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EXTREME EIGENVALUES AND THE EMERGING OUTLIER IN RANK-ONE

NON-HERMITIAN DEFORMATIONS OF THE GAUSSIAN UNITARY ENSEMBLE

YAN V. FYODOROV1, BORIS A. KHORUZHENKO2 AND MIHAIL POPLAVSKYI 2

ABSTRACT. Complex eigenvalues of random matrices J = GUE + iγ diag(1, 0, . . . , 0) provide

the simplest model for studying resonances in wave scattering from a quantum chaotic system via a

single open channel. It is known that in the limit of large matrix dimensions N ≫ 1 the eigenvalue

density of J undergoes an abrupt restructuring at γ = 1, the critical threshold beyond which a

single eigenvalue outlier (“broad resonance”) appears. We provide a detailed description of this

restructuring transition, including the scaling with N of the width of the critical region about the

outlier threshold γ = 1 and the associated scaling for the real parts (“resonance positions”) and

imaginary parts (“resonance widths”) of the eigenvalues which are farthest away from the real axis.

In the critical regime we determine the density of such extreme eigenvalues, and show how the

outlier gradually separates itself from the rest of the extreme eigenvalues. Finally, we describe the

fluctuations in the height of the eigenvalue outlier for large but finite N in terms of the associated

large deviation function.

1. INTRODUCTION

Rank-one non-normal deformations of the Gaussian and Circular Unitary Ensembles are a use-

ful analytic tool for studying statistics of resonances in quantum scattering from a chaotic domain

via a single channel [1, 2]. As surveyed in [2, 3], these random matrix ensembles are integrable

in the sense that the joint probability density of their complex eigenvalues and, in some spectral

scaling limits of interest, the eigenvalue correlation functions can be determined in a closed form.

Such integrability, which also proves to be useful in other physics contexts, see e.g. [4], extends to

a certain degree to the deformed β−Gaussian and β−circular ensembles [5, 6], especially to the

classical values β = 1, 4 [7, 8], but is lost if the underlying normal random matrix ensemble (Her-

mitian or unitary) is not integrable, as is the case with, e.g., finite rank non-Hermitian deformations

of Wigner matrices [9, 10, 11] or band matrices [12]. Still, the latter matrices are found to share,

in appropriate parameter ranges, some statistical characteristics of their complex eigenvalues and

eigenvectors with their integrable counterparts.

In this paper we aim to investigate complex eigenvalues with extreme imaginary parts for the

rank-one non-Hermitian deformations of the Gaussian Unitary Ensemble (GUE) by exploiting the

above-mentioned integrability. The latter feature gives access to the asymptotics of the eigenvalue

density in the complex plane on mesoscopic scales and allows us to carry out a quantitative analysis

of the separation of the eigenvalue outlier (which is known to exist in this model [9, 10]) from the

rest of the eigenvalues. Eigenvalue outliers in the complex plane have recently attracted renewed

interest [13, 14, 15, 11]. Our analysis refines and complements the existing knowledge about the

outliers of nearly Hermitian matrices [9, 10, 11] albeit for arguably the simplest model of its type.

As we will demonstrate, despite the simplicity of the model, its extreme eigenvalues exhibit an

interesting transition at a certain value of the deformation parameter, with rich critical behaviour

which deserves to be studied in more detail.
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The non-Hermitian matrices that we consider are of the form

J = H + iΓ, (1)

where H is a GUE matrix and Γ is a diagonal matrix with all diagonal entries being zero except

the first one,

Γ = γ diag(1, 0, . . . , 0). (2)

Denoting the matrix dimension by N , we fix the global spectral scale by the condition that the ex-

pected value of TrH2 is N . Then the joint probability density function (JDPF) of matrix elements

of the GUE matrix H is

fN(H) = const× exp

{
−N

2
TrH2

}
. (3)

With this normalisation, the limiting eigenvalue distribution of H , as the matrix dimension is

approaching infinity, is supported on the interval [−2, 2], and, inside this interval, the eigenvalue

density is ν(X) = 1
2π

√
4−X2.

Note that due to the invariance of the JPDF (3) with respect to unitary rotations H → UHU−1

one may equivalently replace Γ in (2) with any other rank-one Hermitian matrix. Without loss of

generality we may also assume γ to be positive. Then the eigenvalues Xj + iYj of matrices J (1)

– (3) are all in the upper half of the complex plane and for N large they all, except possibly one

outlier, lie just above the interval [−2, 2] of the real line. Whether such an outlier is present or

not is determined by the value of γ. For fixed values of γ < 1, almost surely, for N sufficiently

large, all N eigenvalues lie within distance cNN
−1 from the real line, with cN = o(N ǫ) for every

ǫ > 0 [9]. And if γ > 1 then the same is true of all but one eigenvalue. This outlier lies much

higher in the complex plane: to leading order in N , its imaginary part (the “height”) is γ − γ−1

[14, 9, 10]. For precise statements and proofs we refer the reader to [9, 10] where these and similar

facts were established for finite rank non-Hermitian deformations of real symmetric matrices with

independent matrix entries.

For finite but large matrix dimensions, one would expect to find a transition region of infinites-

imal width Ω about the outlier threshold value γ = 1 which captures the emergence of the outlier

from the sea of low lying eigenvalues. Questions about the scaling of Ω with N and the corre-

sponding characteristic height and distribution of the eigenvalues that lie farthest away from the

real line are natural and interesting in this context. These are open questions in the mathematics

and mathematical physics literature on the subject.

Apart from the mathematical curiosity, there is also motivation coming from physics. In the

physics literature, the eigenvalues of J are associated with the zeroes of a scattering matrix in the

complex energy plane, and their complex conjugates with the poles of the same scattering matrix,

known as “resonances”. The latter are obviously the eigenvalues of matrices (1) – (2) with γ
replaced by −γ. In that context the absolute value of the eigenvalue’s imaginary part is associated

with the “resonance width”. The eigenvalues close to real axis are called “narrow resonances” and

the outlier is called the “broad resonance”. The use of the Gaussian Unitary Ensemble for H is

justified by invoking the so-called Bohigas-Giannoni-Schmidt conjecture [16] describing spectral

statistics of highly excited energy levels of some classes of systems whose classical counterparts

are chaotic. The resulting ensemble J is then an important ingredient in characterising statistical

properties of scattering matrices in systems with quantum chaos and no time-reversal invariance,

see [1] for description of the associated framework going back to the pioneering paper [17] . In
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that framework, the phenomenon of the outlier separation and the simultaneous movement of the

rest of the eigenvalues towards the real axis was first discussed, albeit at a heuristic level, already

in early theoretical works [18, 19], the latter work even establishing the correct asymptotic position

of the outlier. Later on, this phenomenon got considerable attention under the name “resonance

trapping” and eventually was observed in experiments [20].

Very recently, Dubach and Erdős [11] performed a detailed analysis of the eigenvalue trajec-

tories, with respect to changing the parameter γ, in the random matrix ensemble H + iγvv∗ in

the settings when H is assumed to be a Wigner matrix and v a column vector of unit length. It

turned out that the evolution of the eigenvalues is governed by a system of deterministic first-order

differential equations subject to random initial conditions, with the initial positions and velocities

expressed in terms of the eigenvalues and eigenvectors ofH . In addition, under suitable conditions

on the distribution of matrix entries of H ensuring the validity of the uniform isotropic local law

(Theorem 5 in [11] ), Dubach and Erdős proved that with high probability the eigenvalue outlier is

distinctly separated from the rest of the eigenvalues for all

γ > 1 +
N ε

3
√
N
, ε > 0. (4)

Moreover, if ε < 1/3, i.e. if N−1/3+ε is asymptotically small, the outlier’s height is 2N−1/3+ε and

its real part is in the window of width N−1/3−ǫ/4 around the origin, whereas all other eigenvalues

are no higher than N−1/3−ε. In addition, with high probability, for all

γ < 1− N ε

3
√
N
, ε > 0, (5)

no eigenvalue reaches the heights

Y =
m
3
√
N
, m > 0. (6)

These findings suggest that the width Ω of the transition region around γ = 1 scales with as

N−1/3 for N large. Naturally, for γ inside this region one would expect to find several eigenval-

ues, including the emerging “atypical” outlier, with imaginary parts on the critical scale (6) much

exceeding the height O(N−1) of low lying eigenvalues, as illustrated in Figure 1. One might call

such eigenvalues ”typical extremes” to emphasise atypicality of the emerging outlier.

To a large extent our paper is motivated by [11] and aims to provide quantitative insights into

this picture of the outlier emerging from the cloud of extreme eigenvalues. Whilst the approach of

Dubach and Erdős is dynamical (fix matrix H and study eigenvalue trajectories as the magnitude

γ of the deformation increases), our approach is statistical (fix a scale for γ and count the number

of eigenvalues on characterisitc spectral scales in the complex plane averaged over the distribution

of H which, for technical reasons, we assume to be GUE). Our present approach is limited to the

expected values; analysing higher order moments is left as an interesting problem for future inves-

tigations. However, even with such a basic tool we are able to develop rather detailed quantitative

understanding of the outlier separation and the associated restructuring transition in the spectra of

matrices J .

As such, the two approaches complement each other very well. For example, we prove that for

γ = 1 +
α

3
√
N
, α ∈ R, (7)
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FIGURE 1. γ- trajectories of eigenvalues of matrices (1) – (3) of dimension N =
1000 near the origin. Each plot represents a different sample of H from the GUE

(3). The parameter γ is varying in the interval [0, 0.5] in the increments of 0.05 (blue

dots), in the interval [0.5, 1] in the increments of 0.1 (red dots), and in the interval

[1, 1.5] in the increments of 0.1 (green dots).

the expected number of eigenvalues whose height exceeds the level (6) is asymptotically given by

the integral
∫∞
m
p
(Im)
α (m′)dm′ with density

p̃(Im)
α (m) =

1

2
√
π

3
2m

+
(
3m
2
− α

)2

m3/2
e−m(α−m

2 )
2

, m > 0.

This density is the average density of the extreme eigenvalues at height (6). Together with findings

in [11] this result establishes that the width Ω of the transition region around γ = 1 indeed scales

with N−1/3. Similarly, we are able to determine the average density of extreme eigenvalues Zj =
Xj + iYj of J near the origin in the complex plane in the critical scaling regime when when

q + im = 3
√
NZ = O(1). As a function of coordinates q and m, this density, when appropriately

rescaled, is given by

p̃α(q,m) =
1

4πm

[
1

m
+
q2

4
+

(
3m

2
− α

)2
]
e
−m

[
q2

4
+(α−m

2 )
2
]

, q ∈ R, m > 0.

It can be verified that
∫ +∞
−∞ p̃α(q,m)dq = p̃

(Im)
α (m), implying that the population of extreme eigen-

values at the critical height (6) which generates the eventual outlier (as α is approaching infinity) is

constrained to a narrow vertical strip of width O(N−1/3) about the origin (the centre of the eigen-

value band of H). Thus our results both confirm and complement the analysis in [11], and show

that it indeed touched the optimal scales in γ (7), both along the real and imaginary axes.

We would like to conclude this section with a short description of the structure of our paper.

In Section 2 we develop quantitative heuristic analysis of the outlier separation. This analysis

elucidates the emerging critical scaling in γ and the critical spectral scalings in the complex plane

and provides a useful background for rigorous calculations later on. This section also offers our

outlook on the universality of the exponent −1/3 in (7). Section 3 contains the statement of our

main results and discussion. In Section 4 we express the expected density of eigenvalues of J and

the density of their imaginary parts at finite matrix dimensions in terms of, respectively, Hermite
4



and Laguerre polynomials. These expressions are then used in Sections 5 and 6 for asymptotic

analysis of eigenvalue densities in various scaling limits. The two appendices contain derivations

of technical auxiliary results.

2. LOW LYING EIGENVALUES AND THEIR EXTREMES: A HEURISTIC OUTLOOK

Before presenting our main results in the next Section, we would like to offer our quantitative

heuristic insights into the outlier separation elucidating the emerging scalings and mechanisms

behind them and providing a useful background for rigorous calculations later on.

With zj = Xj + iYj standing for the eigenvalues of matrices J = H + iΓ, the angular brackets

〈...〉 standing for averaging over the GUE matrix H (3), and δ(X) for the Dirac delta-function,

the expected number of eigenvalues of J in domain D can be computed by integrating the mean

eigenvalue density

ρN(X, Y ) =
〈 1

N

N∑

j=1

δ(X −Xj)δ(Y − Yj)
〉

(8)

over D and multiplying the result by N . For example, the expected number Nγ(Y ) of the eigen-

values of J which lie above the line Im z = Y in the complex plane is given by the integral

Nγ(Y ) = N

∫ ∞

−∞

∫ ∞

Y

ρN(X, Y
′) dXdY ′ = N

∫ ∞

Y

ρ
(Im)
N (Y ′) dY ′ , (9)

where ρ
(Im)
N (Y ) is the mean density of the imaginary parts irrespective of the value of the real part,

ρ
(Im)
N (Y ) =

〈 1

N

N∑

j=1

δ(Y − Yj)
〉
. (10)

Guided by the eigenvalue perturbation theory one can expect that the typical height Y of the

eigenvalues whose real part is close to a point X ∈ (−2, 2) in the spectral bulk scales with the

mean separation ∆ = (Nν(X))−1 between neighbouring real eigenvalues of the GUE matrix H
in the limit N → ∞. On a more formal level, introducing the scaled version of ρN (X, Y ) [21]

ρ̃N (X, y) :=
1

ν(X)

〈 1

N

N∑

j=1

δ
(
X −Xj

)
δ
(
y − 2πν(X)NYj

)〉
, −2<X< 2 , (11)

one finds that such scaled density is well-defined in the limit of large matrix dimensions [21, 1, 22,

2]: for every y > 0

ρ̃(X, y) := lim
N→∞

ρ̃N (X, y) = − d

dy

[
e−yg(X) sinh y

y

]
, g(X) =

γ + 1
γ

2πν(X)
, (12)

confirming that locally the typical height of low lying eigenvalues scales with ∆ = (Nν(X))−1.

Globally, the typical height of low lying eigenvalues scales with N−1. Intuitively, this can be

understood from the exact sum rule

N∑

j=1

Yj = γ (13)

5



which follows from the obvious relation Tr J = iγ + TrH . On a more formal level, consider the

expected fraction of the eigenvalues of J which lie above the level Im z = Y , and set y = NY . In

the limit N → ∞,

1

N
Nγ

( y
N

)
∼
∫ 2

−2

dX ν(X)

∫ ∞

2πν(X)y

dy′ ρ̃(X, y′) (14)

=
e−y(γ+ 1

γ )

y

∫ 2

−2

dX

4π

(
ey

√
4−X2 − e−y

√
4−X2

)
. (15)

The integral in (15) is the modified Bessel function I1(2y). Therefore,

lim
N→∞

1

N
Nγ

( y
N

)
=
e−y(γ+ 1

γ )

y
I1(2y) . (16)

From this,

ρ̃(Im)(y):= lim
N→∞

1

N
ρ
(Im z)
N

( y
N

)
= − d

dy

[
e−y(γ+ 1

γ )

y
I1(2y)

]
(17)

=
e−y(γ+ 1

γ )

y

[(
γ +

1

γ
− 2

)
I1(2y)− I0(2y)− I2(2y)

]
. (18)

The density ρ̃(Im)(y) is the mean density of the scaled imaginary parts yj = NYj in the limit of

large matrix dimensions. Even though it describes low lying eigenvalues it contains some useful

information about eigenvalues higher up in the complex plane.

As an example, consider the expected value of the sum of the imaginary parts of low lying

eigenvalues. Using definition (10), the sum rule (13) implies that

N

∫ γ

0

Y ρ
(Im)
N (Y )dY = γ . (19)

Upon rescaling y = NY , one could naively jump to the conclusion that
∫∞
0
y ρ̃(Im)(y) dy = γ.

However, by making use of (17) and integral 6.623(3) in [23], one actually finds that

∫ ∞

0

y ρ̃(Im)(y) dy =

∫ ∞

0

e−y(γ+ 1
γ )

y
I1(2y) dy =

γ + 1
γ
−
√(

γ + 1
γ

)2
− 4

2
=




γ, if γ < 1,

1
γ
, if γ > 1.

Thus, if γ < 1 then the imaginary parts of low lying eigenvalues indeed add up to γ, in full

agreement with the sum rule (19), whereas if γ > 1 they add up only to 1
γ
< γ. The sum rule deficit

γ − 1
γ

is exactly the imaginary part of the outlier, and suggests that the rescaled limiting density of

low lying eigenvalues, ρ̃(Im)(y), precisely misses the delta-functional mass 1
N
δ
(
y −

(
γ − 1

γ

))
.

As another example, consider the asymptotic form of ρ̃(Im)(y) when y ≫ 1. It is markedly

different depending on whether γ = 1 or not. In the later case, using in (17) the asymptotic

expansion for the modified Bessel function of large argument, Ip(x) ∼ ex√
2πx

(1− 4p2−1
8x

+ . . .) one

6



finds an exponential decay, whilst in the former case the decay is algebraic:

ρ̃(Im)(y) =





e−y (1−γ)2

γ

2
√
π y3/2

[
(1− γ)2

γ
+

30− 3(γ + γ−1)

16y
+O

(
1

y2

)]
if γ 6= 1,

3

4
√
π

1

y5/2
+O

(
1

y7/2

)
if γ = 1 .

(20)

It is instructive to return to the unscaled imaginary part Y and take a closer look at the expected

number of the eigenvalues of J exceeding the level Im z = Y in the limit N → ∞. It is evident

from (16) that

Nγ(Y ) ∼
e−NY (γ+ 1

γ )

Y
I1(2NY ) , (21)

provided NY = O(1). Extending this asymptotic relation to large values of NY allows one to get

insights, even if only heuristically, about the characteristic scale of the highest placed among the

low lying eigenvalues. Along these lines, we define the characteristic scale of the height of typical

extreme eigenvalues as such level Ye that the expected number of eigenvalues with imaginary part

exceeding Ye is of order of unity:

Nγ(Ye) = O(1). (22)

We add the word typical to exclude the atypical eigenvalue (the outlier) which is known to exist

when γ > 1. Now, assuming NYe to be large (but still anticipating Ye ≪ 1) one can replace the

Bessel function in (21) by its corresponding asymptotic expression and approximate:

Nγ(Ye) ≈
e−NYe

(1−γ)2

γ

2
√
πN Y

3/2
e

, 1 ≪ NYe ≪ N . (23)

The condition in (22) then leads to two essentially different scenarios depending on the value of

γ. Namely, for every fixed positive γ 6= 1 the characteristic scale of the typical extreme values is,

to leading order in N , O(N−1 lnN). On the other hand, if γ = 1 then the typical extreme values

raise from the sea of low lying eigenvalues to a much higher height of O(N−1/3). This change of

scale for extreme values is easy to trace back to the emerging power-law decay in the vicinity of

γ = 1 which is evident in (20).

In fact, as evident from (23), the typical extreme values scale as Ye = O(N−1/3) not only at

γ = 1, but also as long as |1− γ| ∝ N−1/3. Actually, by setting simultaneously γ = 1 + αN−1/3

and Ye = mN−1/3 the asymptotic relation (23) is converted into

N1+ α
3√
N

(
m
3
√
N

)
≈ e−mα2

2
√
πm3/2

, (24)

an expression that is indeed of order of unity for all fixed values of α and m > 0. Thus, the width

of the transition region about γ = 1 must scale with N−1/3. Combined with the existence of a

distinct outlier at height γ − γ−1 ≫ Ye one may indeed see that our heuristic argument perfectly

agrees with the conjecture of Dubach and Erdős about the critical scaling γ = 1+O(N−1/3) where

the separation of typical and atypical extreme values happens.

Before continuing our exposition of the heuristics behind the restructuring of the density of

complex eigenvalues we would like to make two remarks.
7



Remark 1. To make further contact with the standard subject of extreme value statistics, it is

useful to recourse to the classical theory of extreme values for i.i.d. sequences of random variables

y1, . . . , yN , a succinct albeit informal summary of which can be found in, e.g., [24]. In that case the

probability law of extreme values is characterised by the tail behaviour of the “parent” probability

density function (pdf) p(y) of yj and is essentially universal in the limit N → ∞. In our context,

the pertinent case for comparison is that of non-negative continuous i.i.d. random variables with

the parent distribution supported on the entire semi-axis [0,∞). Then only two possibilities may

arise. Those sequences which are characterised by the power-law decaying pdf p(y) ∼ Ay−(1+α),

α > 0, as y → ∞ have their extreme values scaling with (AN/α)1/αand the distribution of their

maximum, ymax = max(y1, . . . , yN), after rescaling converges to the so-called Fréchet law in the

limit N → ∞. In contrast, if the parent pdf decays faster than any power, e.g., if ln p(y) ∼ −yδ,
δ > 0, then, to leading order, extreme values scale with (lnN)1/δ , and the distribution of the largest

value ymax, converges, after a shift and further rescaling, to the so-called Gumbel law. Although,

the imaginary parts of complex eigenvalues in the random matrix ensemble (1) – (3) are not at all

independent (as is evident from their JPDF (51) resulting in a non-trivial determinantal two-point

and higher order correlation functions at the scale N−1, see [22]), our scaling predictions for the

typical extreme eigenvalues are in formal correspondence with the i.i.d. picture: a Gumbel-like

scaling (with δ = 1) if γ 6= 1 and a Fréchet-like scaling (with α = 3/2) if γ = 1. This is exactly as

would have been implied in the i.i.d. picture by the tail behaviour of the mean eigenvalue densities

in the two cases in (20). This fact naturally suggests to conjecture Gumbel statistics for the typical

largest imaginary part (excluding possible outlier) for any γ 6= 1, changing to a Fréchet-like law for

γ = 1, with a possible family of α− dependent nontrivial extreme value statistics in the crossover

critical regime γ = 1 + αN−1/3. Although we are not able to shed light on the distribution of

typical extreme eigenvalues in the random matrix ensemble (1) – (3), we will discuss some results

in that direction for a somewhat related model at the end of the next section.

Remark 2. The phenomenon of resonance width restructuring with increasing the coupling to

continuum (controlled in the present model by the parameter γ) and the emergence of the broad

resonance has many features in common with the so-called super-radiant phenomena in optics.

This is well known in the physics literature, see [25] and references therein. Here, we would

like to point to a similarity of the spectral restructure in the random matrix ensemble (1) – (3)

to a process in a different physics context, the so-called “condensation transition” which occurs

in models of mass transport when the globally conserved mass M exceeds a critical value, see

e.g. [26] for a review. In such a regime, the excess mass forms a localised in space condensate

coexisting with a background fluid in which the remaining mass is evenly distributed over the rest

of the system. A particularly simple case for analysing the condensation phenomenon is when

the system has a stationary state such that probability of observing a configuration of masses mi

factorises into the form
∏

i f(mi)δ(
∑

imi −M). In that context again the tail behaviour of the

“parent” mass density f(m) plays important role. Although we would like to stress again that in

our model the imaginary parts of the complex eigenvalues are not independent, the analogy with

the condensation phenomenon is quite evident.

Essentially the same heuristic analysis as in the above helps to clarify the numerically observed

fact of the outlier emerging mostly close to the origin of the spectrum Re z = 0. From this angle it

is instructive to ask what should be the scale of extreme values for eigenvalues satisfying |Re z| <
W , that are sampled in a window of a small widths W ≪ 1 around the origin (still assuming

typically many eigenvalues in the window, so that W ≫ ∆ ∼ 1/N). The total mean number of
8



eigenvalues in the window W whose imaginary parts exceed the level Y (but still formally remain

of the order of 1/N) is now given by

Nγ,W (Y ) =
e−NY (γ+ 1

γ )

4πY
[TW (NY )− TW (−NY )] , TW (NY ) = 2

∫ W

0

eNY
√
4−X2

dX. (25)

For NY ≫ 1 the term TW (−NY ) is exponentially suppressed, while the integral in TW (NY ) is

dominated by X ≪ 1 and with required accuracy yields the leading-order expression in the form:

Nγ,W (Y ≫ 1/N) ≈ e
−NY

(
(1−γ)2

γ

)

2πY 3/2

√
2

N

∫ W
√

NY/2

0

e−
t2

2 dt. (26)

Now, let us assume that both the width W of the window and the parameter γ scale with N in this

non-trivial way as

W ∼ N−1+κ, 0 < κ ≤ 1, and γ = 1− αN−δ, 0 < δ ≤ ∞, α ∈ R, (27)

and again apply the same heuristic procedure to determine the scale of extreme values Ye(κ, δ) in

the window as N → ∞ for given values of exponents κ and δ. A straightforward computation

shows that the arising scale of extreme values very essentially depends on whether the parameter

δ satisfies 0 < δ < 1/3 or 1/3 ≤ δ < 1. In the former case we find

Ye(κ, 0 < δ < 1/3) ≈





N−1+κ, if 0 < κ < 2δ ,

κ− 2δ

α
N−1+2δ lnN, if 2δ < κ < 1− δ ,

1− 3δ

α
N−1+2δ lnN, if 1− δ < κ < 1 .

(28)

whereas in the latter case

Ye(κ, 1/3 ≤ δ < 1) ≈
{
N−1+κ, if 0 < κ < 2/3,

N−1/3, if 2/3 < κ < 1.
(29)

One may say that as long as δ < 1/3 the system is not fully in the well-developed “critical regime”,

and the extreme value scale is growing with the window width, saturating at the Gumbel-like scale

N−1+2δ lnN . At the same time, as long as δ exceeds the threshold value δ = 1/3, the typical

extreme values reach the scale Ye = O
(
N−1/3

)
as long as they are sampled in a window of

width exceeding the scale Wc = O
(
N−1/3

)
, thus containing O(N2/3) eigenvalues. This heuristics

suggests that only eigenvalues satisfying |X| < Wc typically have a nonvanishing probability to

reach to the maximum height in the complex plane, and eventually to generate an outlier as α
increases. It would be also natural to expect the corresponding extreme eigenvalues to follow the

Fréchet-type statistics for their imaginary parts, as opposed to the Gumbel statistics in the former

case.

We would like to end our heuristic considerations with a brief heuristic outlook on the universal-

ity of the scaling factor N−1/3 which is key to the correct description of the transition in question.

As is evident from (23) the exponent −1/3 is implied by the scaling law

Nγ=1(Y ) ∝ 1

N1/2Y 3/2
(30)

9



in the limit NY ≫ 1 for the expected number of eigenvalues exceeding the level line Im z = Y .

Thus, to investigate the extent of universality of this exponent one needs to trace the origin of the

scaling law (30). This can be readily done by returning to the asymptotic relation (14)–(15) which

was used to obtain (30). On evaluating the integral in (15) for large values of y = Y/N by the

Laplace method it becomes immediately apparent that the power Y −3/2 on the right-hand side in

(30) and, hence, the exponent in question stems from the quadratic shape of the limiting GUE

eigenvalue density function ν(X) = (2π)−1
√
4−X2 in the vicinity of its maximum. It is natural

to conjecture that had one started from a random Hermitian matrixH taken from the broad class of

invariant ensembles characterised by joint probability density function ∝ exp {−N Tr V (H)} with

a suitable potential V (H) (or from the class of Wigner matrices with suitable conditions on the iid

entries), the asymptotic expression (12) for the scaled eigenvalue density ρ̃N (X, y) would retain

its validity after replacing ν(X) in (11)–(12) by the corresponding limiting eigenvalue density

of H . For example, as was shown albeit not fully rigorously in [27], such universality of the

scaled eigenvalue density near the real line is exhibited by almost Hermitian random matrices

which are morally similar to finite rank non-Hermitian deviations as in (1)–(2). Since asymptotic

relation (14)–(15) is the immediate corollary of (12), one then concludes that as long as the limiting

eigenvalue density of H has a single global parabolic-shaped maximum, an additive rank-one non-

Hermitian deformation will demonstrate the same type of critical scaling for its extreme complex

eigenvalues, and, most probably, after appropriate rescaling, the same type of critical behaviour of

the density of imaginary parts as described in the next section. One can however imagine invariant

ensembles where the mean eigenvalue density would have a non-parabolic behaviour close to the

maximum point.

From this point of view, the noticed in [11] resemblance of the N−1/3 critical scaling in the

present model and the edge scaling of extreme real eigenvalues of GUE, which, e.g., manifests

itself in the so-called BBP [28] transition under additive rank-one Hermitian perturbation of the

GUE, looks to us purely coincidental. Indeed, the latter is known to have its origin in the square

root behaviour of the mean density ν(X) at the spectral edges where ν(X) vanishes, and as such

seems to have nothing to do with the behaviour of the same density close to its maximal point.

3. MAIN RESULTS AND DISCUSSION

Our first result concerns the mean density of imaginary parts ρ
(Im)
N (Y ) (10) in the large deviation

regime Y ≫ N−1. We note that no eigenvalue of J has imaginary part equal or greater than γ. This

is a consequence of the sum rule (13). Therefore we only consider the range of values Y ∈ [0, γ).

Theorem 3.1. Consider the random matrix ensemble (1) – (3) in the scaling regime

N1−ǫY = y > 0, 0 < ǫ ≤ 1, N → ∞ . (31)

Then for every fixed γ > 0 and ǫ ∈ (0, 1]

ρ
(Im)
N (Y ) ∼ 1√

N
Ψγ(Y ) exp {−NΦγ(Y )} , (32)

10



with

Φγ(Y ) = Y (γ − Y )− ln
γ − Y

γ
− Y r∗(Y ) + 2 ln r∗(Y ), (33)

Ψγ(Y ) =
1√
2π

γ

(γ − Y )2
[1− r∗(Y )(γ − Y )]2

Y 3/2(Y 2 + 4)1/4
, (34)

and

r∗(Y ) =

√
Y 2 + 4− Y

2
. (35)

The rate function Φγ(Y ) is a smooth non-negative function of Y on the interval [0, γ) vanishing at

Y = 0. The rate function is monotone increasing on this interval if γ ≤ 1, whereas if γ > 1 then it

has two local extrema: a local minimum at Y∗ = γ − γ−1 where it vanishes, and a local maximum

at Y∗∗ =
2(γ−γ−1)

3+
√

1+8 γ−2
< Y∗.

By the way of discussion of the above Theorem a few remarks are in order.

Remark 3. The two distinct profiles of the rate function are illustrated in Figure 2. If γ > 1,

the point Y∗ = γ − γ−1 where the Large Deviation Rate function Φγ(Y ) vanishes can be identified

as the most probable value of the imaginary part in the region Y ≫ N−1, converging in the limit

N → ∞ to (the height of) the outlier, see next comment. At the same time, the other extremal

point, Y∗∗, can be interpreted as the true boundary, along the imaginary axis in the complex plane,

between the bulk of eigenvalues and the spectral outlier. This is because the pre-exponential factor

Ψγ(Y ) in (32) vanishes at Y = Y∗∗ too. Hence, ρ
(Im)
N (Y∗∗) → 0 in the scaling limit (31).

Remark 4. The Large Deviation approximation (32) for γ > 1 describes fluctuations of the

imaginary part of the outlier around its most probable value Y∗ = γ − γ−1. The law of these

fluctuations in the limit N → ∞ can be easily determined from (32). To this end, we first note

that for N large the magnitude of fluctuations about Y∗ scales with 1/(
√
N |Φ′′

γ(Y∗)|). Calculating

the second derivative and rescaling the density ρ
(Im)
N (Y ) correspondingly, one finds (in the limit
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FIGURE 2. Plots of the rate function Φγ(Y ) for γ = 2 (plot on the left) and γ = 0.2 (plot

on the right).
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FIGURE 3. Histograms of the imaginary parts Yj of the eigenvalues in the random matrix

ensemble (1) – (3). In both plots N = 50 and γ = 2. Plot on the left: Histogram of Yj’s

versus the large deviation approximation of density of the imaginary parts given by (32)

(solid line). Plot on the right: Histogram of the largest imaginary part Ymax = max Yj

versus the large deviation approximation pN (Y ) (37) of the p.d.f. of Ymax (solid line).

Each plot was produced using 100,000 samples from the GUE distribution (3).

N → ∞) that

N ρ
(Im)
N

(
Y∗ +

σu√
N

)
∼ 1√

2π
e−

u2

2 , σ2 =
1

γ2
γ2 + 1

γ2 − 1
. (36)

The integral of the rescaled density on the left-hand side over the entire range of values of u counts

the expected number of eigenvalues in the σ√
N

-neighbourhood of Y∗. Evidently, this integral is

approaching unity as N → ∞, confirming that the rescaled density on the left-hand side in (36)

describes the law of fluctuations of a single eigenvalue - the outlier. Thus we recover one of the

results of [10] where laws of outlier fluctuations were established in greater generality than our

assumptions (2) – (3). We note that for finite but large values of N the function

pN(Y ) :=
√
N Ψγ(Y ) exp {−NΦγ(Y )} (37)

provides an approximation of the probability density function of the outlier Ymax = max Yj in the

interval 0 < ε < Y < γ, γ > 1.

In Figure 3 we plot histograms of the imaginary parts Yj of the eigenvalues and of their maximal

value Ymax = maxYj in the random matrix ensemble (1) – (3) and make comparison with the

corresponding Large Deviation approximations. Although the value of N = 50 is only moderately

large, one can observe a good agreement. Also, one can observe that the large-N approximation

(37) of the probability density of Ymax captures well the skewness of the distribution of Ymax for

finite matrix dimensions. This skewness disappears in the limit N → ∞, see equation (36).

Remark 5. Consider now the scales Y = O (N−1+ε) with ε ∈ (0, 1). The expected number of

eigenvalues with N1−εY ∈ [y1, y2] is given by the integral

N

∫ y2

y1

1

N1−ε
ρ
(Im)
N

( y

N1−ε

)
dy. (38)

12



The rescaled density in this integral can be found from (32) – (34):

1

N1−ε
ρ
(Im)
N

( y

N1−ε

)
∼ 1

N ε/2

1

2
√
π

(1− γ)2

γ

1

y3/2
e−Nεy

(1−γ)2

γ , ε ∈ (0, 1) . (39)

Evidently, if γ 6= 1 then, away from the boundary point y = 0, the integral in (38) vanishes in the

limitN → ∞. Therefore for every fixed γ 6= 1 and 0 < ε < 1 there are no eigenvalues of J whose

imaginary part is scaling with N−1+ε. On the other hand, according to the heuristics of Section 2,

one should expect finite numbers of eigenvalues whose imaginary part is scaling with N−1 lnN .

These would be the extremes of the eigenvalues with the typical imaginary part Y = O(N−1).
By formally letting ε → 0 in (39) one obtains

1

N
ρ
(Im)
N

( y
N

)
∼ 1

2
√
π

(1− γ)2

γ

1

y3/2
e−y

(1−γ)2

γ .

This relation reproduces the leading order of the asymptotic form of the density of the rescaled

imaginary parts y = NY in the region y ≫ 1, see the top line in (20). Thus, for a fixed value of

γ 6= 1 Theorem 3.1 describes a crossover of the density of imaginary parts from the characteristic

scale of low lying eigenvalues to larger scales, including Y = O(1) which is the scale of the outlier.

Whereas the picture described by Theorem 3.1 is quite complete for a fixed γ, it is not detailed

enough to accurately describe the typical extreme eigenvalues in the situation when the parameter

γ approaches its critical value γ = 1 as N is approaching infinity. For example, from the heuristics

of Section 2 we know that both the width of the transition region about γ = 1 and the height

of the typical extreme eigenvalues scale with N−1/3. The Large Deviation approximation (32), if

applied formally in the transition region parametrised by γ = 1 + αN−1/3, yields the following

approximate expression for the rescaled density of imaginary parts:

1

N1/3
ρ
(Im)
N

( m

N1/3

)
≈ 1

N

1

2
√
π

(
3m
2
− α

)2

m3/2
e−m(α−m

2
)2 . (40)

Evidently, in the limit of small values of m which corresponds to approaching the scale Y =
O(N−1) from above, this expression does not reproduce the correct power 5/2 of algebraic decay

(20) characteristic of this scale when γ = 1. In contrast, the heuristics based on (21), see the

approximations in (23) and (24), do reproduce the correct power. Indeed, by taking the derivative

in m of the expression on the right-hand side in (24), one gets

1

N1/3
ρ
(Im)
N

( m

N1/3

)
≈ 1

N

1

2
√
π

3
2m

+ α2

m3/2
e−mα2

. (41)

In the limit of small values of m the expression on the right-hand side agrees with the bottom

line in (20). One can also arrive at (41) by making the formal substitution γ = 1 + α
N1/3 and

y = NY = mN2/3 in (20).

Our next Theorem is a refinement of Theorem 3.1 in that it provides an accurate description of

the density of the typical extreme eigenvalues in the transition region between the sea of low lying

eigenvalues and the eigenvalue outlier.

Theorem 3.2. Consider the random matrix ensemble (1) – (3) in the scaling regime

γ = 1 +
α

N1/3
, Y =

m

N1/3
, N → ∞ . (42)
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Then, for every fixed α ∈ R and m > 0,

1

N1/3
ρ
(Im)
N

( m

N1/3

)
∼ 1

N

1

2
√
π

3
2m

+
(
3m
2
− α

)2

m3/2
e−m(α−m

2 )
2

. (43)

This theorem confirms that the characteristic scale of the height of the typical extreme eigen-

values of matrix J is O
(
N−1/3

)
. Indeed, the expected number of eigenvalues with imaginary part

exceeding the level Y = m
N1/3 is given by

N

∫ ∞

m

1

N1/3
ρ
(Im)
N

( m

N1/3

)
dm ,

which is a finite number in the limit N → ∞.

Theorem 3.2 also describes the density ρ
(Im)
N (Y ) in the cross-over from the characteristic scale

of low lying eigenvalues to the Large Deviation regime of Theorem 3.1. Indeed, for small values

of m the asymptotic expression (43) matches the one in (41), whilst in the limit of large values of

m it matches (40).

The emerging outlier is captured by (43) when both m and α > 0 are large. Intuitively this is

clear from the comparison of (43) and (40). On a more formal level, one can come to the same

conclusion by analysing the limiting density of extreme values

p̃(Im)
α (m) =

1

2
√
π

3
2m

+
(
3m
2
− α

)2

m3/2
e−m(α−m

2 )
2

, m > 0 . (44)

Using Wolfram Mathematica one finds

d

dm
p̃(Im)
α (m) =

e−m(α−m
2 )

2

32
√
πm7/2

Q6(α,m) ,

where

Q6(α,m) = −60− 48α2m+ 72αm2 − 16α4m2 + 80α3m3 − 144α2m4 + 108αm5 − 27m6.

Evidently, Q6(α,m) < 0 for all m > 0 if α is negative. Therefore, if α < 0 (subcritical values

of γ) then the limiting density p̃
(Im)
α (m) is a monotonically decreasing function of m on the entire

interval m > 0. One can interpret this profile as a population of extreme eigenvalues without an

obvious “leader”. By continuity, this profile persevere for small positive α. Indeed, at α = 0 the

polynomial Q6(0, m) has three pairs of complex conjugated roots, none are real. Since the roots

of polynomials depend continuously on its coefficients, there exists an α0 > 0 such that for all

α ∈ [0, α0] the polynomial Q6(α,m) in m will still have no real roots and, hence, will take only

negative values, implying that p̃
(Im)
α (m) is a monotonically decreasing function ofm. By computing

the roots of Q6(α,m) in variable m, we can show that 0.6485 < α0 < 0.649.

Once α > α0, the polynomial Q6(α,m) in m acquires real roots. In the limit of large positive α
there are two real roots: to leading order these are

m1 = 2α

(
1 +

3

8α3
+ o

(
1

α3

))
and m2 =

2

3
α

(
1 +

15

8α3
+ o

(
1

α3

))
.

The larger root, m1, is the point of local maximum of p̃
(Im)
α (m), where p̃

(Im)
α (m1) ∝ α1/2 ≫ 1,

and the smaller root, m2, is the point of local minimum p̃
(Im)
α (m), where p̃

(Im)
α (m2) ∝ α−5/2 ≪ 1.

In fact, in the limit α → ∞ the larger root is transitioning into Y∗, the most probable value of
14
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FIGURE 4. Plot of the expected number Ñα(m) of the eigenvalues of J with imaginary

parts exceeding the level Y = mN−1/3 as function of α when m = 0.1 (black solid line),

m = 0.2 (blue dashdotted line), m = 0.3 (red dashed line), and m = 0.4 (magenta dotted

line)

imaginary parts, and, hence, it can be interpreted as the emerging spectral outlier. At the same

time, the smaller root is transitioning into the true boundary Y∗∗ between the sea of low lying

eigenvalues and the outlier. This cross-over can be validated by noticing that in the scaling limit

(42) Y∗ = γ − γ−1 ∼ 2α and Y∗∗ =
2(γ−γ−1)

3+
√

1+8γ−2
∼ 2

3
α.

Further insights into the restructuring of the spectrum of J can be obtained by looking at the

γ-dependence of the expected number of the eigenvalues of J with imaginary parts exceeding the

level Y = mN−1/3. In the scaling limit (42) this number converges to

Ñα(m) =

∫ ∞

m

p̃(Im)
α (m′)dm′ .

In Figure 4 we plot Ñα(m) as function of α for several values of m. One can observe that for any

fixed m > 0 the population of the extreme eigenvalues of J that exceed the level Y = mN−1/3 is,

on average, growing as γ is approaching the critical value γ = 1 from below. For γ on the other

side of γ = 1, this population peaks a some point and then it starts to decline as γ increases further,

to a single eigenvalue which is the outlier. All the other extreme eigenvalues are getting closer

and closer to the real line with the increase of γ. One can think of them as being trapped in the

sea of low lying eigenvalues. This picture is consistent with the eigenvalue trajectories of Figure 1

and provides a more quantitative description of the ”resonance trapping” phenomenon [20] in the

framework of random matrix theory.

Our final result aims to clarify the length of the central part of the spectrum of J supporting

nontrivial scaling behaviour of the extreme eigenvalues in the vicinity of the separation transition.

To this end, let us consider eigenvalues zj = Xj + iYj of J in the scaling regime when

γ = 1 +
α

N1/3
, X =

q

N1/3
, Y =

m

N1/3
, N → ∞ . (45)
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On average, eigenvalue numbers in this regime can be counted using the rescaled density

p̃N (q,m) :=

〈
N∑

i=1

δ
(
q −N1/3Xj

)
δ
(
m−N1/3Yj

)
〉

=
N

N2/3
ρN

( q

N1/3
,
m

N1/3

)
,

where, as before, the angle brackets stand for the averaging over the GUE matrix H in (1) and

ρN (X, Y ) is the mean eigenvalue density (8).

Theorem 3.3. Consider the random matrix ensemble (1) – (3) in the scaling regime (45). Then,

for every fixed α ∈ R, q ∈ R and m > 0,

p̃α(q,m) := lim
N→∞

p̃N(q,m) =
1

4πm

[
1

m
+
q2

4
+

(
3m

2
− α

)2
]
e
−m

[
q2

4
+(α−m

2 )
2
]

. (46)

It is easy to see from (46) that
∫∞
−∞ p̃(q,m)dq = p̃

(Im)
α (m). Thus, Theorem 3.3 confirms the

heuristics of Section 2 in that the population of extreme eigenvalues which generates the eventual

outlier (as α is approaching infinity) is constrained to a narrow vertical strip of width O(N−1/3)
about the origin.

Our results demonstrate that despite being one of the simplest tools available, the mean eigen-

value density captures the eigenvalue and parameter scales associated with the spectral restructur-

ing in the random matrix ensemble (1) – (3). However, it gives no information about finer details,

such as the probability distribution of the extreme eigenvalues during the restructure. Calculating

all the higher order eigenvalue correlation functions in the scaling regime (45) would be a sig-

nificant step towards describing such finer details. Unfortunately, the eigenvalue point process in

the random matrix ensemble (1) – (3) is not determinantal at finite matrix dimensions and such a

calculation is a considerably more difficult analytic task compared to the mean eigenvalue density.

At this point we want to mention that the probability distribution of extreme eigenvalues can be

determined in a related but different random matrix ensemble exhibiting a spectral restructuring

not unlike one in (1) – (3). This ensemble consists of subunitary matrices of the form

JCUE = U diag(
√
1− T , 1, . . . , 1) , (47)

where the matrix U is taken from the Circular Unitary Ensemble (CUE) of complex unitary ma-

trices uniformly distributed over U(N) with the Haar’s measure and T ∈ [0, 1] is a parameter.

The ensemble was originally introduced in [29] and various statistical aspects of their spectra and

eigenvectors were addressed in [2, 30, 31, 6] and most recently in [15].

Obviously, if T = 0 then the matrix JCUE is unitary and all of its eigenvalues lie on the unit

circle |z| = 1. If T > 0 and is fixed in the limit N ≫ 1 then, typically, the eigenvalues of JCUE

lie at a distance O(N−1) from the unit circle with the farthest away being at a distance O
(

logN
(1−T )N

)

with probability close to one. On the other hand, for T = 1 one of the eigenvalues becomes

identically zero, and the rest are distributed inside the unit circle in the same way as eigenvalues of

the so-called ”truncated” CUE [32].

The similarity between the random matrix ensembles (47) and (1) – (3) can be exemplified by

analysing the mean density of the eigenvalue moduli rj = |zj |

ρN (r) =
〈 1

N

N∑

j=1

δ(r − rj)
〉
CUE
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in the limit of large matrix dimensions N → ∞. One finds [29] that for every fixed T ∈ [0, 1]

lim
N→∞

NρN (r) =

{
δ(r) + 2r

(1−r2)2
, if T = 1,

0, if 0 < T < 1 ,

whereas, on rescaling the radial density near the unit circle [32, 2],

ρ̃CUE(y) := lim
N→∞

1

N
ρN

(
1− y

N

)
= − d

dy

[
e−gy sinh y

y

]
, with g =

2

T
− 1. (48)

Equation (48) is identical, with the obvious correspondence

1

2

(
γ +

1

γ

)
=

2

T
− 1 , (49)

to equation (12) considered at the centre of the GUE spectrum. In the limit of large values of y,

ρ̃CUE(y) ∼





1− T

T

1

y
e−2y 1−T

T , if 0 < T < 1,

1

y2
if T = 1.

(50)

The rescaled radial density has an exponentially light tail if 0 < T < 1, and it is heavy-tailed if

T = 1 which hints at markedly different behaviour of the extreme eigenvalues in the two cases.

Reflecting on (50), one can convince themselves that this change occurs in an infinitesimal region

near T = 1 of width N−1. Such a scaling regime was earlier identified and analysed from a

somewhat different angle in [15]. The precise relation of our analysis to one in [15] will be given

in a separate paper [33].

On setting T = 1− t
N

, t > 0, one can investigate this transition region in much detail [33]. For

example, the smallest eigenvalue modulus of the subunitary matrices JCUE,

xmin = min
j=1,...,N

|zj |,

converges in the limit N → ∞ to a random variable X whose cumulative probability distribution

function is given by the series

Pr{X ≤ x} =

∞∑

n=1

(−1)n+1 xn(n−1)

∏n
k=1(1− x2k)

et(1−
1

x2n
) , 0 < x < 1 .

This family of probability distributions interpolates between the Fréchet and Gumbel distributions

and is different from the standard family of probability distributions that characterise the extreme

values in long sequence of i.i.d. random variables. In the limit of small values of t

lim
t→0+

Pr
{
X < y

√
t
}
= e−y−2

, y > 0,

whereas

lim
t→+∞

Pr {2t(1−X)− log t+ log(log t) < y} = e−e−y

, y > 0.
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4. MEAN DENSITY OF EIGENVALUES AT FINITE MATRIX DIMENSIONS

Our analysis of various scaling regimes of the random matrix ensemble (1) – (3) is based on

finite-N expressions for the mean eigenvalue density and the mean density of imaginary parts in

terms of orthogonal polynomials, see equations (56) – (60) and (61) – (64). These representations

are new and the current Section contains their derivations.

4.1. Joint eigenvalue density and correlation functions. Our starting point is a closed form

expression for the joint density PN(z1, . . . , zn) of the eigenvalues zk = Xk + iYk of J (1) – (3):

PN(z1, . . . , zN) = (51)

NN2/2

(2π)N/2N !G(N)γN−1
exp

{
−N

2

(
γ2 +

N∑

k=1

Re
(
z2k
)
)}

δ

(
γ −

N∑

k=1

Im zk

)
N∏

j<k

|zj − zk|2 ,

where G(N) is the Barnes G-function. This expression was derived in [22] (see also [5]) and, for

the obvious reason, it holds for (z1, . . . , zN ) ∈ CN
+ , where C+ is the upper half of the complex

plane C+ = {z = X + iY : Y ≥ 0}
The first key fact that makes our analysis possible is that the eigenvalue correlation functions

RN,n (z1, . . . , zn) =
N !

(N − n)!

∫

C
N−n
+

PN(z1, . . . , zn, zn+1, . . . , zN )

N∏

k=n+1

dXkdYk,

can be expressed in terms of averages of products of characteristic polynomials of random matrices

J(γ̃) having the same structure as (1) – (3) but of smaller dimension and with a different parameter

γ. The relevance of this to our investigation is in that the mean eigenvalue density ρN(X, Y ) (8)

which is the main object of our interest is

ρN(X, Y ) =
1

N
RN,1(X + iY ) . (52)

It has been shown in [22] that

RN,n (z1, . . . , zn) =
1

(2π)n/2 γn

(
1−

∑n
k=1 Yk
γ

)N−n−1
N

n2

2 (N − n)Nn−n2

n∏
j=1

(N − j − 1)!

∏

1≤j<k≤n

|zj − zk|2×

exp

{
−N

2

n∑

k=1

X2
k −N

n∑

k=1

Yk (γ − Yk)

}〈
n∏

k=1

∣∣∣det
[
ẑk1N−n − Jγ̂−

∑n
k=1 Ŷk

]∣∣∣
2
〉

HN−n

,

where

γ̂ =

(
N

N − n

)1/2
γ, ẑk =

(
N

N − n

)1/2

(Xk + iYk), Ŷk =

(
N

N − n

)1/2

Yk ,

and Jγ̂−
∑n

k=1 Ŷk
are the random matrices (1) – (3) of dimension N − n with N in (3) replaced by

N − n and γ in (2) replaced by γ̂ −∑n
k=1 Ŷk,

Jγ̂−∑n
k=1 Ŷk

= HN−n + i

(
γ̂ −

n∑

k=1

Ŷk

)
diag(1, 0, . . . , 0) .
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The GUE average 〈. . .〉HN−n
of the product of the characteristic polynomials of Jγ̂−∑n

k=1 Ŷk
can

be performed with the help of the following proposition which we prove in Appendix.

Proposition 4.1. Let

Fγ (z1, z2, . . . , zn) =

〈
n∏

j=1

| det (zj1N − Jγ)|2
〉
,

where Jγ are the rank-one deviations from the GUE of dimension N defined by (1) – (3) and the

average is taken over the GUE distribution (3). Then

Fγ(z1, z2, . . . , zn) =

1

2n

(
N

π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

}
det N−1 (Z2n + iS2n) det (Z2n + iS2n − iγL2n) ,

where the integration is over the space of 2n× 2n Hermitian matrices S2n, D[S2n] is the standard

volume element in this space and

Z2n = diag (z1, z2, . . . , zn, z1, z2, . . . , zn) , L2n = diag (1,−1)⊗ 1n.

Using this Proposition one arrives, after rescaling S2n =
(

N
N−n

)1/2
Ŝ2n in the resulting matrix

integral, at a useful integral representation for the eigenvalue correlation functions in the random

matrix ensemble (1) – (3):

RN,n (z1, . . . , zn) = (53)

cN
γn

(
1−

∑n
k=1 Yk
γ

)N−n−1

exp

{
−N

2

n∑

k=1

X2
k −N

n∑

k=1

Yk (γ − Yk)

}
∏

1≤j<k≤n

|zj − zk|2×

∫
d[Ŝ2n]exp

{
−N

2
Tr Ŝ 2

2n

}
det N−n−1

[
Z2n + iŜ2n

]
det

[
Z2n + iŜ2n − i

(
γ −

n∑

k=1

Yk

)
L2n

]

with

cN,n(γ) =
N3n2/2+Nn

(2γ)n (2π)n/2 π2n2
n∏

j=1

(N − j − 1)!
.

4.2. Mean Density of complex eigenvalues. Setting n = 1 and z1 = X + iY in (53) and then

shifting the variable of integration by making the substitution Ŝ2 = S2−Y L2 in the matrix integral,

one obtains the following integral representation for the mean density of eigenvalues (52) in the

random matrix ensemble (1) – (3):

ρN (X, Y ) =
1

2γπ2
√
2π

NN+1/2

(N − 2)!

(
1− Y

γ

)N−2

exp

{
−N

2
X2 −NY γ

}
× (54)

∫
D[S2] exp

{
−N

2
Tr S2

2 +NY Tr S2L2

}
det N−2(X12 + iS2) det

(
X12 + iS2 − i(γ − Y )L2

)
.
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It is convenient to parametrise the hermitian matrix S2 by diagonalising it:

S2 = U2Σ2U
∗
2 , Σ2 = diag (σ1, σ2) , σ1 ≥ σ2 ∈ R,

where U2 is a 2× 2 unitary matrix, which can be parametrised as

U2 =

(
cos θ sin θeiφ

− sin θe−iφ cos θ

)
, θ ∈

[
0,
π

2

]
, φ ∈ [0, 2π] .

Noting that

D[S2] = (σ1 − σ2)
2 sin(2θ)

2
dσ1 dσ2 dθ dφ.

one arrives, on making the substitution S2 = U2Σ2U
∗
2 in (54), at

ρN (X, Y ) =
cN
γ

(
1− Y

γ

)N−2

exp

{
−N

2

(
X2 + 2Y γ

)}
×

∫ π
2

0

dθ

∫ +∞

−∞
dσ1

∫ σ1

−∞
dσ2 (σ1 − σ2)

2 sin(2θ) exp

{
−N

2

(
σ2
1 + σ2

2

)
+NY (σ1 − σ2) cos(2θ)

}
×

(X + iσ1)
N−2 (X + iσ2)

N−2 [(X + iσ1) (X + iσ2) + (γ − Y )2 − (γ − Y ) (σ1 − σ2) cos(2θ)
]
,

where we have introduced

cN =
1

(2π)3/2
NN+1/2

(N − 2)!
∼ N2eN

2π2
(N → ∞). (55)

The integral over θ can be performed by the substitution t = (σ1 − σ2) cos(2θ). This yields

ρN (X, Y ) =
cN

2NY γ

(
1− Y

γ

)N−2

exp

{
−N

2

(
X2 + 2γY − 2Y 2

)}
JN(X, Y ) , (56)

where

JN(X, Y ) =

∫ +∞

−∞
dσ1

∫ +∞

−∞
dσ2 e

−N
2
(σ2

1+σ2
2)(z + iσ1)

N−2(z + iσ2)
N−2 (z + iσ1)− (z + iσ2)

i
×

[
(z + iσ1)(z + iσ2) + (γ − Y )2 +

γ − Y

Ny
− (γ − Y )

(z + iσ1)− (z + iσ2)

i

]
,

with z = X + iY .

Further, introducing functions

πm(z) =

∫ +∞

−∞
dσ e−

N
2
σ2

(z + iσ)N−m , m = 0, 1, . . . , N, (57)

one can rewrite the integral JN(X, Y ) in the following form

JN(X, Y ) =− i [π0(Z)π1(z)− π0(z)π1(z)] (58)

− i

(
(γ − Y )2 +

γ − Y

Ny

)
[π1(z)π2(z)− π1(z)π2(z)]

+ (γ − Y ) [π0(z)π2(z) + π0(z)π2(z)− 2π1(z)π1(z)] ,
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Now one observes that πm(z) are actually a rescaled version of Hermite polynomials. We have

that

πm(z) =
√
π

(
2

N

)N−m+1
2

H̃N−m

(
z

√
N

2

)
=

√
2ππ1/4

√
(N −m)!

NN−m+1
pN−m

(
z

√
N

2

)
, (59)

where H̃k(z) are the monic Hermite polynomials

H̃k(z) =

(
−1

2

)k

e z
2 d

dz
e−z2

and pk(z) are the orthonormal Hermite polynomials

pk(z) =

√
2k

k!
√
π
H̃k (z)

satisfying the orthogonality relations

∫ +∞

−∞
dz pk(z)pm(z) e

−z2dz = δk,m.

The polynomials pk(z) also satisfy the recurrence relation

pk+1 (z) = z

√
2

k + 1
pk (z)−

√
k

k + 1
pk−1 (z) .

Using the above definitions and the expression for the eigenvalue density ρN(X, Y ) in (56) and

with the notation z = X + iY we obtain

ρN (X, Y ) =
N − 1√
2NY γ

(
1− Y

γ

)N−2

exp

{
−N

2
X2 −NY (γ − Y )

}
×



Im pN

(
z

√
N

2

)
pN−1

(
z

√
N

2

)
− (γ − Y )

∣∣∣∣∣pN−1

(
z

√
N

2

)∣∣∣∣∣

2

+

√
N

N − 1

[(
(γ − Y )2 +

γ − Y

NY

)
Im pN−1

(
z

√
N

2

)
pN−2

(
z

√
N

2

)

+ (γ − Y )Re pN

(
z

√
N

2

)
pN−2

(
z

√
N

2

)]}
.
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which, by using the recurrence relation, can be further rewritten as

ρN (X, Y ) =
1

Y γ

√
N

2

(
1− Y

γ

)N−2

exp

{
−N

2
X2 −NY (γ − Y )

}
× (60)

{
Im pN

(
z

√
N

2

)
pN−1

(
z

√
N

2

)[
1− 1

N
+ (γ − Y )

(
γ +

1

NY

)]

−
∣∣∣∣∣pN−1

(
z

√
N

2

)∣∣∣∣∣

2 [
Y (γ − Y )2 + (γ − Y )− Y (γ − Y )

]

−
∣∣∣∣∣pN

(
z

√
N

2

)∣∣∣∣∣

2

(γ − Y ) + Re pN

(
z

√
N

2

)
pN−1

(
z

√
N

2

)
X (γ − Y )



 .

4.3. Density of the imaginary parts. In this section we present the derivation of the density for

the imaginary parts of the eigenvalues, irrespective of their real parts, as defined in (10). We start

with an observation, see integral 7.377 in [23]:

Lemma 4.2. Let β ≥ α be two non-negative integers and z = X + iY . Then

∞∫

−∞

e−
N
2
X2

pN−α

(
z

√
N

2

)
pN−β

(
z

√
N

2

)
dX =

iβ−α

√
2

N

Nβ−α

(N − α) . . . (N − β + 1)
Y β−αL

(β−α)
N−β

(
−NY 2

)
,

where L
(α)
M is a standard Laguerre polynomial.

Integrating with respect to X expression for the density ρN (X, Y ) in (60) one gets the probability

density of imaginary parts in the form

ρ
(Im)
N (Y ) =

1

Y γ

(
1− Y

γ

)N−2

e−NY (γ−Y )FN(Y ) (61)

with

FN (Y ) =
N − 1

N
Y L

(1)
N−1

(
−NY 2

)
− N − 1

N
(γ − Y )L

(0)
N−1

(
−NY 2

)
(62)

+ Y

[
(γ − Y )2 +

γ − Y

NY

]
L
(1)
N−2

(
−NY 2

)
− (γ − Y )Y 2L

(2)
N−2

(
−NY 2

)

=− 2γL
(0)
N−1

(
−NY 2

)
+

(
N − 1

N
3Y +

2γ

N

)
L
(1)
N−1

(
−NY 2

)
(63)

+
[
−2Y + Y (γ − Y )2

]
L
(1)
N−2

(
−NY 2

)

=
N − 1

N
(3Y − 2γ)L

(1)
N−1

(
−NY 2

)
+
[
2γ − 2Y + Y (γ − Y )2

]
L
(1)
N−2

(
−NY 2

)
(64)
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where we systematically used the recursion relations:

L
(0)
N−1

(
−NY 2

)
= L

(1)
N−1

(
−NY 2

)
− L

(1)
N−2

(
−NY 2

)

and

−Y 2L
(2)
N−2

(
−NY 2

)
= L

(1)
N−2

(
−NY 2

)
− N − 1

N
L
(1)
N−1

(
−NY 2

)
.

5. PROOF OF THEOREMS 3.1 AND 3.2

In both proofs we use the following integral representation for the Laguerre polynomials in

terms of the modified Bessel functions Iα(x) (see, e.g. equation 4.19.13 in [34]):

L
(α)
N−k

(
−NY 2

)
=

2NN−k+1

(N − k)!

e−NY 2

|Y |α

∞∫

0

τ 2N−2k+α+1e−Nτ2Iα(2τ |Y |N) dτ (α > −1). (65)

The integral in (65) can be evaluated in the limit N → ∞ in various scaling regimes for Y using

the Laplace method, see Appendix B. The resulting asymptotic expression depends on the scaling

of the variable Y > 0 with N .

Proof of Theorem 3.1. Consider the scaling regime (31) with γ > 0 being fixed. In this regime

the asymptotic form of the mean density of the imaginary parts can be found using the leading

order form of L
(1)
N−k (−NY 2) which can be read from (96) as

L
(1)
N−k

(
−NY 2

)
∼ eNY r∗

√
2πN

r∗(Y )−2(N−k+1)

Y 3/2 (Y 2 + 4)1/4
, r∗(Y ) =

√
Y 2 + 4− Y

2
. (66)

On substituting (66) into (64) one gets an asymptotic expression for the density (61) precisely

in the Large Deviation form (32) with the rate function (33) and the pre-exponential factor in the

form

1√
N
Ψγ(Y ) =

1√
2πN

γ

(γ − Y )2
3Y − 2γ + r∗(Y )

2(γ − Y ) (2 + Y (γ − Y ))

Y 5/2(Y 2 + 4)1/4
. (67)

Finally, by exploiting the relation 1− r∗(Y )
2 = Y r∗(Y ),

3Y − 2γ + r∗(Y )
2(γ − Y ) (2 + Y (γ − Y )) =Y − (γ − Y )

[
2(1− r∗(Y )

2)− r∗(Y )
2 Y (γ − Y )

]

=Y − (γ − Y )
[
2r∗(Y )Y − r∗(Y )

2 Y (γ − Y )
]

=Y [1− r∗(Y )(γ − Y ) (2− r∗(Y )(γ − Y ))] .

This brings the function Ψγ(Y ) in (67) to the form as given in (34).

To analyse the shape of the rate function Φγ(Y ) in (33) it is convenient to parametrise

Y = eθ − e−θ, θ > 0 . (68)

In this parametrisation, the rate function transforms to

Φ̃γ(θ) := Φγ

(
eθ − e−θ

)
= γ

(
eθ − e−θ

)
+ 1− e2θ − 2θ − ln

(
1− eθ − e−θ

γ

)
,
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and its derivative in θ factorises as follows:

Φ̃′
γ(θ) =γ

(
eθ + e−θ

)
− 2

(
e2θ + 1

)
+

eθ + e−θ

γ − (eθ − e−θ)

=
(
eθ + e−θ

) (
γ − eθ

) [
1− eθ

γ − (eθ − e−θ)

]
.

Therefore, the stationary points of Φ̃γ(θ) solve the equations

eθ = γ (69)

and

eθ = γ −
(
eθ − e−θ

)
. (70)

These equations yields two stationary points eθ∗ = γ and eθ∗∗ =
γ+
√

8+γ2

4
. Correspondingly, the

rate function Φγ(Y ) has two stationary points

Y∗ = γ − γ−1 and Y∗∗ =
3γ −

√
8 + γ2

4
=

2
(
γ − 1

γ

)

3 +
√

1 + 8/γ2
.

It is evident that if 0 < γ < 1 both stationary points Y∗ and Y∗∗ are negative. One can easily

check that in this case Φγ(Y ) is monotonically increasing on the interval Y > 0 and is positive on

this interval.

If γ > 1 then taking the second derivative in θ one can easily show that

Φ̃′′
γ(θ∗) = (γ2 − 1)(γ2 + 1) > 0, Φ̃′′

γ(θ∗∗) = −
(
e2θ∗∗ − e−2θ∗∗

) (
1 + γeθ∗∗

)

[γ − (eθ∗∗ − e−θ∗∗)]2
< 0,

so that Y∗ is the point of local minimum of the rate function Φγ(Y ), and Y∗∗ is the point of local

maximum. It is also easy to verify that the rate function Φγ(Y ) vanishes in the limit Y → 0 and

also at Y = Y∗, staying positive at all other Y > 0, so that that the point Y = Y∗ is the point of

absolute minimum. Finally, to verify that the pre-exponential factor (34) vanishes at Y = Y∗∗ it

suffices to show that r∗(Y∗∗)(γ − Y∗∗) = 1. On noticing that

r∗(Y ) =

√
Y 2 + 4− Y

2
= e−θ .

this relation evidently follows from (68) and (70). �

Proof of Theorem 3.2. In the scaling regime (42) the variable Y scales with N−1/3. As NY ≫ 1
in this case, the required asymptotic expressions for Laguerre polynomials can be read from (96). It

turns out that in order to calculate the density of imaginary parts to leading order in this regime, one

has to retain the subleading term in the pre-exponential factor as specified in (96). On substituting
24



Y = mN−1/3 in (96) we obtain that with the required precision

L
(1)
N−1

(
−N1/3m2

)
=

eNL0(Y )

√
2πm3 (Y 2 + 4)1/4

(
1− 3

16

1

mN2/3

)
(71)

L
(1)
N−2

(
−N1/3m2

)
=

eNL0(Y )

√
2πm3 (Y 2 + 4)1/4

r∗(Y )
2

(
1− 3

16

1

mN2/3

)
(72)

L
(0)
N−1

(
−N1/3m2

)
=

eNL0(Y )

N1/3
√
2πm3 (Y 2 + 4)1/4

(
1 +

1

16

1

mN2/3

)
, (73)

where L0(Y ) = Y r∗(Y )− 2 ln r∗(Y ) with r∗ (35) and ln r∗ expanded in powers of Y ≪ 1:

r∗(Y ) = 1− Y

2
+
Y 2

8
+O(Y 4), ln r∗(Y ) = −Y

2
+
Y 3

48
+O(Y 4). (74)

It is easy to see that the overall exponential behaviour of the mean density (61) will still be given

by (33) duly expanded:

Φγ(Y ) = Y

(
γ +

1

γ
− 2

)
− Y 2

2

(
1− 1

γ2

)
+
Y 3

3

(
1

γ3
− 1

4

)
+O(Y 4) . (75)

Putting in here the scaling form γ = 1+ α
N1/3 and recalling Y = m

N1/3 we find from (75), assuming

that the parameters α ∈ R and m > 0 are fixed, that

NΦ1+ α

N1/3

( m

N1/3

)
= mα2 −m2α +

m3

4
= m

(
α− m

2

)2
:= Φα(m) .

This verifies the exponent in (43). To find the pre-exponential terms we find it most convenient to

use equation (63). Substituting there (71)-(73) we first get

FN (m) =
eNL0(Y )

√
2πm (Y 2 + 4)1/4

{
− 2γ

N1/3
r∗(Y )

(
1 +

1

16

1

mN2/3

)
(76)

+
1

m

(
1− 3

16

1

mN2/3

)(
3m

N1/3
+

2γ

N
− 3m

N4/3

)

+

[
− 2

N1/3
+

1

N1/3

(
γ2 − 2γ

m

N1/3
+

m2

N2/3

)]
r∗(Y )

2

(
1− 3

16

1

mN2/3

)}
.

After rearranging and collecting the relevant terms in the above expression we arrive at

FN(m) =
eNL0(Y )

√
2πm (Y 2 + 4)1/4

{
(r∗(Y )γ − 1)2 + 2(1− r∗(Y )

2)

N1/3
− 2γmr∗(Y )

2

N2/3
(77)

+
1

N

[
− 9

16m
+m2r∗(Y )

2 − 3

16

(γ2 − 2)r∗(Y )
2

m
+

2γ

m
− γr∗(Y )

8m

]}
.

The expansion (74) together with γ = 1 + α
N1/3 give the relations

(r∗(Y )γ − 1)2 + 2(1− r∗(Y )
2)

N1/3
=

2m

N2/3
+

1

N

[(
α− m

2

)2
−m2

]
(78)

and

−2γmr∗(Y )
2

N2/3
=− 2m

N2/3
− 2m(α−m)

N
, (79)
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which are exact to the subleading order. We can now see that the leading order terms inside the

curly brackets in (77) cancel. This also implies that at the leading order it is enough to replace the

factor (Y 2 + 4)
1/4

in (77) with
√
2. Finally, adding the leading order contribution from

1

N

[
− 9

16m
+m2r∗(Y )

2 − 3

16

(γ2 − 2)r∗(Y )
2

m
+

2γ

m
− γr∗(Y )

8m

]
=

1

N

(
m2 +

3

2m

)

to the 1/N terms in (78) –(79) results in

FN (m) =
eNL0(Y )

2
√
πm

1

N

[
3

2m
+
(
α− 3

m

2

)2]
, (80)

thus verifying the pre-exponential factors in (43). �

Let us finally present the derivation of the marginal density of imaginary parts (18) pertinent

to keeping the product y = Y N fixed as N → ∞. This task is straightforwardly achieved by

performing the limit N → ∞ in (61) via substituting the corresponding asymptotics of Laguerre

polynomials (91) into the formula (63) and using the identity d
dy
I1(2y) = I0(2y)− I2(2y).

6. PROOF OF THEOREM 3.3

Proof. We will use equations (56) – (58) which express the mean density of eigenvalues ρN (X, Y )
in terms of the rescaled Hermite polynomials πk(X + iY ) (59).

Using the integral representation in (57) it can be shown that in the scaling limit

z = X + iY, X =
q

N1/3
, Y =

m

N1/3
> 0 (81)

the rescaled Hermite polynomials πk(z) are given by the asymptotic equations

πk(z) ∼
√

2π

N(1 + σ2
+)

(−iσ+)k e−
N
2
(1+izσ++2 ln (−iσ+)) , (82)

πk(z) ∼
√

2π

N(1 + σ2
−)

(−iσ−)k e−
N
2
(1+izσ−+2 ln (−iσ−)) , (83)

where we have introduced the notations

σ+ =
iz +

√
4− z2

2
, σ− =

iz −
√
4− z2

2
. (84)

This implies for JN (X, Y ) (58) that

JN (X, Y ) ∼
2π

N
e−N (σ+ − σ−)√

(1 + σ2
+)(1 + σ2

−)
e−N( i

2
(zσ++zσ−)+ln (−σ+σ−)) (85)

×
[
(1− σ+(γ − y)) (1 + σ−(γ − Y ))− σ+σ−

γ − Y

NY

]
. (86)

We are here interested in the limit of small |z| (81), and, hence, can use the expansions

σ+ = 1 +
iz

2
− z2

8
+ . . . , σ− = −1 +

iz

2
+
z2

8
+ . . .
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and, consequently,

1− σ+(γ − Y ) =1− γ + Y +
Y

2
γ − iX

2
γ +O(|z|2) ,

1− σ−(γ − Y ) =1− γ + Y +
Y

2
γ +

iX

2
γ +O(|z|2) .

Hence,

(1− σ+(γ − Y )) (1 + σ−(γ − Y )) =
[
1− γ + Y

(
1 +

γ

2

)]2
+
X2

4
γ2 +O

(
X2 + Y 2

)
.

Setting here X = q
N1/3 , Y = m

N1/3 and γ = 1 + α
N1/3 one obtains that to leading order in N

(1− σ+(γ − Y )) (1 + σ−(γ − Y )) =
1

N2/3

[(
3

2
m− α

)2

+
q2

4

]
.

With the same precision we have

−σ+σ−
γ − Y

NY
=

1

N2/3

1

m
,

and, consequently,

[
(1− σ+(γ − Y ))(1 + σ−(γ − Y ))− σ+σ−

γ − Y

NY

]
=

1

N2/3

[
1

m
+

(
3m

2
− α

)2
+
q2

4

]
. (87)

On inspecting (56 ) and (85), one concludes that the overall exponential factor in (56 ) is given by

e−NΦ̃γ , where

Φ̃γ =
i

2
(zσ+ + zσ−) + ln (−σ+σ−) +

X2

2
+ γY − Y 2 − ln

(
1− Y

γ

)
.

The leading order form of Φ̃γ can be found by expanding in powers of X and Y , in a similar way

as before:

i

2
(zσ+ + zσ−) = −Y − X2 − Y 2

2
+
Y

8
(3X2 − Y 2) +O(|z|4) ,

ln (−σ+σ−) = −Y +
Y 3

24
− Y X2

8
+O(|z|4) ,

− ln

(
1− Y

γ

)
=
Y

γ
+
Y 2

2γ2
+
Y 3

3γ3
+O(Y 4) .

Adding all contributions,

Φ̃γ = Y
(γ − 1)2

γ
+
Y 2

2γ2
(1− γ2) +

Y 3

3

(
1

γ3
− 1

4

)
+
Y X2

4
+O(|z|4) .

Setting here X = q
N1/3 , Y = m

N1/3 and γ = 1 + α
N1/3 , one obtains that to leading order

Φ̃γ =
m

N

((m
2
− α

)2
+
q2

4

)
. (88)

Combining (88) with (87), and trivially taking into account asymptotic expressions for the remain-

ing multiplicative factors in (56 ) and (86), one arrives at (46). �
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APPENDIX A. PROOF OF PROPOSITION 4.1

We prove here a more general version of Proposition 4.1 which holds for rank-M deviations

J = H + iΓ, Γ = diag {γ1, . . . , γM , 0, . . . , 0} from the GUE (3) with arbitrary real parameters

γj, j = 1, . . . ,M < N . The Proposition 4.1 follows as the special case M = 1.

Proposition A.1. Let Γ = diag(γ1, . . . , γM , 0, . . . , 0) be a diagonal matrix of dimension N with

M < N non-zero real entries γj and

FΓ (z1, z2, . . . , zn) =

〈
n∏

j=1

| det (zj1N −H − iΓ)|2
〉

H

,

where the average is taken over the GUE distribution (3). Then

FΓ (z1, z2, . . . , zn) = (89)

1

2n

(
N

π

)2n2∫
D[S2n] e

−N
2
Tr S2

2n det N−M(Z2n + iS2n)
M∏

j=1

det (Z2n + iS2n − iγjL2n),

where the integration is over the space of 2n× 2n Hermitian matrices S2n, D[S2n] is the standard

volume element in this space and

Z2n = diag (z1, z2, . . . , zn, z1, z2, . . . , zn) , L2n = diag (1,−1)⊗ 1n.

Proof of Proposition A.1. The average of the product of the characteristic polynomials over the

GUE in in (89) can be calculated using Grassmann integration. First we use the well-known

identity
∫ (

dΨdΨ
)
ent exp

{
−〈Ψ,MΨ〉

}
= detM,

where M is N × N matrix, and Ψ,Ψ are Grassmann variables vectors of length N and

(
dΨdΨ

)
ent =

N∏

j=1

dψjdψj . We also write each square of determinant in the form

| det (zk −H − iΓ)|2 = det

(
zk −H − iΓ 0

0 zk −H + iΓ

)
.

Combining the above relations,

FΓ (z1, z2, . . . , zn) =〈∫ n∏

k=1

(
dΨ

(k)
dΨ(k)

)
ent

exp

{
−
〈
Ψ

(k)
,

(
zk −H − iΓ 0

0 zk −H + iΓ

)
Ψ(k)

〉}〉

H

.
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Now we interchange the order of integrations and perform the GUE average first:

FΓ =

〈
n∏

k=1

exp

{〈
Ψ

(k)
,

(
H 0
0 H

)
Ψ(k)

〉}〉

H

=2−N/2

(
N

π

)N2/2 ∫
exp

{
−N

N∑

p<q

(Rehp,q)
2 + (Imhp,q)

2 − N

2

N∑

p=1

h2p,p

}

× exp

{
N∑

p<q

Rehp,q

n∑

k=1

(
ψ

(k)

p ψ(k)
q + ψ

(k)

N+pψ
(k)
N+q + ψ

(k)

q ψ(k)
p + ψ

(k)

N+qψ
(k)
N+p

)}

× exp

{
i

N∑

p<q

Imhp,q

n∑

k=1

(
ψ

(k)

p ψ(k)
q + ψ

(k)

N+pψ
(k)
N+q − ψ

(k)

q ψ(k)
p − ψ

(k)

N+qψ
(k)
N+p

)}

× exp

{
N∑

p=1

hp,p

n∑

k=1

(
ψ

(k)

p ψ(k)
p + ψ

(k)

N+pψ
(k)
N+q

)}
,

=exp





1

4N

N∑

p<q

(
n∑

k=1

(
ψ

(k)

p ψ(k)
q + ψ

(k)

N+pψ
(k)
N+q + ψ

(k)

q ψ(k)
p + ψ

(k)

N+qψ
(k)
N+p

))2




× exp



− 1

4N

N∑

p<q

(
n∑

k=1

(
ψ

(k)

p ψ(k)
q + ψ

(k)

N+pψ
(k)
N+q − ψ

(k)

q ψ(k)
p − ψ

(k)

N+qψ
(k)
N+p

))2




× exp





1

2N

N∑

p=1

(
n∑

k=1

(
ψ

(k)

p ψ(k)
p + ψ

(k)

N+pψ
(k)
N+p

))2




=exp

{
1

2N

N∑

p,q

(
n∑

k=1

(
ψ

(k)

p ψ(k)
q + ψ

(k)

N+pψ
(k)
N+q

))( n∑

k=1

(
ψ

(k)

q ψ(k)
p + ψ

(k)

N+qψ
(k)
N+p

))}
.

In the last expression one can see quartic terms in Grassmann variables. To deal with these terms,

we use the so-called Hubbard-Stratonovich transformation. Let

ak,k′ =

N∑

j=1

ψ
(k)

j ψ
(k′)
j , bk,k′ =

N∑

j=1

ψ
(k)

N+jψ
(k′)
N+j , ck,k′ =

N∑

j=1

ψ
(k)

j ψ
(k′)
N+j, dk,k′ =

N∑

j=1

ψ
(k)

N+jψ
(k′)
j ,

and

A =

( {ak,k′}nk,k′=1 {ck,k′}nk,k′=1

{dk,k′}nk,k′=1 {bk,k′}nk,k′=1

)
.

Then

F̂Γ = exp

{
− 1

2N
Tr A2

}
.

29



The quadratic term in the 2n × 2n matrix A can be linearised at the expense of the additional

integration over 2n× 2n hermitian matrices S2n (the Hubbard-Stratonovich transformation):

F̂Γ = 2−n

(
N

π

)2n2 ∫
D[S2n] exp

{
−N

2
Tr S2

2n − iTr S2nA

}
.

Now, we can integration over the Grassmann variables. We have

FΓ (z1, z2, . . . , zn) =
1

2n

(
N

π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

}∫ n∏

k=1

(
dΨ

(k)
dΨ(k)

)
ent

× exp

{
−

N∑

j=1

(
n∑

k=1

zkψ
(k)

j ψ
(k)
j +

n∑

k=1

zkψ
(k)

N+jψ
(k)
N+j

)}

× exp

{
i

N∑

j=1

γj

(
n∑

k=1

ψ
(k)

j ψ
(k)
j − ψ

(k)

N+jψ
(k)
N+j

)}

× exp

{
−i

N∑

j=1

(
n∑

k,k′=1

sk′,kψ
(k)

j ψ
(k′)
j + sn+k′,kψ

(k)

j ψ
(k′)
N+j + sk′,n+kψ

(k)

N+jψ
(k′)
j + sn+k′,n+kψ

(k′)

N+jψ
(k)
N+j

)}
.

By manipulating terms in the exponentials,

FΓ (z1, z2, . . . , zn) =
1

2n

(
N

π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

}∫ N∏

j=1

(
dψ

(·)
j dψ

(·)
j

)
ent

(
dψ

(·)
N+jdψ

(·)
N+j

)
ent

× exp

{
−
〈(

ψ
(·)
j

ψ
(·)
N+j

)
,

[(
Z − iγj1n 0

0 Z − iγj1n

)
+ iS2n

](
ψ

(·)
j

ψ
(·)
N+j

)〉}

=
1

2n

(
N

π

)2n2∫
D[S2n] exp

{
−N

2
Tr S2

2n

} N∏

j=1

det (Z2n + iS − iγjL2n) .

Now, recalling that γj = 0 for j =M + 1, . . . , N we obtain the statement of the Proposition. �

APPENDIX B. VARIOUS ASYMPTOTIC REGIMES FOR LAGUERRE POLYNOMIALS

Asymptotic behaviour of the Laguerre polynomials L
(α)
N−k (−NY 2) in the limit when N → ∞

and k and α are fixed depends on the scale of the variable Y > 0 compared to N . For our

investigation we need two scales: (i) Y N = y > 0 is fixed and (ii) Y N ≫ 1. In both cases the

desired approximations can be obtained from the integral representation (65) which we rewrite as

L
(α)
N−k

(
−NY 2

)
=

2NN−k+1

(N − k)!

e−NY 2

Y α

∞∫

0

τ−2k+α+1e−N(τ2−2 ln τ)Iα(2τYN) dτ, Y > 0. (90)

We start with simpler case of Y N = y > 0 being fixed in the limitN → ∞. In this case significant

contributions to the integral in (90) are coming from a neighbourhood of the point τ = 1 which is

the point of minimum the function τ 2 − 2 ln τ inside the interval of integration. Straightforward
30



evaluation of the integral by the Laplace method together with the Stirling approximation (N −
k)! ∼

√
2πe−NNN−k+1/2 yields that

L
(α)
N−k

(
−y

2

N

)
∼ Nα

yα
Iα(2y) , y > 0. (91)

In the other regime of interest for us, Y N ≫ 1, one can use the following asymptotic expansion

for the modified Bessel function Iα(z) (see e.g. formula 5.11.10 in [34]):

Iα(z) =
ez√
2πz

n∑

p=0

(−1)p

(2z)p
A(α)

p +O
(
|z|−n−1

)
, A(α)

p =
Γ(α+ p+ 1/2)

Γ(α− p+ 1/2)
. (92)

It reduces the asymptotic analysis of L
(α)
N−k (−NY 2) to analysis of the following expression:

e−NY 2

2Y α
√
πY N

∞∫

0

τ−2k+α+1/2e−NL(τ)
∑

p

(−1)p

(4Y N)p
A(α)

p dτ, L(τ) = τ 2 − 2 ln τ − 2τY. (93)

In this case significant contributions to the integral in (93) are coming from a neighbourhood of the

point τ = τ∗(Y ) which is the point of minimum the function L(τ) inside the interval of integration.

τ∗(Y ) =
Y +

√
Y 2 + 4

2
=

1

r∗(Y )
, r∗(Y ) =

√
Y 2 + 4− Y

2
> 0 , (94)

Using the relations τ∗(Y ) = r∗(Y ) + Y and 1 + r∗(Y )
2 = r∗(Y ) (Y

2 + 4)
1/2

we find that

L(τ∗(Y )) = 1 + 2 ln r∗(Y )− Y (r∗(Y ) + Y ), L′′(τ∗) = 2r∗(Y )
(
Y 2 + 4

)1/2
. (95)

Expanding the integrand in the standard way around τ = τ∗(Y ) and collecting the leading and

subleading order terms we get asymptotic expressions for Laguerre polynomials with the precision

sufficient for our purposes:

L
(α)
N−k(−NY 2)=





eNY r∗(Y )

√
2πN

r∗(Y )
−2(N−k)−α−1

Y α+ 1
2 (Y 2 + 4)1/4

[
1+O

(
1

N

)]
, Y = O(1),

eNY r∗(Y )

√
2πN

r∗(Y )
−2(N−k)−α−1

Y α+ 1
2 (Y 2 + 4)1/4

[
1− (4α2 − 1)r∗(Y )

16Y N
+O

(
1

N

)]
, Y ≪ 1 ≪ NY.

(96)
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