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Abstract

The tracks recorded by a gaseous detector provide a possibility for charged particle identi-
fication. For searching the neutrinoless double beta decay events of 136Xe in the PandaX-III
experiment, we optimized the convolutional neural network based on the Monte Carlo sim-
ulation data to improve the signal-background discrimination power. EfficientNet is chosen
as the baseline model and the optimization is performed by tuning the hyperparameters. In
particular, the maximum discrimination power is achieved by optimizing the channel num-
ber of the top convolutional layer. In comparison with our previous work, the significance
of discrimination has been improved by ∼70%.

1 Introduction

Neutrinoless double beta decay (0νββ) is an extremely rare type of nuclear decay process,
during which two electrons are emitted from a nucleus with an atomic number of Z, resulting
in a nucleus of Z + 2, without the emission of neutrinos. The discovery of such a process
would imply the neutrinos are likely Majorana particles [1], and the violation of lepton
number conservation.

Many experiments have been carried out to search for the 0νββ with different isotopes,
such as 76Ge [2, 3], 130Te [4], and 136Xe [5, 6, 7], through the spectrum analysis around the
Q-value, which is the energy released by the decay and shared by the two emitting electrons.
The current lower half-life limits of the three isotopes are 2.3×1026 yr [6], 1.8×1026 yr [2],
and 3.2×1025 yr [4] (90% confidence level, or C.L.), established by KamLAND-Zen, GERDA,
and CUORE experiments respectively. Its predicted half-life is longer if the mass order of
neutrinos is a normal hierarchy. Therefore, necessary new experiments with larger volumes
and new technologies are being actively planned and constructed to further improve detec-
tion sensitivity. Reducing the background level in the energy region of interest (ROI) is
one of the key requirements for the discovery of such a rare process. The gaseous detec-
tors are capable to record event tracks, providing an additional way to discriminate signals

∗corresponding author: chenxun@sjtu.edu.cn
†corresponding author: shaobo.wang@sjtu.edu.cn

1

ar
X

iv
:2

21
1.

00
23

7v
2 

 [
ph

ys
ic

s.
in

s-
de

t]
  2

6 
O

ct
 2

02
3



from backgrounds through extracting track features, thus being actively studied in recent
years [8]. In general, the gaseous detector-based experiments utilize the prominent Bragg
Blob (BB) feature of event tracks. Each end of a 0νββ track has a BB, in which rapid energy
loss in unit volume happens because of increased differential energy loss (Bragg peak) and
larger scattering angles before an electron stops. However, only one BB is on the ends of
the track for the single electron background. The PandaX-III experiment, which utilizes
a high-pressure gaseous xenon time projection chamber (TPC) to search for 0νββ decay
of 136Xe [9], is one of them. The study of this type of detector is pioneered by the Got-
thard experiment [10]. Algorithms to extract the different topological features of signal and
background tracks within gaseous detectors have been developed with the operation and
planning of new experiments[11, 12, 13].

Machine learning techniques, such as deep convolutional neural networks (CNN), have
been introduced into experimental particle physics for data analysis and particle identifi-
cation [14, 15, 16]. Recently, methods of neural networks are applied in 0νββ search for
background and signal classification. Promising results are obtained based on both simu-
lation data and experimental data in the NEXT experiment [17]. In the PandaX-III ex-
periment, a special type of CNNs is used to discriminate the 0νββ signal from the gamma
backgrounds within the same energy window based on simulation, leading to an average
improvement of 61.8% on the efficiency ratio of ϵs/

√
ϵb (3.82 to 6.17) in comparison with its

design baseline [18].
In this work, we present the optimization of the neural network to improve the discrim-

ination power based on the design of the PandaX-III detector. As a subsequent work of
Ref. [18], several improvements are made in the treatment of Monte Carlo (MC) simula-
tion and the optimization of the neural networks. We also aim to understand the process
of extracting and enhancing the physical characteristics of tracks in CNN, which serves
as the basis for optimizing the model and improving identification ability. The article is
organized as follows. A brief introduction to the PandaX-III detector is given in Sec. 2.
The data preparation, including the simulation of 0νββ and background events, as well as
the post-processing of data are discussed in Sec. 3. Detailed information on the selection
and optimization of the neural networks and the results are presented in Sec. 4. At last, a
summary is given in Sec. 5.

2 The PandaX-III experiment

The PandaX-III experiment under construction aims to search for 0νββ with enriched 136Xe
using high-pressure gas TPC in the China Jinping underground laboratory (CJPL) [19, 20].
The updated geometry of the PandaX-III detector is shown in Fig. 1, which is different from
that in the CDR [9] and the previous work [18]. It has an active volume confined by the field
cage, cathode, and readout plane, with a drift length of 120 cm in the vertical direction (Z)
and a diameter of 160 cm in the horizontal direction (XY). It can contain ∼140 kg Xe
gas with 90% enriched 136Xe, together with 1% trimethylamine (TMA) at the operating
pressure of 10 bar. The charge readout plane consists of 52 Micromegas modules [21], each
with a geometry of 20 × 20 cm2 and readout strips at 3 mm pitch. The cathode and the
electric field shaping cage are installed inside the copper substrate with a width of 15 cm,
which is used to shield the radioactive background outside of the TPC. The materials have
been carefully selected to ensure low radioactive background inside the TPC. More detailed
information can be found in Ref. [22].

The background for the search of 0νββ is from the radioactivities of detector construction
materials ( 232Th, 238U, 40K, and 60Co). Considering the energy distribution of the sources.
The majority contribution is gamma from the radioactive decay chains of 238U and 232Th,
which may leave energy depositions around the Q-value. The advantage of the gaseous
detector is to suppress these backgrounds with the recorded track features.

3 Data preparation

Since there are no recorded data available, we use the simulated data to study the methods
of background suppression. The simulated data will be converted to image format so that
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Figure 1: Illustration of the PandaX-III TPC from the cathode at the bottom to the charge
readout plane with Micromegas on the upper side. All the main components are annotated.

it could be accepted by the CNNs.

3.1 Simulation and data production

The Monte Carlo simulation is based on the detector geometry shown in Fig. 1. The build
of detector geometry in simulation is described in [23]. All the components of the detector,
including the vessel, the TPC and the dimension of the readout plane, are simulated. The
process of data preparation is shown in Fig. 2. The physics simulation is performed with the
Geant4 [24] based package restG4, which is a component of the REST framework [25]. The
input signal 0νββ events are generated with the DECAY0 package [26]. The background
events from the decay chains of 232Th and 238U are sampled directly with restG4. The output
energy depositions inside the TPC are processed with the REST framework, generating
responses from the detector and data readout by the electronics [27]. The readout data is
converted to images for further discrimination with the CNNs.

Figure 2: The process of data preparation. In comparison with data processing in Ref. [18],
new steps (in red frames) are added.

For each of the signal events, the DECAY0 package generates the momenta of the two
primary electrons, which share the same vertex. The vertices are sampled uniformly in the
gas region of the detector during the simulation with restG4. The primary particles of the
background events are the daughter nucleus 208Tl (214Bi) of the 232Th (238U) decay chain, of
which the 2615 keV (2447 keV) gamma events contribute to the background within the ROI.
They are sampled within the container, which contributed most of these backgrounds. Since
we have not yet determined the background model, we used the same uniform distribution
of both signal and background events to study the effect on pure track features in this work.
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The restG4 package simulates the transport of the primary particles in the materials
as well as the daughter particles which are generated in different physical processes. For
each event, the energy loss of all the particles inside the sensitive region of the detector,
together with the related positions, are recorded as energy depositions. Fig. 3 Left shows
the recorded energy depositions of an example 0νββ event in the TPC.
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Figure 3: An example simulated 0νββ event at different processing stages by the REST frame-
work, the projections on the YZ plane are shown. Left: The recorded energy depositions inside
the PandaX-III TPC, simulated with restG4; Middle: The spatial distribution of ionized elec-
trons reaching the readout plane; Right: The final spatial distribution of the readout signals.
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Figure 4: The generated waveforms of the example event, from the simulation of electronics
response, noise and shaping by the REST framework, the waveform of the different strip is
represented with different color.

The REST framework reads the energy depositions for further data processing. For
each of the energy deposition points, ionization electrons are generated. The location dis-
tribution of the electrons (XYZ) is given by Geant4. The drift of the electrons to the
readout plane and their diffusion [28] are simulated. The parameters of drift velocity
and diffusion coefficient are calculated with the Garfield++ package [29] integrated inside
REST. With the designed operation drift voltage of 1 kV/cm inside the TPC, the simu-
lated drift velocity is 1.87 mm/µs, and the transverse (longitudinal) diffusion coefficients
are 1.0(1.5)×10−2 cm1/2 [13]. Then the diffusion effect is simulated in both the transverse
and longitudinal directions by performing a smear of Gaussian function according to the dif-
ferent locations of ionized electrons. The horizontal position of each smeared electron is the
projection on the XY readout plane, and the time arriving at the readout plane is calculated
by applying the vertical location (Z) of each smeared electron and the drift velocity. Fig. 3
Middle shows the spatial distribution of the recorded electrons in the same example event
on the readout plane by adding the diffusion effect, where the z distribution is concluded
from the drift time.

The REST framework simulates the electron collection by the Micromegas and the elec-
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tronics response. For the simulation data, the REST framework groups the electrons to XY
readout strips according to their position, and creates an electronic response following the
same configuration used in the PandaX-III prototype detector [27], including a 5 MHz sam-
pling rate, 5 µs waveform shaping time, 120 fC dynamic range equivalent to 4096 ADC from
electronics, and 0.3 fC electronic noise level obtained from our real data taking of 10 ADC.
Therefore, the waveform for each readout strip is built. Fig. 4 shows the waveforms of the
example event. The simulated waveforms are digitized with an interval between two sam-
pling of 200 ns. The event window is chosen to be 102.4 µs. Thus each event has 512 time
bins. The effective event window is 412 time bins which can ensure the full collection of
0νββ events, the first 100 bins are used for the baseline and noise study as well as in the
real data analysis. The generated data has the same format as the data taken in the real
experiment. The spatial distribution of the final signals after the zero suppression of baseline
and noise. in the example event is shown in Fig. 3 Right. For the energy smearing, we did
not simulate respectively the contributions from the avalanche process of Micromegas, gain
non-uniformity of the detector, and the electron lifetime effect. The amplitudes of energy
depositions are smeared by a Gaussian function to achieve the final design index of the
energy resolution of 3% FWHM (Full Width Half Maximum) at the Q-value.

Figure 5: The result RGB image scaled from 64 × 64 pixels. The track projections in XZ and
YZ planes are encoded in the red and green channels. All the pixels take the maximum values
for better visualization.

3.2 Data set

The generated events within the 0νββ search ROI of PandaX-III, from 2395 keV to 2520 keV,
are selected to create the data set used for the CNNs. The energy of tracks on the XZ and
YZ plane is normalized to the total energy of the event, and the tracks are then filled into
red (XZ) and green (YZ) channels of the input RGB image to the CNN model by aligning
through charge centers of each plane. As the strip size of the readout plane is 3 mm, in our
study, the image format is 64×64 pixels with a size of 3×3 mm2 each. Therefore, the image
is produced with the strip size in X or Y direction and is converted to the same size in the
Z direction by calculating a drift distance using sampling points. The image size is 19.2 cm
in each direction can ensure keeping the whole track of 0νββ inside the image area. Fig. 5
shows the resulting image of an example event.

The images then have been linearly scaled by a factor of 2 on each side to 128× 128 by
nearest neighbor interpolation before being fed into the network. The further discussion of
this scaling is in Sec.4.3. Besides, to prevent over-fitting and improve the diversity of input
data, data augmentations are applied, such as the random horizontal and vertical flipping of
images. These two methods involve horizontally or vertically flipping an input image with
a certain probability during training phase. Consequently, for different iterations, although
the actual size of the dataset is unchanged, the same image fed into the network may be
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flipped or not. By exposing the model to both the original and flipped versions of an
event repeatedly, the model learns to recognize the same patterns from different viewpoints,
leading to better generalization ability when presented with new, unseen events.

Our data set contains a total of 320,000 images from the 0νββ events and the same
number of images from background events, within which half are from 232Th, and another
half from 238U. All the events are within the ROI. The images are divided into three sets in
this study: 70% for training, 20% for validation, and the remaining 10% for the evaluation
of the performance of the networks.

4 Optimization of CNNs

Numerous CNN architectures have been developed in recent years. InceptionV2 [30], DenseNet [31],
and EfficientNet [32] have been proven to achieve remarkably higher accuracy and efficiency
in the image classification than ResNet [33], which was used for the discrimination of back-
ground and signal events in the 0νββ search with the PandaX-III detector [18].

ResNet is a convolutional neural network architecture that introduced the concept of
“skip connections” to enable the training of very deep neural networks. It allows information
to flow directly from one layer to another without passing through all the intermediate layers.
These skip connections create shortcuts that enable the network to learn residual mappings
or the difference between the input and output feature maps of a layer. InceptionV2 and
DenseNet also made some improvements based on this idea. InceptionV2 uses a series of
convolutional filters with different sizes in parallel and splits an n×n convolution into 1×n
and n × 1 convolutions, allowing it to capture features of different scales effectively and
to reduce the number of parameters and computations required. DenseNet uses a “dense
connectivity” pattern, where each layer is connected to every other layer in a feed-forward
fashion. This helps to improve the flow of gradients and information through the network,
enabling it to learn more complex features. It also introduces a technique called “bottleneck
layers”, which makes the training faster by compressing the input feature maps first and
expanding them thereafter. This helps to reduce the overall complexity of the network while
still maintaining its representational power. These ideas are then inherited by EfficientNet
which we will explain in detail in paragraph 4.3.

Thus, these architectures provide a possibility to improve the capability of background
suppression further in the PandaX-III experiment, as well as other experiments with similar
technology.

4.1 Comparison of different CNNs

To evaluate a network’s performance for background suppression, the most important metric
is the significance Ξ, which is defined as the highest ratio of ϵs/

√
ϵb at different selected

thresholds of the output of the network, where ϵs and ϵb are the accepting efficiencies of signal
and background events, respectively. In the PandaX-III experiment, the 0νββ detection
sensitivity is linearly and positively correlated with Ξ.

ResNet50, DenseNet169, InceptionV2, and EfficientNetB4 are selected in this study be-
cause they have a similar level of trainable parameters and could be trained on our limited
computation resources. All the models are implemented with Tensorflow [34] and trained
with the same generated data samples on two Nvidia Tesla V100 GPUs. The best weights
with the smallest validation losses are saved for the classification of test data. The input
shape of all the CNNs is modified to accept images with a resolution of 128 × 128 and no
other optimization is done. The performance reference metrics are calculated with the test
data and given in Table 1. ResNet50 gives a comparable Ξ with the result shown in [18], the
tiny difference most likely originates from the detector geometry, a TPC with single readout
plane is used in this work. Additionally, for the baseline model selection, as the network
models show a big difference for the signal-background discrimination, the fluctuation of
each model is not further studied. EfficientNetB4 gives the highest value of the significance
Ξ. Thus it is used as the baseline model for further optimization.
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Network Ξ

ResNet50 6.80
DenseNet169 7.92
InceptionV2 5.86

EfficientNetB4 9.80

Table 1: Performance of the selected CNNs with the same test data set.

4.2 Terminology

• Epoch: A complete pass through the entire training set during the training phase.

• Batch size: The number of samples sent into the neural network each iteration for the
calculation of gradient descent optimization.

• Feature map: In CNN, a feature map is a 2D array of values that represents the output
of a convolution operation between the input and the filter.

• Channel: Besides the width and the height of an input or output, the channel is the
third dimension (e.g. a RGB image has 3 channels), which represents the number of
feature maps produced by that layer.

• Receptive field: the receptive field refers to the area of the input image that a filter
is influenced by. It represents the spatial extent of the input that contributes to the
output of a single neuron. The receptive field tends to grow with the number of layers
because each layer processes the output of the previous layer, incorporating information
from a larger region of the input.

• Convolutional Layer: Like the mathematical definition of convolution, a convolutional
layer is a layer of the neural network which has a certain number of filters. Each filter
applies directly to the input and produces a feature map. Then, all the feature maps
are stacked along the third dimension (channel) and constitute the final output of it.

• Max pooling: Max pooling is an operation that selects the maximum element from the
region of the feature map covered by the filter, normally a 3× 3 or 2× 2 square.

4.3 Optimization of EfficientNetB4

The structure of the baseline EfficientNetB4 model used in the optimization is presented in
Table 2. Its basic component is called MBConv (Mobile inverted Bottleneck Convolutional
layer) [35, 36], which employs the depth-wise separable convolutional layer along with the
SE (Squeeze-and-Excitation) module [37]. The depth-wise separable convolutional layer
separates the normal convolution operation into two consecutive ones. First, it generates
the output with the same channel number as its input, then, the output goes through
a 1 × 1 convolutional layer with the desired channel number. By separating the spatial
and channel-wise operations, depth-wise separable convolution can significantly reduce the
number of parameters and computations required, while still maintaining or even improving
the accuracy of the network. SE module is a type of attention mechanism that compresses
the input’s spatial dimensions to a single channel and learns the weights for each channel,
resulting in the re-calibration of the output feature maps. These structures could improve
the performance of CNNs significantly compared to other networks we have mentioned in
Sec.4.1

We altered the configuration and hyper-parameters of the chosen baseline model to op-
timize its ability to extract physical features. Since the original resolution of the images is
64 × 64, naturally we want to keep it unchanged when training the model. However, the
formal input size of EfficientNetB4 is 380 which is a lot larger and even EfficientNetB0, its
smaller version has an input size of 224. Choosing the best input size for the model is in
fact reaching the compromise between time/memory cost and performance. Furthermore,
in order to not introduce any distortion of the events, the input sizes of 64, 128, and 256 are
tested and the nearest neighbor interpolation is used for the resizing. The comparisons is
shown in Table. 3. For EfficientNetB0, increasing the resolution from 64× 64 to 128× 128
can improve the significance of the model by 26%, switching from B0 to B4 can further
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Stage Operator Input Shape Output Shape Repeat Count*

1 Conv3×3 128×128×3 64×64×48 1

2 MBConv1, k3×3** 64×64×48 64×64×24 2
3 MBConv6, k3×3 64×64×24 32×32×32 4
4 MBConv6, k5×5 32×32×32 16×16×56 4
5 MBConv6, k3×3 16×16×56 8×8×112 6
6 MBConv6, k5×5 8×8×112 8×8×160 6
7 MBConv6, k5×5 8×8×160 4×4×272 8
8 MBConv6, k3×3 4×4×272 4×4×448 2
9 TopConv1×1 4×4×448 4×4×n 1
10 Pooling & FC 4×4×n 1 1

* is the number of repetitions of the module in the network. The output of one
module will be the input of another consecutively.

** means this block’s convolution layers have a kernel of size 3.

Table 2: Structure of the EfficientNetB4 baseline model. Each row describes a functional block
with input shape and repeat count. The default n of the last convolution is 1792.

Network scale Input resolution Significance Training time

EfficientNetB0 64× 64 6.66 180s/epoch

EfficientNetB0 128× 128 8.39 (+26%*) 350s/epoch (+94%)
EfficientNetB4 128×128 9.80 (+17%) 800s/epoch (+128%)
EfficientNetB4 256× 256 10.78 (+10%) 3000s/epoch (+275%)

* The percentages of improvement are compared with previous configuration.

Table 3: Cost and benefit of different network scale and image resolution.

improve it by 17%. At this configuration, it takes around 800 seconds for an epoch. How-
ever, further increasing the resolution to 256× 256 costs 2.75 times more the total training
time and double the memory usage with almost unchanged signal-background discrimina-
tion power. Thus, 128 is set as the input size in this work. The input and the output of
the network have been modified so that it could accept the input image with the resolution
128× 128 and generate a single value between 0 (background) and 1 (signal). As shown in
Table 2, the default number of channels n in TopConv is 1792. Since average-pooling aims
at smoothing the input by taking the average of a region while max-pooling takes only the
maximum value, max-pooling will select those that it thinks are more important from a set
of features instead of combining them. This is exactly what we want the model to do: to
select and only select a couple of features that have physical meanings. Thus, max-pooling
is chosen as the pooling function before the final fully connected layer. With learning rate
set to be 0.001 and batch size set to be 256, our model fully utilizes the GPU’s memory
(occupies ∼32 GB), and takes about 9 hours for a training session. To predict an unseen
event, the computation time is only 1.46 ms in average.

The convolutional neural networks are capable to learn the abstract features encoded
in the images [38]. The visualization of the feature extraction process in EfficientNetB4 is
shown to understand how the model learns the local features and the high level abstract
features of the events. Lower layers is supposed to extract local features of the input images
as their receptive filed is still small. For example, Fig. 6 shows four representative filters
from the last layer in first MBConv block (Stage 2). The complete feature maps of all 24
filters in this layer are presented in Appendix. A. The detailed and understandable local
features are intuitively extracted, such as the energy deposition, the contour of the tracks,
and the shape of projected tracks in YZ and XZ planes. As the number of convolutional
layers deepens, the local features are integrated and strengthened layer by layer. In middle
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Filter 1 Filter 10

Filter 15 Filter 19

Figure 6: Example of the local feature extrac-
tion in Stage 2 (Table 2): Filter 1 detects en-
ergy depositions, Filter 10 detects contour of
the tracks, Filter 15 and 19 detect the shape
of projected tracks in YZ and XZ planes re-
spectively.

Filter 12 Filter 20

Filter 32 Filter 36

Figure 7: Example of the abstract feature ex-
traction in Stage 4 (Table 2): Filter 12 and
20 detect energy deposition at the ends of the
track, Filter 32 and 36 detect the geometric
shape of the tracks.

layers, for example in the forth layer (Stage 4) as shown in Fig. 7, the tracks begin to blur
as resolution decreases. But at the same time, the filters output enhanced physical features
through integration of local features. Some filters try to locate the energy depositions at the
end(s) of the track (Brag peak) while others work on the geometric shape of the tracks. The
complete feature maps of all 56 filters in this layer are also presented in Appendix. B. These
enhanced physical features are further integrated into high-dimensional physical features in
subsequent layers. It is worth noting that the function of a certain filter is consistent for
different input, regardless a 0νββ event or a background event.

The high-level features, which are used to direct determine the class of the input images,
are obtained from the last layer of the last MBConv block (Stage 8). The high-level features
have become abstract and difficult to recognize directly the specific physical characteristics
of the track. However, these features originate from the local feature extraction and en-
hancement layer by layer in the model as shown previously in Fig. 6 and Fig. 7. Therefore,
the distribution of high-level features distribution learned by the model is determined by
the physical characteristics of events. In this study, it is a reasonable conjecture that the
number of key global high-level features and the physical characteristics for event classifi-
cation have very close correlation. The input images of tracks in this work are relatively
less complex, thus the number of features needed for classification is limited. The grouping
of these high-level features is implemented with a widely-used clustering algorithm called
DBSCAN [39], which clusters discrete hits based on proximity. All the 448 filters of Stage
8 are automatically clustered into 5 groups (from Cluster 1 to 5) based on the similarity of
feature maps as shown in Fig. 8. The feature maps of the same group have extremely high
similarity as presented in Fig. 9. Therefore, a network could be then optimized by forcing
the model to select a proper number of high-level features, or the number of channels in the
last convolutional layers. In addition, n could be interpreted as the number of possible fea-
tures embedded in the image and the optimization could be achieved by choosing a proper
n corresponding to the need of the task.

At last, we analyze the weight distribution of FC (the fully connected layer in Stage 10).
The distribution is shown in Fig. 10, only 6 of the weights have an absolute value larger
than 0.5, including 2 positive ones and 4 negative ones. It suggests that only a small subset
of its input contributes significantly to the final prediction value. To a certain extent, it
is also consistent with the visualization of the similarities clutering result of the high-level
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Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5

Figure 8: Clustering result of the feature maps
from the last MBConv block. One example is
selected for each cluster.

Figure 9: Feature maps of Cluster 4. There
are 179 feature maps in Cluster 4, here ran-
domly selected 15 feature maps for better vi-
sualization.

features. Thus, the principle optimization work is done by adjusting the channel number n
in TopConv (Stage 9). The tested values are 2, 4, 6, 8, and 10.
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Figure 10: Distribution of the weight of the total 1792 channels in the fully connected layer.

To quantify the model’s performance with a small prediction variance, we calculate the
final score using the following strategy:

• only the epochs with validation accuracy are close enough (delta < 0.001) to the
maximum one are considered;

• for the qualified epochs, choose the weight from the first three epochs with the smallest
validation loss values for prediction;

• the significances are calculated with the average prediction score from selected weights.

The network is trained independently for six training sessions to reduce the fluctuation for
each value of n. The performance metrics are shown in Fig. 11. For the average significance
Ξ̄, n = 1792 and n = 2 give the lowest values as expected, as they either have an excess
or insufficient number of channels. With a small but sufficient number of channels, such as
8, the significance is improved further by 10% with an average of 10.32. Such significance
is resulted from a highly suppressed background rate by 3 orders, with more than 35% of
signals retained.

Therefore, the result suggests that only a limited number of effective physical features
are embedded in the tracks of signal and background, and that the matching between the
channel number n and the number of the effective features can help to further improve the
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model’s generalizability and performance. Based on this assumption, we conclude that too
many channels will not help improve the model’s discrimination power. Meanwhile, too few
channels will result in a lack of sufficient latent feature space for the model to discriminate
between the signal and the background events.

2 4 6 8 10 64 1792
Channel number

7

8

9

10
Si

gn
ifi

ca
nc

e

Previous work by ResNet
Average Significance

Figure 11: The significances for different models.

5 Summary

We studied the optimization of CNNs to improve the discrimination power of signal and
background events in the PandaX-III experiments, based on Monte Carlo simulation data.
The detector geometry is modeled according to the latest design, and the responses of the
detector and electronics are simulated based on the actual parameters. A more realistic
simulation dataset is generated. EfficientNetB4 is selected as a baseline model which shows
a better performance among the models studied. We further explored the impact of network
structure on the discrimination ability for signal and background events. By checking the
feature extraction and enhancement process of our neural network, the clustering of the
high level features and the weight distributions of the fully connected layer, we change the
number of channels in the last convolutional layer to match the possible physical features
of the tracks. The model with a small but sufficient number of channels in the last convo-
lutional layer has a better performance, which may be an indicator for the limited number
of the physical features of tracks needed for signal-background discrimination. A relatively
high significance of ∼10 is obtained, which is about 70% higher than previous work [18].
Therefore, the direction of our future work is to establish a connection between the two and
improve the interpret-ability of the neural network.
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A The features of Stage 2

In the baseline model, the lower layers in the network learn local detailed features. For
example, Fig. 12 the 24 filters of the first layer. The detailed physical features such as the
energy deposition, the tracks in XZ and YZ planes, the geometric shape and edge of the
track are extracted.

Figure 12: Example of the local features extraction in the first layer. All 24 filters are shown,
and each filter extracts different local features of the tracks.

B The features of Stage 4

In the middle layers, the physical features are integrated and strengthened layer by layer.
Fig. 13 shows all the 56 filters of the third layer, the tracks begin to blur as resolution
decreases. The filters are activated locally on the tracks and the local features such as the
energy deposition at the ends of the tracks, the geometric shape of the tracks are enhanced.
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Figure 13: Example of the features enhancement in the third layer. All 56 filters are shown,
and each filter tries to detect different enhanced local features of the tracks.
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