vu)?].
Although the right hand side in this case involves Vu, in some cases this still allows to obtain partial regularity

results in multi-D, for example for small data or for unidirectional flocks, see [TT14, HT17, 1.S19a]. The
latter are solutions of the form

(321)

u= (u(z1,...,2,),0,...,0).
For these the right hand side of (321) vanishes.
While the existence of e is attributed to the particular commutator structure of the alignment forcing of
the Cucker-Smale model, in general, it can be seen as a consequence of another property of the model —
transport of the specific strength function s, itself. Indeed, let us notice that in the Mg-case we have

(322) Oesp+ V- (splu],) =0,

simply because py is transported by the Favre-filtration ur = (up)g/pe. This turns out to be the general
reason for the conservation of e.

Lemma 9.12. If for any solution of the pressureless EAS (284) the strength function satisfies (322), then
e = divu+s, satisfies (321). In particular, e is conserved for all solutions in 1D and unidirectional solutions
in multi-D.

Proof. By direct verification. O

The above observation motivates to consider a system where the strength is not fixed but rather evolves
according to the ‘natural law’ (322), whereby the strength itself becomes another unknown. This leads to
the following system

Op+V - (up) =0,
(323) ds+ V- (sfu],) =0,
du+tu-Vu=s([u], —u).

All such systems will satisfy the e-law by design, where e = divu + s.
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For example, if we start from the initial Favre-based model, [u] , = UF and set sg = 1, like for instance
in the Myrp-model, the future value of strength will be determined by the transport along the averaged
velocity [u] ,» rather than being forcefully set at s = 1 for all times. Given that both s and pg solve the same
continuity equation in this case, we also have transport of the ratio

Py Po
This implies
C1P¢ <8< C20¢, V(tv'r) € [0,00) X Qa

if initially so. In particular s remains uniformly bounded regardless of the regularity of ug (!).
A thorough study of this model has been recently completed for Favre-based modes in [ST23] during the
review of this present work.

10. APPENDIX: PROOF OF (29)

We start as in [KMT13, Lemma 5.2]. Let us fix € 2 and consider a cover of the ball Br(x) by balls of
radius 7/2:

1
BR(‘I) C U BT/Z(Ii)a

where N depends only on n and R/r. Then assuming (27) we obtain

p o) — p(y)o(z —y) p(y)o(z —y) du.
<p; B>¢( ) /BR(””) (Jor(z)p(y — 2)dz Z/T/z (z:) fB -5 Y

1-8
o POy — 2) d2)

Since y, z € B, /5(x;), we have |y — 2| <r, and by the lower bound on the kernel we obtain

1
P\ < r)o—y) o
(p;_ﬂ>¢( ) ~ ;/Br/Z(zi) ( -7 Y

1-8
. S, ey P(2) dz)

If 8 =0, we remove the kernel by ||¢||«, and the rest adds up to I.
In the case when 8 > 0 we have

B
(:C—y) z dz) dy.
( ) Z/m(m fBTm(ml)p( z)dz </Br/2<m>p( ) !

p(y) d
JB, (e P(2) A2

as a probability measure for each integral, by the Holder inequality, we obtain

I 5 ’
A o7 (x —y) 2)dzd )
(p;ﬁ%( E)> ( [ vy =) ST

B
(/ p(y)d7 (z —y) dy)
i=1 BT/Q(mi)

B
< ol ﬂz(/ o’ >¢<w—y>dy> <1612 7 ol ().
B, j2(wi

Treating

]]- BT/2 (:67_) (y)

A

1
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11. APPENDIX: AVERAGINGS ON FINITE SETS AND PROOF OF PROPOSITION 3.12

In this section we will prove Proposition 3.12.

To achieve it we first study properties of models on finite sets — to which as we will see the result is
reduced. We will use the notation of Example 2.11 below.

For models on finite sets being conservative is equivalent to

ATk =k, k= (K1,...,KN)-
Denoting K = diag{x1,...,kn} one can see that being symmetric is equivalent to the matrix KA being
symmetric,
(KA)T = KA.

Similarly, the ball-positivity is equivalent to the matrix A being ball-coercive relative to the inner product
(.7 ')K = (K., )

Lemma 11.1. If M is ball-positive on a 2-point set, then M is symmetric.

Proof. The result reduces to showing that x1a12 = k2a91 for any ball-coercive model. Coercivity is equivalent
to

Kraiui + (K1aiz + ko1 )urus + Kaagoui > k1(a1iur + aipuz)® + ke(aziur + assug)®.
Collecting coeflicients in front of each monomial we obtain
ozu% + Buius + ’yug >0,
where
Q= K1a11 — K1G3; — K2a3;, B = K1a12 + K2a21 — 2K1a11012 — 2K2G2122, Y = K22 — K1aTy — K2a3,.

This means that the determinant of the quadratic form is non-negative

4oy > (2
Using stochasticity of A and after a long but elementary computation, the above condition reduces to

(K1a12 — K2a21)? <0,

which proves the result. 0

Proof of Proposition 3.12. Since the averages act coordinatewise it is sufficient to prove the result for scalar
fields .
Let us fix p. Let us pick any partitioning of €2 into two sets A, B and assume that v(A),v(B) > 0. Let us
denote
o [ 1), d o [ s,
a11 = —7 4% A Kp, aiz2 = B Kp;
kp(A) Ja P p(A) Ja P
1 / 1
az1 = ———< []lA] dH 5 aggz—/ []lB] dH .
kp(B) JB pr kp(B) JB pr

Note that the matrix A = (a;;); j—; is right stochastic. Denoting r1 = k,(A), ke = k,(B) and verifying
coercivity on functions of the form v = w114 + us1p we obtain

ﬁlalluf + (malg =+ Hgagl)U1UQ + Kgaggug > |u1 []lA]p —+ uo []lB]p |2 dFLp.
Q

Breaking down the integral and using the Holder inequality, we obtain

/|u1 [1a], + u2 [15], | ds, /|u1 [La], +ua [15], |2dﬁ,,+/ jus [La], + ua [15], | dv
Q A B

: 1
2/%(14) /A(Ul[]lA]p—FUQ[]lB]p)d,{p 5

k1(aiur + a12u2)2 + ra(a21ur + (l22U2)27

2
+

2

/ (u1 []lA]p + ug [ﬂB]p) d/ip
B
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which implies that the 2-point model with A and k defined above is ball-positive. The previous lemma
implies that

(324) /A [L5], dx, = /B [L4], dr,.

We further conclude

/Q (L], ds, :/A[llA]p dnp+/B[11A]p dr,
:/A[llA]p d/@p+/A[]lB]p d/qp:/A[ﬂQ]p dr, = K, (A).

In other words, the conservative property holds for all characteristic functions. Since it is also linear and
the average, by our assumption, is a bounded operator on L2(mp) we obtain the result by the standard
approximation. 0

It would seem like (324) is suggestive of symmetry as it holds for any pair of partitioning sets. However,
to prove general symmetry one would have to make the same conclusion for any pair of disjoint sets not
necessarily partitioning €2, or for any triple of partitioning sets. The above argument fails to do it, and in
fact the implication “ ball-positive = symmetric ” is generally not true. A finite dimensional example can
be found via a 3-point construction.

Ezample 11.2. Let us assume for simplicity that x = 1 = (1,1,1). Then we are looking for a matrix that is
non-symmetric yet doubly stochastic, Al = AT1 = 1, and ball-positive.

Thanks to stochasticity, A leaves the space X = 1+ invariant, and so it is enough to properly define A
on the 2-dimensional space X only. Let us fix a non-orthogonal basis in X: e; = (1,—1,0), e2 = (1,0, —1),
and complement it to e3 = 1. We define

Aei = ey, Aea = Agea,

where 1 > A\; > 0 and Ay # A2. This choice guarantees that the matrix A is not symmetric. Now, we need
to make sure that A is ball-positive. Again, by stochasticity, ball-positivity reduces to that of the restriction
A|x- The latter is equivalent to the condition

(61 +tea) - (A1ex + t)\geg) > |)\1€1 + t)\262|2,
for all ¢ € R. Expanding we obtain

(A2 = M) + [ (A + X2) — Aot + A — AT > 0.

N | =

This is equivalent to
(325) (M4 X2 — 201 02)% < 16(X2 — A3) (A1 — AD).

In addition we need to ensure that all the entries of the matrix A in the original system of coordinates are
non-negative. We can write down these entries explicitly:

14+ 4+ 14+X—-20 14+ -2\
A=§ 11—\ 142N\ 1-X\
1— ) 1— )Xo 142X

So the only conditions to guarantee are
(326) 1+X =201 20, 14X —2X>0.

There are plenty of choices to fulfill both (325) and (326). For example, A\; = %, Ao = % This concludes the
construction.
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12. APPENDIX: ON SPECTRAL GAPS

With regard to the discussion of Remark 4.10, we prove a lemma that establishes equivalence of numerical
ranges on the space of zero-momenta and the mean-zero functions.

Lemma 12.1. Suppose M is conservative and satisfies the following

(327) co <sp(z) <1, Vz €suppp,
(328) sup {(u, [u] )r, : u € LE(k,), ullz = 1} <1l-e
Then

. 2 = _ ‘o
(329) sup{(u, [ul )i, + w € L7 (kp), u=0, [ull2= 1} <1- ECO s
Conwversely, if
(330) sup{(u, [u] )r, : u€ L*(k,), u=0, |lul2= 1} <1-9,
then

. 2 _ €0

(331) sup {(u, [u] )i, © u € Lg(kp), [lull2 = 1} <1- 660 .

Proof. First let us observe that the bounds on s,, (327), imply bounds on k,-masses
(332) co < Kp(Q) <.

Let us denote P : L?(r,) — R™ the orthogonal projection onto the space of constant fields. We have for

all u with w = 0,
1
/ (u—Pu)pda
Q

= [Pu| = —=||Pull>.
rp(Q2)

On the other hand, by (i),

/Q(u—IP’u)pdx <7‘HCPO(Q)|

Using compatibility of masses (332),

|u — Pul|s.

1
/ (u —Pu)—dk,
Q Sp

C
lu = Pullz > = [[Pul|2.
1

Hence,
Co
[ull3 = llu—Pull3 + [[Pull3 > (1 + a)IIPUIlga
or
C1
333 Pul|2 < ul|2.
(333) Pl < 2l

Now, let us compute the numerical range, noting that [Pu) b= Pu,
2
(u, [u] ), = (u—Pu, [u —Pu] )w, + (u — Pu,Pu), + (Pu, [u —Pul,), + [[Pull3.

The second term vanishes due to orthogonality. For the third term we observe that due to the conservative
property of the average integrating against a constant field produces the same result as integrating without
the average. So,

(Pu, [u —Pul, ), = (Pu,u — Pu),, = 0.
Using the spectral gap condition for the first term and (333) for the last one, we obtain

(u, [u])x, < (1= e0)llu—Pull3 + [[Pull3 = (1 - co)[[ul3 + o[ Pull3

C1 2 Co 2
<(l—-egg+e ulp=11-¢ ul|3.
< (1= a2 Y g = (1- e 2 ) g

To obtain the converse statement, apply the same argument replacing the roles of p and «,, and note that
1/01<1/Sp§1/00. O
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13. APPENDIX: CATEGORIAL CONSIDERATIONS

Environmental averagings form an ’ecosystem’ of models. On a more formal level they can be thought of
as a category of objects and we can discuss relationships between them.

For a couple of models M’, M” defined over ' and Q”, respectively, a morphism M’ — M is defined
by a volume preserving homeomorphism 7 : Q' — Q" such that if p” o7 = p’ and v’ o 7 = «/, then

!/

[UI/]I/// oOT = [u/]pl 5

P
and there exist two constants ¢, C' > 0 such that

cdrly < drjy o < Cdjy.
For material models, the latter can be restated in terms of specific strengths

/ " i
Sy <8y 0T < Csp,.

We have tacitly employed this concept in Appendix 11 when discussing models on finite sets.
On a given environment €2 all models can be partially ordered is several ways. The most straightforward
definition of M’ < M" is
" !
)| = [0ly] =l vue L=@)
P
For example, among rough segregation models we have Mz < Mz, provided 7/ C F”. The identity model
M is the finest of all material ones (although if we defined it to be [u] = u irrelevant of the supp p, then it
would have become the finest of all). At the same time Mg}, is the coarsest among all conservative ones
with s, = 1.
A more refined definition of order can be given on classes of equivalence where we say M’ ~ M" if there
exist intermediate averagings My, ..., M, such that for any p € P there exist p1,..., pn € P such that

[. . [[u]g] l .. r = [u,, Vue L¥(Q),

Pn

and there exist intermediate averagings M, 11, . .., My 4 such that for any p € P there exist p,41, ..., pntm €
‘P such that

n+1 n+m

!/ "
[. . [[u] ] ] = [)), Yue LX)

Pn+1 Prtm
Then for a pair of models representing their equivalence classes we say M’ < M” if only one half of the
definition above holds, namely, there exist intermediate averagings My,..., M, such that for any p € P
there exist pi, ..., pn € P such that

[. . [[u];j] l .. r =[], VueL¥(Q).

n

Under this partial ordering, more subtle examples emerge. For instance, for Cucker-Smale models with
Bochner-positive kernels, it can be seen from the identity (149) that if ¢ = ¢ % ¢, and assuming that
J 1 =1, then the Mcs-model based on 4 is finer than that based on ¢, Més = Més. The same applies
for Myrr-models as those are based on the same averaging.

One can build new averaging models from old ones by superimposing averages as long as they are defined
over the same strength measures. So, if

Mi=A{(rp,[1}) : p € PO}, i=1,2

are two averaging models, then

(334) Moo M; = {(F»p, [HHZ) S 7’(9)}

defines another averaging model.
Certain compositions preserve special properties. For example, if M; are ball-positive and symmetric the

2
conjugation (k,, H[];] ] ) is also ball-positive and symmetric.
Plp
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