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Well-posedness and strong attractors for a beam

model with degenerate nonlocal strong damping
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Department of Mathematics, Nanjing University, Nanjing, 210093, PR China

Abstract

This paper is devoted to initial-boundary value problem of an extensible beam equation
with degenerate nonlocal energy damping in Ω ⊂ R

n: utt − κ∆u + ∆2u − γ(‖∆u‖2 +
‖ut‖2)q∆ut + f(u) = 0. We prove the global existence and uniqueness of weak solutions,
which gives a positive answer to an open question in [24]. Moreover, we establish the
existence of a strong attractor for the corresponding weak solution semigroup, where
the “strong” means that the compactness and attractiveness of the attractor are in the
topology of a stronger space H 1

q
.

Keywords: Extensible beams; nonlocal energy damping; degenerate damping; weak
solutions; strong attractor;

1. Introduction

In this paper, we study the following extensible beam equation with degenerate non-
local energy damping

utt − κ∆u+∆2u− γ(‖∆u‖2 + ‖ut‖2)q∆ut + f(u) = 0 in Ω× R
+, (1.1)

where Ω ⊂ R
n is a bounded C∞-domain; κ ≥ 0, γ > 0 and q ≥ 1 are constants; ‖ · ‖

denotes the L2(Ω)−norm; the assumptions on the nonlinearity f(u) will be given later.
The initial conditions associated with (1.1) are given by

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

and the following hinged boundary condition is considered:

u|∂Ω = ∆u|∂Ω = 0, t ∈ R
+. (1.3)

In 1989 Balakrishnan and Taylor [2] proposed the following one-dimensional beam
model with nonlocal energy damping in flight structures

utt − 2ζ
√
λuxx + λuxxxx − γ

[

∫ L

−L

(λ|uxx|2 + |ut|2)dx
]q

uxxt = 0, (1.4)

where u = u(x, t) represents the transversal deflection of a beam with length 2L > 0
in the rest position, γ > 0 is a damping coefficient, ζ is a constant appearing in the
approximation of Krylov-Bogoliubov and λ = 2ζω

σ2 with ω being the model frequency and
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σ2 the spectral density of a Gaussian external force (see Eq. (4.2) in [2]). After that,
Silva, Narciso and Vicente [24] investigated n-dimensitional version of (1.4) with nonlinear
source term

utt − κ∆u+∆2u− γ(‖∆u‖2 + ‖ut‖2)q∆ut + f(u) = 0, (1.5)

subjected to clamped boundary condition. They proved existence and polynomical sta-
bility of regular solutions in the phase space H2 = (H4 ∩H2

0 )×H2
0 when q ≥ 1 and f(u)

satisfies the growth condition

|f ′(u)| ≤ C(1 + |u|ρ), with 0 ≤ ρ ≤ 4

n− 4

and the dissipative condition

−θ
2
|u|2 ≤ F (u) ≤ f(u)u+

θ

2
|u|2, (1.6)

where θ ∈ [0, λ1) and λ1 is the first engenvalue of the bi-harmonic operator ∆2. Due
to the degeneracy of the damping coefficient, they only deal with regular solution and
make the existence and uniqueness of weak solution an open question (see [24], Remark
2). Later, by neglecting the nonlocal term corresponding to the velocity, Cavalcanti et al.
[4] studied the model

utt +∆2u−M(‖∇u‖2)∆u+ ‖∆u‖2Aut = 0, (1.7)

with A = −∆ or A = I (identity) and the clamped boundary condition. Their main result

states that the energy Eu(t) =
1
2
‖∆u(t)‖2 + 1

2
‖ut(t)‖2 + 1

2

∫ ‖∇u(t)‖2
0

M(s)ds decays to zero
uniformly for every regular solution whose initial data is taken from a bounded subset of
H2. In particular, when A = −∆, they only obtained the existence and uniqueness for
regular solution. We also refer to [3, 8, 9, 10, 11, 17, 18, 29] for the pioneering studies where
well-posedness, stability and asymptotic behavior of solutions are studied for beam/plate
models with degenerate or non-degenerate nonlocal dampings.

The global attractor theory of beam equations with nonlocal damping has received
much more attention in recent years (cf. [6, 7, 15, 21, 22, 23, 25, 26, 31, 32] and reference
therein). Motivated by model (1.5), the authors in [26] studied a more general case

utt +∆2u− κφ(‖∇u‖2)∆u−M(‖ξu‖2H)∆ut + f(u) = h, (1.8)

where ‖ξu‖2H = ‖∆u‖2 + ‖ut‖2 and M ∈ C1(R+). Taking M(s) = γsq, the energy
damping in (1.8) reduces to the one in (1.5). But they restrict themselves to the non-
degenerate case: M(s) > 0 for all s ≥ 0, in order to verify the existence and uniqueness of
weak solutions. Finally, they obtained the strong global and exponential attractors and
their robustness on the perturbed parameter κ ∈ Λ, where the “strong” means that the
compactness, the attractiveness and the finiteness of the fractal dimension of the attractors
are all in the topology of the regular space H2. Taking into account the rotational force
in beam equations, the authors in [25] considered the following model

(1− α∆)utt +∆2u− φ(‖∇u‖2)∆u−M(‖ξu‖2H)∆ut + f(u) = h, (1.9)

where ‖ξu‖2H = ‖∆u‖2 + ‖ut‖2 and M is still non-degenerate: M(s) > 0, ∀s ≥ 0. They
proved the well-posedness of weak solutions, the existence of global and exponential at-
tractors and their continuity with respect to α ∈ [0, 1].
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To our best knowledge, the existence and uniqueness of weak solution of problem
(1.1) is still open and the main difficulty of which comes from degenerate strong energy
damping, as mentioned in [24, Remark 2]. Specifically, for the non-degenerate case, one
can obtain the well-posedness of weak solution by approximating regular solutions in a
standard way (cf. [25, 26]). When considering nonlocal weak damping such as (‖∆u‖2 +
‖ut‖2)qut, one can use the semigroup theory to obtain mild solutions (cf. [4, 10, 11]), since
(‖∆u‖2+‖ut‖2)qut is locally Lipschitz continuous onH. However, in the case of degenerate
strong damping, both approximation method and semigroup theory are invalid.

Our goal in this paper is to overcome this difficulty and analyze the well-poseness and
long-time behavior of weak solution for problem (1.1). Using the interpolation inequality
and Galerkin approximation, we first prove that for any initial data (u0, u1) ∈ H, the
weak solution exists and it possesses an extra regularity when t > 0, see Theorem 3.4.
To prove the uniqueness, we establish a lemma which implies that any trajectory with
non-zero initial data will not decay to zero in any finite time, although it will decay to
zero as t→ ∞, see Lemma 3.5. Based on this lemma, the damping coefficient is bounded
from below in any finite time interval and the uniqueness is reduced to non-degenerated
case, see Theorem 3.6. Theorem 3.4 and Theorem 3.6 can be seen as our first result and
they have answered the open question proposed in [24, Remark 2].

On the other hand, in order to study the global attractor of weak solution semigroup,
the nonlinearity f(u) is taken more generally than (1.6), see Remark 3.2. It is worth
mentioning that, under the condition (1.6), the results in [24] implies that the solution
semigroup has the global attractor as a set of a single point: A = {(0, 0) ∈ H}. In our
case, we prove the existence of the global attractor for the dynamical system (H, S(t))
and it is a bounded set in a more regular space H 1

q
due to the extra regularity of weak

solution. Moreover, using the norm-to-weak continuous semigroup theory established in
[33], we show that S(t) is actually a norm-to-weak continuous (H,H 1

q
)-semigroup and the

attractor A is actually an (H,H 1

q
)-global attractor, see Theorem 5.8. This is our second

result.
The rest of this paper is organized as follows. In Section 2, we introduce some

functional spaces and give an abstract formulation of problem (1.1). In Section 3, we
discuss the existence and uniqueness of weak solutions. In Section 4, we prove the existence
of the global attractor for the weak solution semigroup. Finally, the existence of an
(H,H 1

q
)-global attractor is established in Section 5.

2. Preliminaries

In this section, we recall the theory on functional spaces that will be used later
and give an abstract formulation of problem (1.1). For brevity, we use the following
abbreviations:

Lp = Lp(Ω), ‖ · ‖ = ‖ · ‖L2 ,

with p ≥ 1 and (·, ·) stands for the L2-inner product as well as the notation of duality
pairing between dual spaces.

Let Ω be a C∞-domain of Rn. For 0 ≤ s < ∞, 1 < p < ∞, we denote by W s,p :=
W s,p(Ω) the Sobolev-Slobodeckij spaces over Ω, which are defined as restrictions of the
corresponding spaces over R

n (see [28] for more details). Note that, in the sense of
equivalent norm, the spaces W s,p with s = 0, 1, 2, · · · coincide with the classical Sobolev
spaces of distributions whose derivatives up to order s belong to Lp. The closure of C∞

c (Ω)
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in the space W s,p is denoted by W s,p
0 . In the particular case p = 2 we use the notations

Hs :=W s,2 and Hs
0 :=W s,2

0 . We also recall the classical Sobolev embedding theorem

Hs →֒ Lq,
1

q
≥ 1

2
− s

n
, s ≥ 0, 2 ≤ q <∞. (2.1)

Let A = ∆2. As we know, the operator A associated with the boundary condition
(1.3) is a self-adjoint positive operator acting on L2 and possesses discrete spectrum:

Aei = λiei, 0 < λ1 ≤ λ2 ≤ · · · , lim
i→∞

λi = ∞,

where the eigenvectors {ei}i≥1 are chosen to be an orthonormal basis in L2. Then, we
define the powers of A as follows:

Asu =
∞
∑

i=1

ciλ
s
iei, s ∈ R, u =

∞
∑

i=1

ciei ∈ D(As),

where D(As) = {u|u ∈ L2, Asu ∈ L2} is a Hilbert space with the scalar product and the
norm

(u, v)D(As) = (Asu,Asv), ‖u‖D(As) = ‖Asu‖.

In particular, D(A) = {u|u ∈ H4, u|∂Ω = ∆u|∂Ω = 0}, D(A
1

2 ) = H2 ∩H1
0 , D(A

1

4 ) = H1
0

and D(As) →֒ H4s for all s ∈ [0, 1].
We have the compact embedding

D(Aα) →֒→֒ D(Aβ), ∀α > β. (2.2)

and the interpolation inequality:

‖Asu‖ ≤ ‖Aru‖θ‖Atu‖1−θ, ∀u ∈ D(Ar) ∩D(At), (2.3)

where −∞ < r ≤ s ≤ t <∞, θ ∈ [0, 1] and s = θr + (1− θ)t. Moreover, D(A−s) can be
viewed as the dual space of D(As) for every s ∈ R.

For convenience, we also introduce the following notations that will be used through-
out the paper. Let the phase spaces

Vs := D(A
s
4 ), Hs := V2+s × Vs, s ∈ R

with the norm
‖u‖s := ‖u‖Vs

, ‖(u, v)‖2Hs
:= ‖u‖22+s + ‖v‖2s,

and denote H = H0 when s = 0 for simplicity. From the above definition, we have
Vs →֒ Hs for any s ∈ [0, 4]. We also have the inequalities

λ1‖u‖2 ≤ ‖u‖22, λ
1

2

1 ‖u‖21 ≤ ‖u‖22, ∀u ∈ V2. (2.4)

Using above notations, we can rewrite problem (1.1)-(1.3) at an abstract level given
by











utt + κA
1

2u+ Au+ γ‖(u, ut)‖2qHA
1

2ut + f(u) = 0,

(u(0), ut(0)) = (u0, u1),

u|∂Ω = ∆u|∂Ω = 0.

(2.5)
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3. Well-posedness of weak solutions

In this section, we study the existence and uniqueness of weak solutions of problem
(2.5).

Assumption 1. (i) the constants κ ≥ 0, γ > 0, q ≥ 1;
(ii) f ∈ C1(R), f(0) = 0,

|f ′(u)| ≤ C(1 + |u|p), ∀u ∈ R, (3.1)

lim inf
|u|→∞

f ′(u) > −λ1, ∀u ∈ R, (3.2)

where C > 0 and the growth exponent p satisfies

1 ≤ p <∞ if 1 ≤ n ≤ 4 and 1 ≤ p ≤ 4

n− 4
if n ≥ 5.

Remark 3.1. Assumption (3.1) and the Mean Value Theorem imply that there exists
some constant C > 0 such that

|f(u)| = |f(u)− f(0)| ≤ C(1 + |u|p)|u|, ∀u ∈ R. (3.3)

Set F (u) =
∫ u

0
f(τ)dτ . Assumption (3.2) implies that

∫

Ω

F (u)dx ≥ −µ
2
‖u‖2 − C, (3.4)

(f(u), u) ≥
∫

Ω

F (u)dx− µ

2
‖u‖2 − C, (3.5)

for some C > 0 and µ ∈ [0, λ1) (See [19]).

Remark 3.2. The assumptions (3.1)-(3.2) of f are more general than assumptions (14)-
(16) in [24]. That is to say, if a function f satisfies (14)-(16) in [24] then f also satisfies
(3.1)-(3.2). While there exists some f which satisfies (3.1)-(3.2) and do not satisfy (14)-
(16) in [24], e.g. f(u) = u− (3λ1 + 9)u2 + u3 when n = 5.

Definition 3.3. For any T > 0, a function u(t), t ∈ [0, T ] is said to be a weak solution of
problem (2.5) if (u, ut) ∈ L∞(0, T ;H) and Eq. (2.5) is satisfied in the sense of distribution,
i.e.

−
∫ T

0

(ut, φt)dt+κ

∫ T

0

(A
1

4u,A
1

4φ)dt+

∫ T

0

(A
1

2u,A
1

2φ)dt

+ γ

∫ T

0

‖(u, ut)‖2qH (A
1

4ut, A
1

4φ)dt+

∫ T

0

(f(u), φ)dt = 0,

for any φ ∈ C∞
c ((0, T )× Ω).

We restrict ourselves to the case n ≥ 5 in this section, but all the conclusions in this
section hold for 1 ≤ n ≤ 4.

5



Theorem 3.4. Let T > 0 be arbitrary and Assumption 1 be valid. Then, we have:
(i) For any initial data (u0, u1) ∈ H, problem (2.5) admits a weak solution u and the

solution possesses the following regularity

(u, ut) ∈ L∞(a, T ;Hs), ∀0 < a < T, (3.6)

where s = 1
q
.

(ii) The following estimates hold for the solution u:

‖(u(t), ut(t))‖2H +

∫ t

0

‖(u(τ), ut(τ))‖2qH‖ut(τ)‖21dτ ≤ Q1

(

‖(u0, u1)‖H
)

, ∀t ∈ [0, T ], (3.7)

‖(u(t), ut(t))‖2Hs
+

∫ t′

t

‖(u(τ),ut(τ))‖2qH‖ut(τ)‖21+sdτ

≤ t−(1+s)Q2

(

‖(u0, u1)‖H, T
)

, ∀0 < t ≤ t′ ≤ T,

(3.8)

where s = 1
q
and Q1, Q2 are monotone increasing functions independent of u and t.

(iii) The solution u satisfies the energy equality

E((u(t))) + γ

∫ t

τ

‖(u(s), ut(s))‖2qH‖ut(s)‖21ds = E(u(τ)), ∀0 ≤ τ ≤ t ≤ T, (3.9)

where

E(u) =
1

2
‖ut‖2 +

κ

2
‖u‖21 +

1

2
‖u‖22 +

∫

Ω

F (u)dx. (3.10)

In particilar, (u, ut) ∈ C([0, T ];H).

Proof. (i) We use Faedo-Galerkin method to prove the existence of weak solutions. Let
0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of the operator A = ∆2 with boundary condition
(??) or (1.3) and e1, e2, · · · be the corresponding eigenfunctions such that they form an
orthonormal basis in L2. Then, ej ∈ C∞(Ω) for all j ≥ 1 since Ω is smooth. Let
Pn : L2 → L2 be the orthoprojector to the subspace span{e1, · · · , en}. Consider the
following approximate problem

{

(untt, ej) + κ(A
1

2un, ej) + (Aun, ej) + γ‖(un, unt )‖2qH (A
1

2ut, ej) + (f(un), ej) = 0,

(un(0), unt (0)) = (un0 , u
n
1) := (Pnu0, Pnu1) → (u0, u1) in H, j = 1, 2, · · · , n,

(3.11)
which has a local solution

un(t) =

n
∑

j=1

T jn(t)ej ∈ Span{e1, · · · , en}, t ∈ [0, Tn)

by ODE theory. We need to give some a priori estimates in order to extend the local
solution to the whole interval [0, T ] and to conclude the existence of weak solutions of
problem (2.5).

A priori estimate. Suppose that ‖(u0, u1)‖H ≤ R. Then ‖(un0 , un1 )‖H ≤ R, ∀n ∈ N.
Multiplying (3.11) by T jn

t for every j = 1, 2, · · · , n and sum up all the equations, we get

d

dt
E(un) + γ‖(un, unt )‖2qH‖unt ‖21 = 0, (3.12)
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where E(un) is the energy functional (3.10) for un. From (2.4) and (3.4), we have

E(un) ≥ 1

2
‖unt ‖2 +

1

2
‖un‖22 −

µ

2λ1
‖un‖22 − C ≥ λ1 − µ

2λ1
‖(un, unt )‖2H − C. (3.13)

Integrating (3.12) over [0, t] yields

E(un(t)) + γ

∫ t

0

‖(un(τ), unt τ)‖2qH‖unt (τ)‖21dτ = E(un(0)). (3.14)

Combining (3.13) and (3.14), using (3.3), we obtain that

‖(un(t), unt (t))‖2H +

∫ t

0

‖(un(τ), unt (τ))‖2qH‖unt (τ)‖21dτ ≤ CR (3.15)

holds for all t ∈ [0, Tn). This estimate allows us to extend all local solutions un(t) to the
whole interval [0, T ] and the estimate (3.15) holds true for all t ∈ [0, T ] and n ∈ N. Then,
by (3.3) and the Sobolev embedding V2 →֒ L2p+2, we can deduce from (3.15) that

‖f(un)‖2 ≤
∫

Ω

C(1 + |u|p)2|u|2dx

≤ C‖u‖2 + C‖u‖2p+2
L2p+2

≤ C

λ1
‖u‖22 + C‖u‖2p+2

2

≤ CR, ∀t ∈ [0, T ].

(3.16)

Moreover, from (3.15), (3.16) and equations in (3.11), we also have

‖untt‖−2 ≤ κ‖un‖+ ‖un‖2 + γ‖(un, unt )‖2qH‖unt ‖+ ‖f(un)‖−2

≤ κ√
λ1

‖un‖2 + ‖un‖2 + γ‖(un, unt )‖2qH‖unt ‖+ C‖f(un)‖

≤ CR, ∀t ∈ [0, T ],

(3.17)

and
∫ t

0

∣

∣

∣

∣

d

dt
‖(un, unt )‖2qH

∣

∣

∣

∣

dτ

=

∫ t

0

q‖(un, unt )‖
2(q−1)
H

∣

∣

∣

∣

d

dt
(‖un‖22 + ‖unt ‖2)

∣

∣

∣

∣

dτ

≤ CR

∫ t

0

∣

∣

∣
(κA

1

2un + γ‖(un, unt )‖2qHA
1

2unt + f(un), unt )
∣

∣

∣
dτ

≤ CR

∫ t

0

(

κ‖un‖2‖unt ‖+ γ‖(un, unt )‖2qH‖unt ‖1 + ‖f(un)‖‖unt ‖
)

dτ

≤ tCR + γCR

∫ T

0

‖(un, unt )‖2qH‖unt ‖1dτ

≤ (1 + t)CR, ∀t ∈ [0, T ].

(3.18)

Estimate (3.18) will be used later.
Set s = 1

q
. By interpolation inequality (2.3), we have

‖unt ‖s ≤ ‖unt ‖
1

1+s‖unt ‖
s

1+s

1+s. (3.19)
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Multiplying (3.11) by λ
s
2

j T
jn for every j = 1, 2, · · · , n and sum up all the equations, we

get

d

dt
(unt , A

s
2un)− ‖unt ‖2s + κ‖un‖21+s + ‖un‖22+s

+ γ‖(un, unt )‖2qH (A
1

2unt , A
s
2un) + (f(un), A

s
2un) = 0,

Then,

‖un‖22+s + κ‖un‖21+s

= ‖unt ‖2s −
d

dt
(unt , A

s
2un)− (f(un), A

s
2un)− γ‖(un, unt )‖2qH (A

1

2unt , A
s
2un)

= ‖unt ‖2s −
d

dt
(unt , A

s
2un)− (f(un), A

s
2un)

− γ

2

d

dt

[

‖(un, unt )‖2qH‖un‖21+s

]

+
γ

2
‖un‖21+s

d

dt
‖(un, unt )‖2qH

= ‖unt ‖2s −
d

dt
(unt , A

s
2un)− γ

2

d

dt

[

‖(un, unt )‖2qH‖un‖21+s

]

+ ϕ(t),

(3.20)

where

ϕ(t) := −(f(un), A
s
2un) +

γ

2
‖un‖21+s

d

dt
‖(un, unt )‖2qH .

Since q ≥ 1, 0 < s = 1
q
≤ 1, we have V2 →֒ V1+s →֒ V2s and then ϕ ∈ L1(0, T ) satisfying

∫ t

0

|ϕ(τ)|dτ ≤
∫ t

0

|(f(un), A s
2un)|dτ + γ

2

∫ t

0

‖un‖21+s

∣

∣

∣

∣

d

dt
‖(un, unt )‖2qH

∣

∣

∣

∣

dτ

≤
∫ t

0

‖f(un)‖‖un‖2dτ +
γCR

2

∫ t

0

∣

∣

∣

∣

d

dt
‖(un, unt )‖2qH

∣

∣

∣

∣

dτ

≤ (1 + t)CR, ∀t ∈ [0, T ],

(3.21)

where we have used estimates (3.15), (3.16) and (3.18). Multiplying (3.11) by λ
s
2

j T
jn
t for

every j = 1, 2, · · · , n and sum up all the equations, we get

d

dt
Φ(un) + γ‖(un, unt )‖2qH‖unt ‖21+s = − d

dt
(f(un), A

s
2un) + (f ′(un)unt , A

s
2un), (3.22)

where

Φ(un) =
1

2
‖unt ‖2s +

κ

2
‖un‖21+s +

1

2
‖un‖22+s ≥

1

2
‖(un, unt )‖2Hs

.

By (3.1), Hölder’s inequality with 2
n
+ n−2s

2n
+ n−4+2s

2n
= 1 and the Sobolev embeddings

Vs →֒ Hs →֒ L
2n

n−2s , V2−s →֒ H2−s →֒ L
2n

n−4+2s , we have

|(f ′(un)unt , A
s
2un)| ≤ C|(unt , A

s
2un)|+ C|(|un|punt , A

s
2un)|

≤ C‖unt ‖‖un‖2s + C‖|un|p‖
L

n
2
‖unt ‖L 2n

n−2s
‖A s

2un‖
L

2n
n−4+2s

≤ C‖unt ‖‖un‖2 + C‖un‖p2‖unt ‖s‖un‖2+s

≤ C‖(un, unt )‖2H + CR‖(un, unt )‖2Hs

≤ CRΦ(u
n).

(3.23)
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Inserting (3.23) into (3.22) turns out

d

dt
Φ(un) + γ‖(un, unt )‖2qH‖unt ‖21+s ≤ CRΦ(u

n)− d

dt
(f(un), A

s
2un). (3.24)

When 0 < t ≤ T , multiplying (3.24) by t1+s and using (3.15), (3.19), (3.20) as well as
Young’s inequality, we end up with

d

dt

(

t1+sΦ(un)
)

+ t1+sγ‖(un, unt )‖2qH‖unt ‖21+s − CR

(

t1+sΦ(un)
)

≤ 1 + s

2

(

ts‖unt ‖2s + tsκ‖un‖21+s + ts‖un‖22+s

)

− t1+s d

dt
(f(un), A

s
2un)

≤ (1 + s)ts‖unt ‖2s +
(1 + s)ts

2
ϕ(t)− t1+s d

dt
(f(un), A

s
2un)

− (1 + s)ts

2

d

dt
(unt , A

s
2un)− γ(1 + s)ts

4

d

dt

[

‖(un, unt )‖2qH‖un‖21+s

]

≤ (1 + s)ts‖unt ‖
2

1+s‖unt ‖
2s
1+s

1+s + ts|ϕ(t)|+ ψ(t)

≤ st1+sγ

2
‖unt ‖

2

s‖unt ‖21+s +
(γ

2

)−s

+ ts|ϕ(t)|+ ψ(t)

≤ t1+sγ

2
‖(un, unt )‖2qH‖unt ‖21+s + ts|ϕ(t)|+ ψ(t) + C

(3.25)

where

ψ(t) :=− t1+s d

dt
(f(un), A

s
2un)− (1 + s)ts

2

d

dt
(unt , A

s
2un)

− γ(1 + s)ts

4

d

dt

[

‖(un, unt )‖2qH‖un‖21+s

]

.

The inequality (3.25) is equivalent to

d

dt

(

t1+sΦ(un)
)

+
t1+sγ

2
‖(un, unt )‖2qH‖unt ‖21+s

≤ CR

(

t1+sΦ(un)
)

+ ts|ϕ(t)|+ ψ(t) + C.
(3.26)

Applying Gronwall’s lemma to (3.26) gives

t1+sΦ(un(t)) ≤
∫ t

0

eCR(t−τ)

(

ts|ϕ(τ)|+ ψ(τ) + C

)

dτ. (3.27)

We need to estimate
∫ t

0
eCR(t−τ)ψ(τ)dτ . Using integration by parts and (3.15)-(3.16), we

have for every t ∈ [0, T ],

−
∫ t

0

τ 1+seCR(t−τ) d

dτ
(f(un), A

s
2un)dτ

= CR,T − t1+s(f(un(t)), A
s
2un(t)) +

∫ t

0

(f(un), A
s
2un)((1 + s)τ s − CRτ

1+s)eCR(t−τ)dτ

≤ T 1+sCR + CR

∫ t

0

(τ s + τ 1+s)eCR(t−τ)dτ

≤ CR,T ,
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− 1 + s

2

∫ t

0

τ seCR(t−τ) d

dτ
(unt , A

s
2un)dτ

= −(1 + s)ts

2
(unt (t), A

s
2un(t)) +

1 + s

2

∫ t

0

(unt , A
s
2un)(sτ s−1 − CRτ

s)eCR(t−τ)dτ

≤ T sCR + CR

∫ t

0

(τ s−1 + τ s)eCR(t−τ)dτ

≤ CR,T ,

− γ(1 + s)

4

∫ t

0

τ seCR(t−τ) d

dτ

[

‖(un, unt )‖2qH‖un‖21+s

]

dτ

= −γ(1 + s)ts

4
‖(un(t), unt (t))‖2qH‖un(t)‖21+s

+
γ(1 + s)

4

∫ t

0

‖(un, unt )‖2qH‖un‖21+s(sτ
s−1 − CRτ

s)eCR(t−τ)dτ

≤ T sCR + CR

∫ t

0

(τ s−1 + τ s)eCR(t−τ)dτ

≤ CR,T .

Inserting these estimates into (3.27) and using (3.21), we end up with

t1+sΦ(un(t)) ≤ CR,T , ∀0 < t ≤ T. (3.28)

By the definition of Φ, we get

‖(un(t), unt (t))‖2Hs
≤ CR,T

t1+s
, ∀0 < t ≤ T. (3.29)

Moreover, for any 0 < t ≤ t′ ≤ T , integrate (3.24) over [t, t′] and use (3.15)-(3.16), we
have

∫ t′

t

‖(un(τ), unt (τ))‖2qH‖unt (τ)‖21+sdτ ≤ CR,T

t1+s
. (3.30)

Existence of weak solutions. From (3.15)-(3.17) and (3.29)-(3.30), we can extract
a subsequence (still denoted by itself) such that

(un, unt ) → (u, ut) weakly∗ in L∞(0, T ;H),

(un, unt ) → (u, ut) weakly∗ in L∞(a, T ;Hs) for any a > 0,

‖(un, unt )‖qHA
1

4unt → η weakly in L2(0, T ;L2) for some η ∈ L2(0, T ;L2),

‖(un, unt )‖qHA
1+s
4 unt → ηa weakly in L2(a, T ;L2) for some ηa ∈ L2(a, T ;L2),

untt → utt weakly∗ in L∞(0, T ;V−2).

(3.31)

Since Hs →֒→֒ H →֒→֒ H−2, applying Aubin-Lions Lemma [14] yields

(un, unt ) → (u, ut) strongly in C([0, T ];H−2),

(un, unt ) → (u, ut) strongly in C([a, T ];H) for any a > 0.
(3.32)

By the continuity of f and (3.16), we also have

un → u a.e. in Ω× [0.T ],

f(un) → f(u) a.e. in Ω× [0, T ],

f(un) → f(u) weakly in L2(0, T ;L2).

(3.33)
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In particular, (3.32) implies that

‖(un, unt )‖2qH → ‖(u, ut)‖2qH a.e. t ∈ [0, T ]. (3.34)

Combining (3.31) and (3.34), we can prove that

‖(un, unt )‖2qHA
1

2unt → ‖(u, ut)‖2qHA
1

2ut weakly∗ in L∞(0, T ;V−2). (3.35)

Indeed, ∀φ ∈ L1(0, T ;V2), by Lebesgue dominated convergence theorem,
∣

∣

∣

∣

∫ T

0

(‖(un, unt )‖2qHA
1

2unt − ‖(u, ut)‖2qHA
1

2ut, φ)dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

‖(un, unt )‖2qH (A
1

2unt −A
1

2ut, φ)dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

[

‖(un, unt )‖2qH − ‖(u, ut)‖2qH
]

(A
1

2ut, φ)dt

∣

∣

∣

∣

≤ CR

∣

∣

∣

∣

∫ T

0

(unt − ut, A
1

2φ)dt

∣

∣

∣

∣

+ CR

∫ T

0

∣

∣‖(un, unt )‖2qH − ‖(u, ut)‖2qH
∣

∣‖φ‖2dt

→ 0, as n→ ∞.

Now, with the aid of the limits (3.31)-(3.35), by passing to the limit n→ ∞ in (3.11), we
obtain that the limit function (u, ut) ∈ L∞(0, T ;H) satisfies

(u(0), ut(0))
H−2

= lim
n→∞

(un0 , u
n
1) = (u0, u1)

and Eq. (2.5) in the sense that

utt + κA
1

2u+ Au+ γ‖(u, ut)‖2qHA
1

2ut + f(u) = 0 in L∞(0, T ;V−2).

Thus, u(t), t ∈ [0, T ] is a weak solution to problem (2.5) and (u, ut) ∈ L∞(a, T ;Hs), ∀0 <
a < T by (3.31).

(ii) We will show that ‖(u, ut)‖qHA
1

4ut = η and ‖(u, ut)‖qHA
1+s
4 ut = ηa with η, ηa

coming from (3.31). Indeed, for ∀φ ∈ L2(0, T ;V1), by (3.34) and Lebesgue dominated
convergence theorem,

∣

∣

∣

∣

∫ T

0

(‖(un, unt )‖qHA
1

4unt − ‖(u, ut)‖qHA
1

4ut, φ)dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

‖(un, unt )‖qH(A
1

4unt − A
1

4ut, φ)dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

[

‖(un, unt )‖qH − ‖(u, ut)‖qH
]

(A
1

4ut, φ)dt

∣

∣

∣

∣

≤ CR

∣

∣

∣

∣

∫ T

0

(unt − ut, A
1

4φ)dt

∣

∣

∣

∣

+ CR

∫ T

0

∣

∣‖(un, unt )‖qH − ‖(u, ut)‖qH
∣

∣‖φ‖1dt

→ 0, as n→ ∞,

which ipmlies that ‖(un, unt )‖qHA
1

4unt → ‖(u, ut)‖qHA
1

4ut weakly in L2(0, T, V−1). By the

uniqueness of weak limit, we obtain that ‖(u, ut)‖qHA
1

4ut = η ∈ L2(0, T ;L2). Similarly, for
any a > 0, ∀φ ∈ L2(a, T ;V1+s), by (3.34) and Lebesgue dominated convergence theorem,
∣

∣

∣

∣

∫ T

a

(‖(un, unt )‖qHA
1+s
4 unt − ‖(u, ut)‖qHA

1+s
4 ut, φ)dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

a

‖(un, unt )‖qH(A
1+s
4 unt −A

1+s
4 ut, φ)dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

a

[

‖(un, unt )‖qH − ‖(u, ut)‖qH
]

(A
1+s
4 ut, φ)dt

∣

∣

∣

∣

≤ CR

∣

∣

∣

∣

∫ T

a

(unt − ut, A
1+s
4 φ)dt

∣

∣

∣

∣

+ CR

∫ T

a

∣

∣‖(un, unt )‖qH − ‖(u, ut)‖qH
∣

∣‖φ‖1+sdt

→ 0, as n→ ∞,
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which ipmlies that ‖(un, unt )‖qHA
1+s
4 unt → ‖(u, ut)‖qHA

1+s
4 ut weakly in L2(a, T, V−1−s). By

the uniqueness of weak limit, we obtain that ‖(u, ut)‖qHA
1+s
4 ut = ηa ∈ L2(a, T ;L2).

Then, due to the lower semicontinuity of the weak∗ limit, we can deduce from (3.15),
(3.29), (3.30) and (3.31) that

‖(u(t), ut(t))‖2H +

∫ t

0

‖(u(τ), ut(τ))‖2qH‖ut(τ)‖21dτ ≤ CR, ∀t ∈ [0, T ],

‖(u(t), ut(t))‖2Hs
+

∫ t′

t

‖(u(τ), ut(τ))‖2qH‖ut(τ)‖21+sdτ ≤ CR,T

t1+s
, ∀0 < t ≤ t′ ≤ T,

(iii) From (3.3) and (3.7), we have

ut ∈ L2(0, T ;L2), f(u) ∈ L2(0, T ;L2).

Then, approximating u by smooth functions and arguing in a standard way, we see that
for every 0 ≤ τ ≤ t ≤ T ,

∫

Ω

F (u(t))dx−
∫

Ω

F (u(τ))dx =

∫ t

τ

(f(u), ut)ds. (3.36)

We are now ready to prove the energy equality of u. To this end, we take um(t) =
Pmu(t), where Pm is the orthoprojector to Span{e1, · · · , em} with {ej}mj=1 the first m
eigenvalues of the operator A. Then, um solves

umtt + κA
1

2um + Aum + γ‖(u, ut)‖2qHA
1

2umt + Pmf(u) = 0 (3.37)

For every 0 ≤ τ ≤ t ≤ T , take the multiplier umt in (3.37) and integrate over [τ, t], we get

1

2
‖(um(t), umt (t))‖2H +

κ

2
‖um(t)‖21 −

1

2
‖(um(τ), umt (τ))‖2H − κ

2
‖um(τ)‖21

+ γ

∫ t

τ

‖(u, ut)‖2qH‖A 1

4umt ‖2ds+
∫ t

τ

(Pmf(u), u
m
t )ds.

(3.38)

Since (u, ut) ∈ L∞(τ, t;H), f(u) ∈ L2(τ, t;L2), ‖(u, ut)‖qHA
1

4ut ∈ L2(0, T ;L2), we have

(um(t), umt (t)) → (u(t), ut(t)), (u
m(τ), umt (τ)) → (u(τ), ut(τ)) in H;

um(t) → u(t), um(τ) → u(τ) in V1;

umt → ut, ‖(u, ut)‖qHA
1

4umt → ‖(u, ut)‖qHA
1

4ut in L2(τ, t;L2).

Now, passing to the limit m→ ∞ in (3.38) and with the help of (3.36), we end up with

E(t)−E(τ) + γ

∫ t

τ

‖(u, ut)‖2qH‖ut‖21 = 0,

where

E(t) =
1

2
‖(u(t), ut(t))‖2H +

κ

2
‖u(t)‖21 +

∫

Ω

F (u(t))dx.

Thus, (3.9) holds for u. From the energy equality, the function t 7→ ‖(u(t), ut(t))‖H is
continuous. Moreover, since (u, ut) ∈ L∞(0, T ;H) ∩ C([0, T ],H−2) and H →֒ H−2 is
reflexive, we have (u, ut) ∈ Cw([0, T ];H). Then, the uniform convexity of H gives that
(u, ut) ∈ C([0, T ];H).
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We prove the following lemma in order to verify the uniqueness of weak solutions.

Lemma 3.5. For any fixed R > 0 and for any compact set K with

K ⊂
{

ξ ∈ H | R
2
≤ ‖ξ‖H ≤ R

}

,

there exists a constant k = k(R, T,K) > 0 such that the inequality

‖u(t), ut(t)‖H ≥ k, ∀t ∈ [0, T ] (3.39)

holds uniformly for any weak solution u(t), t ∈ [0, T ] with its initial data (u0, u1) ∈ K.

Proof. Firstly, we prove a useful result for every weak solution. Let r ≥ 0 be arbitrary and
u(t), t ∈ [0, T ] be a weak solution of problem 2.5 with its initial data ‖(u(0), ut(0))‖H ≤ r.
Multiplying (2.5) by ut and integrating over x ∈ Ω (which is justified as in Theorem 3.4
(iii)), we get

d

dt
E(u) + 2γ‖(u, ut)‖2qH‖ut‖21 + 2(f(u), ut) = 0, (3.40)

where E(u) = ‖ut‖2 + κ‖u‖21 + ‖u‖22 satisfying ‖(u, ut)‖2H ≤ E(u) ≤ C0‖(u, ut)‖2H with the

constant C0 = 1+ κ/(λ
1/2
1 ) > 0. By (3.3), (3.7), Hölder’s inequality with 2

n
+ n−4

2n
+ 1

2
= 1

and the Sobolev embedding V2 →֒ L
2n
n−4 →֒ L

np

2 , we have

∣

∣

∣
2(f(u), ut)

∣

∣

∣
≤ C((1 + |u|p)|u|, |ut|)
≤ C(1 + ‖|u|p‖

L
n
2
)‖u‖

L
2n
n−4

‖ut‖
≤ C(1 + ‖u‖p2)‖u‖2‖ut‖
≤ Cr‖(u, ut)‖2H
≤ CrE(u).

(3.41)

Inserting (3.41) into (3.40), we obtain

d

dt
E(u) + 2γ‖(u, ut)‖2qH‖ut‖21 ≤ CrE(u). (3.42)

Applying Gronwall’s lemma to (3.42) and using the definition of E(u), we see that for
every 0 ≤ τ ≤ t ≤ T ,

‖(u(t), ut(t))‖2H ≤ E(u(t)) ≤ E(u(τ))eCr(t−τ) ≤ Cr,T‖(u(τ), ut(τ))‖2H. (3.43)

Now, we prove the lemma by contradiction. Suppose that (3.39) does not hold
true. Then for n ≥ 1, there exist tn ∈ [0, T ] and weak solutions un with initial data
(un(0), unt (0)) ∈ K, such that

‖(un(tn), unt (tn))‖H <
1

n
. (3.44)

By (3.43)and (3.44), we have

‖(un(T ), unt (T ))‖H ≤ CR,T‖(un(tn), unt (tn))‖H <
CR,T

n
, n ≥ 1. (3.45)
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Since K is compact, we may assume that (un(0), unt (0)) → (u0, u1) ∈ K in H. Argu-
ing exactly as in the proof of Theorem 3.4 (i), we deduce that {un}n≥1 (subsequence if
necessary) converges to some weak solution u satisfying

(un, unt , u
n
tt) → (u, ut, utt) weakly∗ in L∞(0, T ;V2 × L2 × V−2),

(u(0), ut(0)) = (u0, u1) ∈ K,
(3.46)

By the weak∗ convergence in (3.46), we have the weak convergence (un(t), unt (t)) ⇀
(u(t), ut(t)) in H for every t ∈ [0, T ]. Consequently, due to (3.45) and the lower semicon-
tinuity of the weak limit, we have

‖(u(T ), ut(T ))‖H ≤ lim inf
n→∞

‖(un(T ), unt (T ))‖H ≤ lim inf
n→∞

CR,T

n
= 0. (3.47)

On the other hand, since R
2

≤ ‖(u(0), ut(0))‖H ≤ R and t 7→ ‖(u(t), ut(t))‖H is
continuous due to the energy equality (3.9), there exists some 0 < a ≤ T such that

‖(u(t), ut(t))‖H ≥ R

4
, ∀t ∈ [0, a]. (3.48)

Since estimate (3.8) holds for u, we have

‖(u(t), ut(t))‖2Hs
+

∫ t

a

‖(u, ut)‖2qH‖ut‖21+sdτ ≤ a−(1+s)CR,T , ∀t ∈ [a, T ], (3.49)

where s = 1
q
. By interpolation inequality (2.3), we have

‖ut‖1 ≤ ‖ut‖
s

1+s‖ut‖
1

1+s

1+s,

and then

‖(u, ut)‖2qH‖ut‖21 ≤ ‖(u, ut)‖2qH‖ut‖
2s
1+s‖ut‖

2

1+s

1+s

≤ ‖(u, ut)‖
2

s
+ 2s

1+s

H ‖ut‖
2

1+s

1+s

= ‖(u, ut)‖2H
(

‖(u, ut)‖
2

s

H‖ut‖21+s

)
1

1+s

.

(3.50)

Inserting (3.41) and (3.50) into (3.40), we obtain

d

dt
E(u) +

[

2γ
(

‖(u, ut)‖2qH‖ut‖21+s

)
q

1+q

+ CR

]

E(u) ≥ 0. (3.51)

Integrating (3.51) over [a, t] yields

E(u(t)) ≥ E(u(a))e−
∫ t

a
h(τ)dτ , ∀t ∈ [a, T ], (3.52)

where h(t) = 2γ
(

‖(u, ut)‖2qH‖ut‖21+s

)
q

1+q

+CR. By (3.49) and Hölder’s inequality, we have

∫ t

a

h(τ)dτ = 2γ

∫ t

a

(

‖(u, ut)‖2qH‖ut‖21+s

)
q

1+q

dτ + CR(t− a)

≤ 2γ
(

∫ t

a

‖(u, ut)‖2qH‖ut‖21+sdτ
)

q

1+q

(t− a)
1

1+q + CR(t− a)

≤ CR,T

a
(t− a)

1

1+q + CR(t− a).

(3.53)
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Inserting (3.48) and (3.53) into (3.52), we obtain

‖(u(t), ut(t))‖2H ≥ 1

C0

E(u(t))

≥ 1

C0

E(u(a)) exp
{

− CR,T

a
(t− a)

1

1+q − CR(t− a)
}

≥ 1

C0

‖(u(a), ut(a))‖2H exp
{

− CR,T

a
(t− a)

1

1+q − CR(t− a)
}

≥ R2

16C0
exp

{

− T
1

1+qCR,T

a
− TCR

}

, ∀t ∈ [a, T ].

In particular,

‖u(T ), ut(T )‖H ≥ R

4
√
C0

exp
{

− T
1

1+qCR,T

2a
− TCR

2

}

> 0, (3.54)

which contradicts with (3.47). Therefore, (3.39) holds true.

Theorem 3.6. Let the assumptions of Theorem 3.4 hold. Then the weak solution is
unique. Specifically, for any R > 0 and any compact set K with

K ⊂
{

ξ ∈ H | R
2
≤ ‖ξ‖H ≤ R

}

,

if ξu(t) = (u(t), ut(t)) and ξv(t) = (v(t), vt(t)) are weak solutions corresponding to the
initial data ξu(0) ∈ K, ξv(0) ∈ K, respectively, then

‖ξu(t)− ξv(t)‖H ≤ C‖ξu(0)− ξv(0)‖H, ∀t ∈ [0, T ], (3.55)

where the constant C = C(R, T,K) > 0. Moreover, if the initial data satisfies ‖ξu(0)‖H =
0, then u ≡ 0 is the only solution.

Proof. Firstly, if ‖ξu(0)‖H = 0, we deduce from (3.43) that

‖(u(t), ut(t))‖2H ≤ CT‖ξu(0)‖2H = 0. ∀t ∈ [0, T ]. (3.56)

Thus (u, ut) ≡ 0 is the only solution.
For fixed R > 0, let K ⊂ {ξ ∈ H | R

2
≤ ‖ξ‖H ≤ R} be an arbitrary compact set and

ξu(t) = (u(t), ut(t)) , ξv(t) = (v(t), vt(t)) be weak solutions corresponding to the initial
data ξu(0) ∈ K, ξv(0) ∈ K, respectively. By estimate (3.7) and Lemma 3.5,

k ≤ ‖(u(t), ut(t))‖H ≤ CR, k ≤ ‖(v(t), vt(t))‖H ≤ CR, ∀t ∈ [0, T ], (3.57)

where k = k(R, T,K) > 0. Then, from the energy equality (3.9), we have

∫ t

0

‖ut‖21dτ ≤ CR

γk2q
,

∫ t

0

‖vt‖21dτ ≤ CR

γk2q
, ∀t ∈ [0, T ]. (3.58)

The function w(t) = u(t)− v(t) solves the following equation














wtt + κA
1

2w + Aw + γ‖(u, ut)‖2qHA
1

2wt

+γ
[

‖(u, ut)‖2qH − ‖(v, vt)‖2qH
]

A
1

2 vt + f(u)− f(v) = 0,

(w(0), wt(0)) = ξu(0)− ξv(0).

(3.59)
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Multiplying (3.59) by wt, we get

d

dt
E(w) + 2γ‖(u, ut)‖2qH‖wt‖21 = I1 + I2, (3.60)

where E(w) = ‖wt‖2 + κ‖w‖21 + ‖w‖22 satisfying ‖(w,wt)‖2H ≤ E(w) ≤ C0‖(w,wt)‖2H with

the constant C0 = 1 + κ/(λ
1/2
1 ) > 0 and

I1 = −2γ
[

‖(u, ut)‖2qH − ‖(v, vt)‖2qH
]

(A
1

4vt, A
1

4wt),

I2 = −2(f(u)− f(v), wt).

From (3.57), using mean value theorem and Young’s inequality, we have

|I1| ≤ 2qγ
[

‖(u, ut)‖2(q−1)
H + ‖(v, vt)‖2(q−1)

H

](

‖(u, ut)‖2H − ‖(v, vt)‖2H
)

‖vt‖1‖wt‖1

≤ CR

(

‖(u, ut)‖H + ‖(v, vt)‖H
)(

‖(u, ut)‖H − ‖(v, vt)‖H
)

‖vt‖1‖wt‖1
≤ CR‖(w,wt)‖H‖vt‖1‖wt‖1
≤ γk2q‖wt‖21 + Ck,R‖(w,wt)‖2H‖vt‖21
≤ γk2q‖wt‖21 + Ck,R‖vt‖21E(w).

(3.61)

By (3.1), mean value theorem, Hölder’s inequality with 2
n
+ n−4

2n
+ 1

2
= 1 and the Sobolev

embedding V2 →֒ L
2n
n−4 →֒ L

np

2 , we have

|I2| ≤ C((1 + |u|p + |v|p)|w|, |wt|)
≤ C(1 + ‖|u|p‖

L
n
2
+ ‖|v|p‖

L
n
2
)‖w‖

L
2n
n−4

‖wt‖
≤ C(1 + ‖u‖p2 + ‖v‖p2)‖w‖2‖wt‖
≤ CR‖(w,wt)‖2H
≤ CRE(w).

(3.62)

Inserting (3.61) and (3.62) into (3.60) and using (3.57), we get

d

dt
E(w) + γk2q‖wt‖21 ≤ Ck,R(1 + ‖vt‖21)E(w).

Applying Gronwall’s inequality and using (3.58), we obtain

E(w(t)) ≤ E(w(0))e
∫ t

0
Ck,R(1+‖vt‖21)ds ≤ Ck,R,TE(w(0)), ∀t ∈ [0, T ].

Then, we conclude that

‖(w(t), wt(t))‖2H ≤ E(w(t)) ≤ CE(w(0)) ≤ C‖(w(0), wt(0))‖2H, ∀t ∈ [0, T ],

where C = C(R, T,K), which implies that (3.55) holds.
In particular, taking ξu(0) = ξv(0) in (3.55), we get the uniqueness for initial data

with nonzero H-norm.

In view of Theorem 3.4 and Theorem 3.6, we now define the solution semigroup
S(t) : H → H associated with problem (2.5):

S(t)(u0, u1) := (u(t), ut(t)),

where u(t) is the unique weak solution of problem (2.5) corresponding to the initial data
(u0, u1) ∈ H. By Theorem 3.4 (ii), the mapping t 7→ S(t)ξ is continuous from R

+ into H
for any fixed ξ ∈ H.
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Proposition 3.7. {S(t)}t≥0 is a continuous semigroup, namely,

(ξn, τn) → (ξ, τ) strongly in H× [0,∞) ⇒ S(τn)ξn → S(τ)ξ strongly in H.

Proof. Let τ ≥ 0, ξ ∈ H with ‖ξ‖H = R, and (u(t), ut(t)) = S(t)ξ, (un(t), unt (t)) = S(t)ξn,
respectively.

Case 1. R = 0. Then S(t)ξ = 0, ∀t ≥ 0. Obviously, estimate (3.43) holds true for
un, then

‖S(τn)ξn − S(τ)ξ‖H = ‖(un(τn), unt (τn))‖H ≤ Cτ‖ξn‖H → Cτ‖ξ‖H = 0,

Case 2. R > 0.Without loss of generality, 0 ≤ τn ≤ τ+1, 3R
4
≤ ‖ξn‖H ≤ 3R

2
, ∀n ≥ 1.

Since ξn → ξ strongly in H, K := {ξn}∞n=1∪{ξ} is compact. Then, using (3.55), we obtain

‖S(τn)ξn − S(τ)ξ‖H
≤ ‖S(τn)ξn − S(τn)ξ‖H + ‖S(τn)ξ − S(τ)ξ‖H
≤ C‖ξn − ξ‖H + ‖S(τn)ξ − S(τ)ξ‖H
→ 0 as n→ ∞,

where C = C(τ, R,K) and we have used the continuity of the mapping t 7→ S(t)ξ. The
proof is complete.

4. Global attractor in H

In this section, we will verify the existence of the global attractor of the dynamical
system (H, S(t)). We recall the difinition of a global attractor here for convenience.

Definition 4.1. [5, 13, 27] Let {S(t)}t≥0 be a semigroup acting on a metric space (X, d).
A subset A ⊂ X is called a global attractor of (X,S(t)) if
(i) A is compact in X;
(ii) A is invariant, i.e. S(t)A = A, ∀t ≥ 0;
(iii) A attracts all bounded sets in X, i.e. for any bounded set B ⊂ X,

distX(S(t)B,A) := sup
x∈S(t)B

inf
y∈A

d(x, y) → 0, as t→ ∞.

We first verify the dissipativity of (H, S(t)).

Proposition 4.2. Let Assumption 1 be valid. Then the dynamical system (H, S(t)) is
dissipative, i.e. there exists a bounded set B0 ⊂ H satisfying: for any bounded set B ⊂ H,
∃ tB > 0 such that S(t)B ⊂ B0, ∀t ≥ tB. In particular, B0 is called a bounded absorbing
set of (H, S(t)).

Proof. Let B ⊂ H be an arbitrary bounded set. Due to (3.7), there exists some constant
CB > 0 such that

‖(u(t), ut(t))‖H ≤ CB, ∀t ≥ 0 (4.1)

holds for every weak solution u with its initial data (u(0), ut(0)) ∈ B. Multiplying (2.5)
by ut + αu with α > 0 to be determined later, after integrating over x ∈ Ω, we get

d

dt
V (u) + αV (u) + Γ = 0, (4.2)
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where

V (u) =
1

2
‖ut‖2 +

κ

2
‖u‖21 +

1

2
‖u‖22 +

∫

Ω

F (u)dx+ α(ut, u),

and

Γ =γ‖(u, ut)‖2qH‖ut‖21 +
ακ

2
‖u‖21 +

α

2
‖u‖22

− 3α

2
‖ut‖2 − α2(ut, u) + αγ‖(u, ut)‖2qH (A

1

4ut, A
1

4u)

+ α(f(u), u)− α

∫

Ω

F (u)dx.

By (3.3), (3.4) and (4.1), there exists α0 > 0 such that for ∀α ∈ (0, α0],

c1‖(u, ut)‖2H − C1 ≤ V (u) ≤ CB, ∀t ≥ 0, (4.3)

where 0 < c1 < 1, C1 > 0 are constants.
By Young’s inequality with ε and the Sobolev embedding ‖w‖2 ≤ CΩ‖w‖21, we infer

that there exists some constant C2 = C2(Ω, q) > 0 such that,

‖ut‖2 ≤
1

CΩ

‖ut‖2q+2 + C2

≤ CΩ
1

CΩ

‖ut‖2q‖ut‖21 + C2

≤ ‖(u, ut)‖2qH‖ut‖21 + C2.

(4.4)

Using Cauchy inequality and Young’s inequality, we infer from (2.4) and (4.1) that

∣

∣α2(ut, u)
∣

∣ ≤ α2‖ut‖‖u‖ ≤ α2

√
λ1

‖ut‖‖u‖2 ≤
α3

2λ1
‖u‖22 +

α

2
‖ut‖2, (4.5)

and
∣

∣

∣
αγ‖(u, ut)‖2qH (A

1

4ut, A
1

4u)
∣

∣

∣
≤ αγ‖(u, ut)‖2qH‖ut‖1‖u‖1

≤ γ

2
‖(u, ut)‖2qH‖ut‖21 +

α2γ

2
‖(u, ut)‖2qH‖u‖21

≤ γ

2
‖(u, ut)‖2qH‖ut‖21 + α2CB‖u‖22.

(4.6)

From (2.4) and the dissipativity condition (3.5), we get

α(f(u), u)− α

∫

Ω

F (u)dx ≥ −αµ
2
‖u‖2 − αC ≥ − αµ

2λ1
‖u‖22 − αC. (4.7)

Thus, it follows from estimates (4.4)-(4.7) that

Γ ≥ γ

2
‖(u, ut)‖2qH‖ut‖21 +

α

2
‖u‖22 −

αµ

2λ1
‖u‖22 − α2CB‖u‖22

− α3

2λ1
‖u‖2 − 2α‖(u, ut)‖2qH‖ut‖21 − 2αC2 − αC

≥ (
γ

2
− 2α)‖(u, ut)‖2qH‖ut‖21 +

(

λ1 − µ

2λ1
α− α2CB − α3

2λ1

)

‖u‖22

− αC3,

(4.8)
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where C3 = 2C2 + C. Choose α ∈ (0, α0] small enough (α may depend on B) such that

γ

2
− 2α > 0, and

λ1 − µ

2λ1
α− α2CB − α3

2λ1
> 0.

Thus, inserting (4.8) into (4.2), we obtain

d

dt
V (u) + αV (u) ≤ αC3.

Applying now Gronwall’s lemma and using (4.3), we end up with

V (u(t)) ≤ V (u(0))e−αt + C3(1− e−αt) ≤ CBe
−αt + C3. (4.9)

Then there exists tB = max{0, 1
α
ln CB

C3
} such that

‖(u(t), ut(t))‖2H ≤ V (u(t)) + C1

c1
≤ 2C3 + C1

c1
=: R2

0, ∀t ≥ tB.

Therefore, the dynamical system (H, S(t)) is dissipative and B0 = {ξ ∈ H | ‖ξ‖H ≤ R0}
is a bounded absorbing set.

Now, we are in a position to prove our main result of this section.

Theorem 4.3. Let Assumption 1 be valid. Then the dynamical system (H, S(t)) possesses
a global attractor A in H. Moreover, the global attractor A is bounded in Hs:

A ⊂ Hs, ‖A‖Hs
:= sup

ξ∈A
‖ξ‖Hs

≤ C, (4.10)

where s = 1
q
.

Proof. According to the abstract attractor existence theorem, we only need to verify that
S(t) is continuous on H for every fixed t ≥ 0 and that (H, S(t)) possesses a compact
absorbing set in H, see [12, 20, 27].

The continuity of S(t) comes from Propsition 3.7. Due to estimate (3.8), for any
ξ ∈ B0, we have

‖S(1)ξ‖Hs
≤ C(‖ξ‖H) ≤ CR0

, (4.11)

where B0 = {ξ ∈ H | ‖ξ‖H ≤ R0} is the absorbing set constructed in the Proposition 4.2
and s = 1

q
. Then, the set

B1 := {ξ ∈ Hs | ‖ξ‖Hs
≤ CR0

}

is a compact absorbing set for (H, S(t)) in H. Indeed, B1 is compact in H due to the
compact embedding Hs →֒→֒ H. Let B ⊂ H be an arbitrary bounded set. Since B0 is
absorbing, there exists tB > 0 such that S(t)B ⊂ B0, ∀t ≥ tB. Then, (4.11) implies

S(t)B = S(1)S(t− 1)B ⊂ S(1)B0 ⊂ B1, ∀t ≥ tB + 1.

Thus, the existence of the global attractor A is proved. Finally, noticing that A ⊂ B1,
we have A is bounded in Hs and ‖A‖Hs

≤ CR0
.
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5. Global attractor in H1

q

We still use the notation s = 1
q
∈ (0, 1] throughout this section and will prove that

the global attractor A constructed in Theorem 4.3 is exactly an (H,Hs)-global attractor.

Definition 5.1. [33] Let X, Y be two Banach spaces and {S(t)}t≥0 be a semigroup acting
on X. {S(t)}t≥0 is called an (X, Y )-semigroup if S(t)X ⊂ Y, t > 0, and {S(t)}t≥0 is
called norm-to-weak continuous if additionally,

(ξn, tn) → (ξ, t) strongly in X × (0,∞) ⇒ S(tn)ξn → S(t)ξ weakly in Y.

We have the following result to verify the norm-to-weak continuity of a (X, Y )-
semigroup.

Lemma 5.2. [33] Let X, Y be two Banach spaces and X∗, Y ∗ be their dual spaces, re-
spectively, {S(t)}t≥0 be a semigroup on X and an (X, Y )-semigroup. Assume that
(i) both i : Y → X and i∗ : X∗ → Y ∗ are densely injective;
(ii) {S(t)}t≥0 is continuous or weak continuous on X, i.e.

(ξn, tn) → (ξ, t) strongly in X × (0,∞) ⇒ S(tn)ξn → S(t)ξ strongly in X.

or
(ξn, tn) → (ξ, t) weakly in X × (0,∞) ⇒ S(tn)ξn → S(t)ξ weakly in X.

Then, {S(t)}t≥0 is a norm-to-weak continuous (X, Y )-semigroup if and only if {S(t)}t≥0

maps compact subsets of Y × (0,∞) into bounded sets of Y .

The definition of the (X, Y )-global attractor is as follows.

Definition 5.3. [1] A set A ⊂ X ∩ Y is said to be an (X, Y )-global attractor of the
(X, Y )-semigroup if
(i) A is bounded in X and compact in Y ;
(ii) A is invariant, i.e. S(t)A = A, ∀t ≥ 0;
(iii) A attracts all bounded subsets of X in the norm topology of Y , i.e. for any bounded
set B ⊂ X,

distY (S(t)B,A) := sup
x∈S(t)B

inf
y∈A

‖x− y‖Y → 0, as t→ ∞.

In order to verify the existence of global attractors, we use the method of Condition
(C) which is first proposeed in [16].

Definition 5.4. [16] A semigroup {S(t)}t≥0 is said to satisfy Condition (C) in X if and
only if for any bounded set B ⊂ X and for any ε > 0, there exist a positive time moment
tB and a finite dimensional subspace X1 of X such that {PS(t)x | x ∈ B, t ≥ tB} is
bounded in X and

sup
x∈B

‖(I − P )S(t)x‖X ≤ ε, ∀t ≥ t0,

where P : X → X1 is the canonical projector.

One of the abstract criteria for the existence of the (X, Y )-global attractor of a norm-
to-weak continuous (X, Y )-semigroup is as follows.
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Lemma 5.5. [33] Assume that X, Y are two Banach spaces and {S(t)}t≥0 is a norm-to-
weak continuous (X, Y )-semigroup. Then {S(t)}t≥0 possesses an (X, Y )-global attractor
provided that:
(i) {S(t)}t≥0 has a bounded absorbing set in Y , i.e. there exists a bounded set B ⊂ Y
such that for any bounded set B ⊂ X, ∃tB > 0 such that S(t)B ⊂ B, ∀t ≥ tB;
(ii) {S(t)}t≥0 satisfies Condition (C) in Y .

By Lemma 5.2, we infer from Theorem 3.4 and Propsition 3.7 that {S(t)}t≥0 is
actually a norm-to-weak continuous (H,Hs)-semigroup. Now, we will verify that {S(t)}t≥0

satisfies Condition (C) in Hs.
We use the same notations as before. Let λ1, λ2, · · · be the eigenvalues of the oper-

ator A = ∆2 with boundary condition (??) or (1.3) and e1, e2, · · · be the corresponding
eigenfunctions such that

Aei = λiei, 0 < λ1 ≤ λ2 ≤ · · · , lim
i→∞

λi = ∞,

and {e1, e2, · · · } form an orthonormal basis in L2. Let Hm = span{e1, · · · , em}, Pm :
L2 → Hm be the orthoprojector and Qm = I − Pm where I is the identity.

Lemma 5.6. Let σ ∈ R be fixed and K be a compact subset of Vσ. Then for any ε > 0
there exists a positive integer N such that

‖Qmv‖σ < ε, ∀m ≥ N, v ∈ K.

Proof. For any ε > 0, let {vj}Mj=1 be a ε
2
-net of K in Vσ:

K ⊂
M
⋃

i=1

BVσ
(vj,

ε

2
).

For fixed i ∈ {1, 2, · · · ,M}, since

‖vj‖2σ = ‖vj‖2D(A
σ
4 )

=
∞
∑

i=1

λ
σ
2

i |(vj, ei)|2 <∞,

there exists an Nj ∈ N
+ such that

‖Qmvj‖2σ =

∞
∑

i=m+1

λ
σ
2

i |(vj , ei)|2 <
ε

2
, ∀m ≥ Nj .

Put N = max{N1, N2, · · · , NM}. Then for any v ∈ K and m ≥ N , there exists an
i0 ∈ {1, 2, · · · ,M} such that ‖v − vi0‖σ ≤ ε

2
and

‖Qmv‖σ ≤ ‖Qm(v − vi0)‖σ + ‖Qmvi0‖σ < ε.

Corollary 5.7. Let Assumption 1 be valid. Then the semigroup {S(t)}t≥0 satisfies Con-
dition (C) in Hs.
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Proof. By Theorem 4.3, B1 is an absorbing set of {S(t)}t≥0 which is bounded in Hs. Then

B :=
⋃

t≥t∗

S(t)B1

is a positively invariant absorbing set bounded in Hs, where t∗ > 0 such that S(t)B1 ⊂
B1 (∀t ≥ t∗). Given any ε ∈ (0, 1), according to Definition 5.4, it suffices to prove that
there exist t0 = t0(ε,B) and m0 = m0(ε,B) ∈ N such that

‖QmS(t)(u0, u1)‖Hs
≤ ε, ∀(u0, u1) ∈ B

holds for all t ≥ t0 and m ≥ m0.
For any (u0, u1) ∈ B, set (u(t), ut(t)) = S(t)(u0, u1). Since B is positively invariant

bounded in Hs, we have

‖(u(t), ut(t))‖Hs
≤ CB, ∀t ≥ 0. (5.1)

Denoting by (u(1), u
(1)
t ) = (Pmu, Pmut) and (u(2), u

(2)
t ) = (Qmu,Qmut), we need to prove

that ‖(u(2)(t), u(2)t (t))‖Hs
≤ ε for all t ≥ t0 and m ≥ m0.

Let

W (t) =
1

2
‖u(2)t (t)‖2s +

κ

2
‖u(2)(t)‖21+s +

1

2
‖u(2)(t)‖22+s + δ(u

(2)
t (t), A

s
2u(2)(t))

where δ > 0 small will be determined later. From the embeddings Vs →֒ L2 and V2+s →֒
V2s, there exists δ0 = δ0(Ω) > 0 such that for ∀δ ∈ (0, δ0],

δ
∣

∣

∣
(u

(2)
t , A

s
2u(2))

∣

∣

∣
≤ δ0

2

(

‖u(2)t ‖2 + ‖u(2)‖22s
)

≤ 1

4

(

‖u(2)t ‖2s + ‖u(2)‖22+s

)

and then
1

4
‖(u(2)(t), u(2)t (t))‖2Hs

≤W (t) ≤ C‖(u(2)(t), u(2)t (t))‖Hs
, (5.2)

where the constant C = C(κ,Ω).

Taking δ = min{δ0, 1, γ4εq} and multiplying (2.5) by A
s
2u

(2)
t +δA

s
2u(2) and integrating

over x ∈ Ω (which can be justified similarly as in Theorem 3.4 (iii)), we get

d

dt
W (t) + 2δW (t) + γ‖(u, ut)‖2qH‖u(2)t ‖21+s

= 2δ‖u(2)t ‖2s + 2δ2(u
(2)
t , A

s
2u(2))− d

dt
(f(u), A

s
2u(2)) + (f ′(u)ut, A

s
2u(2))

− γδ‖(u, ut)‖2qH (A
1

2u
(2)
t , A

s
2u(2))− δ(f(u), A

s
2u(2))

= 2δ‖u(2)t ‖2s + 2δ2(u
(2)
t , A

s
2u(2))− δ(f(u), A

s
2u(2))

− d

dt
(f(u), A

s
2u(2)) + (f ′(u)ut, A

s
2u(2))

− γδ

2

d

dt

[

‖(u, ut)‖2qH‖u(2)‖21+s

]

+
γδ

2
‖u(2)‖21+s

d

dt
‖(u, ut)‖2qH .

(5.3)

By the compact embeddings V2+s →֒→֒ V2s, V2+s →֒→֒ V1+s and (5.1), we deduce
from Lemma 5.6 that there exists N1 = N1(ε) such that

‖u(2)‖2s ≤ δε and ‖u(2)‖1+s ≤ δε, ∀t ≥ 0 (5.4)
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hold for all m ≥ N1. Then, using (3.3), (5.1) and (5.4), we have

∣

∣

∣
2δ2(u

(2)
t , A

s
2u(2))− δ(f(u), A

s
2u(2))

∣

∣

∣
≤ 2(‖u(2)t ‖+ ‖f(u)‖)‖u(2)‖2s
≤ C(‖ut‖+ ‖u‖2 + ‖u‖p+1

2 )‖u(2)‖2s
≤ CBδε.

(5.5)

When the spatial dimension n ≥ 5, since 4np
8+4s−nsp

≤ 2n
n−2(2+s)

, we have the Sobolev

embedding V2+s →֒ H2+s →֒ L
4np

8+4s−nsp . Combining this with (3.1), (5.4), Hölder’s in-

equality with 8+4s−nsp
4n

+ n−2s
2n

+ 2n−8+nsp
4n

= 1 and the embeddings Vs →֒ Hs →֒ L
2n

n−2s ,

V2−nsp

4
→֒ H2−nsp

4 →֒ L
4n

2n−8+nsp , we obtain

∣

∣

∣
(f ′(u)ut, A

s
2u(2))

∣

∣

∣

≤ C‖ut‖‖u(2)‖2s + C‖|u|p‖
L

4n
8+4s−nsp

‖ut‖
L

2n
n−2s

‖A s
2u(2)‖

L
4n

2n−8+nsp

≤ CBδε+ C‖u‖p
L

4np
8+4s−nsp

‖ut‖s‖A
s
2u(2)‖2−nsp

4

≤ CBδε+ C‖u‖p2+s‖ut‖s‖u(2)‖2+2s−nsp

4

≤ CBδε+ CB‖u(2)‖2+2s−nsp

4
.

(5.6)

Since 2 + 2s − nsp
4

≤ 2 + 2s − 5s
4
< 2 + s, we have the compact embedding V2+s →֒→֒

V2+2s−nsp

4
. Then due to Lemma 5.6, there exists N2 = N2(ε) such that

‖u(2)‖2+2s−nsp

4
≤ δε, ∀t ≥ 0 (5.7)

holds for all m ≥ N2. Inserting (5.7) into (5.6), we have

∣

∣

∣
(f ′(u)ut, A

s
2u(2))

∣

∣

∣
≤ CBδε. (5.8)

It is easy to check that (5.8) still holds when 1 ≤ n ≤ 4.
Moreover, it follows from interpolation inequality (2.3) and Young’s inequality with

ε that

‖u(2)t ‖2s ≤ ‖u(2)t ‖ 2

1+s‖u(2)t ‖
2s
1+s

1+s ≤ ε+ε−
1

s‖u(2)t ‖ 2

s‖u(2)t ‖21+s ≤ ε+ε−q‖(u, ut)‖2qH‖u(2)t ‖21+s (5.9)

Inserting (5.5), (5.8) and (5.9) into (5.3) and noting that δ ≤ γ
4
εq, we have

d

dt
W (t) + 2δW (t) ≤ −γ‖(u, ut)‖2qH‖u(2)t ‖21+s + 2δε

+ 2δε−q‖(u, ut)‖2qH‖u(2)t ‖21+s + CBδε−
d

dt
(f(u), A

s
2u(2))

− γδ

2

d

dt

[

‖(u, ut)‖2qH‖u(2)‖21+s

]

+
γδ

2
‖u(2)‖21+s

d

dt
‖(u, ut)‖2qH

≤ CBδε−
d

dt
(f(u), A

s
2u(2))

− γδ

2

d

dt

[

‖(u, ut)‖2qH‖u(2)‖21+s

]

+
γδ

2
‖u(2)‖21+s

d

dt
‖(u, ut)‖2qH .

(5.10)
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Applying Gronwall’s Lemma, we get

W (t) ≤W (0)e−2δt + CBδε

∫ t

0

e−2δ(t−τ)dτ −
∫ t

0

e−2δ(t−τ) d

dτ
(f(u), A

s
2u(2))dτ

− γδ

2

∫ t

0

e−2δ(t−τ) d

dτ

[

‖(u, ut)‖2qH‖u(2)‖21+s

]

dτ

+
γδ

2

∫ t

0

e−2δ(t−τ)‖u(2)‖21+s

d

dτ
‖(u, ut)‖2qHdτ.

(5.11)

Using integration by parts and (5.1), (5.4), we have

CBδε

∫ t

0

e−2δ(t−τ)dτ = CBδε ·
1− e−2δt

2δ
≤ CBε,

−
∫ t

0

e−2δ(t−τ) d

dτ
(f(u), A

s
2u(2))dτ

= −e−2δ(t−τ)(f(u(τ)), A
s
2u(2)(τ))

∣

∣

∣

τ=t

τ=0

+ 2δ

∫ t

0

(f(u), A
s
2u(2))e−2δ(t−τ)dτ

≤ CBδε+ CBδ
2ε · 1− e−2δt

2δ
≤ CBε,

− γδ

2

∫ t

0

e−2δ(t−τ) d

dτ

[

‖(u, ut)‖2qH‖u(2)‖21+s

]

dτ

= −γδ
2
e−2δ(t−τ)‖(u(τ), ut(τ))‖2qH‖u(2)(τ)‖21+s

∣

∣

∣

τ=t

τ=0

+ γδ2
∫ t

0

‖(u, ut)‖2qH‖u(2)‖21+se
−2δ(t−τ)dτ

≤ CBδ
3ε2 + CBδ

4ε2 · 1− e−2δt

2δ
≤ CBε.

With regard to the last term in (5.11), it follows from the energy equality (3.9) that

γ

∫ t

0

‖(u, ut‖2qH )‖ut‖21dτ = E(u(0))− E(u(t)) ≤ CB, ∀t ≥ 0.

Then, since u solves the equation (2.5), we have

γδ

2

∫ t

0

e−2δ(t−τ)‖u(2)‖21+s

d

dτ
‖(u, ut)‖2qHdτ

=
qγδ

2

∫ t

0

e−2δ(t−τ)‖u(2)‖21+s‖(u, ut)‖
2(q−1)
H

d

dτ

[

‖ut‖2 + ‖u‖22
]

dτ

=
qγδ

2

∫ t

0

e−2δ(t−τ)‖u(2)‖21+s‖(u, ut)‖
2(q−1)
H

(

κA
1

2u+ γ‖(u, ut)‖2qHA
1

2ut + f(u), ut

)

dτ

≤ CBδ
3ε2 · 1− e−2δt

2δ
+ CBδ

3ε2
∫ t

0

‖(u, ut‖2qH )‖ut‖21dτ

≤ CBε.
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Plugging these estimates into (5.11) and using (5.2), we conclude that

‖(u(2)(t), u(2)t (t))‖2Hs
≤ 4W (t) ≤ C‖(u0, u1)‖2Hs

e−2δt + CBε ≤ 2CBε

provided that t ≥ 1
2δ
ln 1

ε
= (min{δ0, 1, γ4εq})−1 ln 1√

ε
and m ≥ max{N1, N2}. The proof is

complete.

Thanks to Lemma 5.5, using Theorem 4.3 and Corollary 5.7, we have obtained the
following result:

Theorem 5.8. Let Assumption 1 be valid. Then the semigroup {S(t)}t≥0 generated by
weak solutions of Eq. (2.5) is a norm-to-weak continuous (H,Hs)-semigroup and possesses
an (H,Hs)-global attractor As, that is, As is invariant, compact in Hs and attracts any
bounded subset of H in the norm topology of Hs.

Moreover, according to the definition of attractors, it is obvious that A = As, where
A is the global attractor of dynamical system (H, S(t)) constructed in Theorem 4.3.

Remark 5.9. Theorem 4.3 implies that the dynamical system (H, S(t)) posesses a comp-
cat absorbing set, then by [30, Theorem 3.1], {S(t)}t≥0 is global exponentially κ-dissipative
and there exists an exponential attraction set of (H, S(t)), i.e. there exists a compact sub-
set A∗ ⊂ H such that A∗ is positively invariant and exponentially attracts any bounded
subset B ⊂ H:

distH(S(t)B,A∗) ≤ C(‖B‖H)e−αt, ∀t ≥ 0.

Note that A∗ is not an exponential attractor of (H, S(t)) since we don’t know whether
it has finite fractal dimension. In fact, to our best knowledge, there are no any criteria
to verify the finiteness of fractal dimension of global attractors in the degenerate case like
problem (1.1). We shall concern this interesting problem in the future.
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