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Derivation Of PT -symmetric Sine-Gordon model and it’s relevance to non-equilibrium

Vinayak M Kulkarni
Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore - 560064,India

The Parity-Time PT -symmetric non-Hermitian Sine-Gordon(nhSG) model derived from the
nonequilibrium spin-boson model. We have derived the Keldysh rotation for spin operators, from
which the SG model can be derived. We perform renormalization group calculations in the Keldysh
fields and compare the fixed points and the flow of the effective couplings of nonequilibrium and
non-Hermitian models. Also, we explicitly find the self-energies and compare the two methods
to understand the regimes where PT symmetry preserved regime, and nonequilibrium regimes
persist.RG flow of couplings of nonequilibrium model and non-hermitian model both capture the
standard Berezinskii-Kosterlitz-Thouless(BKT) physics in a strong coupling regime.

I. INTRODUCTION

The wide applications of the SG model[1] ranging from
gravity to superconducting junctions attract attention
even in recent times. Nonlinear regimes of the SG model
are quite interesting as it hosts soliton states[2]. Recent
RG studies on the non-hermitian extension of the Sine
Gordon model raise many curiosities in the context of
quantum criticality. A generic nonequilibrium problem
has various regimes, namely gain-loss balancing, chaotic
regimes, and the non-Hermiticity with certain symme-
tries are essential to explore as they capture gain-loss
balancing regimes. SG model shows the unique modes[3]
in the noisy regime. These are also treated by Open
field theory[4]. Quantization of soliton[5] discuss the two
vector solutions. A Ketaeve chain[6] with interaction
studied using bosonization, Jordon-Wigner Transforma-
tion, and cumulant expansion showed standard BKT
physics.The perturbative RG schemes have captured the
robust coupling regime in SG field expansion[7] Flow
equation renormallization(FeQRG) is carried out on the
SG model[8].Functional renormallization(FRG) and nu-
merical renormallization(NRG) is carried out on the SG
model[9, 10] to show a dissipative transition in Josephson
junctions.

On soliton resolution conjecture a non linear
analysis[11–14] by various approaches having sub-
critical mass,massless situations in discrete nonlinear
Schrodinger equations.Lie group structure RG flow[15] is
discussed through asymptotic freedom on the chiral SG
model. The condition is derived and a bifurcation point
is attained from the RG solution.Phase transitions at a
finite temperature, a diagrammatic approach[16] show
restoration of the symmetry above a critical temperature.
A generalized universality in massive SG due to the in-
terplay between the UV and IR scaling laws is discussed
with its global behavior within RG flow[17].SG model
on lattice gives a universality class N = 4 super-Yang-
Mills theory and massive thirring model[18]. Berezin-
skii–Kosterlitz–Thouless(BKT) transition in proximity
coupled Superconducting Arrays[19] in 2D. The BKT was
formulated to describe the superfluidity in Helium-4 thin
films; later, it was applied to superconducting films like
Josephson junctions. There is BKT physics in the SG

model, so it is widely applied and compared in the 2D
XY models.

Asymptotic safety in SG[20] There are nontrivial fixed
points in the IR limit, which showed them an irrelevant
coupling leads to the same phase structure. Noncon-
servative kinks shown at the continuum limit with un-
usual divergence and conventional Kousterlitz-Thoules
point consist of normal behavior as that of the Coleman
point, which can be anomalous[21]. Wegner–Houghton
RG method [22] shows the expansion of the effective cou-
pling beta functions to leading order we get BKT physics.
Dual PT-symmetric quantum field theories[23] have dis-
cussed about the mass term breaking the symmetry and
its relevance to SG and Thirring models. Boundary Sine
Gordon(BSG)[24–26] shows the computing of the cur-
rent without having the Bethe solution, the self-duality
in the impurity problems, and its connection to Seiberg
and Witten supersymmetric non-Abelian gauge theory.
Out of equilibrium transport and interacting resonant
model and BSG relevance[27] shown in 1D interacting
resonant level Anderson model. A coherent to incoher-
ent transition is observed in the superconducting qubit
and driven Spin-Boson model[28].

A spin-boson model in nonequilibrium is considered,
and Keldysh rotations are performed in fermion-bosons.
The spin-boson requires spin rotation in Keldysh con-
tours; hence we derived those by Jordan-Wigner transfor-
mations for fermion to spin representation. This unitary
rotation naturally yields a PT -symmetric SG model on
which we perform the RG. We point out subtle differences
in the selfenergies of standard SG and non-Hermitian SG
in the strong interaction regime. We explore the uni-
versality in the SG model through RG and where they
obtain the spiral invariants for Coulomb gas [2] these
invariant also obtained in the RG calculations of non-
hermitian oscillators[29–31] where various RG calcula-
tions yield complex valued ODE which exhibit various
limit-cycles[32] are obtained as a solution of RG invari-
ants.The oscillators limit of the self-dual sinh-Gordon
model in the article[33] shown to exhibit soliton mass
having coleman bound in analytic continuation and has
renormalization analogous to PT -strength in the non-
hermitian oscillators[32]. These complex RG nonlinear
ODEs for couplings are multivalued and have Kardar-
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Parisi-Zhang(KPZ) criticality.

II. MODEL AND FORMALISM

We start with a generallized spin-boson model as
Tomonaga-model[34, 35] of kondo problem for one dimen-
sional system,In order to derive and show the connection
to PT -symmetric Sine-Gordon model within non equi-
librium formalism, The spin boson model reads as the
following,

S =

∫

dτ

(

J⊥

4πa
σx + ~vf

∑

k

a
†
kak

+
1

2

(J‖

2
− 1

ρ

)

σz

∑

k<
kf
2

|k| 12
πL

(ak + a
†
−k)

) (1)

above model 1 also has connection to kondo model in 1D
which shown earlier by various works[36, 37], we will de-
rive the following keldysh rotations for spin and bosons,

(

σy+

σx−

)

=
1√
2

(

1 1
−i i

)(

σy1

σy2

)

(

σx+

σy−

)

=
1√
2

(

1 1
i −i

)(

σx1

σx2

)

(

σz+

σz−

)

=
1√
2

(

1 1
1 −1

)(

σz1

σz2

)

(

a+
a−

)

=
1√
2

(

1 1
1 −1

)(

a1
a2

)

(2)

The above transformations are found by spin to
fermion transformation which is done by preserving the

{σ+, σ−} = {f †
0 , f0}, using the generalized Jordan-

Wigner Transformations[38, 39] for local spin to lo-
cal fermion then using the Keldysh Rotations[40] for
fermions and bosons We derive the following Keldysh ac-
tion using above transformations, Note that the effective
action can be written in-terms of the single time due to
the Unitary rotations.

S =

∫ ∞

0

dτ
1√
2
J⊥(σ

+
β + σ−

β′) +
∑

kβ=±

~vfa
†
kβakβ

+
∑

β=±

J̃‖βσ
z
β

∑

βk<
kf
2

|k| 12
πL

(akβ + β′a
†
−kβ′)

where J̃‖ =
1

2

(J‖

2
− 1

ρ

)

(3)

We can do a rotation of the action as in the mapping
of spin-boson to a kondo model,It is always possible to
define a unitary transformation as the following in the
two contours,But it is very difficult to keep track of the
mixed spin-boson terms.Hence we rotate them in unitary
fashion and write the whole action in single time which

does drastic simplification and all selfenergy calculations
are tractable.

U = e

[

J̃‖

∑

βk

(

π
|k|L

) 1

2 σz
β(akβ+β′a†

−kβ′ )

]

(4)

This operator in equation 4 reduce to a simple asU =

exp
(

J̃‖
∑

βk

(

π
|k|L

)
1

2 σz
1(ak1+a

†
−k1)

)

after the Keldish ro-

tation defined for spin and boson in equation 2. We
can derive the effective action as Seff = USU† which
is Baker-Campbell-Hausdorff(BCH) expansion with the
commutation algebra for the contour bosons [a†α, aα′ ] =
δα,α′ and for contour spins as [σ±

α , σz
α′ ] = σ±

α δαα′ commu-
tation algebra between the spin and boson is derived from
Holstien-Primakoff transformation ,Transformed action
in lowest order does not yield the cross terms which can
be written in terms of the spin and boson contours as the
following,

Seff =

∫

dτ
∑

kα

~vfa
†
kαakα

+
J⊥

4πa
(σ−

1 + σ+
2 σ

z
1) cosh(ô1)

+
J⊥

4πa
(σ−

1 − σ+
2 σ

z
1) sinh(ô1)

+ õ2e
akαakα′+a†

kα
a†

kα′−a†
kα

akα′−a†
kα

akα′

where ôα =

(

J̃‖
∑

kα

(akα + (−1)α−1a
†
−kα)

)

where spinor is a
†
k =

(

a
†
k1 a

†
k2

)

(5)

We can define following field operators to write the above
action in terms of the scalar fields,

Πα(x) =
1√
L

∑

k

(

√

|k|
2

)

(akαe
ikx + a

†
kαe

−ikx)

Φα(x) =
1√
L

∑

k

(

√

|k|
2

)

(akαe
ikx − a

†
kαe

−ikx)

(6)

The EP transformation leads spin to boson and com-
mutation algebra between them in the each contour will
follow as,

σz
α = (

1

2
− a†αaα), σ

+
α = (1− a†αaα)aα, σ

−
α = a†α(1− a†αaα)

[σz
α, a

†
α′ ] = a†αδαα′ , [σz

α, aα′ ] = aαδαα′

[σ+
α , a

†
α′ ] = (1 − 2a†αaα)δαα′ , [σ+

α , a
†
α′ ] = −a†αa

†
αδαα′

[σ−
α , aα′ ] = (1− 2a†αaα)δαα′ , [σ−

α , aα′ ] = −aαaαδαα′

[σ+
α , a

†
α′ ] = 0, [σ−

α , a
†
α′ ] = 0

(7)

In the new fields (õ1, õ2 each of them scale in different
fashion) by defining the inverse transform we can write
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the effective action as the following,

Seff =

∫

dτdx
∑

α=1,2

~vf
(

(Φα∇2Φα

)

+
J⊥

4πa
(σ−

1 + σ+
2 σ

z
1) cos

(

ˆ̃o1

)

+
J⊥

4πa
(σ−

1 − σ+
2 σ

z
1) sin

(

ˆ̃o1

)

+ ~νf õ2e
õ1õ2

where ˆ̃o1 =

(

( J‖

4π~vf
− 1
)

Φ1

)

(8)

The scalar field action in the (φ1, φ2) can be written as
following after the Spin-Boson transformation and Boson
to scalar field,

Seff =

∫

dτdx
∑

α=1,2

~vf
(

(Φα∇2Φα

)

+
J⊥

4πa
(1 + φ2) cos

(

ˆ̃o1

)

+
J⊥

4πa
(1− φ2) sin

(

ˆ̃o1

)

+ ~νf õ2e
õ1õ2 + ...

where ˆ̃o1 =

(

( J‖

4π~vf
− 1
)

Φ1

)

(9)

Kinetic term can also be written as the ΦT (σx∇2)Φ
where Φ is spinor of keldysh fields as ΦT =

(

Φ1 Φ2

)

Using the canonical relations from inverse Keldysh rota-
tions only for spins we get the following Hamiltonian by
a Legendre transformation,

Heff =

∫

dx~vf
∑

α

(

Π2
α + (∇Φα)

2
)

+

J⊥

4πa
(σx

1 ) cos
(

ˆ̃o1

)

+
iJ⊥

4πa
(σy

1 ) sin
(

ˆ̃o1

)

+ ...

(10)

The above equation 10 show the model is Non-Hermitian
and PT -symmetric at lowest order.We derived this model
using a combination of unitary transformation.The omis-
sion of higher order terms are usually done in practice
perticularly in these methods.We use model in equation 8
to rest of our calculations which does not appear as a non-
Hermitian at a glance but later it indeed host NH physics.

Scaling the operators as õ1 = Φnew =
( J‖

4π~vf
− 1
)

Φ1 in

terms of the scalar fields we can write the above model
as the following,

Heff =

∫

dx

(

~vf
( J‖

4π̃~vf
− 1
)2

)

(

Π̃2
1 + (∇Φ̃1)

2
)

~ν2f
(

Π2
2 + (∇Φ̃2)

2
)

+
J⊥

4πa
(σx) cos

(

Φ̃1

)

+
iJ⊥

4πa
(σy) sin

(

Φ̃1

)

(11)

In a broad sense the effective model we have got is a PT -
symmetric SG in the φ1 field but a kinetic term in the φ2

field which is interesting because the two contours mixed
interaction term is now diagonal with a reservoir, Inter-
action terms can be viewed as the cavity-reservoir type
open quantum system and can be viewed as schematic
below,

k = −∞ k = ∞

SG1 SG2

[

φs
2
,Πs

2

]

[

φs
1
,Πs

1

]

φs
1
.φs

2

III. KELDYSH AND PT SELF ENERGIES

We expand in terms of the Green fuction for the SG
model and show the relation between the Keldysh and
PT -self-energies.This is matrix laplace equation for the

fields ie.,G =

(

〈φ1(x), φ1(x
′)〉 〈φ1(x), φ2(x

′)〉
〈φ2(x), φ1(x

′)〉 〈φ2(x), φ2(x
′)〉

)

, after the

unitary we can write the single time integral, so we need
to get the corrections for the both scalar fields as well as
the cross terms.

1

2
∇2

xG(x, x′)−
∫

dx′′
Σ(x, x′′)G(x′′, x′) =

1

(2π)2
δ(x − x′).I

(12)

The selfenergy takes the form as Σ =

(

Σ11 Σ12

Σ21 Σ22

)

we can

show the Σ22 = 0 lowest order in this case. Doing Fourier
Transform we get the above in momentum space as the
following,

G(q, q′) = G0(q)δ(q + q′)

+ G0(q)

∫

dq”

(2π)2
b
s(q, q”)G(−q”, q′)

where Σ(q, q′) = −b
s(q, q′),

Σ(x, x′) = −b
s(x, x′)

(13)
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For non-equilibrium case we calculate this quantity
above,

b
s(x, x′) =

(

Σ11 Σ12

Σ21 0

)

δ(x − x′)

= MlIδ(x − x′)

M =

(

J̃2
‖ + J̃‖J̃⊥ J‖(νf + J̃⊥)

2 − 2J̃‖νf

J‖(νf + J̃⊥)
2 − 2J̃‖νf 0

)

b
s(q, q′) =

∫

dxdx′
b
s(x, x′)eiqx+iq′x′

=⇒ b(q,−q) = MlI(x)

(14)

From above we can show the self energy host exceptional
points in second order perturbation theory(couplings are
third order due to the scaled operators but formalism
worked out for only second order) the line of exceptional

points correspond to two seperatrix J‖ = aν
1

2

f − bνf and

J̃‖ = −J⊥ + c the constants (a, b, c) originates from the

renormalized J̃‖ itself. This can be seen from the diago-
nalization of M. The effective action can be written as
the following,

δSeff [φ
s
1φ

s
2] =

∫

dxdx′

[

1

2
G0(x, x

′)bs(x, x′)

− 1

4
a
s(x)TG0(x, x

′)as(x′)

] (15)

Lets write the above action as the two components to
scale them separately

δSeff [φ
s
1φ

s
2] = F1[φ

s
1, φ

s
2] + F2[φ

s
1, φ

s
2] (16)

Action expansion Shows the following for the coefficients
in the effective action in equation 15 which is also used in
computing the vertices for selfenergy up to second order
in equation 14.

a
s
α(x) = J̃‖

δlI [φ̃1, φ̃2]

δφ̃α(x)

b
s(x, x′) =

1

2
J̃2
‖

δ2lI [φ̃1, φ̃2]

δφ̃α(x)δφ̃(x′)α′

∣

∣

∣

∣

φ̃s
α,φ̃s

α′

lI [φ̃1, φ̃2] =
J⊥

4πa
(σ−

1 + σ+
2 σ

z
1) cos

(

ˆ̃o1

)

+
J⊥

4πa
(σ−

1 − σ+
2 σ

z
1) sin

(

ˆ̃o1

)

+ ~νf õ2e
õ1õ2

(17)

The scaling of F1[φ
s
1, φ

s
2] is as follows,

F1[φ
s
1, φ

s
2] = α

J⊥ ln(s)

4πa

∫

dx

(

cos(φs
1)

+ sin(φs
1) + ν2fJ⊥φ

s
2e

νfJ⊥φs
1
φs
2 + ...

) (18)

The F2[φ
s
1φ

s
2] has to be evaluated carefully since we get

anomalous corrections due to non hermitian terms,

as(x)1 = J̃⊥

(

sin(φs
1) + cos(φs

1)

)

+ (φ1, φ2)terms (19)

We will see now how the F2[φ
s
1φ

s
2] can be worked out in

terms of the a(x, t),

F2[φ
s
1φ

s
2] =

∫

dxdx′dtdt′G0(x− x′, t− t′)

(

a
s(x, t)2

+ a
s(x, t)T ∂xa

s(x, t)(x − x′)

+ a
s(x, t)T ∂ta

s(x, t)(t′ − t)

+
1

2
a
s(x, t)T ∂2

xa
s(x, t)(x′ − x)2)

)

(20)

The correlation function can be written as the following,

f∂n
q ,∂m

ω
=

im+n

ν

∫

shell

dqdω

4π2
∂n
q ∂

m
ω G0(q, ω)δ(|q| −

Λ

s
)

(21)

The required derivatives for the operators as(x) in non
equilibrium case using the equation 19 which reads as
following,

(as(x))21 = J̃2
⊥ + (φ1, φ2)terms

ȧs(x)1 = J̃⊥

(

cos(φs
1)− sin(φs

1)

)

φ̇s
1

∂2
t a

s(x)1 = J̃⊥

(

− sin(φs
1)− cos(φs

1)

)

∂2
t φ

s
1

∂xa
s(x)1 = J̃⊥

(

cos(φs
1)− sin(φs

1)

)

∂xφ
s
1

∂2
xa

s(x)1 = J̃⊥

(

− sin(φs
1)− cos(φs

1)

)

∂2
xφ

s
1

(22)
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where in above J̃⊥ = α
J⊥(ln(s))

4πa ,second contour invloves
derivatives with the interaction,

(as(x))22 = J̃‖ν
2
f φ̃

2
2e

2φ̃1φ̃2

ȧs(x)2 = J̃‖ν
2
fe

φ̃1φ̃2(φ̇s
1φ̃2 + φ̃1

˙̃
φ2)

∂2
t a

s(x)2 = J̃‖ν
2
fe

φ̃1φ̃2(φ̃2∂
2
t φ

s
1

+ ˙̃
φ1

˙̃
φ2 + φ̃1∂

2
t φ

s
2)

∂xa
s(x)2 = J̃‖ν

2
f φ̃2e

φ̃1φ̃2(φs
2∂xφ

s
1 + φ1∂xφ

s
2)

∂2
xa

s(x)2 = J̃‖ν
2
f φ̃2e

φ̃1φ̃2(φ̃2∂
2
xφ

s
1

+ ∂xφ̃1∂xφ̃2 + φ̃1∂
2
xφ

s
2)

(23)

Substituting in equation 20 action which is a matrix in
(1, 2) contours can be worked out with substitution of
equations22 and23.This will also give us the scaling equa-
tions.

IV. FLOW OF THE ACTION

We can derive the flow equations from the Keldysh
fields from the effective action in equation 5 and this
will allow us to compare the purterbative RG schemes
worked out on NhSG,This is a similar RG procedure as
that of the Flow equation RG(FeRG)[8] by choosing the

interaction term as the generator η = lI [a
†
1, a

†
2, a1, a2] by

normal ordering with respect to first contour. Either of
the results do not alter since we have bosonic algebra
through out.

∂lZ =





δ2Z

δa†
1
δa1

δ2Z

δa†
1
δa2

δ2Z

δa†
2
δa1

δ2Z

δa†
2
δa2



 (24)

The partition function is written as Z =
∫

D[a†αaα]e
−SeffWe get the following RG equations,

dJ‖

d log l
=

1
( J‖

4π~ν̃f
− 1
)
− J⊥

( J‖

4π~ν̃f
− 1
)

dν̃f

d log l
=

ν̃2f
( J‖

4π~ν̃f
− 1
)

dJ⊥

d log l
=

ν̃2f
( J‖

4π~ν̃f
− 1
)

+
ν̃fJ⊥

( J‖

4π~ν̃f
− 1
)

(25)

The above beta functions contain the chemical potential
in the ν̃f = νf ± µ. We have done detailed analysis with
the non hermitian Sine-Gordan model RG analysis and
show the dissipative regimes of the beta functions.The
comparison with the original SG model flow from vari-
ous RG methods Flow Equation RG[8], Field theoretic
RG[41] and the RG analysis presented[42, 43] in the con-
text of PT symmetric non-Hermitian SG model.

V. DISCUSSIONS

A derivation from the spin-boson model in nonequilib-
rium to the sine-Gordon model gives many insights which
connect the exceptional points of non-hermitian prob-
lems, which are usually associated with non-Hermitian
degeneracy. Selfenergy matrix showing separatrix at the
points of vanishing fluctuations in the contours, which
compares reasonably well in the RG flow diagrams. At
the exceptional point of PT -symmetric SG model and
nonequilibrium SG capture the same physics in a strong
coupling regime, both obey the same scaling relations.
The renormallization perspective shows that PT symme-
try capture essential physics of nonequilibrium at excep-
tional points of the model, beyond which we have tran-
sition. This may not always have analogs in nonequi-
librium formalism. We have the dominant non equilib-
rium effects at a weak coupling regime,So chemical po-
tential renormalize strongly. Future Directions: The
two-particle response functions of such systems need a
quantitative study—the formalism with appropriate per-
turbation in non-hermitian shows where the formalism
stands regarding observables. Single particle quantities
can be easily computed with the selfenergy calculated.
However, the transient dynamics of each problem may
differ from the ambiguous initial state choice to reach a
steady state; hence, the time scales would be different
and needs a separate study.

VI. APPENDIX

A. Analytic solution of the flow equations

We seperate the solutions of the νf and J⊥ RG equa-
tions and get following,

∫

1 + t

t2(t2 + t− 1)
dt =

∫

1

J⊥
dJ⊥, where t =

J⊥

νf
(26)

The complete solution for given boundary conditions can
be found either numerically or analytically.Partial frac-
tions of the left integral will make it integrable.

log(J⊥) = − νf

J⊥
+ 2 log

(

J⊥

νf

)

−1

5

(

5− 2
√
5
)

log

(

2
J⊥

νf
+
√
5 + 1

)

−1

5

(

2
√
5 + 5

)

log

(

−2
J⊥

νf
+
√
5− 1

)

(27)
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FIG. 1: SG coupling flow showing BKT universality in the
J‖ − J⊥ plane where as the J‖ − νf show steady state of the
nonequilibrium regime.The strong coupling to week coupling

regimes are seperated by the seperatrix (we got from
selfenergy matrix) which are denoted by black lines.

J‖ − νf solution:Now we solve for the
dJ‖

dνf
from 25.This

is done for simplicity along the seperatrix J̃‖ = −J̃⊥

1√
3
arctan

(

2J̃‖ − 1√
3

)

+
1

3
ln
(

J̃‖ + 1
)

−1

6
ln
(

J̃2
‖ − J̃‖ + 1

)

= − 1

νf
+ c

(28)

This above curve also has the qualitative feature we got
from selfenergy but we could not rescale to plot on same
scale in flow diagram 1.

B. Benchmark with the Non-Hermitian SG RG

flow of the Ashida’s article

Using a perturbative expansion of the action the RG
equations derived[43] upto third order particularly we
solve the eq 3 of the article and show connection to our
flow equations.

dK

dl
= −(g2r − g2i )K

2

dgr

dl
= (2−K)gr + 5g3r − 5g2i gr

dgi

dl
= (2 −K)gi − 5g3i + 5g2rgi

(29)

The above show that gi
gr

is invariant it denoted as I in the

full solution. we can rewrite the flow equations as just
two coupled equations as the following,

dK

dl
= −g2r(1− I

2)K2

dgr

dl
= (2−K)gr + 5g3r(1− I

2)

=⇒ dK

dgr
= − grK

2(1− I
2)

2−K + 5g2r(1− I2)

(30)

We find a substitution a = 5g2r(1 − I
2) which solve the

non-linear coupled equations as the following,

d ln(K)

da
= −

(

1 +
a

1− a
K

)

(31)

Now with a substitution of a
K = t solves with partial

fractions and we state the result here,

− 1

A− 1
log
( a

K

)

+
3− 2A

(A− 1)(2−A)
log
(

(2 −A)
a

K

)

=
1

2
log(a), where A = 10(1− I

2)

(32)

the above equation 32 is full analytic solution of the RG
equations of Article[43] at exceptional points we have
comparison for J‖ − νf plane and gi − greal plane flow.

VII. PT -SELFENERGY

We show the non-hermitian selfenergy from the simi-
lar calculation we presented for scalar field theory by ex-
panding in terms of green functions and performing the
momentum and frequency integral we get the following,

ΣPT = − fq,ω
√

5(I2 − 1)
e−

5I
2

g

(

5I2c1e
10/g

−10I2e10/gEi
(10(I2 − 1)

g

)

+10e10/gEi
(10(I2 − 1)

g

)

+2e
10I

2

g − 5c1e
10/g

)
1

2

(33)

The self energy from the non-hermitian model is non-
linear but it has a similar root structure as that of the
eigenvalues of Keldysh selfenergy matrix and more im-
portantly we have a seperatrix solution similar upto a
constant. Equating the quantity in the root to zero we
have,

5I2c1e
10/g − 10I2e10/gEi

(10(I2 − 1)

g

)

+10e10/gEi
(10(I2 − 1)

g

)

+ 2e
10I

2

g − 5c1e
10/g = 0

(34)

In the above 34 g = |g| =
√

g2r + g2i , it is to find the
sepretrix line for gi − gr plane.This compares reasonably

with expansion I
2−1
g is small.
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FIG. 2: Left panel is for the I < 1 that is symmetry
preserved regime which compares well with the left panel of
the 1 and right panel for I > 1 show the system flow to weak
coupling regime which is in contrary to conventional strong

coupling regime in standard SG.
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