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EXPONENTIAL TIME-DECAY FOR A ONE DIMENSIONAL WAVE

EQUATION WITH COEFFICIENTS OF BOUNDED VARIATION

KIRIL DATCHEV AND JACOB SHAPIRO

Abstract. We consider the initial-value problem for a one-dimensional wave equation with coef-
ficients that are positive, constant outside of an interval, and have bounded variation (BV). Under
the assumption of compact support of the initial data, we prove that the local energy decays expo-
nentially fast in time, and provide the explicit constant to which the solution converges. The key
ingredient of the proof is a high frequency resolvent estimate for an associated Helmholtz operator
with a BV potential.

1. Introduction and statement of results

This paper establishes exponential local energy decay for the solution of the following one di-
mensional wave equation, with compactly supported initial data:





β(x)∂2t w(x, t)− ∂x(α(x)∂xw(x, t)) = 0, (x, t) ∈ R× (0,∞),

w(x, 0) = w0(x),

∂tw(x, 0) = w1(x),

suppw0, suppw1 ⊆ (−R,R), R > 0.

(1.1)

Here, the coefficients α, β : R → (0,∞) have bounded variation (BV). We suppose also

inf
R

α, inf
R

β > 0, (1.2)

and that there exist R0, α0, β0 > 0, so that

α(x) = α0, β(x) = β0, |x| ≥ R0. (1.3)

To begin, we address the well-posedness of (1.1) via the spectral theorem for self-adjoint opera-
tors. Let H be the Hilbert space L2(R;β(x)dx) equipped with the inner product

〈u, v〉H ..=

∫

R

u(x)v(x)β(x)dx.

(Note that L2(R;β(x)dx) = L2(R; dx) as sets, and their respective norms generate the same topol-
ogy, since β has positive upper and lower bounds.) Define the symmetric, nonnegative differential
operator

Hu ..= −β−1∂x(α∂xu), (1.4)

with domain D(H) ..= {u ∈ L2(R) : u, ∂xu ∈ L2(R) ∩ L∞(R), and ∂x(α∂xu) ∈ L2(R)}. We will see
from Lemma 3.1 in Section 3 that H is self-adjoint with respect to D(H). It is also conveniently the

case that D(H1/2) coincides with the Sobolev space H1(R) [Re22b]. For completeness, we prove
this fact in Appendix A.
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2 EXPONENTIAL DECAY FOR BV COEFFICIENTS

Thus, for initial conditions w0 ∈ D(H), w1 ∈ D(H1/2),

w(t) = w(·, t) = cos(tH1/2)w0 +
sin(tH1/2)

H1/2
w1. (1.5)

is the unique function w ∈ C2((0,∞),H) with w(0) = w0, ∂tw(0) = w1, and for all t > 0,
w(t) ∈ D(H) and ∂2tw(t) +Hw(t) = 0.

Theorem 1.1. Let α, β : R → (0,∞) have bounded variation and satisfy (1.2) and (1.3). Suppose

w0 ∈ D(H), w1 ∈ D(H1/2), and suppw0, suppw1 ⊆ (−R,R) for some R > 0. Let w(t) be given by

(1.5). For any R1 > 0, there exist C, c > 0 so that

‖w(·, t) − w∞‖H1(−R1,R1) + ‖∂tw(·, t)‖L2(−R1,R1)

≤ Ce−ct(‖w0‖H1(R) + ‖w1‖L2(R)), t > 0,
(1.6)

where

w∞
.

.=
1

2(α0β0)1/2

∫

R

w1(x)β(x)dx. (1.7)

Theorem 1.1 is motivated by the recent article [AGPP22]. There, the authors prove (1.6), with an
explicit constant c depending on α and β, provided that α and β are Lipschitz continuous, bounded
from above and below by positive constants, and satisfy (1.3). Our result includes natural examples
such as cases where α and β are piecewise constant and it is easy to see that the exponential decay
rate in (1.6) cannot in general be improved to any superexponential rate. See [BIZ16] for dispersive
and Strichartz estimates for one dimensional wave equations with BV coefficients.

To prove Theorem 1.1, it suffices to show (1.6) and (1.7) in the special case

α(x) = β(x) = 1, |x| ≥ R0. (1.8)

Indeed, if w(x, t) solves (1.1) for initial conditions w0, w1 and general α and β, then the function
u(x, t) ..= w(

√
α0)x,

√
β0t) solves (β(

√
α0x)/β0)∂

2
t u − ∂x((α(

√
α0x)/α0)∂xu) = 0 with initial con-

ditions u(x, 0) = w0(
√
α0x), ∂tu(x, 0) =

√
β0w1(

√
α0x). Then (1.8) applies, giving that u decays

according to (1.6) and (1.7). The asserted decay for w follows by a change of variables.
For the wave equation with constant coefficients and compactly supported initial conditions, it

follows readily from D’Alembert’s formula that solution to (1.1) converges to w∞ in finite time.
However, for variable coefficients, exponential decay is a typical scenario. This occurs in the setting
of reflection and transmission, e.g., when α ≡ 1 and β assumes precisely two values.

In dimensions two and higher, the recent works [ChIk20, Sh18] treat local energy decay for
wave equations with Lipschitz coefficients. Though in higher dimensions, logarithmic, rather than
exponential decay, is optimal in general. The study of energy decay more broadly has a long
history, going back to the foundational work of Morawetz, Lax–Phillips, and Vainberg [Mo61,
LMP62, LaPh89, Va89], which we will not attempt to review here. The reader may consult [Bu98,
HiZw17, Sh18, DyZw19] for more historical background and references.

We prove Theorem 1.1 by analyzing H as a black box Hamiltonian in the sense of Sjöstrand and
Zworski [SjZw91]. In particular, (1.8) implies that for any χ ∈ C∞

0 (R; [0, 1]) that is identically one
near [−R0, R0], the cutoff resolvent

χR(λ)χ ..= χ(H − λ2)−1χ : H → D(H) (1.9)

continues meromorphically from Imλ > 0 to the complex plane. (Here, we equip D(H) with the

graph norm u 7→ (‖u‖2H + ‖Hu‖2H)1/2.) In particular, we establish the following high frequency
bound.

Theorem 1.2. Suppose α, β : R → (0,∞) have bounded variation and obey (1.2) and (1.8). For

any χ ∈ C∞
0 (R; [0, 1]) that is identically one near [−R0, R0], there exists C, λ0, ε0 > 0 so that

‖χR(λ)χ‖H→H ≤ C|Reλ|−1, (1.10)
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whenever |Reλ| ≥ λ0, and | Imλ| ≤ ε0.

In Section 4, we achieve (1.10) by rescaling H−λ2 semiclassically, see (4.2), and apply a resolvent
estimate for a Schrödinger operator with a BV potential, namely Theorem 3.2 in Section 3. The
proof of Theorem 3.2 uses a positive commutator argument that relies on some basic calculus facts
for BV functions. We collect these facts in Section 2, and prove them in Appendix B. Finally, in
Section 5, we prove (1.6) by combining (1.10) with an argument involving Plancherel’s theorem
and contour deformation. A similar strategy appears in [Vo99, Section 3].

Our methods should apply directly to some more general operators, such as the wave operator
β(x)∂2t − ∂x(α(x)∂x) + V (x), where V is real-valued, compactly supported, and has BV. In that
case, however, the residual w∞ in (1.6) may be more complicated, as there may or may not be a
resonance at zero, and there may also be discrete negative spectrum. See [DyZw19, Theorem 2.9]
for instance, which treats the case V 6≡ 0 and α, β ≡ 1.

2. Review of BV

To keep the notation concise, for the rest of the article, we use “prime” notation to denote
differentiation with respect to x, e.g., u′ ..= ∂xu.

Let f : R → C be a function of locally bounded variation. For all x ∈ R, put

fL(x) ..= lim
δ→0+

f(x− δ), fR(x) ..= lim
δ→0+

f(x+ δ), fA(x) ..= (fL(x) + fR(x))/2, (2.1)

where the limits exist because both the real and imaginary parts of f are a difference of two
increasing functions. Recall that f is differentiable Lebesgue almost everywhere, so f(x) = fL(x) =
fR(x) = fA(x) for almost all x ∈ R.

We may decompose f as

f = fr,+ − fr,− + i(fi,+ − fi,−), (2.2)

where the fσ,±, σ ∈ {r, i}, are increasing functions on R. Each fRσ,± uniquely determines a regular

Borel measure µσ,± on R satisfying µσ,±(x1, x2] = fRσ,±(x2) − fRσ,±(x1), see [Fo07, Theorem 1.16].
We put

df ..= µr,+ − µr,− + i(µi,+ − µi,−), (2.3)

which is a complex measure when restricted to any bounded Borel subset. For any a < b,

∫

(a,b]
df = fR(b)− fR(a),

∫

(a,b)
df = fL(b)− fR(a).

(2.4)

We collect several properties of functions of bounded variation, which are well known, and which
we use to prove Theorem 3.2 in Section 3. Their proofs are deferred to the appendix.

Proposition 2.1 (integration by parts). Let f : R → C have locally bounded variation. For any

a < b, and any continuous ϕ, with ϕ′ piecewise continuous and ϕ(a) = ϕ(b) = 0,
∫

(a,b]
ϕdf = −

∫

(a,b]
ϕ′fdx. (2.5)

Proposition 2.2 (product rule). Let f, g : R → C be functions of locally bounded variation. Then

d(fg) = fAdg + gAdf (2.6)

as measures on a bounded Borel subset of R.

Remark: We note that if f is continuous, then inductively applying (2.6) yields dfn = nfn−1df .
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Proposition 2.3 (chain rules). Let f : R → R be continuous and have locally bounded variation.

Then, as measures on a bounded Borel set of R,

d(ef ) = efdf. (2.7)

On the other hand, let x1, . . . xN , r0, r1 . . . , rN ∈ R, and consider the function

g(x) = r01(−∞,x1] +

N−1∑

j=1

rj1(xj ,xj+1] + rN1(xN ,∞).

Then

d(eg) =

N∑

j=1

(erj − erj−1)δxj , (2.8)

where δxj denotes the dirac measure at xj.

The need to treat separately the case of jump discontinuities in Proposition 2.3 was brought to
the authors’ attention by [Pi22, Re22a].

3. Weighted resolvent estimate

The purpose of this Section is to prove a weighted resolvent estimate for the semiclassical
Schrödinger operator

P = P (h) ..= −h∂x(α(x)h∂x) + V (x)− E : L2(R) → L2(R), E, h > 0, (3.1)

which is the key ingredient in the proof of Theorem 1.2 in Section 4. We suppose α and V are
real-valued functions of bounded variation on R, and

inf
R

α > 0. (3.2)

Specifically, we show

Lemma 3.1. The operator P : L2(R) → L2(R) is self adjoint with respect to the domain

D .

.= {u ∈ L2(R) : u, u′ ∈ L2(R) ∩ L∞(R), and Pu ∈ L2(R)}, (3.3)

and prove the following resolvent bound, for h small, and uniformly down to [Emin, Emax] ⊆ (0,∞).

Theorem 3.2. Fix [Emin, Emax] ⊆ (0,∞) and δ > 0. Assume α, V : R → R have bounded variation,

α obeys (3.2), and
sup
R

V < Emin. (3.4)

Then there exist C, h0 > 0, so that for all E ∈ [Emin, Emax], h ∈ (0, h0], and ε > 0,

‖(|x|+ 1)−
1+δ
2 (P (h) − iε)−1(|x|+ 1)−

1+δ
2 ‖L2(R)→L2(R) ≤ Ch−1. (3.5)

Since V has limited regularity, we have replaced a more typical nontrapping condition, concerning
the escape of trajectories ẋ = 2ξ, ξ̇ = −∂xV that obey |ξ|2 + V (x) = E, with the simpler condition
(3.4). Indeed, as α and V have only bounded variation, the bicharacteristic flow is not necessarily
well defined. Moreover, in Section 4, we shall see that (3.4) is a natural assumption, given that the
coefficients of the operator H obey (1.2).

To prove Theorem 3.2, we employ a positive commutator-style argument in the context of the
spherical energy method. This strategy has long been used to prove semiclassical resolvent estimates
[CaVo02, Da14, KlVo19, DaSh20, GaSh22]. In fact, as we are in one dimension, we just use the
pointwise energy

F (x) = F [u](x) ..= α(x)|h∂xu(x)|2 + (E − V (x))|u(x)|2, u ∈ D. (3.6)

The goal is to construct a suitable weight function w(x) so that the derivative of wF , in the
sense of distributions, has a favorable sign. From (3.24) below, we see that w ought to be designed
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so that (w(E − V ))′ has a positive lower bound. If V only has bounded variation, this derivative
must be interpreted as a measure, and extra care is needed to control the point masses arising from
the discontinuities of V (see (3.18)).

We first give our attention to Lemma 3.1, which is essentially well known. Our present proof is
adapted from [DaSh20, Section 2].

Proof of Lemma 3.1. Let

Dmax
..= {u ∈ L2(R) : u, αu′ are locally absolutely continuous and Pu ∈ L2(R)},

By, [Ze05, Lemma 10.3.1], Dmax is dense in L2(R). We begin by proving

Dmax = D. (3.7)

Indeed, for any a > 0 and u ∈ Dmax, by integration by parts and Cauchy–Schwarz,

inf α

∫ a

−a
|u′|2 ≤

∫ a

−a
αu′ū′ = αu′u|a−a + h−2

∫ a

−a
Puū− h−2

∫ a

−a
V uū

≤ 2 supα sup
[−a,a]

|u′| sup
[−a,a]

|u|+ h−2 sup |V |‖u‖2L2 + h−2‖Pu‖L2‖u‖L2 ,

sup
[−a,a]

|u|2 = sup
x∈[−a,a]

(
|u(0)|2 + 2Re

∫ x

0
u′ū

)
≤ |u(0)|2 + 2

(∫ a

−a
|u′|2

)1/2

‖u‖L2 ,

(inf α)2 sup
[−a,a]

|u′|2 ≤ sup
[−a,a]

|αu′|2 = sup
x∈[−a,a]

(
|(αu′)(0)|2 + 2Re

∫ x

0
(αu′)′αu′

)

≤ |(αu′)(0)|2 + 2h−2(sup(α|V |)‖u‖L2 + supα‖Pu‖L2)

(∫ a

−a
|u′|2

)1/2

.

This is a system of inequalities of the form x2 ≤ A+Byz, y2 ≤ C +Dx, z2 ≤ E + Fx. Thus, for
any γ > 0,

x2 ≤ A+
B

2γ
+ γ(yz)2 ≤ A+

B

2γ
+ γ(C +Dx)(E + Fx)

≤ A+
B

2γ
+ γCE + γ

(CF )2 + (DE)2

2
+ (γ2 + γDF )x2.

(3.8)

Choosing γ small enough allows one to absorb all the terms involving x2 on the right side of (3.8),
into the left side. Hence x, y and z are all bounded independently of a. Letting a→ ∞, we conclude
that u′ ∈ L2(R) and u, u′ ∈ L∞(R). Hence Dmax ⊆ D. The inclusion D ⊆ Dmax follows because
Pu ∈ L2(R) implies (αu′)′ ∈ L2(R), which in turns gives that αu′ is locally absolutely continuous.

Equip P with the domain Dmax = D ⊆ L2(R). By integration by parts, P ⊆ P ∗. But, by
Sturm–Liouville theory, P ∗ ⊆ P ; see [Ze05, Equation 10.3.2]. Hence P = P ∗.

�

We now prove Theorem 3.2, with the argument proceeding in two steps. First, as described
above, we build a weight w so that, d(wF ) has a desirable lower bound in the sense of measures–see
(3.24). This yields the Carleman estimate (3.27), which implies the resolvent estimate (3.29).

Proof of Theorem 3.2. Decompose

dV = dV d + dV c,

dα = dαd + dαc,

into their discrete and continuous parts. Let JV , respectively Jα be the sets of “positive jumps” of
V , α respectively. That is JV is the set of x-values such that (V R − V L)(x) > 0, and similarly for



6 EXPONENTIAL DECAY FOR BV COEFFICIENTS

Jα. Since V and α have bounded variation, both JV and Jα are at most countable. We denote by
{xj}j an enumeration of JV ∪ Jα. Additionally, let

dV c = dV c
+ − dV c

−,

dαc = dαc
+ − dαc

−,

be Jordan decompositions for dV c, dαc respectively.
For each N ∈ N, let x1,N , x2,N , . . . , xN,N be the elements of {xj}Nj=1 relabeled in increasing order.

Define the function q1,N by

q1,N (x) ..= r0,N1(−∞,x1,N ] +

N−1∑

j=1

rj,N1(xj,N ,xj+1,N ] + rN,N1(xN,N ,∞), (3.9)

where the numbers {rj,N}Nj=0 are defined recursively as follows:

r0,N = 0, rj,N = rj−1,N + logmax
{
1 +

2Aj,N

1−Aj,N
, 1 +

2Bj,N

1−Bj,N

}
, (3.10)

Aj,N
..=

(V R − V L)(xj,N )

2(E − V )A(xj,N)
∈ [0, 1), Bj,N

..=
(αR − αL)(xj,N )

2αA(xj,N)
∈ [0, 1). (3.11)

When N = 1, we omit the summation from (3.9). Moreover, if {xj}j is a finite set, we work only
with a single function q1,N1

, where x1 < · · · < xN1
is the ordering of JV ∪ Jα.

Since V and α have bounded variation,
∑

j

max{(V R − V L)(xj), (α
R − αL)(xj)} <∞. (3.12)

Thus max q1,N = rN,N is bounded uniformly in N , by

rN,N =

N∑

j=1

rj,N − rj−1,N

=

N∑

j=1

log max
{
1 +

2Aj,N

1−Aj,N
, 1 +

2Bj,N

1−Bj,N

}

≤
N∑

j=1

max
{ 2Aj,N

1−Aj,N
,

2Bj,N

1−Bj,N

}

≤
N∑

j=1

max
{ (V R − V L)(xj,N )

(E − V )A(xj,N)− 1
2(V

R − V L)(xj,N )
,

(αR − αL)(xj,N )

αA(xj,N)− 1
2(α

R − αL)(xj,N )

}
<∞.

(3.13)

Next, we put

q2(x) ..=

∫ x

−∞

[
kdV c

+ + 2
inf αdα

c
+ + (|x′|+ 1)−1−δdx′

]
, (3.14)

where k > 0 is chosen large enough so that

k

(
Emin − sup

R

V

)
≥ 1. (3.15)

To implement the energy method outlined in Section 1, we will in fact use a family of weight
functions depending on N ,

w(x) = wN (x) = eq1,N (x)+q2(x), N ∈ N. (3.16)
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According to (2.7) and (2.8),

dw(x) =

N∑

j=1

eq2(erj,N − erj−1,N )δxj,N
+ wA( 2

inf αdα
c
+ + kdV c

+ + (|x|+ 1)−1−δ). (3.17)

We now establish lower bounds on the measures d(w(E − V )) and dw− (αA)−1wAdα, which we
need in the estimate (3.24) below. For d(w(E − V )), we have, by (2.6), (3.15) and (3.17),

d(w(E − V ))

≥ (E − V )Adw −wA(dV d + dV c
+)

≥
N∑

j=1

eq2
(
(E − V )A(erj,N − erj−1,N )− (V R − V L)(12e

rj,N + 1
2e

rj−1,N )
)
δxj,N

−
∑

x∈JV \{xj,N}Nj=1

wA(V R − V L)δx

+ wA(k(Emin − V )A − 1)dV c
+ + wA(E − V )A(|x|+ 1)−1−δ .

(3.18)

with the inequalities holding in the sense of measures. As for dw − (αA)−1wAdα,

dw − (αA)−1wAdα

≥ dw − (αA)−1wA(dαd + dαc
+)

≥
N∑

j=1

eq2
(
(erj,N − erj−1,N )− (αR − αL)

αA
(12e

rj,N + 1
2e

rj−1.N )
)
δxj,N

−
∑

x∈Jα\{xj,N}Nj=1

(αA)−1wA(αR − αL)δx

+wA( 2
inf α − 1

αA )dα
c
+ +wA(|x|+ 1)−1−δ .

(3.19)

The first term in line five of (3.18) is nonnegative by (3.15); the first term of line four of (3.19) is
nonnegative since inf α < 2αA. Furthermore, the third line of (3.18) and the third line of (3.19),
are nonnegative by (3.10) and (3.11).

Thus we conclude

d(w(E − V )) ≥ wA(Emin − V )A(|x|+ 1)−1−δ −
∑

x∈JV \{xj,N}Nj=1

wA(V R − V L)δx,

dw − (αA)−1wAdα ≥ wA(|x|+ 1)−1−δ −
∑

x∈Jα\{xj,N}Nj=1

(αA)−1wA(αR − αL)δx,
(3.20)

which are the lower bounds we shall employ in (3.24).
Next, define the pointwise energy

F (x) = F [u](x) ..= α(x)|hu′(x)|2 + (E − V (x))|u(x)|2, x ∈ R, (3.21)

with

u = (P (h) − iε)−1(|x|+ 1)−
1+δ
2 f ∈ D, ε > 0, f ∈ L2(R). (3.22)

By (3.3), u, u′ ∈ L2(R) ∩ L∞(R), and (αu′)′ ∈ L2(R). Moreover, in the calculations to follow,
we work with fixed representatives of u and u′, such that both u and αu′ are locally absolutely
continuous. This is justified by (3.7).

From (2.6), we see that dF is given by

dF = h2(αu′)d(u′) + h2(u′)A(αu′)′ − |u|2dV + 2(E − V )A Re
(
uu′
)
.
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Using

(αu′)′ = (u′)Adα+ αAd(u′) =⇒ d(u′) =
(αu′)′

αA
− (u′)A

αA
dα,

we arrive at

dF = h2

αA (αu
′)(αu′)′ + h2(u′)A(αu′)′ − h2

αA (αu
′)(u′)Adα− |u|2dV + 2(E − V )ARe

(
uu′
)
. (3.23)

We now multiply (3.21) by w and compute d(wF ):

d(wF ) = FAdw + wAdF

= h2(αu′)(u′)Adw + (E − V )A|u|2dw
+ h2

αAw
A(αu′)(αu′)′ + h2wA(u′)A(αu′)′ − h2

αAw
A(αu′)(u′)Adα

− wA|u|2dV + 2wA(E − V )A Re
(
uu′
)
.

= −wA
(
− h2

αA (αu
′)(αu′)′ − h2(u′)A(αu′)′ + 2(V − E)A Re(uu′)− 2Re(iεuu′)

)

+ 2εwA Im
(
uu′
)
+ |u|2d(w(E − V )) + h2(αu′)(u′)A

(
dw − wA dα

αA

)

≥ −wA
(
− h2

αA (αu
′)(αu′)′ − h2(u′)A(αu′)′ + 2(V − E)A Re(uu′)− 2Re(iεuu′)

)

+ 2εwA Im
(
uu′
)
+ (|x|+ 1)−1−δ((Emin − sup

R

V )|u|2 + h2(αu′)(u′)A)

−
∑

x∈JV \{xj,N}Nj=1

wA|u|2(V R − V L)δx −
∑

x∈Jα\{xj,N}Nj=1

(αA)−1h2wA(αu′)(u′)A(αR − αL)δx.

(3.24)

To get lines seven and eight we plugged in (3.20) and used wA ≥ 1.
We now integrate both sides of (3.24) over all of R. Since F ∈ L1(R) and is continuous off of

a countable set, F (x) tends to zero along a sequence of x-values tending to +∞, and at which
F (x) = FR(x) = FL(x). Similarly, F (x) = FR(x) = FL(x) → 0 along a sequence of x-values
tending to −∞. Thus (2.4) gives

∫
R
d(wF ) = 0. Since the average values of functions that appear

are equal to the functions themselves Lebesgue almost-everywhere, for each N , we arrive at,

(1/maxw)

∫
(|x|+ 1)−1−δ

(
(Emin − sup

R

V )|u|2 + inf α|hu′|2
)

≤
∫

2|(P (h) − iε)u)u′|+ 2ε|uu′|

+
∑

x∈JV \{xj,N}Nj=1

|u|2(V R − V L)δx +
∑

x∈Jα\{xj,N}Nj=1

(αA)−1h2(αu′)(u′)A(αR − αL)δx.

(3.25)

Sending N → ∞, recalling (3.12) (which gives supN (maxw) <∞ via (3.13)), (3.22), and
u, u′ ∈ L∞(R), and using Young’s inequality, we find

∫
(|x|+ 1)−1−δ

(
|u|2 + |hu′|2

)

≤ C

∫
1

γh2
|f |2 + γ(|x| + 1)−1−δ |hu′|2 + 2ε|uu′| h, γ > 0.

(3.26)

Here and below, C > 0 is a constant that may change from line to line, but it is always independent
of u, ε, and h.
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The second term on the right side of (3.26) can be absorbed into the left side by selecting γ
small enough. As for the term involving ε, by Young’s inequality,∫

|uu′| ≤ 1

2h inf α

∫
|u|2 + 1

2h

∫
α|hu′|2, h > 0.

Then ∫
α|hu′|2 = Re

∫
−h2(αu′)′u

= Re

∫
((P (h) − iε) − V + E) uu

≤ 1

2

∫
|(|x|+ 1)−

1+δ
2 f |2 +

(
1

2
+ ‖Emax − V ‖L∞

)∫
|u|2.

Substituting these observations and calculations into (3.26) gives, for ε, h > 0,
∫

(|x|+ 1)−1−δ(|u|2 + |hu′|2) ≤ C

h2

∫
|f |2 + Cε

h

∫
|u|2. (3.27)

To finish, we rewrite ε
∫
|u|2 and estimate, for any γ > 0,

ε

∫
|u|2 = − Im

∫
(P (h)− iε)uu

≤ 1

γ

∫
|f |2 + γ

∫
(|x|+ 1)−1−δ |u|2.

(3.28)

If we now take γ sufficiently small (depending on C and h), we may absorb the integral of
(|x|+ 1)−1−δ |u|2 in (3.28) into the left side of (3.27) to achieve

∫
(|x|+ 1)−1−δ(|u|2 + |hu′|2) ≤ C

h2

∫
|f |2, ε > 0, h ∈ (0, 1]. (3.29)

This completes the proof of (3.5).
�

4. High frequency bound on the cutoff resolvent

In this Section, we prove Theorem 1.2 as an application of Theorem 3.2. We return to working
with the operator H : D(H) → H as defined by (1.4), where α, β : R → (0,∞) are BV functions
obeying (1.2) and (1.8).

In that situation, H is a black box Hamiltonian in the sense of Sjöstrand and Zworski [SjZw91],
as defined in [DyZw19, Definition 4.1]. More precisely, in our setting this means the following.
First, if u ∈ D(H), then u|R\[−R0,R0] ∈ H2(R \ [−R0, R0]). Second, for any u ∈ D(H), we have

(Hu)|R\[−R0,R0] = −u′′|R\[−R0,R0]. Third, any u ∈ H2(R) which vanishes on a neighborhood of

[−R0, R0] is also in D(H). Fourth, 1[−R0,R0](H + i)−1 is compact on H; this last condition follows

from the fact that D(H) ⊆ H1(R).
Then, by [DyZw19, Theorem 4.4], for any χ ∈ C∞

0 (R; [0, 1]) that is identically one near [−R0, R0],
the cutoff resolvent (1.9) continues meromorphically H → D(H) from Imλ > 0 to the complex
plane. The poles of this continuation are precisely at those values λ for which there is a solution
u to Hu = λ2u having u, u′,Hu ∈ L2

loc(R) in the sense of distributions, and which is outgoing, i.e.
obeys

± x ≥ R0 =⇒ u(x) = c±e
±iλx, (4.1)

for some nonzero constants c±.
Observe that λ = 0 is such a pole because we may take u(x) = 1 for all x. Observe further that

this is the only pole in the closed half plane Imλ ≥ 0. Indeed, if u satisfying (4.1) solves Hu = λ2u
with Imλ > 0, then u ∈ D(H) and we have λ2‖u‖2H = 〈Hu, u〉H =

∫
R
α|u′|2 ≥ 0, which implies
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‖u‖H = 0 since λ2 ≥ 0 is impossible when Imλ > 0. For λ ∈ R \ {0} this follows as in the proof of
[DyZw19, (2.2.12)].

Proof of Theorem 1.2. Set Vβ ..= 1 − β and O ..= {λ ∈ C : Reλ 6= 0, Imλ > 0}. Note that
suppVβ ⊆ [−R0, R0]. Define on O the following families of operators H → H with domain D(H),

A(λ) ..= (Reλ)−2β(H − λ2)

= −(Reλ)−2∂xα∂x + Vβ + (Imλ)2(Reλ)−2β − i2 Imλ(Reλ)−1β − 1,
(4.2)

B(λ) ..= −(Reλ)−2∂xα∂x + Vβ + (Im λ)2(Reλ)−2 − 1− i2 Imλ(Reλ)−1,

Furthermore, define on O the family H → H,

D(λ) ..= (Im λ)2(Reλ)−2Vβ − i2 Im λ(Reλ)−1Vβ .

We have,

B(λ)−A(λ) = D(λ).

Composing with inverses gives

A(λ)−1 −B(λ)−1 = B(λ)−1D(λ)A(λ)−1 =⇒ (I −B(λ)−1D(λ))A(λ)−1 = B(λ)−1,

Multiplying on the left and right by χ and noticing that D(λ) = χD(λ)χ, we arrive at

(I − χB(λ)−1χD(λ))χA(λ)−1χ = χB(λ)−1χ, λ ∈ O. (4.3)

Next, choose λ0, ε0 > 0 so that supR Vβ < 1− ε20λ
−2
0 . Identifying Emin

..= 1− ε20λ
−2
0 , Emax = 1,

and h ..= |Reλ|−1, we see that Theorem 3.2 applies to B(λ)−1. So for some C > 0 and a possibly
larger λ0, we have

‖χB(λ)−1χ‖H→H ≤ C|Reλ|, |Reλ| ≥ λ0, 0 < Imλ ≤ ε0. (4.4)

Moreover,

‖D(λ)‖H→H ≤ ε0‖Vβ‖L∞

( 1

λ20
+

2

λ0

)
, |Reλ| ≥ λ0, 0 < Imλ ≤ ε0. (4.5)

Thus, increasing λ0 again if needed, we can invert (I −χB(λ)−1χD(λ)) by a Neumann series when
|Reλ| ≥ λ0, 0 < Imλ < ε0. From (4.3), (4.4), and (4.5), we find

χA(λ)−1χ =

(
∞∑

k=0

(χB(λ)−1χD(λ))k

)
χB(λ)−1χ, |Reλ| ≥ λ0, 0 < Imλ ≤ ε0. (4.6)

Since

χR(λ)χ = (Reλ)−2χA(λ)−1χβ, λ ∈ O,
(1.10) follows from (4.4), (4.5), and (4.6), at least when |Reλ| ≥ λ0, 0 ≤ Imλ ≤ ε0. To get (1.10)
for |Reλ| ≥ λ0, | Imλ| ≤ ε0, we appeal to a resolvent identity argument due to Vodev [Vo14,
Theorem 1.5], which was adapted to the non-semiclassical (see, for instance, [Sh18, Lemma 5.1]).
It yields, for possibly smaller ε0, holomorphicity of χR(λ)χ in |Reλ| ≥ λ0, −ε0 ≤ Imλ ≤ 0, along
with a bound of the form (1.10) there.

�

To conclude this section, we consider the two by two matrix operator

G ..= −i
(

0 1
−H 0

)
: D(H)⊕H → H⊕H,

which arises naturally from rewriting (1.1) as a first order system. A short computation yields,

(G+ λ)−1 =

(
−λR(λ) −iR(λ)

iλ2R(λ) + i −λR(λ)

)
, Imλ > 0. (4.7)
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The following Corollary of Theorem 1.2 is essentially well-known, and is an important input
to the proof of Theorem 1.1 in Section 5. We give the proof by recalling several results from
[Bu03, Vo14, DyZw19].

Corollary 4.1. Let χ ∈ C∞
0 (R; [0, 1]) be identically one near [−R0, R0]. The operator

χ(G+ λ)−1χ .

.=

(
−λχR(λ)χ −iχR(λ)χ

iλ2χR(λ)χ+ iχ2 −λχR(λ)χ

)
: H1(R)⊕ L2(R) → H1(R)⊕ L2(R) (4.8)

continues meromorphically from Imλ > 0 to C. It has no poles on R \ {0} and at λ = 0 it has a

simple pole: more precisely, if w0 ∈ H1(R) and w1 ∈ L2(R), then

lim
λ→0

λχ(G+ λ)−1χ

(
w0

w1

)
=

(
−i limλ→0 λχR(λ)χw1

0

)
=

(
1
2〈χ,w1〉Hχ

0

)
. (4.9)

Furthermore, there exist C, λ0, ε0 > 0 so that

‖χ(G+ λ)−1χ‖H1(R)⊕L2(R)→H1(R)⊕L2(R) ≤ C, (4.10)

whenever |Reλ| ≥ λ0, and | Imλ| ≤ ε0.

Proof. As described above, by [DyZw19, Theorem 4.4] and the proof of [DyZw19, (2.2.12)], the
operator χR(λ)χ : L2(R) → D(H) continues meromorphically from Imλ > 0 to C, and has no
poles in R \ {0}. This implies that each entry of (4.8) continues meromorphically as an operator
between the appropriate spaces, again without poles in R \ {0}.

Next, as in the proof of [DyZw19, Theorem 2.7], (1.8) implies that near λ = 0,

χR(λ)χw1 =
i

2λ
〈χ,w1〉Hχ+A(λ)w1, (4.11)

where A(λ) : H → D(H) is holomorphic near zero, and hence we have (4.9).
With (1.10) already in hand, to establish (4.10), it suffices to supply λ0, ε0 > 0 so that

λ2χR(λ)χ+ χ2 = χHR(λ)χ : H1(R) → L2(R), (4.12)

λχR(λ)χ : H1(R) → H1(R), (4.13)

are uniformly bounded for |Reλ| ≥ λ0 and | Imλ| ≤ ε0. When |Reλ| ≥ λ0 and 0 < Imλ ≤ ε0
this follows from the proof of [Bu03, Proposition 2.4], see in particular [Bu03, (2.14), (2.17), and
(2.19)]. To extend these bounds to strips below the real axis, we use once more Vodev’s resolvent
identity ([Vo14, Theorem 1.5] and [Sh18, Lemma 5.1]).

�

5. Wave decay

Proof of Theorem 1.1. This section follows part of Section 3 of [Vo99].
Recall that we use w(t) to denote the solution (1.5) to (1.1), with initial data w0 ∈ D(H) and

w1 ∈ D(H1/2). We have suppw0, suppw1 ⊆ (−R,R), and the coefficients of (1.1) obey (1.2) and
(1.8). We want to show that the local energy ‖w(·, t)−w∞‖H1(−R1,R1)+‖∂tw(·, t)‖L2(−R1,R1) decays
exponentially, for a suitable constant w∞.

Choose χ ∈ C∞
0 (R; [0, 1]) such that χ = 1 near [−R1, R1] ∪ [−R,R] ∪ [R0, R0] (R0 given as in

(1.8)). Recall from Corollary 4.1 that there exist C, λ0, ε0 > 0 such that

‖χ(G+ λ)−1χf‖ ≤ C‖f‖,
whenever |Reλ| ≥ λ0 and | Im λ| ≤ ε0, where here and for the rest of this section all norms are
H1(R)⊕ L2(R) unless otherwise specified.
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We have

w(t) = cos(tH1/2)w0 + sin(tH1/2)H−1/2w1,

∂tw(t) = − sin(tH1/2)H1/2w0 + cos(tH1/2)w1,

∂2t w(t) = −Hw(t).
Consequently, after defining

f ..=

(
w0

w1

)
, U(t)f ..=

(
w(t)
∂tw(t)

)
,

we have

‖U(t)f‖ ≤ C‖f‖, ∂tU(t)f = iGU(t)f, U(t)U(s)f = U(t+ s)f, (5.1)

for all real t and s, for some C > 0 independent of t and f . (Note that U(t)f is still defined even

if only w0 ∈ D(H1/2), w1 ∈ H.)
Take ϕ ∈ C∞(R; [0, 1]) which is 0 on (−∞, 1] and 1 on [2,∞) and put

W (t)f ..= ϕ(t)U(t)f =

∫

Imλ=ε
e−itλW̌ (λ) dλ, W̌ (λ) ..=

1

2π

∫

R

eisλW (s)fds.

Since ∂tW (t)f = ϕ′(t)U(t)f + iGW (t)f we get

W (t)f =

∫

Imλ=ε
e−itλ(G+ λ)−1(iϕ′Uf )̌ (λ) dλ.

Since suppw0, suppw1 ⊆ (−R,R), by finite speed of propagation for the wave equation, and
increasing R > 0 if necessary, we have that, x 7→ U(t)f is supported in (−R,R) for all t ∈
[0, 2]. By continuity of integration, the same is true of x 7→ (iϕ′Uf )̌ (λ) for every λ. Hence
λ 7→ (iϕ′Uf )̌ (λ) is entire and rapidly decaying as |Reλ| → ∞ with | Imλ| remaining bounded and
further (iϕ′Uf )̌ (λ) = χ(iϕ′Uf )̌ (λ) . Take ε ∈ (0, ε0) small enough that λ = 0 is the only pole of
χR(λ)χ (and hence also of χ(G+ λ)−1χ by (4.7)) in the half plane Imλ ≥ −ε. By deformation of
contour,

χW (t)f = lim
λ→0

λχ(G+ λ)−1χ

∫

R

ϕ′(s)U(s)f ds+

∫

Imλ=−ε
e−itλχ(G+ λ)−1χ(iϕ′Uf )̌ (λ)dλ.

To simplify this, use (4.9) and put

W1(t)f :=

∫ ∞

−∞
e−itλ(G+ λ− iε)−1(iϕ′Uf )̌ (λ− iε) dλ,

to obtain

χW (t)f =

(
1
2χ
∫
R

∫ 2
0 β(x)χ(x)ϕ

′(s)∂sw(s, x)dsdx
0

)
+ e−εtχW1(t)f.

To simplify the first term, we integrate by parts in s, using ϕ′ = −(1− ϕ)′, to obtain
∫

R

∫ 2

0
β(x)χ(x)ϕ′(s)∂sw(s, x) ds dx =

∫

R

βχw1 +

∫

R

∫ 2

0
β(x)χ(x)(1 − ϕ(s))∂2sw(s, x) ds dx.

Now observe that ∂2sw = −Hw and 〈χ,Hw(s)〉H = 0 for s ∈ [0, 2] (the latter fact following from
χ = 1 near [−R,R] and suppw(s) ⊆ (−R,R) for s ∈ [0, 2]). Thus

χW (t)f =
1

2

(
〈χ,w1〉Hχ

0

)
+ e−εtχW1(t)f.

It now suffices to show that

‖χW1(t)f‖ ≤ Ceεt/2‖f‖.
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To prove this, we first use Plancherel’s theorem, along with the fact that by (5.1), the operator norm
‖U(t)‖H1(R)⊕L2(R)→H1(R)⊕L2(R) is uniformly bounded for all t ∈ R, as well as the fact that by Corol-

lary 4.1, for any ε > 0 small enough, the operator norm ‖χ(G+λ− iε)−1χ‖H1(R)⊕L2(R)→H1(R)⊕L2(R)

is uniformly bounded for all λ ∈ R, to obtain
∫

‖χW1(t)f‖2 dt = C

∫
‖χ(G + λ− iε)−1(ϕ′Uf )̌ (λ− iε)‖2 dλ

≤ C

∫
‖(ϕ′Uf )̌ (λ− iε)‖2 dλ

= C

∫
e2εt‖ϕ′(t)U(t)f‖2 dt ≤ C‖f‖2.

(5.2)

Next, compute

(∂t − iG)χW1(t)f = −i[G,χ]W1(t)f + εχW1(t)f − iχ

∫
e−itλ(iϕ′Uf )̌ (λ− iε) dλ =.. W̃1(t)f.

Integrating both sides of ∂s(U(t− s)χW1(s)f) = U(t− s)W̃1(s)f from s = 0 to s = t gives

χW1(t)f = U(t)χW1(0)f + U(t)

∫ t

0
U(−s)W̃1(s)f ds.

Thus

‖χW1(t)f‖ ≤ C
(
‖f‖+

∫ t

0
‖W̃1(s)f‖ds

)
≤ C

(
‖f‖+ t1/2

( ∫ t

0
‖W̃1(s)f‖2ds

)1/2)
.

Now check that, since ‖[G,χ]W1(t)f‖ ≤ C‖W1(t)f‖, calculating as in (5.2), we obtain∫
‖W̃1(s)f‖2 ds ≤ C‖f‖2, and hence

‖χW1(t)f‖ ≤ C(1 + t1/2)‖f‖
as desired.

�
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Appendix A. Characterization of D(H1/2)

In this Appendix we show

Lemma A.1 ([Re22b]). It holds that D(H1/2) = H1(R), and that

u 7→ ‖u‖H1 , u 7→ (‖u‖2H + ‖H1/2u‖2H)1/2 are equivalent norms.

Proof. First, recall the well-known fact that D(H1/2) equals the form domain associated to H,

namely, D(H1/2) is the completion of D(H) with respect to the norm ‖u‖2+1
..= 〈Hu, u〉L2+〈u, u〉L2 .

On D(H), it’s clear that there exist C, c > 0 so that c‖ · ‖2H1 ≤ ‖ · ‖2+1 ≤ C‖ · ‖2H1 .

If u ∈ D(H1/2), then there exists a ‖ · ‖+1-Cauchy sequence uj ∈ D(H) converging to u in H
(or, equivalently, converging to u ∈ L2(R)). Because ‖ · ‖+1 and ‖ · ‖H1 are equivalent on D(H), we
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get that the uj are also ‖ · ‖H1(R)-Cauchy. By completeness of H1(R), we conclude u ∈ H1(R). We
also have

‖H1/2u‖2H = lim
j→∞

‖H1/2uj‖2H = lim
j→∞

〈Huj , uj〉H ≤ C lim
j→∞

‖uj‖2H1 = C‖u‖2H1 ,

where the first equals sign follows since H1/2 is a closed operator.
To show H1(R) ⊆ D(H1/2), first suppose u ∈ H1(R) has compact support. Approximate αu′

in L2(R) by ṽj ∈ C∞
0 (R) which have support in a fixed compact set. Choose ϕ0 ∈ C∞

0 (R) with∫
ϕ0/α = 1, and put

vj ..= ṽj −
( ∫

ṽj/α
)
ϕ0.

Then
∫
vj/α = 0 and the vj/α→ u′ in L2(R) since

∫
u′ = 0. We clearly have

uj ..=
∫ x
−∞ vj/α ∈ D(H). Moreover, because

∫ x
−∞ vj/α →

∫ x
−∞ u′ = u(x) locally uniformly in x, it

follows that uj → u in H1(R), and that the uj are ‖ · ‖+1-Cauchy. Hence u ∈ D(H1/2).
For general u ∈ H1(R), choose a sequence ũj of compactly supported functions with

‖ũj − u‖H1 ≤ 2−j−1. For each j, use the construction of the previous paragraph to find uj ∈ D(H)
with ‖uj − ũj‖H1 ≤ 2−j−1. Then the uj → u in H1(R) and

‖uj − uk‖2+1 ≤ C‖uj − uk‖H1 → 0 as j, k → ∞.

Thus u ∈ D(H1/2) and

c‖u‖2H1 = c lim
j→∞

‖uj‖2H1 ≤ lim
j→∞

‖uj‖2+1 = lim
j→∞

(
‖H1/2uj‖2H + ‖uj‖2H

)
= ‖H1/2u‖2H + ‖u‖2H.

�

Appendix B. Elementary properties of BV functions

This appendix collects some facts about functions of bounded variation which can be found in
[VoHu85] and [AFP00]. The main results are the integration by parts formula (2.5), the product rule
(2.6), and the chain rules (2.7) and (2.8). The books [VoHu85] and [AFP00] are mostly concerned
with higher dimensional problems, so we present proofs for the much simpler one dimensional case
here.

We continue to use the notation (2.1) and (2.3) from Section 2. For ψ ∈ L1(R) compactly
supported and satisfying

∫
ψ = 1, and for ε > 0, let

fε(x) =

∫
f(x− εy)ψ(y)dy = ε−1

∫
f(y)ψ(ε−1(x− y))dy. (B.1)

Then, accordingly as ψ is supported in [0,∞) or supported in (−∞, 0] or even, we have

lim
ε→0+

fε = fL or fR or fA, pointwise on R. (B.2)

Indeed, use the dominated convergence theorem in the first two cases and average them to get the
third case.

Proof of Proposition 2.1. The integration by parts formula (2.5) follows as in the proof of [Fo07,
Theorem 3.36]. Indeed, let Ω = {(x, y) ∈ R

2 : a < x ≤ y ≤ b}. Since ϕ is continuous and ϕ′ is
piecewise continuous, it holds that dϕ = ϕ′dx. Using Fubini’s theorem, we evaluate the product
measure df × dϕ two different ways,

∫

(a,b]×(a,b]
1Ω(x, y)df(x)× dϕ(y) =

∫

(a,b]

∫

(a,y]
df(x)dϕ(y)

=

∫

(a,b]
(fR(y)− fR(a))ϕ′(y)dy =

∫

(a,b]
f(y)ϕ′(y)dy,
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where we used that fR = f Lebesgue almost everyone, and that the boundary terms vanish since
ϕ(a) = ϕ(b) = 0. Similarly,

∫

(a,b]×(a,b]
1Ω(x, y)df (x)× dϕ(y) =

∫

(a,b]

∫

[x,b]
dϕ(y)df(x) = −

∫

(a,b]
ϕ(x)df(x).

�

Proof of Proposition 2.2. Let ψ ∈ C∞
0 (R) be an even function satisfying

∫
ψ = 1. For any ε > 0,

define fε by (B.1), and for any, η > 0 define gη similarly. Then

(fεgη)
′ = fε(gη)

′ + gη(fε)
′. (B.3)

We now show that taking η → 0+ and then ε→ 0+ in (B.3) gives (2.6). Let ϕ ∈ C∞
0 (R). First, by

integration by parts,

lim
ε→0+

lim
η→0+

∫
ϕ(fεgη)

′dx = − lim
ε→0+

lim
η→0+

∫
ϕ′fεgηdx.

Then, we observe that
∫
ϕ′fεgηdx→

∫
ϕ′fεgdx by the dominated convergence theorem. Indeed,

gη → gA
a.e.
= g by (B.2), and |ϕ′fεgη| is uniformly bounded for ε fixed and η small. Similarly,∫

ϕ′fεgdx→
∫
ϕ′fgdx. Finally, −

∫
ϕ′fgdx =

∫
ϕd(fg) by (2.5).

Next

lim
ε→0+

lim
η→0+

∫
ϕfεg

′
ηdx = − lim

ε→0+
lim

η→0+

∫
(ϕfε)

′gηdx

= − lim
ε→0+

∫
(ϕfε)

′gdx

= lim
ε→0+

∫
ϕfεdg

=

∫
ϕfAdg.

For the first equal sign, we integrate by parts; for the second, we use the dominated convergence
theorem, as in the previous paragraph. The third equal sign follows from (2.5), and the fourth from
another application of the dominated convergence theorem (and (B.2)).

Continuing, by (B.1), (2.5) and Fubini’s theorem,
∫
ϕgA(fε)

′dx =

∫
ϕ(x)gA(x)ε−2

[∫
ψ′(ε−1(x− y))f(y)dy

]
dx

=

∫
ϕ(x)gA(x)ε−1

[∫
ψ(ε−1(x− y))df(y)

]
dx

= ε−1

∫ [∫
ϕ(x)gA(x)ψ(ε−1(y − x))dx

]
df(y) =

∫
(ϕgA)εdf,

(B.4)

where for the third equal sign we used that ψ is even. Since ϕ and ψ have compact support, the
integrals against df make sense, and the application of Fubini’s theorem is justified (even though
df may be finite only after it is restricted to a bounded Borel set). Finally,

lim
ε→0+

lim
η→0+

∫
ϕgη(fε)

′dx = lim
ε→0+

∫
ϕgA(fε)

′dx = lim
ε→0+

∫
(ϕgA)εdf =

∫
ϕgAdf,

by the dominated convergence theorem, (B.2), and (B.4).
�
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Proof of Proposition 2.3. Using the decomposition (2.2), we see that ef = efr,+e−fr,− has locally
bounded variation, as it is a product of functions of locally bounded variation.

Let ϕ,ψ ∈ C∞
0 (R), with ψ even and satisfying

∫
ψ = 1. To show (2.7):

∫
ϕd(ef ) = −

∫
efϕ′dx

= −
∫

lim
N→∞

N∑

n=0

fn

n!
ϕ′dx

= − lim
N→∞

N∑

n=0

∫
(fn)

n!
ϕ′dx

= lim
N→∞

( N∑

n=1

∫
ϕ

n!
dfn −

N∑

n=0

∫
d(ϕ

fn

n!
)
)

= lim
N→∞

N∑

n=1

∫
ϕ

(n− 1)!
fn−1df

=

∫
ϕefdf.

The first equal sign follows from (2.5). The third and sixth equal signs use the dominated
convergence theorem; the fourth follows by (2.6), and the fifth by (2.4) and the Remark after (2.6).

For (2.8), we first note that, because g has locally bounded variation, so does eg. We compute,
∫
ϕd(eg) = −

∫
egϕ′dx

= −
∫ x1

−∞
er0ϕ′dx−

N−1∑

j=1

∫ xj+1

xj

erjϕ′dx−
∫ ∞

xN

erNϕ′dx

=

N∑

j=1

(erj − erj−1)ϕ(xj).

�
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