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Modern technology has brought novel types of wealth. In contrast to hard cash, digital currency
does not have a physical form. It exists in electronic forms only. To date, it has not been clear
what impacts its ongoing growth will have, if any, on wealth distribution. Here, we propose to
identify all forms of contemporary wealth into two classes: distinguishable or identical. Traditional
tangible moneys are all distinguishable. Financial assets and cryptocurrencies, such as bank deposits
and Bitcoin, are boson-like, while non-fungible tokens are fermion-like. We derive their ownership-
based distributions in a unified manner. Each class follows essentially the Poisson or the geometric
distribution. We contrast their distinct features such as Gini coefficients. Furthermore, aggregating
different kinds of wealth corresponds to a weighted convolution where the number of banks matters
and Bitcoin follows Bose–Einstein distribution. Our proposal opens a new avenue to understand
the deepened inequality in modern economy, which is based on the statistical physics property of
wealth rather than the individual ability of owners. We call for verifications with real data.

Introduction.—When two one-dollar banknotes are
randomly gifted to two people, there occur total four
possible ways of distributions. While counting so, it has
been naturally assumed that both notes are distinguish-
able from each other, since they are for sure distinct phys-
ical objects, not to mention the different serial numbers
printed on them. In contrast, when two cents are cred-
ited to a pair of savings bank accounts, there are three
possibilities, because the two cents as deposits are in-
distinguishable. Deposits do not have a physical form.
They exist in the form of abstract numbers by ‘claim’
and ‘trust’ between the bank and the account holders.
While one’s can add up to a natural number, say k ∈ N,

1 + 1 + · · ·+ 1 = k , (1)

all the one’s are intrinsically identical and indistinguish-
able from one another. The notion of being indistin-
guishable, or interchangeably identical, is a fundamental
property of elementary particles in physics: bosons can
share quantum states but fermions subject to the Pauli
exclusion principle cannot. Consequently, their statisti-
cal distributions differ significantly. While the identical
property holds certainly for particles at quantum scale,
there appears no clear-cut limit of applicability to larger
macroscopic objects.

In this paper, we propose to identify all kinds of wealth
into two classes: distinguishable or identical. All the tra-
ditional tangible moneys i.e. hard cash including minted
coins and banknotes are of physical existence and belong
to the distinguishable class. In contrast, financial assets
like bank deposits, stocks, bonds, and loans belong to the
boson-like identical class. Furthermore, all the electronic
forms of wealth share the identical property. At deep
down level of information technology or atomic physics,
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they comprise of chain of bits which have finite length.
The pieces of information stored are accordingly limited
mostly to the amounts and, hence, are abstract like the
deposit or the natural number (1). With no restriction
on the amount of possession, cryptocurrencies, e.g. Bit-
coin [1] are boson-like. Contrarily, having unique digital
identifiers, non-fungible tokens (NFTs) may be identified
as fermions. Having said so, we shall demonstrate that
generic identical wealth can be universally and effectively
described by Gentile statistics [2] which postulates a cut-
off for the maximal amount of possession.

It is an established fact that distinguishable, bosonic,
and fermionic particles follow respectively the Maxwell–
Boltzmann, Bose–Einstein, and Fermi–Dirac statistics,
which are all about the number of the particles them-
selves for a given energy. On the contrary, our primary
interest in this work is to derive the ownership-based dis-
tributions of wealth, i.e. the number of owners who pos-
sess a certain amount of wealth, while the owners are
assumed to be always distinguishable. Further, it is our
working assumption that wealth is distributed in a ‘ran-
dom’ manner. This should be the case if ideally the own-
ers were all equal. It goes beyond the scope of the present
paper to test the hypothesis against real data.

Basic scheme through elemental examples.—We start
with an elementary example of distributing M number of
minted one-cent coins to N number of people in a random
manner. We let nk be the number of people each of whom
owns k number of coins, k = 0, 1, 2, · · · . As we focus on
‘private ownership’ meaning no allowance of sharing, the
opposite notion “kn” does not make sense (except kn=1),
which in a way breaks the symmetry between people and
coins both of which are distinguishable. There are two
constraints nk’s satisfy

∑∞
k=0 nk = N ,

∑∞
k=0 knk = M . (2)
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Irrespective of our notation, an effective upper bound
in the sums exists such as 0 ≤ k ≤ M . Our primary
aim is to compute the total number of all possible or
‘degenerate’ ways of distributions for a given set {nk’s}.
Hereafter, generically for any kinds of wealth, we denote
such a total number by Ω and further factorise it into two
numbers, Ω = Υ × Φ, where Υ is all about the group-
ing of the owners into {nk’s} and thus is independent of
the sorts of wealth. The properties of wealth are to be
reflected in Φ. Specifically, the total number of possi-
ble cases for the N number of people to be grouped into
n0, n1, n2, · · · is

Υ =
N !

n0!n1!n2! · · ·
=

N !∏∞
k=0 nk!

. (3)

While so, that for the M coins to be grouped into

1, 1, · · · , 1︸ ︷︷ ︸
n1

, 2, 2, · · · , 2︸ ︷︷ ︸
n2

, · · · · · · k, k, · · · , k︸ ︷︷ ︸
nk

, · · · , (4)

is, as the coins are distinguishable,

Φ =
M !

(1!)n1(2!)n2 · · ·
=

M !∏∞
k=1(k!)nk

. (5)

Crucially, for each case in Υ, any of Φ can equally oc-
cur. Thus, the total number of possible distributions for
a given set {nk’s} is the product ΥΦ = Ω. The degen-
eracy Φ as counted in (5) is significant since it depends
on nk’s. Insignificant degeneracies that are independent
of nk’s may be taken into account which will multiply
Φ by an overall constant. For example, extra distinc-
tions depending on whether the distribution of each coin
occurs in the morning or afternoon will give an overall
factor 2M to Φ. Yet, our primary interest is to obtain the
most probable distribution of nk. Following the standard
analysis in statistical physics at equilibrium, e.g. [3], we
shall assume N to be sufficiently large, apply the varia-
tional method induced by δnk to ln Ω = ln Υ + ln Φ, and
acquire the extremal solution. Accordingly, any insignif-
icant degeneracy independent of nk’s becomes irrelevant
and ignorable. It merely shifts ln Φ by a constant.

We turn to savings accounts. We consider the M cents
to be now credited to distinguishable N savings accounts.
Since deposits are boson-like identical, the total number
of possible distributions Ω is essentially Υ (3) itself up to
multiplying an insignificant overall constant. This irrel-
evant degeneracy can arise when the bank accounts keep
records of all the details of the crediting of the deposits,
e.g. the time of transaction, which would make the cred-
ited M cents to appear seemingly distinguishable. How-
ever, all the information of each credit are recorded in
a chain of bits which has a finite length, say l = l0 + l1
that decomposes into l0 for the very record of the amount
k and l1 reserved for any extra information. While the
former is rigidly fixed, the extra pieces of information
are rather stochastic and hence contribute to ln Φ by a

constant shift, l1ln 2, which is hence ignorable.1

Lastly, fermion-like wealth or NFTs set M = 1 and
thus fix the ownership-based distribution rather trivially:
nk = (N − 1)δ0

k + δ1
k. Below, for each kind of wealth

we shall introduce what we call the “Gentile” parameter,
Λ ∈ N, which sets an upper bound on the possession num-
ber k as 0 ≤ k ≤ Λ and interpolates boson at Λ =∞ and
fermion at Λ = 1. For distinguishable traditional moneys
in a ‘free’ country, the parameter may be set to coincide
with the total number of each kind, e.g. M in (2), or
to be less by law. However, electronic forms of wealth
can transform to one another. For example, the total
amount of deposits at a bank is not fixed due to the ex-
ternal transfers between accounts at different banks. The
total amount of each Bitcoin UTXO (Unspent Transac-
tion Output) is not fixed either, since they can “combine”
and “split” to other UTXOs [1]. Thus, the total number
of each species of identical wealth is not a constant. For
this reason and also a technical reason later to justify the
approximation of lnnk! ' nk ln(nk/e), we shall keep Λ
as an independent key parameter which characterises, as
a matter of principle, boson-like or fermion-like identical
wealth.
Master formula.—For a unifying general analysis, we

consider distinguishable and identical wealth together.
We call each unit of wealth an object and postulate that
there are D = d+ d̄ distinct kinds of objects: d of them
are distinguishable and d̄ of them are identical. We label
them by a capital index, I = 1, 2, · · · , D, which decom-
pose into small ones, I = (i, d + ı̄ ) where i = 1, 2, · · · , d
for the distinguishable species and ı̄ = 1, 2, · · · , d̄ for
the identical species. An I-th kind object has value
wI ∈ N. For example, the present-day euro coin series
set d = 8 with w1 = 1, w2 = 2, · · · , w8 = 200 in the unit
of cent. We then denote a generic ownership over them
by a D-dimensional non-negative integer-valued vector,
~k = (k1, k2, · · · , kD) of which each component kI denotes
the number of owned Ith-kind objects and is bounded by
a cutoff Gentile parameter: 0 ≤ kI ≤ ΛI . In particular,
we set ΛI = ∞ for bosonic I and ΛI = 1 for fermionic
I. We let n~k be the number of the owners with such a

ownership ~k. The total number of owners is then

N =
∑
~k

n~k ≡
Λ1∑
k1=0

Λ2∑
k2=0

· · ·
ΛD∑
kD=0

n~k , (6)

and the total number of the Ith-kind objects is

MI =
∑
~k

kIn~k ≡ NmI . (7)

1 In this reason, we prefer to say credits are boson-like rather than
(precisely) bosons. Further, we note that the extra information
is generically postdictive: they do not preexist before the trans-
actions take place, or before the ownerships settle down.
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Hereafter,
∑
~k and

∏
~k are our shorthand notations for

the sum and the product of all kI ’s from zero to ΛI ’s, as
in (6) above and (8) below.

On one hand, as the owners are distinguishable, the
number of partitions or groupings of the N owners into
the different ownerships of n~k’s (6) is, generalising (3),

Υ =
N !∏
~k n~k!

≡ N !∏Λ1

k1=0

∏Λ2

k2=0 · · ·
∏ΛD
kD=0 n~k!

. (8)

On the other hand for the partitions of the objects, only
the distinguishable class of objects contributes, as in (5),

Φ =

d∏
i=1

[
Mi!∏

~k (ki!)
n~k

]
. (9)

For each partition of owners in Υ, any of the partitions
of distinguishable objects in Φ can equally occur. There-
fore, the final, total number of possible outputs for a
given set {n~k’s} is the product, Ω = Υ× Φ.

We proceed to apply the variational method to ln Ω
and aim to acquire the extremal solution of n~k. While
doing so, there are constraints to impose:

δN =
∑
~k δn~k = 0 ,

δMi =
∑
~k kiδn~k = 0 ,

δM̄w =
∑
~k

(∑d̄
ı̄=1 wı̄kı̄

)
δn~k = 0 .

(10)

Namely, the total number of owners and those of distin-
guishable objects of each kind are all conserved, as we
assume them to be indestructible. For the identical class
of objects, since they may transform to other species, we
impose that only their total value

M̄w =
∑
~k

(∑d̄
ı̄=1 wı̄ kı̄

)
n~k ≡ Nm̄w (11)

is conserved. To proceed, we employ a well-known ap-
proximation for the factorial, lnn~k! ' n~k ln(n~k/e), which
is valid for large n~k only. Our Gentile cutoff parameter
ΛI then effectively prevents n~k from getting too small,
by setting the upper bound on kI . It follows then, from
δ lnn~k! = δn~k lnn~k, that the variation of ln Ω reads

δ ln Ω = −
∑
~k

δn~k

[
lnn~k +

d∑
i=1

ln(ki!)

]
= 0 . (12)

Around the extremal distribution, this variation should
vanish, while δn~k’s must meet the constraints (10), oth-
erwise they are arbitrary. Therefore, only up to some
constants α, βi, β̄, putting

αδN +

(
d∑
i=1

βiδMi

)
+ β̄δM̄w − δ ln Ω = 0 , (13)

we should have for every ~k without sum,

lnn~k + α+

d∑
i=1

[
ln(ki!) + βiki

]
+ β̄

d̄∑
ı̄=1

wı̄kı̄ = 0 . (14)

This gives the desired extremal solution,

n~k = NP~k , P~k =
[∏d

i=1 Pi(ki)
] [∏d̄

ı̄=1 P̄ı̄(kı̄)
]
,

(15)
where P~k is our master probability distribution given by
the products of Λ-truncated Poisson and geometric dis-
tributions,

Pi(ki) = Ni
e−βiki

ki!
, Ni =

1∑Λi
ki=0 e−βiki/ki!

,

P̄ı̄(kı̄) = Nı̄ e−β̄wı̄kı̄ , Nı̄ =
1− e−β̄wı̄
1− e−(Λı̄+1)β̄wı̄

.

(16)
To write this we have solved α in terms of N and the
normalisation constants, NI ’s, such that

∑
~k P~k = 1 and

∑
~k

kiP~k =

(
1−Ni

e−βiΛi

Λi!

)
e−βi = mi ,

∑
~k

kı̄P~k =
1− (Λı̄ + 1)e−Λı̄β̄wı̄ + Λı̄e

−(Λı̄+1)β̄wı̄(
eβ̄wı̄ − 1

) [
1− e−(Λı̄+1)β̄wı̄

] .

(17)
It remains to determine βi, β̄ from (17) and (11). In
particular, when Λi =∞, we get e−βi = mi and a pre-
cise Poisson distribution holds with Ni = e−mi . On the
other hand, when d̄ = 1 and Λı̄ =∞ or Λı̄ = 1, we obtain
e−β̄wı̄ = mı̄

1±mı̄ and recover the Bose–Einstein or Fermi–
Dirac distributions having an exponential tail,

mı̄ =
∑
~k

kı̄P~k =
1

eβ̄wı̄ ∓ 1
, (18)

which quantify the ‘popularity’ (or inverse ‘rarity’ c.f. [4])
of the digital wealth. As the geometric distribution is es-
sentially the exponential Boltzmann–Gibbs law, we may
identify β̄ as the inverse “temperature”, see also [5].

The distribution of the total value follows

P(v) =
∑
~k

δv~w·~k P~k , (19)

where δv~w·~k is the Kronecker-delta with ~w·~k =
∑D
I=1 wIkI

amounting to a total value v. Essentially (19) is a
weighted convolution whose generating function reads for
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Λi =∞,

Z(q) =

∞∑
v=0

P(v)qv =
∑
~k

P~k q
~w·~k =

[
d∏
i=1

emi(q
wi−1)

]

×

 d̄∏
ı̄=1

(
eβ̄wı̄ − 1

eβ̄wı̄ − qwı̄

)(
e(Λı̄+1)β̄wı̄ − q(Λı̄+1)wı̄

e(Λı̄+1)β̄wı̄ − 1

) .
(20)

While the truncated Poisson distribution Pi(ki) (16) with
a finite cutoff Λi can be applicable to rare valuable
items that are not necessarily hard cash, henceforth, for
simplicity, we set Λi =∞ (distinguishable) and Λı̄ =∞
(bosonic) or Λı̄ = 1 (fermionic).2 The Poisson and the
bosonic/fermionic geometric distributions

Pp(m, k) = e−m mk

k! , P̄b(m, k) = 1
1+m

(
m

1+m

)k
,

P̄f(m, k) = (1−m)δ0
k +mδ1

k = (1−m)
(

m
1−m

)k
,

(21)
are then the elemental ‘atomic’ distributions in (16).
Here, m > 0 is the mean value in each distribution. For
the fermionic distribution, it should be less than one,
such as m = 1/N . Further, the variance is m or m(1±m)
for the distinguishable or bosonic/fermionic cases. In the
vanishing limit m → 0, they all reduce to a Kronecker-
delta distribution: Pp(0, k) = P̄b/f(0, k) = δ0

k.
Poisson versus Geometric.—As relevant to both finan-

cial assets and cryptocurrencies, here we make various
comparisons between Pp(m, k) and P̄b(m, k) allowing ar-
bitrary m > 0 and unrestricted k = 0, 1, 2, · · · ,∞.

While P̄b(m, k) is a monotonically decreasing function

in k, from Stirling’s formula, ln k! ' k ln k−k+ ln
√

2πk,
Pp(m, k) assumes the maximal value,

Max
[
Pp(m, k)

]
' 1/

√
2πm at k ' m. (22)

That is to say, the Poisson distribution is on-peak for the
owners of the averaged wealth m = M/N , namely the
‘middle class’. Further, the ratio of the two distributions

P̄b(m, k)/Pp(m, k) = emk!/(m+ 1)k+1 (23)

shows that the geometric distribution has a thicker tail
than Poisson one for k >> m. Yet, complementary to
this, an inequality holds:∑

k>m

P̄b(m, k) <
∑
k>m

Pp(m, k) , (24)

which implies that the probability for k > m is larger in
the Poisson distribution compared to the geometric one,

2 The geometric distribution P̄ı̄(kı̄) with other finite values of Λı̄

appears applicable to some Ethereum’s flexible token standard
(ERC-1155) [6].

see FIG. 1. In fact, in the large m limit, we have [7]

lim
m→∞

∞∑
k=m+1

Pp(m, k) =
1

2
, lim

m→∞

∞∑
k=m+1

P̄b(m, k) = e−1 .

(25)
Thus, 50% or about 37% of the holders have more than
the mean value in the Poisson or geometric distribution.

0 2 4 6 8 10 12 14

m

0.1

0.2

0.3

0.4

0.5



k >m

P (k )

FIG. 1. The probability to own more than mean value
m:

∑
k>m Pp(m, k) (Poisson for distinguishable wealth, red)

vs.
∑

k>m P̄b(m, k) (geometric for identical wealth, blue),
with varying mean value m (horizontal axis). The former
is always larger than the latter. They converge to 1/2 and
e−1 ' 0.367879 in the large m limit (25).

We compare Shannon entropy, S =
∑
k −P (k) lnP (k).

Since both P (k) and − lnP (k) are non-negative, the en-
tropy is bounded S ≥ 0. The saturation occurs when
everyone has the equal amount of wealth i.e. the aver-
age value m implying P (k) = δmk , i.e. either P (k) = 0 or
lnP (k) = 0. For the Poisson and geometric distributions,
this happens only in the vanishing limit m → 0. For a
given arbitrary value of m, it is famously the geometric
distribution P̄b(m, k) that sets the entropy maximal,

S̄b(m) = (m+ 1) ln(m+ 1)−m lnm. (26)

The entropy of the Poisson distribution Pp(m, k) [8],

Sp(m) =
1

2
ln(2πem)− 1

12m
+O(m−2) (27)

is then roughly half of the maximum (26) for large m.

We draw the Lorenz curves of Pp(m, k) and P̄b(m, k)

as FIG. 2 and FIG. 3, by setting x =
∑k
j=0 P (j) and

y = 1
m

∑k
j=0 j P (j). Since P (0) 6= 0 in both cases, the

curves should include an interval 0 ≤ x ≤ P (0) for trivial
y = 0. While we depict the Lorenz curve of Pp(m, k)
numerically, for the geometric distribution P̄b(m, k), we
solve for k in terms of x,

k + 1 = − ln(1− x)

ln(1 + 1/m)
, (28)
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and obtain an analytic expression of the Lorenz curve:

y(x) =


x+

(1− x) ln(1− x)

m ln(1 + 1/m)
for

1

m+ 1
≤ x < 1

0 for 0 ≤ x ≤ 1

m+ 1

,

(29)
of which the large m limit is known [9].

Lastly, we compute the Gini coefficient defined by

G[m] :=
∑Λ
k=0

∑Λ
k′=0

|k−k′|
2m P (k)P (k′)

= 1 + 1
m

∑Λ
k=0 P (k)

[
kP (k)− 2

∑k
k′=0 k

′P (k′)
]
.

(30)

For Pp(m, k), from 1
(k!)2 = 1

π(2k)!

∫ π
0
dθ (2 cos θ)2k, we get

c.f. [10]

Gp[m] =
1

π

∫ π

0

dθ e−2m(1−cos θ)(1 + cos θ) . (31)

For P̄b(m, k) and additionally P̄f(m, k), we have3

Gb[m] = 1+m
1+2m , Gf [m] = 1−m. (32)

We note then

Gp[m] < Gb[m] for arbitrary m > 0 and

Gf [m] < Gp[m] < Gb[m] for 0 < m < 1 .

(33)
Especially in the large m limit, we get Gp[∞] = 0 (the
perfect equality) and Gb[∞] = 1

2 . In the opposite vanish-
ing limit, the Gini coefficients are all unity, Gp,b,f [0] = 1,
hence economically most unequal. Though the fermionic
Gini coefficient Gf [m] = 1 −m can be close to unity as
m = 1/N << 1, due to the severe restriction of the pos-
session, i.e. k = 0, 1, it is the smallest among the three.

More than one bank.—We now consider the deposits
of savings accounts at more than one bank which allow
external transfers and adopt the same minimal unit of
currency. That corresponds to the equal-weighted con-

3 Alternative to (30), we may compute the Gini coefficient through
an integral of the Lorenz curve (29),

G′b[m] =

(
m

m+ 1

)2 ( 1

2m ln(1 + 1/m)
+

1

m
+

1

m2

)
,

which differs from Gb[m] in (32) by at most 2.4% at m ' 0.53.

m = ∞

m = 1

m = 0.1

m=100

m=0

0.2 0.4 0.6 0.8 1.0

x

0.2

0.4

0.6

0.8

1.0

y

FIG. 2. Lorenz curves of the Poisson distribution Pp(m, k)
for distinguishable wealth. i) m =∞, Gp = 0 (45-degree
line of perfect equality), ii) m = 100, Gp ' 0.056, iii) m = 1,
Gp ' 0.52, iv) m = 0.1, Gp ' 0.91, and v) m = 0, Gp = 1 as
y = δ0

x . Each curve includes y = 0 for an interval 0 ≤ x ≤
e−m. Only when m ≈ 0.35, “80/20 rule” holds.

m = 1
m = 0.1

m=∞

m=0

0.2 0.4 0.6 0.8 1.0

x

0.2

0.4

0.6

0.8

1.0

y

FIG. 3. Lorenz curves of the geometric distribution P̄b(m, k)
for identical wealth. i) m =∞, Gb = 1

2
as saturated by

y = x+(1−x) ln(1−x) [9], ii) m = 1, Gb ' 0.68, iii) m = 0.1,
Gb ' 0.93, and iv) m = 0, Gb = 1 as y = δ0

x. Each curve in-
cludes y = 0 for an interval 0 ≤ x ≤ 1

m+1
. From (29), only

when m ≈ 0.47, “80/20 rule (aka Pareto principle)” holds.

volution (19) of the geometric distributions: with wı̄ ≡ 1,

P̄d̄ (m, k) =
(d̄+ k − 1)!

(d̄− 1)! k!

(
d̄

m+ d̄

)d̄(
m

m+ d̄

)k
,

Z̄d̄ (m, q) =

∞∑
k=0

P̄d̄ (m, k)qk =

[
d̄

d̄−m(q − 1)

]d̄
,

(34)
where d̄ is the number of the banks. Remarkably,4 for
d̄ ≥ 2, P̄d̄ (m, k) is no longer a monotonically decreasing

4 In contrast, rather natural from the very distinguishability, the
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function in k. It assumes the maximal value,

Max
[
Pd̄ (m, k)

]
' 1√

2πm(1− 1
d̄ )(1+m

d̄ )
at k? '

(
1− 1

d̄

)
m.

(35)
The fact k? < m implies that P̄d̄(m, k) is a more unequal
distribution compared to the Poisson one Pp(m, k) (22).
Nonetheless, in the large d̄ limit, P̄d̄ (m, k), Z̄d̄ (m, q), and
the maximum (35) all reduce to those of the Poisson dis-
tribution or (22),

lim
d̄→∞

P̄d̄ (m, k) = e−m
mk

k!
, lim

d̄→∞
Z̄d̄ (m, q) = em(q−1) .

(36)
An intuitive explanation is as follows. When the number
of the banks is infinite, each bank has most likely zero or
only one unit of the deposits. The identical wealth then
effectively becomes distinguishable by the distinct banks.
In this way, P̄d̄ (m, k) interpolates the geometric and the
Poisson distributions, or FIG. 2 and FIG. 3. More banks
there are, smaller the Gini coefficient is.

Boson-like Bitcoin.—As a cryptocurrency, Bitcoin [1]
belongs to the identical class of wealth. Although each
UTXO has its unique cryptographic hash, it generates in-
significant ignorable information. UTXOs of a common
value are identical, while those of different values are dis-
tinguishable, c.f. [11, 12]. The value of every UTXO is
discretised in a minimal unit called ‘satoshi’. In this unit,
we have wı̄ ≡ ı̄ where ı̄ runs from one to d̄ = 2.1 × 1015

which is the hard cap encoded in Bitcoin’s source code.
For each UTXO worthy of ı̄ satoshi, the ownership-based
distribution and the expected number are from (16) given
by geometric and Bose–Einstein distribution respectively,

P̄ı̄(kı̄) =
(

1− e−ı̄β̄
)
e−ı̄β̄kı̄ ,

∞∑
kı̄=0

kı̄P̄ı̄(kı̄) =
1

eı̄β̄ − 1
.

(37)
The generating function of the total value (20) is then

Z(q) =

d̄∏
ı̄=1

1− e−ı̄β̄

1−
(
e−β̄q

)ı̄ =

∞∑
v=0

P(v)qv , (38)

and thus, for v ≤ d̄ the total-value-based distribution is

P(v) = P(0)P(v)e−vβ̄ , P(0) =

d̄∏
ı̄=1

(
1− e−ı̄β̄

)
,

(39)
where P(v) is the number-theory partition of the non-
negative integer v, which appears here since the UTXO

equal-weighted convolution of the Poisson distributions is closed :

k∑
l=0

Pp(m1, l)Pp(m2, k − l) = Pp(m1 +m2, k) .

values are equally spaced i.e. wı̄ = ı̄, as is the case with
a simple harmonic quantum oscillator.

We need to determine β̄ in terms of the mean total
value, i.e. m̄w = M̄w/N (11),

∞∑
s=0

sP(s) = q∂qZ(q)|q=1 =

d̄∑
ı̄=1

ı̄

eı̄β̄ − 1
= m̄w . (40)

Practically putting d̄ =∞, we approximate the above
sum by a semi-infinite integral,

d̄∑
ı̄=1

ı̄

eı̄β̄ − 1
' β̄−2

∫ ∞
0

dx
x

ex − 1
=

π2

6β̄2
, (41)

and fix β̄,

β̄ ' π√
6m̄w

. (42)

Further, from the Hardy–Ramanujan formula of the par-
tition, we obtain for large enough v,

P(v)

P(0)
' 1

4v
√

3
eπ
√

2v/3− vβ̄ , (43)

such that its maximum

Max

[
P(v)

P(0)

]
'
√

3β̄2

2π2
e(π2/6)β̄−1

(44)

is positioned at v? which is smaller than the mean value,

v? ' π2

6β̄2

(
1 +

√
1− 24β̄/π2

2

)2

< m̄w =
π2

6β̄2
. (45)

This inequality implies that, despite the large d̄ limit
which we have tactically assumed, in contrast to the
many bank limit (36), the Bitcoin distribution with
wı̄ = ı̄ is still more unequal than the Poisson one (22):
P(v) (43) has thicker tail than Pp(m, k) ∼ (me/k)k.

According to [13], as of 2022, the total number of ad-
dresses reads N ∼ 109, and the total value of all the
UTXOs is roughly M̄w ∼ 1015 satoshi. We then estimate
m̄w ∼ 106 and, from (42), β̄ ∼ 10−3, the smallness of
which justifies our integral approximation (41).5

Discussion.—To conclude, traditional tangible moneys
are distinguishable; yet financial assets and cryptocurren-
cies are all identical. The usage of the boson-like wealth
results in more unequal geometric-type distribution com-
pared to the Poisson-type distribution of the distinguish-
able wealth. While so, aggregating different kinds of
wealth leads to a weighted convolution. In particular, the
existence of more than one bank softens the economic in-
equality of the geometric distribution by a monopolistic

5 For β̄ = 10−3 and d̄ ≥ 104, the error of (41) is less than 0.1%.
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bank. Similar to (36) which is for bosonic geometric dis-
tributions, the equal-weighted-convolution of fermionic
geometric distributions (21) also converges to a Poisson
distribution in the large limit of total amount M̄ with
fixed mean value m = M̄/N : the (binomial) convolution

P̄M̄ (m, k) =
M̄ !

(M̄ − k)!k!

(
1− 1

N

)M̄−k (
1

N

)k
(46)

converges to a Poisson distribution,

lim
M̄→∞

P̄M̄ (m, k) = e−m
mk

k!
. (47)

This provides an alternative derivation of the Poisson
distribution of distinguishable objects. Even though
hard cashes are distinguishable, each of them is unique
and thus its distribution should coincide with that of
NFT, i.e. the fermionic geometric distribution (21). Af-
ter considering multiple of them of the same value,
through the equal-weighted-convolution, the Poisson dis-
tribution emerges consistently out of the bosonic as well
as fermionic geometric distributions, (36) and (47).

The distribution of Bitcoin is given by the number-
theory partition. For completeness, the convolution of
a geometric and a Poisson distribution, as for hard cash
and savings account, reads

P̂ (m, m̄, k) :=

k∑
j=0

P (m, j)P̄ (m̄, k − j)

=
e−m

m̄+ 1

(
m̄

m̄+ 1

)k k∑
j=0

1

j!

(
m+m/m̄

)j
,

(48)

which carries a power-law tail em/m̄

m̄+1

(
m̄
m̄+1

)k
for large k.

Putting wı̄ = 1 and wı̄ = −1 separately for a pair
of P̄d̄(m, k)’s (34), we can further aggregate deposit and
debt: for net balance a ∈ Z, we have

Pd̄(m1,m2, a) :=

∞∑
k1=0

∞∑
k2=0

δak1−k2
Pd̄(m1, k1)Pd̄(m2, k2) ,

(49)
where m1 ≥ 0 and m2 ≥ 0 are the mean values of deposit

and debt respectively. In particular, for d̄ = 1 we get

Pd̄=1(m1,m2, a) =


1

m1+m2+1

(
m1

m1+1

)a
for a ≥ 0

1
m1+m2+1

(
m2

m2+1

)|a|
for a < 0 .

(50)
A priori, the Poisson and geometric distributions (21)

depend on the mean ‘number’ m = M/N (dimension-
less), rather than any ‘value’ (“dimensionful”). There-
fore, any adjustment of the minimal unit, e.g. demolish-
ing cents and keeping euros only, can change the number
M and affect the distributions.

It would be of interest to investigate any phase transi-
tion for the master distribution (15) through the changes
of variables, even if N is finite c.f. [14]. As Bitcoin is
boson-like, one may wonder about Bose–Einstein conden-
sation especially to the minimal ı̄ = 1 UTXO. For this,
we consider its popularity normalised by the mean to-
tal value (40), or the ratio 1

eβ̄−1
/
[∑∞

ı̄=1
ı̄

eı̄β̄−1

]
. This

quantity increases monotonically from zero at β̄ = 0
and converges to one as β̄ grows. In particular, when
β̄ ≥ 3, it becomes greater than 0.9. This “low tempera-
ture” might be attainable if Bitcoin gets ever extremely
popular: (somewhat unrealistically) large N with M̄w

bounded by the hard cap.
We have restricted our work to be theoretical. Yet, the

resulting distributions including FIG. 2 and FIG. 3 ap-
pear consistent with real data, for example [15–17]. Be-
sides, the (truncated) Poisson-type distribution (16) can
be applied not only to tangible moneys, but also to var-
ious objects, including citations of research papers [18].

Taking into account the individual differences of own-
ers, or other extra factors, may weaken the assumed ‘ran-
domness’. Even so, we expect that the difference of in-
equality in distributions persists depending on the class
of wealth, distinguishable or identical. We call for thor-
ough verifications with wide applications.

Lastly, while we have borrowed the notion of indistin-
guishability from particle & statistical physics for the
description of financial wealth, namely econophysics [19–
21], our results like (36) may help to understand how
macroscopic objects formed by many identical particles
appear distinguishable, i.e. through the generation of
large degeneracy of quantum states.
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