
Quantum-inspired optimization for wavelength assignment

Aleksey S. Boev,1 Sergey R. Usmanov,1 Alexander M. Semenov,1 Maria M. Ushakova,1

Gleb V. Salahov,1 Alena S. Mastiukova,1 Evgeniy O. Kiktenko,1 and Aleksey K. Fedorov1

1Russian Quantum Center, Skolkovo, Moscow 143025, Russia

Problems related to wavelength assignment (WA) in optical communications networks involve
allocating transmission wavelengths for known transmission paths between nodes that minimize a
certain objective function, for example, the total number of wavelengths. Playing a central role
in modern telecommunications, this problem belongs to NP-complete class for a general case, so
that obtaining optimal solutions for industry relevant cases is exponentially hard. In this work, we
propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
We propose an advanced embedding procedure for this problem into the quadratic unconstrained
binary optimization (QUBO) form having an improvement in the number of iterations with price-
to-pay being a slight increase in the number of variables (“spins”). Then we compare a quantum-
inspired technique for solving the corresponding QUBO form against classical heuristic and industrial
combinatorial solvers. The obtained numerical results indicate on an advantage of the quantum-
inspired approach in a substantial number of test cases against the industrial combinatorial solver
that works in the standard setting. Our results pave the way to the use of quantum-inspired
algorithms for practical problems in telecommunications and open a perspective for the further
analysis of the employ of quantum computing devices.

I. INTRODUCTION

Optimization is a tool with applications across various
technologies [1]. However, solving complex real-world op-
timization problems is computationally intensive even in
the case of using advanced, specialzed hardware. Quan-
tum computers are widely believed to be useful for solv-
ing computationally difficult optimization problems be-
yond the capability of existing computing devices is to
use quantum optimization [2–6]. A general approach con-
sists in encoding a cost function in a quantum Hamilto-
nian [7], so that its low-energy state is obtained starting
from a generic initial state. Among existing methods to
achieve such dynamics, quantum annealing offers phys-
ical implementations of a non-trivial size [8]. Quantum
annealing is by now explored for analysis of various ar-
eas, such as chemistry calculations [9, 10], lattice pro-
tein folding [11, 12], genome assembly [13, 14], solving
polynomial systems of equations for engineering applica-
tions [15] and linear equations for regression [15], portfo-
lio optimization [16–19], forecasting crashes [20], finding
optimal trading trajectories [21], optimal arbitrage op-
portunities [22], optimal feature selection in credit scor-
ing [23], foreign exchange reserves management [24], traf-
fic optimization [25–27], scheduling [28–33], railway con-
flict management [32, 33], and many others [5]. Advances
also include the recent experimental demonstration of a
superlinear quantum speedup in finding exact solutions
for the hardest maximum independent set graphs [34].

Although quantum optimization algorithms suggest
an intriguing possibility to solve computationally diffi-
cult problems beyond the capability of classical comput-
ers, exiting conceptual and technical limitations make
it challenging to use it for solving problems of indus-
try relevant sizes. Attempts to simulate quantum com-
putations classically resulted in a new class of algo-
rithms and techniques know as quantum-inspired [35, 36].

As soon as these algorithms are compatible with cur-
rently existing (classical) hardware, analyzing their limit-
ing capabilities and advantages over classical approaches
are required towards their use in practice. Specifi-
cally, a way to solve combinatorial optimization prob-
lems via simulating the coherent Ising machine (SimCIM)
has been proposed [35]. SimCIM algorithm is able to
solve optimization problems that are formulated in the
quadratic unconstrained binary optimization (QUBO) /
Ising form, which can be done for various practically rele-
vant cases [7]. The SimCIM approach has demonstrated
capabilities to outperform bona fide coherent Ising ma-
chine and existing classical methods for certain GSet
graphs. However, one of the arising questions is related
to the need in to tune hyperaparameters [35]. For a wide
range of benchmark of quantum-inspired heuristic solvers
for quadratic unconstrained binary optimization, namely
D-Wave Hybrid Solver Service, Toshiba Simulated Bifur-
cation Machine, Fujitsu Digital Annealer, and simulated
annealing on a personal computer, see also Ref. [37].

Design of optical communication network is a specific
industrial avenue, in which combinatorial optimisation
in ubiquitous. Examples of tasks include finding opti-
mal transmission and reservation paths, frequency allo-
cation, network throughput maximization and many oth-
ers [38, 39]. A notable example is the routing and wave-
length assignment (RWA) problem, which consists in al-
locating transmission wavelengths and finding transmis-
sion paths between nodes that minimize the total number
of wavelengths. Conventional techniques, such as linear
programming and mixed integer programming, are useful
for most of the cases; however, the combinatorial nature
and hardness of the problems make it extremely challeng-
ing to apply these techniques for large-scale problems.
It is then reasonable to assume that telecommunication
industry may benefit from the use of quantum-inspired
algorithm in the near-term horizon and quantum com-
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FIG. 1. Illustration of the approach. A linear network with
generated requests and paths consisting of 5 nodes, 4 edges,
and 5 traffic paths is considered: Solid lines represent original
edges, and the arrows lines represent traffic paths. One can
reduce the WA problem to a graph coloring problem with
a simple graph transformation (bottom of the figure): Each
traffic path is now considered a vertex; if two traffic paths
share (at least) one fiber they are connected by an edge.

puting in the future [40, 41].
In this study, we consider the variant of the RWA prob-

lem. To explain more precisely, we focus on the wave-
length assignment task for known routes which we further
refer to as the wavelength assignment (WA) problem.
This problem is generally NP-hard, so its solution is com-
putationally challenging for large sizes. We propose an
original way to transform the WA problem to the QUBO
form, which makes it compatible with quantum-inspired
optimization algorithm and, in principle, quantum an-
nealing hardware. For solving this problem, we develop
a technique based on the SimCIM quantum-inspired op-
timization solver [35] with the use of the Lagrange mul-
tipliers for minimizing the number of hyperparameters.
Our numerical results indicate on an advantage of the
quantum-inspired solver in a number of test cases against
the industrial combinatorial solver working on the stan-
dard settings.

II. WAVELENGTH ASSIGNMENT PROBLEM
(WA)

Let us consider a network connecting a number of end-
points with optical links (see an example in Fig. 1.) Sev-
eral endpoints that are interconnected by optical links
sequentially comprise a path between transmitter and
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FIG. 2. An example of a graph coloring problem and its
representation to the network graph with requests.

receiver. A single optical link can be shared between
several paths given that each path is assigned different
wavelengths. Each path is indicated by the path ID,
which uniquely identifies a pair of transmitting/receiving
nodes, sequence of interconnecting nodes, and the wave-
length ID.

The WA problem implies allocation of the wavelength
IDs for paths that are pre-computed and known a priori
in such a way to meet the target objective, for example,
the number of the used wavelengths is minimized 1. For-
mally, WA is considered to be correct if and only if it
satisfies the following requirements: (i) each path should
use a single wavelength and (ii) several paths sharing the
same edge should have different wavelengths.

The problem of finding correct wavelength allocation
under given constraints is equivalent to the coloring prob-
lem [7] in transformed graph G = (V,E), where nodes V
and edges E representing paths and their intersections
in fibers, correspondingly (two nodes from V are con-
nected if and only if the corresponding paths have an in-
tersection within the optical network). Let NV and NE

denote numbers of vertices and edges of G, respectively.
Later we interchangeably use terms wavelengths and col-
ors since the underlying problems are formally identical.
The example of the correspondence of network paths to
graph coloring mapping is shown in Fig. 2.

In order to define a particular coloring of graph G with
at most W colors, we introduce a two collections of aux-

1 We note that other objectives for optimization are also possible,
such as total throughput or network resiliency.
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iliary variables. The first variable is x that consists of
NVW binary variables

xvi =

{
1, if vertex v is assigned wavelength i,

0, otherwise.
(1)

The second one, denoted by w, consists of W binary
variables

wi =

{
1, if i-th wavelength is assigned,

0, otherwise.
(2)

Employing x and w, the problem of finding an correct
allocation with minimum number of the used wavelengths
not exceeding some maximal number W ≥ 1, can be
formulated as an integer programming (IP) problem of
the following form:

W∑
i=1

wi → min, s.t. (3)

W∑
i=1

xvi = 1 ∀v ∈ V, (4)

xui + xvi ≤ wi ∀i ∈ {1, . . . ,W},∀(u, v) ∈ E. (5)

One can see that constraint (4) assures that each vertex is
assigned to exactly one wavelength, while constraint (5)
indicates that two adjacent vertices are not assigned the
same wavelength.

This problem is generally NP-hard, so its solution
is computationally challenging for large sizes. As it
is shown below, the QUBO reduction makes the prob-
lem compatible with quantum-inspired algorithms that
can shift tractability boundaries to higher problem sizes.
While such reduction usually involves additional over-
heads in the problem size due to auxiliary variables, the
overheads can be compensated by the computational ad-
vantage of quantum-inspired solvers leading to better
overall results.

III. RESULTS

A. Transforming the WA problem to a QUBO form

In order to make the WA problem compatible with the
SimCIM quantum-inspired optimization algorithm [35],
we first consider a transformation, allowing one to con-
vert the IP problem (3)–(5) into a QUBO form as follows:

sTQs→ min (6)

for a certain binary vector s and the symmetric real ma-
trix Q. This problem is equivalent to finding a configu-
ration of binary-state particles (“spins”) that minimizes
the energy

H(s) = sTQs, (7)

where the Ising Hamiltonian H consists of only single-
order terms (energies of individual spins in external mag-
netic field) and pair-wise interactions between spins. Al-
though spin variables usually are considered to take val-
ues ±1, the transition to a binary form is quite straight-
forward [13].

A known way [7] to transform a graph coloring problem
to the QUBO form, is to set s := x (here we treat x as
a NVW -dimensional vector), and use the Hamiltonian of
the form

H(x) = H1(x) +H2(x), (8)

where

H1(x) =

NV∑
v=1

(
1−

W∑
i=1

xvi

)2

, (9)

H2(x) =
∑

(u,v)∈E

W∑
i=1

xuixvi. (10)

One can see that H1(x) > 0 in the case where single
node is assigned with two distinct colors, whileH2(x) > 0
when two adjacent vertices are assigned the same color. If
minimization routine provides some x such that H(x) =
0, then x defines a correct coloring with at most W col-
ors. Therefore, an ability to solve the QUBO problem
corresponding to Hamiltonian (8) garantees one to solve
a decision problem of whether it is possible to color a
graph with at most W colors. Since it is always possible
to color a graph with W = NV colors, a minimal number
of colors can be obtained, for example, by using a stan-
dard binary search with at most dlog2(NV )e iterations.
We note that this approach is quite sensitive to possible
imperfections of QUBO problem solutions, especially at
first iterations of the binary search. An alternative way
is to decrease W by unit at each step, that however, re-
sults in a possible increase of iteration numbers up to
O(Wstart), where Wstart is the initial upper bound for
colors number.

B. Improving QUBO transformation for
quantum-inspired annealing

We propose an improved approach for solving graph
coloring problem by developing an alternative transfor-
mation into a QUBO form. In our approach we pursue
two major goals. The first is decreasing the number of
QUBO problems to be solved. The second is making the
whole algorithm robust against the possibility of finding
not optimal, but some suboptimal solution for a particu-
lar QUBO problem. We note that these points are of par-
ticular importance in the framework of using (quantum-
inspired) annealing for solving QUBO problems.

The main idea of our approach is to consider an ex-
tended NV (W+1)-dimensional binary vector s := (w,x)
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and take the target Hamiltonian in the following form:

H(w,x) = c0H0(w) + c1 [H1(x) +H2(x)]

+ c2H3(w,x), (11)

where

H0(w) =

W∑
i=1

wi, (12)

H3(w,x) =
∑

(u,v)∈E

W∑
i=1

(1− wi) (xui + xvi) , (13)

and ci are positive coefficients satisfying a particular con-
straint (see more details in Methods V A). Minimiza-
tion of this Hamitonian provides us the solution vector
(w,x) such that the optimal number of wavelength is en-
coded in w by non-zero values. We note that the term
H0(w) grows with the total number of used wavelengths;
H1(x) and H2(x) have the same form as in Eq. (8); and
H3(w,x) is responsible for the relationship wi ≥ xvi,
which becomes positive when the relation is violated.
Both terms H2(x) and H3(w,x) correspond to inequali-
ties (5) in the IP form (see Methods V).

The complete algorithm of solving graph coloring prob-
lem (WA problem) is shown in Algorithm 1. The algo-
rithm employs a subroutine make qubo(G,W ) that gen-
erates the corresponding QUBO matrix Q with respect
to Hamiltonian (11), given input graph G and the target
number of the wavelengths W . The QUBO problem is
then solved with subroutine solve qubo(Q), which finds
the optimal spins vector s = (w,x) using the quantum-
inspired SimCIM approach for the QUBO matrix Q as
defined in Ref. [35]. In order check the validness of
obtained solution, we use check coloring(G,x) that vali-
dates the fulfilment of Eq. (4) and Eq. (5).

Algorithm 1 Solving graph coloring problem with im-
proved transformation

Require: W is the initial upper bound on the number of
wavelengths

Require: make qubo(G,W ) → Q
Require: solve qubo(Q) → (w,x)
Require: check coloring(G,x) → true/false

returns true if coloring is correct

1: xopt := 0 . initializing solution variable
2: W ′ := W . current number of colors
3: while W ′ ≥ 1 do
4: Q := make qubo(G,W ′)
5: (w,x) := solve qubo(Q)
6: if check coloring(G,x) = true then

7: W ′ :=
∑W ′

i=1 wi − 1
8: xopt := x
9: else

10: break
11: return xopt

One can see that, if solve qubo(Q) provides an optimal
solution, then the whole problem is solved in the first

iteration. However, even in the case when the obtained
solution is sub-optimal, the updated problem with the
reduced upper bound W becomes easier to solve, and the
algorithm converges with a few numbers of iterations.

C. Numerical results

Here we solve the WA problem and obtain results with
use of (i) the proposed technique based on quantum-
inspired optimization SimCIM [35] (with the improved
approach, see Methods), (ii) industry grade commer-
cial Gurobi optimization software, and (iii) open-source
mixed integer programming solver — GLPK. We note
that in the case of the quantum-inspired optimization
with SimCIM, we solve the problem in the QUBO
form (11), whereas in case of Gurobi and GLPK we use
the IP formulation of graph coloring [see Eqs. (3)–(5)].
Additionally, we include the results obtained via largest
degree first (LDF) heuristics used as the baseline, since it
allows one to instantly produce feasible coloring without
numerical optimization. We also ran the experiments for
original QUBO transormation proposed in Ref. [7] and
compared them to our proposed QUBO in the Table IV
in Appendix.

Number
of nodes

LDF GLPK Gurobi SimCIM

10 4.46 4.34 4.34 4.34
20 6.82 6.36 6.36 6.36
30 9.03 8.03 8.02 8.02
40 10.92 - 9.38 9.39
50 12.80 - 10.88 10.96
60 14.83 - 12.28 12.44
70 16.62 - 13.70 14.01
80 18.41 - 15.34 15.56
90 20.10 - 17.21 17.02
100 22.01 - 19.64 18.54

Average number of colors
(lower is better)

TABLE I. Numerical results obtained with largest degree first
(LDF) heuristics, open-source mixed integer programming
solver (GLPK), Gurobi optimization software, and SimCIM
quantum-inspired optimization on number of colors averaged
by number of nodes. The best result is highlighted in bold.

Our numerical experiments have been performed on a
synthetic dataset of 900 randomly generated graphs with
varying nodes number and edge probability (for details,
see Methods V C). The main characteristics that we are
interested in are time-to-solution (TTS) and the num-
ber of colors in the obtained solution. The total runtime
has been limited by 300 seconds, and the the best solu-
tions have been compared. Results are averaged over 90
runs for each graph size (for details, see Table V). For all
numerical experiments, we use the same hardware set,
which is based on Xeon E-2288G 3,7GHz CPU, 128GB
RAM, and GeForce GTX1080 8GB graphics card.
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Number
of nodes

GLPK Gurobi SimCIM

10 1.77 0.002 0.19
20 103.97 0.02 0.45
30 195.39 0.12 4.95
40 - 0.79 8.90
50 - 14.63 16.82
60 - 38.89 28.51*
70 - 66.01 61.58*
80 - 102.14 69.00*
90 - 144.23 79.87
100 - 127.33 123.13

Average time (seconds)
(lower is better)

TABLE II. Mean solution time depending on the number of
nodes for GLPK, Gurobi and SimCIM. The best result is
highlighted in bold.
* cases, where average number of colors is higher

Our results indicate that the quantum-inspired tech-
nique SimCIM demonstrates behaviour comparable with
Gurobi in the case of small (10-30 nodes). Moreover, the
runtime of SimCIM is better for large-scale (90 and 100
nodes) graphs as it is indicated in Table II. Such trend
can be explained. As the number of nodes increases, the
number of inequalities in the ILP formulation of the prob-
lem grows rapidly. The number of inequalities is equal
to the product of the number of edges by the number of
colors available for coloring the vertices of the graph. So
the complexity of the problem for the ILP solver increases
rapidly with the number of nodes. GLPK shows a stable
result up to 30 nodes and becomes unstable further af-
ter a timeout interrupt without any solution with more
than 10 percent instances. We note that the comparison
between our quantum-inspired approach and Gurobi is
conducted in the common setting, so its additional tun-
ing for obtaining better results is also possible. At the
same time, we find it interesting that quantum-inspired
technique shows comparable or superior results in harder,
industry relevant combinatorial optimization problem.

D. Other potential applications

While our goal was to demonstrate the applicability
of quantum-inspired graph coloring algorithm for wave-
length assignment problem, our approach can be applied
to a variety of problems, in particular from the field of
scheduling [42].

Assuming we have the set of jobs to schedule, every
job requires one time slot and some jobs can not be ex-
ecuted at the same time due to some interference with
each other, we need to determine the minimal time when
every job will be finished or how many time slots they
will occupy. One can build the graph, so that vertices
correspond to the jobs and two vertices are connected if
these jobs can’t be executed at the same time. The colors

of vertices represent time slots to assign, so graph has k
number of colors if the jobs can be executed in k time
slots.

Using our approach we take proposed Hamiltonian in
Eq. (11) and redefine its variables so that

xvi =

{
1, if vertex v is assigned time slot i,

0, otherwise,
(14)

and

wi =

{
1, if i-th time slot is assigned,

0, otherwise.
(15)

That way the jobs scheduling problem can be solved us-
ing quantum-inspired annealing analogously to WA prob-
lem.

The same approach can be implemented for tasks from
other fields, such as computer register allocation [43],
storage of chemicals [44] and printed circuit board test-
ing [45].

IV. CONCLUSION

A search for new approaches to solving practically-
relevant optimization problems is a clear goal for many
industrial applications since even minor improvement on
a large scale may generate serious economical impact. In
this domain, much attention is paid to quantum com-
puting, which is believed to be useful for such class of
problems. At the current technological level, practical
quantum advantage, for example, in optimization is still
needed to be achieved. An interesting part of this re-
search is understanding of the physical origin of the po-
tential advantages of quantum computing technologies.
Attempts to simulate quantum computation classically
resulted in a new class of algorithms and methods know
as quantum-inspired, which are ready to be tested for
industry-relevant problems.

In this work, we have considered the industry impor-
tant problem in the field of telecommunications. We have
demonstrated a way to make it compatible with quan-
tum and quantum-inspired techniques. Interestingly, our
numerical results have indicated on an advantage of the
quantum-inspired solver in a number of test cases against
the industrial combinatorial solver working on the stan-
dard settings.

One may expect that the additional tuning of the in-
dustry grade commercial optimization solver may result
in a substantial improving of its performance. At the
same time, studying the origins of the advantages of the
quantum-inspired approach, which are largely beyond
the scope of the present proof-of-concept demonstration,
would allow its further progress as well.

We would like to note that our comparison is limited
by the upper bound of 100 nodes, since it allows us to run
all solvers in equivalent hardware setup using CPU mode
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on single core. Further analysis of larger graphs requires
running SimCIM solver on GPU card, which gives signif-
icant acceleration factor not directly available in conven-
tional MIP algorithms, which are heavily dependent on
graph processing routines. As for the multi-core CPU ex-
ecution environment, some MIP solvers can benefit from
such setup by running various optimization strategies and
hyperparameters simultaneously. Such speed up quickly
reaches saturation point at the level of 8 16 cores (with
around 2x improvement in accordance with Gurobi ex-
periments, see slide 26 [46]) and demonstrates no sub-
stantial improvement at higher concurrency levels. On
the other side, quantum-inspired approach exploits paral-
lelism on the level of starting optimization points, which
demonstrates slower, but stable performance increase at
the higher levels of concurrency (100∼ 1000 parallel units

of execution). Thus, we conduct our benchmarks exclu-
sively using CPU mode on single-core to avoid bias to-
wards either solution approach. In order to maintain
fairness of comparison for larger graphs our benchmark
routine should be further revised to account for heteroge-
neous (CPU/CPU multi-core vs GPU/multi-GPU) com-
puting environments.
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The situation with the second constraint xui+xvi ≤ wi

for every i ∈ {1, . . . ,W} and (u, v) ∈ E appears to be
more complicated. One can see that it involves three
variables, and thus can not be directly embedded into
a two-body Hamiltonian. However, we can use the fol-
lowing trick. One can easily check that for arbitrary
a, b, c ∈ {0, 1}, the following equivalence holds:

a+ b ≤ c⇔

{
ab = 0,

(1− c)(a+ b) = 0.
(18)

This fact allows us to embed the conditions xui+xvi ≤ wi

into two Hamiltonians:

H2(x) =
∑

(u,v)∈E

W∑
i=1

xuixvi, (19)

H3(w,x) =
∑

(u,v)∈E

W∑
i=1

(1− wi) (xui + xvi) . (20)

The resulting Hamiltonian consist of all components
sum:

H(w,x) = c0H0(w) + c1 [H1(x) +H2(x)]

+ c2H3(w,x), (21)

where c0, c1, and c2 are positive constants stand for a pos-
itive penalty value. We note that the sum H1(x)+H2(x)
is exactly matched with the classical decision problem [7]
and responsible for the correct coloring of the graph.
Therefore, H1(x), H2(x) are grouped with the same
penalty coefficient c1. Coefficients c0, c1, and c2 should
be set manually, using the following criteria: the penalty
value c1 should be high enough to keep the final solution
from violating constraints. At the same time, too big
penalty value can overwhelm the target function, mak-
ing it difficult to distinguish solutions of different quali-
ties. We establish inequalities for constraint coefficients
that show the equivalence of IP and QUBO models of a
problem.

Proposition (QUBO penalty coefficients selec-
tion). Consider an IP problem given by Eq. (3)-(5)
for some maximal colors number W and some graph
G = (V,E) with NE edges. If the IP problem has a
solution, then the corresponding QUBO problem, given
by Hamiltonian (21) with penalty coefficients satisfying

c1 > 2NEWc2 +Wc0, (22)

c2 > Wc0, (23)

has a solution, equivalent to the solution of the IP prob-
lem.

Proof. First, let us rewrite Hamiltonian (21) in the
form

H(w,x) = c0A(w) + c1B(x) + c2C(w,x), (24)

where

A(w) := H0(w),

B(x) := H1(x) +H2(x),

C(w,x) := H3(w,x).

(25)

Note that A, B, and C can take non negative integer
values only. Let (wI,xI) and (wQ,xQ) be solutions of
the IP and QUBO problems correspondingly. Our goal
is to prove that (i)

B(xQ) = C(wQ,xQ) = 0, (26)

i.e., (xQ,wQ) defines a correct coloring, and (ii)

A(wQ) =

W∑
i=1

(wI)i, (27)

i.e., the solution of the QUBO problem coincides with
the one of the IP problem.

First, let us see that Eq. (22) assures B(xQ) = 0. The
proof of this part is by a contradiction. Suppose that
B(xQ) ≥ 1. Consider the difference of energy functions

∆H := H(wQ,xQ)−H(wI,xI)

= c0 [A(wQ)−A(wI)] + c1 [B(xQ)− B(xI)]

+ c2 [C(wQ,xQ)− C(wI,xI)] . (28)

The correctness of the IP solution implies B(xI) = 0,
and so B(xQ) − B(xI) ≥ 1. The differences in terms
with A and C can be lower bounded by the corresponding
extreme values:

A(wQ)−A(wI) ≥ −W, (29)

C(wQ,xQ)− C(wI,xI) ≥ −2NEW. (30)

In this way, Eq. (28) transforms into

∆H ≥ −c0W + c1 − 2c2NEW > 0, (31)

given constraint (22). However, this result contradicts
with the fact that (wQ,xQ) provides the minimal energy.
Therefore, B(xQ) = 0, and

H(wQ,xQ) = c0A(wQ) + c2C(wQ,xQ). (32)

We then prove that C(wQ,xQ) is zero as well. Indeed,
if C(wQ,xQ) ≥ 1 , then

∆H = c0 [A(wQ)−A(wI)]

+ c2 [C(wQ,xQ)− C(wI,xI)]

≥ −c0W + c2 > 0, (33)

provided C(wI,xI) = 0 and the second constraint (23).
Thus, H(wQ,xQ) = c0A(wQ).

Finally, A(wQ) = A(wI), since otherwise, either there
exist a solution for the QUBO problem that is better
than (wQ,xQ), or (xI,wI) is not the true solution the IP
problem.

Therefore, the optimal solution to the QUBO problem
appears to be equivalent to the optimal solution to the
corresponding IP problem.
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B. Wavelength assignment QUBO transformation

Here we demonstrate how to construct an operator ma-
trix Q of our QUBO model for the WA problem. Recall
that we take the binary vector of the QUBO problem in
the form s = (w,x), i.e. enumerate K = (NV + 1)W
binary variables sk and link them to our model variables
as follows:

sk =

{
wk, k = 1, . . . ,W ,

xui, k = uW + i,
(34)

where u = 1, . . . , NV , i = 1, . . . ,W .
The goal is to find vector s that minimizes quadratic

form sTQs and we show that it is equivalent to mini-
mizing energy of Hamiltonian (11). Let us denote A the
adjacency matrix of network graph G = (V,E) so that
auv = 1 if (u, v) ∈ E and auv = 0 otherwise. We note
that sum of v-th column of A equals the degree of the
vertex v and the sum of all vertex degrees is 2NE . We
rewrite operator (11) terms H0(w), H1(x),H2(x) and
H3(w,x) as follows:

H0(w) =

W∑
i=1

w2
i , (35)

H1(x) =

NV∑
v=1

(
1−

W∑
i=1

xvi

)2

=

NV∑
v=1

( W∑
i=1

xvi

)2

− 2

W∑
i=1

xvi

+NV =

NV∑
v=1

 W∑
i,j=1

xvixvj − 2

W∑
i=1

x2vi

+NV , (36)

H2(x) =
∑

(u,v)∈E

W∑
i=1

xuixvi =

NV∑
u,v=1

W∑
i=1

auvxuixvi, (37)

H3(w,x) =
∑

(u,v)∈E

W∑
i=1

(1− wi) (xui + xvi) =

W∑
i=1

(1− wi)

NV∑
v=1

dvxvi =

−
NV∑
v=1

W∑
i=1

dvwixvi +

NV∑
v=1

dv

W∑
i=1

xvi. (38)

In expanding the expression forH1(x) we exploit the fact
that since xvi is binary then x2vi = xvi. Also we note that
if H1(x) = 0 then the last term in H3(w,x) equals 2NE .

Considering the equalities (35-38) for Hamiltonian
terms H0(x),H1(x),H2(x) and H3(w,x), we construct
QUBO operator as block matrix as follows:

Q =

(
Q11 Q12

Q21 Q22

)
, (39)

where

Q11 = c0EW , (40)

Q12 = −c2
2
D ⊗ EW , Q21 = QT

12, (41)

Q22 = c1ENV
⊗ (IW − 2EW ) + c1A⊗ EW . (42)

Here EW denotes the identity matrix of size W , IW
denotes a matrix with all elements equal to 1 of those of
size W , and D = (d1, . . . , dNV

) is a row vector of graph
vertex degrees. We also employ the fact that terms of
the form

NV∑
u,v=1

W∑
i,j=1

cuvhijxuixvj , (43)

for some coefficients cuv = cvu and hij = hji can be
represented by a quadratic form defined by Kronecker
product C⊗H, where C andH are matrices of cuv and hij
correspondingly. One can that matrix Q is constructed
so that Q11 submatrix corresponds to the term H0(x)
of Hamiltonian (11), Q12 submatrix is for H3(w,x) and
Q22 is for H1(x) +H2(x).

It is worth to emphasize that it is the structure of en-
coding problem parameters into the spin vector, given
by (34), that allow us to represent submatrices Q12, Q21,
and Q22 in the form of Kronecker products. This fea-
ture of QUBO submatrices significantly speeds up their
assembly using standard mathematical packages, e.g.,
numpy and scipy.

C. Dataset generation

We generate dataset are used binomial graphs [47],
or Erdös-Rényi graphs, which have two parameters for
generation: the number of nodes NV and the proba-
bility of an edge occurrence p. Each of possible N =
NV ·(NV −1)/2 edges is chosen with probability p. Num-
ber of edges NE are drawn randomly from binomial dis-
tribution:

P (NE = x) =

(
N

x

)
px · q(N−x). (44)

To take into account sparse and dense graphs, various
probability p options from 0.1 to 0.9 with an interval of
0.1 have been chosen, the number of graph nodes has
been varied from 10 to 100 with a step of 10. For each
pair (n, p), 10 connected graphs have been generated with
different seed parameters. We note that disconnected
graphs are not included the dataset. The overall charac-
teristics of the dataset are given in the Table III.
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Number
of nodes

Number of edges QUBO matrix size
min max min max

10 9 43 44 110
20 23 176 84 315
30 39 399 124 589
40 74 714 205 943
50 118 1123 255 1377
60 168 1625 366 1891
70 231 2209 426 2556
80 301 2879 486 3321
90 372 3652 546 4004
100 470 4501 707 4848

TABLE III. Characteristics of graph coloring dataset, the to-
tal number of instances is 900.

D. Setting penalty values

Optimal penalty values guarantee the fulfilment of con-
straints for an optimal solution, but large values of c1 and
c2 reduce the contribution of the initial objective function
to the total energy and significantly increase the time to
find the optimal solution. Our approach to solve this
problem is as follows:

1. Set the minimum possible penalty values c1 and
c2 using trial runs, so that the contribution of the
objective function is sufficient;

2. Use all SimCIM iterations to select feasible solu-
tions;

3. Take the feasible solution with the lowest energy.

The following penalty values were set for the tests:

c0 = 1, c1 = 10 + pNV , c2 = 2.5. (45)

E. Quantum-inspired annealing using SimCIM

SimCIM [35] is an example of a quantum-inspired an-
nealing algorithm, which works in an iterative manner.
SimCIM can be used for sampling low-energy spin config-
urations in the classical Ising model which Hamiltonian
can be written as:

H =
∑
i

hisi +
∑
<i,j>

Jijsisj , (46)

where J represents the spin-spin interaction, h represents
the external field, and the si are the individual spins on
each of the lattice sites. The Ising Hamiltonian can be
directly transformed to a QUBO problem [13] and then
quantum annealing can be applied to any optimization
problem, which can be expressed into the QUBO form.

The SimCIM algorithm treats each spin value as a contin-
uous variable si ∈ [−1, 1]. Each iteration of the algorithm
starts with calculating the mean field of the following
form:

Φi =
∑
j 6=i

Jijsj + hi, (47)

which act on each spin by all other spins. Then the gra-
dients for the spin values are calculated as follows:

∆si = ptsi + ζΦi +N(0, σ), (48)

where pt is a dynamic parameter dependent on Sim-
CIM annealing process, overall feedforward factor ζ and
N(0, σ) is a random variable sampled from the Gaussian
distribution with zero mean and standard deviation σ.

Then the spin values are updated according to si ←
φ(si + ∆si), where φ(x) is the activation function

φ(x) =

{
x for |x| ≤ 1;

x/|x|, otherwise.
(49)

After multiple updates, the spins will tend to either −1
or +1 and the final discrete spin configuration is obtained
by taking the sign of each si.

In our implementation we add several improvements to
SimCIM algorithm defined in the original paper [35]. In
particular, we normalize the value of the Gaussian noise
to gradient norm and introduced gradient quantization,
which made the solver more stable near optimum points.

APPENDIX

Number
of nodes

Original QUBO
transformation

Proposed QUBO
transformation

Number of colors Run time Number of colors Run time
10 4.34 0.28 4.34 0.19
20 6.47 0.62 6.36 0.45
30 8.24 7.67 8.02 4.95
40 10.31 14.22 9.39 8.90
50 12.41 26.28 10.96 16.82
60 14.53 42.01 12.44 28.51
70 16.52 63.89 14.01 61.58
80 18.03 98.50 15.56 69.00
90 19.74 106.61 17.02 79.87
100 20.65 140.41 18.54 123.13

Average results
(lower is better)

TABLE IV. Comparison of proposed QUBO transformation
for graph coloring problem to Original QUBO transformation
described in Ref. [7].Experiments were performed on the same
dataset of 900 randomly generated graphs with the use of
SimCIM. Results shows that the proposed QUBO runs faster,
giving on average lower or the same number of colors.
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SUPPLEMENTARY MATERIAL

Number of colors

TABLE V: Numerical results obtained with largest degree first (LDF)
heuristics, open-source mixed integer programming solver (GLPK),
Gurobi optimization software, and SimCIM quantum-inspired optimiza-
tion on number of colors averaged by 10 graph with different number of
nodes (NV ) and edge probability (p). The best result is highlighted in
bold. SimCIM shows the best results in the p range [0.3, · · · , 0.7].

NV p
LDF GLPK Gurobi SimCIM

mean std mean std mean std mean std
1 10 0.1 3.0 0.000 2.50 0.527 2.5 0.527 2.5 0.527
2 10 0.2 3.0 0.000 3.00 0.000 3.0 0.000 3.0 0.000
3 10 0.3 3.1 0.316 3.10 0.316 3.1 0.316 3.1 0.316
4 10 0.4 3.6 0.516 3.50 0.527 3.5 0.527 3.5 0.527
5 10 0.5 4.0 0.471 4.00 0.471 4.0 0.471 4.0 0.471
6 10 0.6 4.7 0.675 4.50 0.527 4.5 0.527 4.5 0.527
7 10 0.7 5.2 0.422 5.00 0.667 5.0 0.667 5.0 0.667
8 10 0.8 5.9 0.994 5.90 0.994 5.9 0.994 5.9 0.994
9 10 0.9 7.6 0.843 7.60 0.843 7.6 0.843 7.6 0.843
10 20 0.1 3.0 0.000 3.00 0.000 3.0 0.000 3.0 0.000
11 20 0.2 3.7 0.675 3.50 0.527 3.5 0.527 3.5 0.527
12 20 0.3 4.4 0.516 4.10 0.316 4.1 0.316 4.1 0.316
13 20 0.4 5.6 0.516 5.00 0.000 5.0 0.000 5.0 0.000
14 20 0.5 6.3 0.949 5.70 0.483 5.7 0.483 5.7 0.483
15 20 0.6 7.5 0.527 6.80 0.422 6.8 0.422 6.8 0.422
16 20 0.7 8.4 0.843 7.40 0.516 7.4 0.516 7.4 0.516
17 20 0.8 10.0 0.816 9.20 0.632 9.2 0.632 9.2 0.632
18 20 0.9 12.5 0.850 12.50 0.850 12.5 0.850 12.5 0.850
19 30 0.1 3.6 0.516 3.00 0.000 3.0 0.000 3.0 0.000
20 30 0.2 4.7 0.483 4.00 0.000 4.0 0.000 4.0 0.000
21 30 0.3 6.0 0.000 5.00 0.000 5.0 0.000 5.0 0.000
22 30 0.4 7.2 0.422 6.00 0.000 6.0 0.000 6.0 0.000
23 30 0.5 8.3 0.675 7.20 0.422 7.2 0.422 7.2 0.422
24 30 0.6 9.8 0.919 8.60 0.516 8.5 0.527 8.5 0.527
25 30 0.7 11.5 0.850 10.50 0.972 10.1 0.738 10.1 0.738
26 30 0.8 13.7 0.949 13.40 0.966 12.6 0.699 12.6 0.699
27 30 0.9 16.5 1.509 16.25 1.669 15.8 1.398 15.8 1.398
28 40 0.1 4.0 0.000 - - 3.1 0.316 3.1 0.316
29 40 0.2 5.3 0.483 - - 4.5 0.527 4.5 0.527
30 40 0.3 7.1 0.568 - - 6.0 0.000 6.0 0.000
31 40 0.4 8.5 0.527 - - 6.9 0.316 6.9 0.316
32 40 0.5 10.1 0.738 - - 8.3 0.483 8.4 0.516
33 40 0.6 12.3 0.823 - - 9.9 0.316 9.9 0.316
34 40 0.7 13.8 0.919 - - 11.8 0.632 11.8 0.632
35 40 0.8 16.9 0.738 - - 14.9 0.738 15.0 0.816
36 40 0.9 20.3 1.160 - - 19.0 0.943 19.0 0.943
37 50 0.1 4.4 0.516 - - 4.0 0.000 4.0 0.000
38 50 0.2 6.2 0.422 - - 5.0 0.000 5.0 0.000
39 50 0.3 7.8 0.422 - - 6.5 0.527 6.7 0.483
40 50 0.4 10.2 0.422 - - 7.9 0.316 7.9 0.316
41 50 0.5 11.9 0.568 - - 9.8 0.422 9.7 0.483
42 50 0.6 14.1 0.568 - - 11.3 0.483 11.5 0.527
43 50 0.7 16.2 0.789 - - 13.8 0.632 14.2 0.632
44 50 0.8 20.2 0.632 - - 17.1 0.568 17.2 0.422
45 50 0.9 24.2 1.229 - - 22.5 1.179 22.5 1.179
46 60 0.1 5.3 0.483 - - 4.0 0.000 4.0 0.000
47 60 0.2 7.3 0.483 - - 5.7 0.483 5.8 0.422
48 60 0.3 8.7 0.675 - - 7.0 0.000 7.0 0.000
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49 60 0.4 11.4 0.699 - - 9.0 0.000 9.0 0.000
50 60 0.5 13.8 0.632 - - 10.9 0.316 10.9 0.316
51 60 0.6 16.3 1.160 - - 12.9 0.316 12.9 0.316
52 60 0.7 18.8 1.135 - - 15.8 0.422 16.1 0.568
53 60 0.8 23.2 0.789 - - 19.4 0.516 19.9 0.568
54 60 0.9 28.7 1.059 - - 25.8 0.789 26.0 0.816
55 70 0.1 5.4 0.516 - - 4.0 0.000 4.0 0.000
56 70 0.2 7.7 0.675 - - 6.0 0.000 6.0 0.000
57 70 0.3 9.7 0.675 - - 8.0 0.000 7.9 0.316
58 70 0.4 12.3 0.675 - - 10.1 0.316 10.5 1.269
59 70 0.5 15.2 0.632 - - 12.3 0.483 12.5 0.527
60 70 0.6 18.4 0.516 - - 14.9 0.316 14.6 0.699
61 70 0.7 22.0 1.247 - - 17.8 0.422 17.9 0.316
62 70 0.8 26.4 1.713 - - 21.6 0.699 22.1 0.568
63 70 0.9 32.5 1.269 - - 28.6 0.966 29.2 0.789
64 80 0.1 5.7 0.483 - - 4.3 0.483 4.8 0.422
65 80 0.2 8.3 0.483 - - 6.4 0.516 6.8 0.422
66 80 0.3 11.2 0.632 - - 8.9 0.316 8.9 0.316
67 80 0.4 13.5 0.527 - - 11.6 0.516 11.0 0.000
68 80 0.5 16.9 0.994 - - 14.2 0.632 13.6 0.516
69 80 0.6 20.5 0.972 - - 16.6 0.516 16.9 1.853
70 80 0.7 23.5 0.972 - - 20.0 0.667 20.2 0.632
71 80 0.8 29.5 1.650 - - 24.6 0.699 24.9 0.738
72 80 0.9 36.6 2.119 - - 31.5 1.179 32.5 1.354
73 90 0.1 5.9 0.316 - - 4.9 0.316 5.0 0.000
74 90 0.2 9.2 0.632 - - 7.0 0.000 7.0 0.000
75 90 0.3 12.2 0.632 - - 9.7 0.483 9.5 0.527
76 90 0.4 15.2 0.632 - - 12.9 0.316 12.0 0.471
77 90 0.5 18.3 0.949 - - 15.6 0.699 15.1 0.568
78 90 0.6 22.2 0.919 - - 19.8 0.789 18.3 0.483
79 90 0.7 26.0 1.333 - - 22.9 1.197 22.6 0.516
80 90 0.8 31.8 0.789 - - 27.5 1.080 27.6 0.516
81 90 0.9 40.1 2.132 - - 34.6 0.843 36.3 1.160
82 100 0.1 6.6 0.516 - - 5.0 0.000 5.0 0.000
83 100 0.2 10.1 0.568 - - 7.5 0.527 7.9 0.316
84 100 0.3 13.0 0.471 - - 11.1 0.316 10.2 0.422
85 100 0.4 16.5 0.850 - - 14.5 0.850 13.2 0.422
86 100 0.5 19.9 0.738 - - 18.4 0.699 16.2 0.422
87 100 0.6 24.1 0.568 - - 22.5 0.707 19.9 0.568
88 100 0.7 28.5 1.269 - - 27.0 1.054 24.2 0.632
89 100 0.8 35.1 1.370 - - 32.7 1.337 30.5 0.850
90 100 0.9 44.3 1.703 - - 38.1 0.738 40.2 0.919

Average number of colors
(lower is better)

Time to solution

TABLE VI: Mean time to solution (seconds) depends on number of nodes
(NV ) and edge probability (p) for open source solver GLPK, Gurobi and
quantum inspired SimCIM. The best result in average number of colors
and time to solution is highlighted in bold.

NV p
GLPK Gurobi SimCIM

mean std mean std mean std
1 10 0.1 0.001 0.001 0.001 0.000 0.198 0.056
2 10 0.2 0.002 0.000 0.001 0.000 0.232 0.007
3 10 0.3 0.003 0.002 0.001 0.000 0.238 0.015
4 10 0.4 0.007 0.004 0.001 0.000 0.229 0.021



13

5 10 0.5 0.012 0.006 0.001 0.000 0.222 0.011
6 10 0.6 0.032 0.022 0.002 0.000 0.239 0.022
7 10 0.7 0.080 0.073 0.002 0.001 0.265 0.044
8 10 0.8 1.907 4.984 0.002 0.001 0.325 0.121
9 10 0.9 13.901 24.658 0.003 0.002 0.371 0.041
10 20 0.1 0.006 0.001 0.002 0.000 0.254 0.005
11 20 0.2 0.034 0.029 0.003 0.001 0.296 0.038
12 20 0.3 0.192 0.306 0.006 0.001 0.346 0.026
13 20 0.4 0.875 0.390 0.012 0.007 0.440 0.015
14 20 0.5 10.721 12.125 0.019 0.013 0.498 0.047
15 20 0.6 124.385 91.853 0.023 0.012 0.591 0.034
16 20 0.7 199.375 115.200 0.034 0.015 0.667 0.060
17 20 0.8 300.065 0.010 0.034 0.018 0.840 0.061
18 20 0.9 300.094 0.015 0.040 0.014 1.056 0.063
19 30 0.1 0.019 0.008 0.006 0.003 1.720 0.035
20 30 0.2 0.340 0.282 0.015 0.010 2.427 0.036
21 30 0.3 9.814 4.160 0.035 0.012 3.181 0.054
22 30 0.4 267.903 70.468 0.070 0.024 3.985 0.049
23 30 0.5 300.103 0.012 0.138 0.083 5.017 0.331
24 30 0.6 300.186 0.038 0.163 0.040 6.124 0.287
25 30 0.7 300.254 0.042 0.173 0.054 7.397 0.534
26 30 0.8 300.403 0.057 0.189 0.077 9.811 0.697
27 30 0.9 300.556 0.122 0.304 0.111 12.687 1.312
28 40 0.1 - - 0.021 0.009 2.366 0.267
29 40 0.2 - - 0.067 0.038 3.753 0.340
30 40 0.3 - - 0.191 0.104 5.472 0.367
31 40 0.4 - - 0.753 0.932 6.545 0.542
32 40 0.5 - - 0.867 0.631 8.526 0.695
33 40 0.6 - - 1.306 1.014 10.350 0.448
34 40 0.7 - - 1.557 2.098 13.801 2.007
35 40 0.8 - - 1.162 0.431 17.844 1.989
36 40 0.9 - - 1.155 0.159 24.713 3.280
37 50 0.1 - - 0.027 0.014 3.607 0.053
38 50 0.2 - - 0.333 0.245 5.174 0.192
39 50 0.3 - - 4.990 5.810 7.463 0.453
40 50 0.4 - - 4.757 4.187 9.495 0.510
41 50 0.5 - - 7.071 4.687 14.036 1.771
42 50 0.6 - - 66.279 61.284 25.216 5.909
43 50 0.7 - - 38.152 46.330 25.096 3.382
44 50 0.8 - - 7.727 8.428 33.786 8.187
45 50 0.9 - - 2.372 0.257 42.495 4.156
46 60 0.1 - - 0.129 0.087 4.421 0.129
47 60 0.2 - - 0.872 1.026 7.734 1.722
48 60 0.3 - - 16.930 11.034 11.445 1.823
49 60 0.4 - - 51.511 82.086 18.106 4.262
50 60 0.5 - - 68.744 68.795 21.368 3.984
51 60 0.6 - - 95.411 88.234 48.351 13.262
52 60 0.7 - - 66.161 44.420 40.763 11.270
53 60 0.8 - - 42.528 68.171 56.013 10.085
54 60 0.9 - - 7.724 1.407 72.302 7.284
55 70 0.1 - - 0.461 0.291 6.458 1.655
56 70 0.2 - - 4.822 4.982 9.977 1.664
57 70 0.3 - - 28.828 14.424 15.687 2.101
58 70 0.4 - - 78.486 63.512 38.800 14.893
59 70 0.5 - - 114.880 70.768 38.288 14.127
60 70 0.6 - - 103.728 71.210 54.067 11.507
61 70 0.7 - - 133.313 72.464 63.095 10.184
62 70 0.8 - - 110.066 77.881 96.272 17.250
63 70 0.9 - - 19.536 4.820 134.355 28.658
64 80 0.1 - - 1.309 1.599 7.324 0.592
65 80 0.2 - - 52.218 78.163 15.138 2.710
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66 80 0.3 - - 67.343 36.356 26.198 6.943
67 80 0.4 - - 116.747 111.805 37.085 9.220
68 80 0.5 - - 96.057 37.923 49.570 7.162
69 80 0.6 - - 167.210 66.138 159.555 81.808
70 80 0.7 - - 202.061 65.897 112.915 18.953
71 80 0.8 - - 162.988 45.676 167.062 37.764
72 80 0.9 - - 53.323 18.095 227.224 50.657
73 90 0.1 - - 1.058 1.224 9.336 0.726
74 90 0.2 - - 34.024 38.601 18.623 3.323
75 90 0.3 - - 162.527 97.995 32.050 9.461
76 90 0.4 - - 143.790 114.855 48.503 4.782
77 90 0.5 - - 167.725 63.551 67.405 14.039
78 90 0.6 - - 157.333 100.262 81.155 17.398
79 90 0.7 - - 252.613 37.275 90.603 16.960
80 90 0.8 - - 258.383 18.204 141.974 29.896
81 90 0.9 - - 120.630 47.417 219.341 43.442
82 100 0.1 - - 1.571 0.714 11.952 2.225
83 100 0.2 - - 90.416 70.264 23.365 2.986
84 100 0.3 - - 106.807 100.061 48.057 10.612
85 100 0.4 - - 127.184 107.183 60.967 10.674
86 100 0.5 - - 92.338 108.744 112.470 12.526
87 100 0.6 - - 171.188 79.565 105.843 17.305
88 100 0.7 - - 138.741 106.281 155.752 41.929
89 100 0.8 - - 184.035 128.311 214.694 59.357
90 100 0.9 - - 233.650 54.277 281.240 33.966


	Quantum-inspired optimization for wavelength assignment
	Abstract
	I Introduction
	II Wavelength assignment problem (WA)
	III Results
	A Transforming the WA problem to a QUBO form
	B Improving QUBO transformation for quantum-inspired annealing
	C Numerical results
	D Other potential applications

	IV Conclusion
	 Acknowledgements
	 References
	V Methods
	A Hamiltonian of wavelength assignment problem
	B Wavelength assignment QUBO transformation
	C Dataset generation
	D Setting penalty values
	E Quantum-inspired annealing using SimCIM

	 Appendix
	 Supplementary Material
	 Number of colors
	 Time to solution



