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A contact potential describing an effective interaction between atomic 4He reproducing the results obtained
with the HFDHE2 potential by Aziz et al. [1] is employed to study the resulting equation of state by means of
Quantum Monte Carlo calculations. The energy per particle and the pair distribution functions were investigated
as a function of the ultraviolet cutoff Λ. The results suggest that not only the mean field properties of the system,
such as the energy and the saturation density, are correctly reproduced, but also very microscopic quantities such
as the pair distribution function are seen to converge towards the exact results when extrapolating for Λ→ ∞.

The use of effective interactions to simplify the approach
to the study of otherwise extremely complex systems is
widespread in physics. The interaction between atoms and
molecules is often described in terms of potentials that can be
constructed starting from an accurate study of the underlying
Coulomb interactions. In nuclear physics, rather than solving
the problem at the Quantum ChromoDynamics (QCD), one
of the main goals of modern nuclear physics is to obtain a
precise and robust theory leading from QCD to nuclear ob-
servables, such as nuclear masses, electroweak interactions,
etc. In general, a direct calculation of physical observables
for such many-body systems is not trivial due to the non-
perturbative character of the underlying interactions. How-
ever, in the last decades, a general approach for studying low
energy reactions, that we will refer to as Effective Field The-
ory (EFT), has been developed that aims to establish a per-
turbative hierarchy in the estimation of the observables and
to provide a systematic way to estimate the error related to
the truncation of the expansion at a given order. The condi-
tion for describing a physical process using EFT is that the
typical exchanged momentum scale Q is small compared to
some large typical energy cutoff Λcut. For example, in nuclear
physics, the binding energy of deuterium and the related mo-
mentum exchanged between the proton and the neutron (few
MeV) is small compared to a cutoff determined by the energy
needed to create a virtual pion in the interaction, i.e., ∼140
MeV. In this case, the most general Lagrangian (or Hamil-
tonian), including only the relevant degrees of freedom be-
low Λcut, and preserving all symmetries of the fundamental
interaction, is constructed, while heavier excitations are inte-
grated out of the action. Thus, one obtains an expression of
non-renormalizable interactions, which can be organized as
a power series in Q

Λcut
, i.e., such as the nuclear observables

can be written as OΛ = O0 +
C1

Λcut
+ C2

Λ2
cut

+ ... [2–6]. This
is the so-called "pionless" version of nuclear EFT. In fact,
the momentum scale suggests that the only degrees of free-
dom needed to determine the structure of a nucleus are nucle-
ons interacting, at leading order, through contact interactions
only. When dealing with atomic or molecular systems, the
situation is to some extent similar. The underlying fundamen-
tal interaction describing the occurring chemical and physical

properties is the Coulomb force exerted among electrons, and
between electrons and ions. However, for very low energy
processes like those described in terms of Van der Waals or
dipolar forces, it is convenient to consider atoms as elemen-
tary degrees of freedom and utilize some effective potentials,
usually presenting a hardcore and some attractive part, which
are typically fitted on experimental phase shifts or results of
quantum chemistry calculations.

There have been several attempts of employing in con-
densed matter systems a perturbative approach similar to that
used in nuclear physics (Refs. [7–9] for example), in partic-
ular for the case of cold, dilute atomic gases and for atomic
4He condensed systems. In the latter case, the approach is
justified by the fact that this bosonic system has two length
scales, a2 and rV dw, with scale separation between the two,
making the two-body 4He system ideal for an effective po-
tential. For the 4He atomic system, the two-body scattering
length, a2 ≈ 170.9a0 is much larger than its van der Waals
radius, rV dW ≈ 9.5a0 with a0 is Bohr radius. Hence, for the
N-body 4He system, there is a large separation between the
length scale of interest (a2) and the length scale of the under-
lying dynamics (rV dw).

Native EFT potentials are normally believed to make sense
in the context of few-body and/or diluted systems. In Bosons,
contact interactions have also been proved to give sensible re-
sults for relatively large systems. However, there is an aspect
that needs to be explored and that is extremely relevant in the
context of nuclear physics. It is known that nucleons, as well
as atoms, need to be described by a strongly repulsive short-
range force. In a bulk of relatively high density, such short-
range forces are crucial to determine the correct properties of
the system and, ultimately, the Equation of State. Whether or
not a contact interaction and, in general, a perturbative EFT
approach is able to reasonably reproduce the behavior of ho-
mogeneous matter, especially at densities above saturation, is
a perfectly sensible question. Recently Kievsky et al. [9] per-
formed an interesting analysis of the extrapolation to the bulk
in terms of Density Functional Theory, showing that the ex-
trapolation is somewhat coherent with old GFMC results by
Pandhariphande at al. [10]. In this letter, we want to investi-
gate the problem by using Quantum Monte Carlo methods to
compute the Equation of State of 4He near the saturation den-
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sity, using a Leading Order (LO) effective interaction fitted
on small droplets simulated by means of a realistic Aziz He-
He potential[9], and then extending the calculations to a bulk
at different densities, to observe the evolution with the cutoff
defining the effective interaction of observables such as the
binding energy per particle and the pair distribution functions.
This problem sheds light on at least one of the difficulties that
are believed to plague the extrapolation of nuclear forces to
describe homogeneous nucleonic matter, stripping out the ef-
fects due to the fermionic nature of the nucleons and on the
relative spin and angular momentum-dependent nature of any
nuclear potential.

The Diffusion Monte-Carlo (DMC) algorithm (see e.g.
[11, 12] ) is based on a stochastic implementation of an imagi-
nary time propagator exp[−t(H−E0)/h̄], where E0 is an esti-
mate of the ground state energy, applied to some arbitrary ini-
tial state |ΨT 〉 to project out the ground state |Ψ0〉, provided
that 〈Ψ0|ΨT 〉 6= 0. This method is particularly powerful in the
case of many-Boson problems. The specifics of the code we
used for implementing DMC follow the standards described
in literature. In DMC particular care must be taken in con-
structing the wavefunction to be used as inital state and as
importance function for the walks to be generated. Such func-
tion must be a reasonable approximation of the ground state,
especially for as concerns the short range analytic behavior, in
order to reduce the statistical noise on the results.

In order to construct our wavefunction we first solve the
two-body problem using the bare two-body Hamiltonian:

Ĥ2-B =− h̄2

2Mrelative
∇

2 +V2(Λ)e−r
2·Λ2

. (1)

Λ plays the role of an ultraviolet cutoff that regulates the two-
body potential, V2(Λ) is a so called Low Energy Constant
(LEC), and r is the relative distance between two 4He atoms.
The two-body wave-function is given by the solution of:

Ĥ2-Bψ2-B(r,Λ) = E2(Λ)ψ2-B(r,Λ) = E2ψ2-B(r,Λ). (2)

The last equality points out the fact that in a renormalized the-
ory the binding energy of the two-body system must be in-
dependent of Λ. For such reason, for each Λ, V2(Λ) is cal-
ibrated using eqs. (1) and (2) assuming E2 = 0.83012 and

h̄2

2Mrelative
= 43.281307Ka2

0 with a0 the Bohr radius[13]. This
calibration was done by means a direct numerical solution
(Chebyshev algorithm [14]) of the two-body differential equa-
tion for different values of the cutoff (Λ).

The next step in writing the equation of state of many-body
system is to solve the N = 3 (4He trimer) Schrodinger equa-
tion using the calibration of V2(Λ) found in the dimer as a sum
of two-body interactions [15, 16]:

Ĥ3-B =−∑
i< j

h̄2

2Mcm
∇

2
i j +V2(Λ)e

−r2
i j ·Λ

2
, (3)

where the indices i, j = 1 . . .3, and ∇2
i j refers to the Laplacian

with respect of the relative coordinate of the i, j pair. In con-
trast to the dimer, here we used the QMC algorithm to solve

eq. 3, with the analytical dimer wave-function (ψ2-B(Λ)) as
ΨT . At leading order (LO), the numerical solution of the

(a) (b)

FIG. 1: The trimer binding energy (E3(Λ) as a function of the cutoff Λ (a)
and the three-body force, D(Λ) as a function of the cutoff Λ (b)

three-body Schrodinger equation for the trimer shows a strong
cutoff dependence, i.e., E3 = E3(Λ) (see fig. 1. This is ex-
pected, and it is a manifestation of the so-called Efimov ef-
fect (see, e.g., [17, 18]), that leads to a collapse in the limit
Λ→∞. Since the theory must be renormalizable,i.e., for each
Λ, E3(Λ) = E3, to remove the cutoff dependence, one needs
to add a three-body interaction and the corresponding LEC
D(Λ), such that:

ĤN =−∑
i< j

h̄2

2Mcm
∇

2
i j +V2(Λ)e

−r2
i j ·Λ

2
+ (4)

+ ∑
i< j<k

DΛ(Λ)e
−2
(

r2
i j+r2

ik+r2
jk

)2
·Λ2/3

,

the trimer binding energy D(Λ) is set using the HFDHE2
potential, which is 117.3 mK (solid line in Fig. 1,a). Fig-
ure 1,b shows the resulting calibrated three-body force. For
the case of the four-body system, it was already found in pre-
vious work, that no four-body counterterm is needed at LO
[7]. Once the effective interaction is calibrated on the two- and
three-body systems, we can test its applicability to the equa-
tion of state by first solving the problem for larger droplets as
a consistency test, then extending the calculations to the bulk
system.

As mentioned, calculations were performed using the
standard DMC algorithm, using a trial/importance function
constructed as a Jastrow product of the analytic solutions
Ψ2−B(Λ) of the two-body problem. In the cluster simula-
tion the cutoff Λ was taken in the range 0.1 < Λ < 0.28a−1

0 .
Figure.2 shows the DMC solution for the binding energy of
N = 4− 7 systems of 4He droplets as a function of Λ. For
Λ > 0.24, for all the N-body systems, one obtains a reason-
able convergence to energy close to the value predicted using
the HFDHE2 potential. However, it is possible to see how the
statistical uncertainty of the result greatly increases with the
value of Λ. This is a signature of the increased fluctuations
in energy due to the larger and larger steepness of the poten-
tial over a reduced spacial range. In any case we can consider
the calibration of the effective interaction (that replaces a hard
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FIG. 2: DMC binding energies of N=4−7 4He droplets
described by a LO-effective contact potential as a function of

the cutoff Λ. The results are normalized to those obtained
using the HFDHE2 potential [1]). Blue solid band: N = 4;

Green dashed band: N = 5; Red dashed band: N = 6;
Magenta dotted-dashed band: N = 7. Solid red line: result
from the HFDHE2 potential [1]. The width of the bands
reflects the statistical uncertainty intrinsic to the DMC

algorithm.

core two-body potential with a sum of two- and three-body
potentials) as quite satisfactory.

The next step consists of extending the simulations to larger
systems (N = 50,100,200), using the same two-body ansatz
for the wavefunction, but imposing periodic boundary condi-
tions. Under these conditions, one obtains a reasonable ap-
proximation of a bulk liquid. Calculations could be extended
in principle to study the liquid/solid phase transition (see, e.g.,
[19]), but for the moment, we limit our analysis to a restricted
interval around the saturation density, 27.55 cc/mol [19]. It
should be noticed that when simulating a bulk, the only rel-
evant parameter should be the density ρ = N/V . In Figure
3 we show the results of the DMC energy per particle of the
bulk as a function of its specific volume v = 1/ρ , expressed
in cc/mol, for 5 different scenarios:

• N=50, Λ = 033/a0 (Blue band)

• N=50, Λ = 0.25/a0 (Green band)

• N=100, Λ = 0.33/a0 (Red band)

• N=100, Λ = 0.255/a0 (Magenta band)

• N=200 Λ = 0.33/a0 (Red dots)

For each of these (N,Λ) pairs we calculated the equation of
state E(v)/N for a set of specific volumes around the experi-
mental saturation value v0 ' 27.8cc/mol, and compared to the
experimental data from Ref. [20] and the DMC calculation
with a more accurate two- plus three-body interaction from
Ref. [19]. For both N = 50 and N = 100, the width of the

band represents the statistical uncertainty, which is quite large
due to the substantially large value of the cutoff employed.
As it can be noted, energies are all compatible with the exper-
imental and theoretical values. However, also the saturation
density, despite the large uncertainty, encompasses the correct
value. Interestingly, it can be noticed how for N = 50 there is
a very large deviation of the predicted energies at larger den-
sities. This can be expected, since at such densities and for
such a small number of particles, the size of the box becomes
of order of twice the potential range, and hence the small box
size enters an artificial artifacts to the Schrodinger equation,
makes the calculation unreliable for these volumes.

FIG. 3: DMC energy per atom in 4He bulk liquid for periodic
systems containing N=50,100 and 200 atoms and

Λ = 0.33/a0 and 0.25/a0. Blue solid band:N = 50,
Λ = 033/a0; Green solid band: N = 50, Λ = 0.25/a0; Red

Band: N = 100, Λ = 0.33/a0; Magenta solid band: N = 100,
Λ = 0.25/a0; The red dots are calculation for N=200 and

Λ = 0.33/a0. Green circles: DMC calculation from
Ref. [19]. The dashed line reproduces the experimental

values from ref. [20]

In order to better illustrate the cutoff dependence of the re-
sults, we computed in the liquid phase at the experimental sat-
uration density the energy per particle for a periodic system
with N = 100 atoms using 8 different values of the cutoff Λ in
the range Λ = 0.33/a0 to Λ = 0.18/a0. The results are shown
in Fig. 4. It can be seen that the numerical solutions dis-
play a mild cutoff dependency, In particular, for Λ > 0.25 we
can see a convergence towards an energy ε ' −7.4 K, which
is slightly deeper than the experimental value, ε = −7.17 K
[20] and of the result of analogous DMC calculations in the
bulk performed with the same HFDHE2 potential (see e.g.
Ref. [21]). The 5% difference can be attributed to the fact that
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this is a calculation at LO level. One can expect that introduc-
ing NLO corrections and beyond this gap can be reduced.

FIG. 4: Energy per particle ε at saturation volume v = 27.55
cc/mol for 0.18/a0 ≤ Λ≤ 0.33/a0. Dashed line:

experimental result ε =−7.17 K [20]

In any case, it should be noticed how the EoS estimated
from the LO contact potential over a relatively wide range of
specific volumes around the saturation points is qualitatively
very well compatible with the physical behavior of the system.
Since the energy can be in principle estimated correctly in a
mean field calculation, this result is not very surprising. On
the other hand, a correct value for the energy can be obtained
in a model that does not respect more microscopic properties
of the system. An interesting observable (that is related to
neutron scattering experiments), is the so called pair distribu-
tion function g(r), which is the Fourier transform of the static
structure factor. This is defined as (see e.g. Ref.[22]):

g(r) =
1

2πrρN
×∑

i< j
〈ψ|δ (ri j− r) |ψ j〉 , (5)

where ρ is the density and ρg(r)d3r is the probability of find-
ing a 4He atom in an infinitesimal volume d3r at a distance r
from another 4He atom. The normalization is such that In the
limit of large r, g(r)→ 1.

The results for g(r) as a function of the cutoff at saturation
density are shown in Fig. 5. In contrast to what can be ob-
served for the energy per particle ε , where the dependence on
Λ is quite weak, the pair distribution function shows a com-
pletely different behavior. As we increase Λ, g(r) displays a
microscopic structure of the liquid that evolves from having a
local cluster (reminiscent of Thomas collapse) to the typical
structure of a liquid, with a peak at a distance slightly larger
than the dimension of the atoms. The figure also reports g(r)
computed in a Variational Monte Carlo calculation using the
HFDHE2 potential, which presents a hard core, and therefore
a correlation hole that is much more pronounced. The strik-
ing result of our calculations is that increasing the cutoff one
recovers almost quantitatively the microscopic features of the

system, indicating that the effective interaction correctly de-
scribes the bulk at a very deep level. The results for g(r) are

FIG. 5: Pair distribution function g(r) for different values of
the cutoff Λ. Gray dots are VMC calculation with the

HFDHE2 potential

strictly related to the evolution with the cutoff of the effective
two-body potential for the three body-system by integrating
over r3, defined as:

V eff
2 (Λ,r12) =V2(Λ)exp

(
−r2

12/Λ
2)+ (6)∫

∞

0
d3rV3(Λ)exp

[
2
(
r2

12 + r2
23 + r2

13
)
/3Λ

2]
In Fig. 6 we report the DMC expectation of the effective po-
tential in Eq.(6) for different values of the cutoff Λ. As it can
be seen, the potential slowly develops a larger and larger re-
pulsive part that eventually would well approximate the orig-
inal hard core interaction.

FIG. 6: Effective two-body interaction V e f f
2 (r12) as defined

in Eq.(6) for different values of the cutoff Λ. . The gray dots
are the HFDHE2 potential by Aziz et al. [1].

In conclusion, we have shown that approximating an hard
core interaction in a many-Boson system (namely 4He atoms
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at T=0) with a contact interaction following the criteria that
are commonly used to construct pionless effective potentials
in nuclear physics (and first of all the renormalizability cri-
terion), leads to a description of the bulk that for sufficiently
large values of the cutoff in momentum space reproduce not
only mean-field like quantities as the total enrgy, but also very
sensitive microscopic observables such as as the pair distribu-
tion function are seen to converge toward the exact results.
Hence, this work shows that even for bulks with relatively
high density, perturbative EFT reproduces homogeneous mat-
ter’s behavior and can be used for alternative solutions to exact
potentials, especially when exact solutions are not possible.
As a result, this work is an essential step toward calculating
many-body systems and homogeneous nucleonic matter us-
ing an effective potential, removing the effects of fermionic
nucleons and nuclear potentials that depend on relative spin
and angular momentum.
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